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Abstract 

 

Understanding the evolution and physical drivers of drought is critical to informing 

forecasting efforts. One aspect that has seldom been explored is the joint evolution of 

droughts in space and time. Most studies fix the reference area and focus on their temporal 

variability, or study their spatial heterogeneity over fixed durations. This work implements a 

Lagrangian approach by aggregating contiguous areas under drought into clusters. These 

clusters become the frame of reference and are tracked as they evolve through space and 

time. Clusters were identified from soil moisture data from the Climate Forecast System 

Reanalysis (1979-2009). Evapotranspiration, moisture fluxes, and precipitation were used to 

explore the relevance of possible mechanisms of drought propagation. While most droughts 

remain near their origin, the centroid of 10% of clusters traveled at least 1,400-3,100 km, 

depending on the continent. This approach also revealed that large-scale droughts often lock 

into further growth and intensification. 

 

1. Introduction 

 

Droughts can be deadly and extremely costly [Sheffield and Wood, 2011]. Continuous study 

of these hazards has allowed us to improve our ability to forecast them and develop early-

warning systems that provide useful information to agricultural, energy, water, and 

humanitarian aid sectors. However, we have still failed to predict important droughts, like the 

one that struck the U.S. Great Plains in the summer of 2012 [Hoerling et al., 2014] and 

contributed to increases in global food prices [World Bank, 2012]. This is partly because we 

do not yet fully understand how droughts arise, persist, evolve, and recover [Wood et al., 

2015]. A contributing factor is how we characterize and analyze droughts’ spatio-temporal 
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dynamics from observations or model predictions. 

 

Previous studies often reduce drought analysis from three dimensions (i.e. latitude, longitude, 

and time) to one or two [Lloyd-Hughes, 2012]. Most have focused on time series analysis of 

area-averaged variables [see Mishra and Singh, 2011, for a review], ignoring conditions in 

the immediate surroundings of the arbitrary domains, and over upwind regions that are 

connected to the areas of interest through atmospheric circulation patterns. Few recent studies 

have analyzed how droughts evolve simultaneously in space and time, by tracking drought 

clusters – i.e. spatially contiguous areas under drought – and analyzing their characteristics. 

Andreadis et al. [2005] introduced an innovative clustering algorithm to track droughts 

through space and time along their duration. They used it to introduce Severity-Area-

Duration (SAD) curves for the U.S. to assess the spatial variability of droughts of set 

durations. However, they did not focus on the monthly dynamics themselves. Later studies 

replicated the SAD curve analysis globally [Sheffield et al., 2009] and for other regions [e.g. 

Zhan et al., 2016]. Some studies at the country [e.g. Vicente-Serrano, 2006; Vidal et al., 

2010; Xu et al., 2015; Zhai et al. 2016] and continental [Lloyd-Hughes, 2012] scales have 

explored drought cluster characteristics (e.g. distribution of centroids, direction of 

displacement over time, and changes in cluster area, intensity, and severity). However, the 

regional scale of these studies still bounds the frame of analysis and prevents a thorough 

comparison of the spatio-temporal characteristics of drought across the globe. Furthermore, 

previous studies have been limited to simple assessments of the time series of drought area 

and intensity [Vicente-Serrano, 2006; Vidal et al., 2010; Gocic et al., 2014; Wang et al., 

2015], report aggregate regional drought statistics that do not provide insight into the 

behavior of individual events [Tallaksen and Stahl, 2014; Ge et al., 2016]. 
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While the initial onset of droughts is hard to predict, given that it often stems from random 

atmospheric variability and long-range teleconnections from climatic oscillations [e.g. 

Rajagopalan et al., 2000; Giannini et al., 2003; Shabbar and Skinner, 2004; Mo and 

Schemm, 2008; Wu and Kinter, 2009], local and regional feedbacks with the land surface can 

play a larger role in the subsequent evolution of droughts. Land-atmospheric feedback 

mechanisms, such as precipitation recycling [e.g. Rodriguez-Iturbe et al., 1991a,b; Eltahir 

and Bras, 1996] have been linked to the intensification and persistence [Giannini et al., 2003; 

Wu and Kinter, 2009; D'Odorico et al., 2013; Roundy et al., 2013], and even propagation of 

droughts within a continent [Dominguez et al., 2009; Sheffield et al., 2009; Sheffield and 

Wood, 2011]. Thus, in order to understand better how droughts evolve within a region, it is 

also important to take into account its surroundings, and the regions to which it is 

atmospherically connected. This can be achieved by carrying out joint spatio-temporal 

analysis of droughts that provides a more complete picture of their development beyond their 

origin.  Increased understanding of the relevant local and regional land-atmospheric 

feedbacks that this approach would bring, may inform the physical processes that need to be 

improved in climate models to help advance predictive capabilities.  

 

Here we use a Lagrangian approach where individual drought events become the frame of 

reference, providing unique insights into the spatio-temporal dynamics of droughts. Several 

characteristics of drought behavior are proposed and analyzed, including how droughts 

displace across continents and their monthly patterns of growth, intensification, and recovery. 

The statistics of these characteristics are aggregated to the continental scale and compared 

globally to evaluate regional differences in drought behavior. Droughts are defined based on 

soil moisture from reanalysis data. Furthermore, to study the extent to which drought 

displacements occur downwind through reductions of moisture exports, anomalies in 
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evapotranspiration (ET), moisture fluxes (MF), and precipitation (Prcp) along the clusters’ 

tracks are analyzed. We hypothesize that the drought dynamics analyzed here are driven by a 

combination of atmospheric drivers, land-atmosphere feedbacks, and geographic factors, 

including merging and splitting of individual droughts. In this study, we explore the spatio-

temporal characteristics of droughts in a systematic way as a first step to understanding the 

mechanisms of their development, persistence, and displacement.  

 

2. Material and Methods 

 

We used data from the Climate Forecast System Reanalysis (CFSR) to identify areas under 

drought using a percentile threshold definition. Contiguous regions under drought were 

aggregated into clusters, and tracked over time and space. Characteristics of the clusters were 

calculated and compared across continental regions.  

 

2.1. Data and Definitions  

 

Monthly 2-meter soil moisture, Prcp, latent heat flux, and tropospheric (1000mb-250mb) 

wind and specific humidity data from CFSR at 0.5-degree resolution from 1979-2009 was 

used. Latent heat flux was used as a proxy for evapotranspiration, so it is referred to as ET 

henceforth. CFSR is a state-of-the art reanalysis that has been used for land-surface 

hydrology research [e.g. Mo et al., 2011; Meng et al., 2012] and has been identified to 

generally reproduce observed droughts more accurately than other reanalysis datasets [Zhan 

et al., 2016]. We focus on agricultural droughts calculated from soil moisture, given its 

importance for vegetation, agricultural productivity, and for controlling relevant land-

atmospheric interactions.  
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For each variable, percentiles are first calculated from the empirical cumulative distribution 

function of each month. Individual values are replaced by their respective percentiles, and 

droughts are defined when these are under a given threshold. The 15
th

 percentile was chosen 

since it approximates the threshold of common drought metrics, like the Standardized 

Precipitation Index or Palmer Drought Severity Index value of -1 [Guttman, 1999; Szép et al., 

2005]. This definition allows a direct comparison of dry anomalies across regions with 

different climates, permitting the study of drought dynamics throughout each continent. This 

could not be done by using an absolute value threshold. 

 

Drought metrics used here are defined in Equations 1-3: 

 

                                                                             

 

      
 

 
      

 

   

                                                               

    

                                                                                

 

   

 

 

where Ij(t) is the intensity during month t in grid-cell j, Pj(t) is the percentile during month t 

in grid-cell j, Ī(t) is the mean intensity of a cluster during month t, n is the number of grid-

cells in the cluster at time t, S is the cluster’s severity, and D is the cluster’s duration. 

Intensity is defined such that lower percentiles represent higher intensities.  
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2.2. Clustering Algorithm 

 

The clustering methodology follows Andreadis et al. [2005]. After percentiles are calculated 

and the threshold is implemented at each grid-cell, a 2-D median filter is applied to each 

monthly map to smooth out spatial noise. Contiguous grid-cells under drought are then 

aggregated into clusters. Clusters smaller than 200,000 km
2
 are filtered out following 

Andreadis et al. [2005] and Sheffield et al. [2009], focusing the analysis on large-scale 

droughts that have higher likelihood of persisting and displacing. The cluster centroids are 

found using a weighted center of intensity where the intensity values of the cluster grid-cells 

are used as weights.  

 

Drought events were tracked through time by searching for overlapping grid-cells between 

clusters at contiguous time steps. The tracking algorithm records if a cluster splits, merges, or 

does both at the same time. Droughts over Greenland, and those whose centroids fell within 

the Sahara Desert (20N-25N, 17W-34E) were removed from the analysis, since droughts in 

these regions were not of interest for this study. Clusters were allowed to propagate into the 

Sahara until their centroids fell within the described domain.  

 

2.4. Spatial and Statistical Analysis  

 

The drought cluster centroids generate tracks throughout the continents as they displace from 

month to month. To understand the characteristics of these tracks and whether there are 

certain regions that experience higher drought displacement, a map of 10-by-10-degree grid-

cells was generated and the number of tracks within each grid-cell was counted. By 

calculating the number of tracks within these larger grid-cells, we obtain a better 
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representation of regions with frequent drought clusters displacing through them. Only 

monthly displacements with magnitude of 150 km or more were considered to avoid counting 

small displacements that would fall within the uncertainty of the cluster centroid location. 

Instances when clusters merged or split were ignored because these result in large changes in 

the centroid’s location. Furthermore, the displacement vector of unit-length of each drought 

cluster was recorded each time a cluster passed through one of these grid-cells. The 

centroids’ displacements were also sorted into three categories: 1-2) displacement due to 

asymmetric growth or shrinkage, and 3) displacement of the entire cluster. To categorize 

centroid displacements, the overlap in the number of grid-cells in a cluster between two time 

steps was calculated. If the overlap was equal or larger than 75%, the cluster was considered 

to have grown or shrunk asymmetrically. This distinction was determined by comparing the 

cluster areas between time steps. Otherwise, the cluster was determined to have moved 

locations. 

 

Seven cluster characteristics were evaluated: 1) duration, 2) distance between cluster 

centroids at the start and at subsequent time steps (i.e. monthly displacement), 3-4) cluster 

areas and mean intensities (Equation 2) at each time step, 5) cluster severity at each time step 

(Equation 3), and 6-7) rate of change in cluster area and mean intensity between time steps. 

These represent a range of different drought characteristics and dynamics.  

 

Characteristics 1-5 were calculated at every time step for each cluster and their statistics were 

aggregated for six continental regions (North America, South America, Europe, Africa, Asia, 

and Australia). For each region, the complementary conditional distribution functions 

(CCDF) of the clusters’ displacement, maximum area, and severity reaching at least a given 

threshold value conditional on a range of durations were calculated. The two chosen 
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thresholds values corresponded to the means across regions of the 50
th

 and 80
th

 percentiles of 

each characteristic for droughts that had lasted two years or less (since observations 

decreased in several regions for longer-lasting clusters). The median durations of clusters that 

reached a range of displacements were also calculated.  

 

For each region, the rates of change in area were calculated each month as a function of 

cluster area in the previous month. Instances when clusters merged or split were discarded, 

since this often caused large area changes. A 2-D histogram was generated from the scatter 

plot of rates of change in area against cluster area in the previous month, with 10 bins 

dividing each axis. Linear regressions were calculated to model how rates of change in area 

vary as a function of cluster area. This was repeated to model the rates of change in mean 

intensity as a function of the clusters’ mean intensities in the previous month. 

 

A possible mechanism of drought propagation is the reduction of MF downwind caused by 

reduced ET over an area under drought. This reduction of moisture exports can then lead to 

decreased Prcp over a region downwind [Dominguez et al., 2009]. To do a first 

approximation of the relevance of this mechanism, vertically integrated MF (1000mb-250mb) 

were calculated from monthly data.  

 

To find pairs of regions that have been under drought and are atmospherically connected, 

disjoint domains R1 and R2 occupied by the same drought cluster at two different points in 

time t1 and t2 (t1<t2), respectively, were identified. A linear boundary was drawn at the mid-

point between the centroids of R1 and R2 (see Figure 4(a)), and the length of the boundary 

was set to the diameter of a circle with an area equal to the mean of the areas of the two 

domains. The MF perpendicular to the boundary in the direction from R1 to R2 was 
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calculated for every month between 1979-2009. If this was positive, then R2 was determined 

to be downwind from R1. For these cases, Spearman rank correlations ρ were calculated 

between monthly time series (1979-2009) of ET anomalies averaged over R1 and the time 

series of MF anomalies crossing the boundary towards R2, and between the time series of MF 

anomalies and the time series of Prcp anomalies averaged over R2. If this pair of correlations 

was positive and statistically significant (p<0.05, the reduction of moisture exports was 

determined to be a contributing mechanism (but not necessarily the only one) to the 

propagation of that cluster. This was repeated for each cluster by finding R1 and R2 using 

t1=0 and t2=2D/3, and t1=D/3 and t2=D, where D is the cluster’s total duration, and making 

sure there was no overlap between any combination of domains. 

 

3. Results 

 

3.1. Spatial Patterns of Drought Displacement 

 

A total of 1,420 drought clusters were identified, and their centroids were tracked throughout 

the world. Figure 1(a) shows selected contours and the track of an example cluster that 

displaced from California to the U.S. Great Plains. Figure 1(b) shows the tracks of drought 

clusters over North America that lasted at least 3 months and travelled at least 500 km. A 

map of the track densities in an upscaled grid of 10-by-10 degrees was generated and is 

displayed in Figure 1(c). This shows “hotspots” of cluster tracks in the southeast of the 

United States, northwest of Mexico, northwest of Brazil, south of Brazil and north of 

Argentina, Central and Eastern Europe, Central Africa, northwest of India, Southeast Asia, 

and Australia. These areas cover tropical, temperate, and semi-arid climates, suggesting that 

there are a variety of factors involved in drought displacement within each region. Note that 
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despite some regions experiencing prolonged drought between 1979-2009 (e.g. the Sahel), 

these droughts are not necessarily frequently mobile. This is potentially because atmospheric 

pressure patterns in these regions are more stable, and because these regions may not be 

important sources of moisture for other areas downwind, preventing the drought signal from 

propagating farther through reduced moisture exports [e.g. Giannini et al., 2003; Keys et al., 

2014; Arnault et al., 2016].  

 

Figure 1(c) also shows a vector field of the drought clusters’ net displacement for each 10-by-

10-degree grid-cell. Longer arrows indicate that several clusters followed the same direction. 

Conversely, short arrows or their absence indicate that there were no regional coherent 

displacement patterns (e.g. clusters moved eastwards almost as frequently as they moved 

westwards). The longest arrows are found in South America and Australia. For Europe, the 

lack of arrows is partially due to the smaller number of droughts in the region given the 

continent’s smaller size.  

 

Depending on the region, asymmetric growth was responsible for 10-23% of centroid 

displacements, asymmetric shrinkage for 13-32%, and cluster displacement for 49-76%. 

Asymmetric shrinking is more frequent than asymmetric growth since storms can quickly 

relieve a section of the cluster from drought conditions [e.g. Kam et al., 2013]. Europe and 

Australia experience the highest proportion of cluster displacement (76% and 58%, 

respectively); North America and Asia the highest proportion of asymmetric growth (23% 

and 22%, respectively); and North America, South America, and Africa of asymmetric 

shrinkage (25%, 25%, and 32%, respectively). The patterns of motion in Figure 1(c) combine 

the direction that droughts follow when they displace, as well as the direction in which they 

grow and shrink. As droughts shrink their centroid may move in the opposite direction in 
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which they grew, suggesting that these displacements could be analyzed further based on the 

season and the timing of the drought, though the lack of samples makes this challenging. 

 

3.2. Spatio-Temporal Characteristics  

 

Figures 2(a-f) display the CCDF of displacement, maximum area, and severity reaching at 

least two different thresholds, conditional on a range of cluster durations for each region. 

Australian, South American, and European clusters have higher probabilities of displacing 

further for each duration, while African and North American clusters tend to be more static in 

comparison. South American and European clusters also have higher probabilities of growing 

beyond 1 and 2 million km
2
, while North American, African, and Australian droughts tend to 

be smaller. Most regions display similar probabilities of clusters reaching the given severity 

thresholds, except for North America, where droughts tend to be less severe, comparatively. 

Figure 2(g) shows the median durations that it took clusters to reach a range of 

displacements. They suggest that South American and Asian clusters tend to have faster 

displacements, and African and Australian clusters slower ones. This shows that although 

droughts appear to displace everywhere in the world, there are distinct regional differences in 

their behaviors month-to-month. 

 

Monthly rates of change of area and mean intensity were calculated for clusters of different 

areas and mean intensities, respectively. Figure 3 shows the resulting 2-D histograms and 

linear regressions. The high frequencies in the 2-D histogram for smaller areas imply that 

smaller clusters (that are still larger than 200,000 km
2
) have a higher propensity of growing 

further. Conversely, very large clusters located in the middle and right end of the x-axis tend 

to shrink instead. The histograms of the clusters’ intensities show higher frequencies of 
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positive changes for less intense droughts (that have reached dry anomaly of the 15
th

 

percentile), and higher frequencies of negative changes for more intense droughts. This 

implies that less intense droughts tend to intensify further. The negative correlations from the 

linear regressions support these conclusions. The dynamics shown here may be partially due 

to local positive feedbacks (e.g. precipitation recycling) that lock clusters into drought 

conditions making it harder for recovery to take place [e.g. Giannini et al., 2003; Wu and 

Kinter, 2009; D'Odorico et al., 2013; Roundy et al., 2013].  

 

3.3.  Role of Moisture Exports Reduction on Drought Propagation 

 

Disjoint domains from the same clusters were used to identify regions that are 

atmospherically connected, and to study the contributions of anomalies of moisture exports 

on drought propagation. Figure 4(a) shows example domains R1 and R2 as described in 

Section 2.4 for the cluster in Figure 1(a). Figure 4(b) displays the scatter plot and Spearman ρ 

between the monthly time series (1979-2009) of ET anomalies averaged over R1 and the MF 

anomalies across the boundary in the direction of R2 in 4(a). Similarly, Figure 4(c) shows the 

relationship between MF anomalies across the boundary and Prcp anomalies averaged over 

R2. Since these two correlations were positive and significant, and the mean flux across the 

boundary towards R2 was positive (not shown) we conclude that reduction of moisture 

exports from R1 can influence drought propagation into R2 for this pair of domains.  

 

This analysis was repeated for 60 pairs of disjoint domains in total, globally, and R2 was 

determined to be downwind from R1 in 42 of them. Figure 4(d) shows the histograms of 

Spearman ρ’s between ET anomalies and MF anomalies for those 42 cases, and 4(e) the 

Spearman ρ’s between MF anomalies and Prcp anomalies. The shaded red bars correspond to 
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the cases for which moisture exports were found to have made a contribution to drought 

propagation as defined above. Figure 4(f) displays the percentage of domain pairs for which 

reduction of moisture exports were found to be a contributing factor for drought propagation 

in each region, including all pairs. North and South America had the highest proportion (45% 

and 27%, respectively), while Australia and Asia had the lowest (0% and 10%, respectively). 

These results suggest that regional land-atmospheric feedbacks may play a role in drought 

propagation at the large, sub-continental spatial scales considered in this study, though other 

atmospheric mechanisms are also important. This is a first-order analysis that considers 

predominant MF at the monthly scale, but further work should be done using MF derived at 

higher temporal resolutions.  

 

4. Discussion and Conclusions 

 

CFSR data was used here to identify drought clusters and characterize their monthly spatio-

temporal dynamics across the world. This work advances our current understanding of 

drought dynamics, showing that drought clusters can displace hundreds of kilometers in 

every continent, sometimes partially due to the reduction of moisture exports that propagate 

the drought signal downwind. While these traveling droughts might only represent a small 

fraction of the total number of events, they are likely to have some of the largest societal 

impacts given that they are also the longest lasting and most severe ones.  

 

This analysis draws a parallel with tropical cyclone studies, in which the densities and 

directions of their tracks have been analyzed in the world’s oceans [Zhao et al., 2009]. 

Similarly, there are hotspots where more droughts pass through and common directions that 

they tend to follow over various land-regions around the world.  



 

 
© 2017 American Geophysical Union. All rights reserved. 

The drought clusters’ displacements and their area and intensity dynamics suggest that land-

atmospheric feedback mechanisms, such as precipitation recycling might play an important 

role in the evolution of droughts, both locally and downwind [e.g. Dominguez et al., 2009; 

Roundy et al., 2013]. This is in addition to other atmospheric phenomena, such as the 

displacement of high-pressure systems, and heightened probability of drought over large 

areas due to teleconnections with sea surface temperatures. Results shown here also suggest 

the existence of area and intensity thresholds beyond which it is more likely for droughts to 

grow and intensify before they recover.  

 

Improved understanding of the physical mechanisms behind the spatio-temporal dynamics of 

droughts explored here highlights areas in which forecast models should be improved. 

Combining the approach presented in this work with increased understanding of the physical 

mechanisms may enable the development of statistical-physical models of drought clusters 

that can be used for risk assessment and seasonal forecasting, similar to those for tropical 

cyclones [e.g. Yonekura and Hall, 2011]. 

 

The ability of droughts to displace across regions also poses important implications for 

regional cooperation and information exchange between governments at different scales (e.g. 

municipal, state, and national) regarding drought risk mitigation and management. An 

example of this is the North American Drought Monitor, which links information between 

Mexico, the U.S. and Canada [Lawrimore et al., 2002]. These information systems can help 

stakeholders make appropriate decisions to mitigate droughts’ impacts before they displace 

into their region and throughout the droughts’ development. 
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Figure 1. (a) Example of a soil moisture drought cluster. Darker contours show later domains 

occupied by the cluster. The blue line represents the cluster centroid’s track. (b) Drought 

cluster tracks that displaced at least 500 km and lasted at least 3 months over North America. 

(c) Density of tracks around the world. Blue arrows represent net direction of droughts 

passing through.  
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Figure 2. CCDFs of (a-b) displacements, (c-d) maximum areas, (e-f) and severities 

exceeding two thresholds, conditional on a range of durations, for each region. (g) Median 

duration of clusters that have reached a range of displacements in each region. 
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Figure 3. Regional 2-D histograms of rates of change in area (left) and intensity (right) as a 

function of area and intensity, respectively, during the previous month. Red line displays 

linear regression results. All correlations yielded p<0.05. 
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Figure 4. (a) Example of domains R1, R2, and the boundary between them. (b) Scatter plot 

and ρ between ET anomalies over R1 and MF across the boundary towards R2 shown in (a). 

(c) Similar to (b) for MF anomalies across the boundary and Prcp anomalies over R2. (d-e) 

Histograms of ρ’s between ET and MF, and between MF and Prcp, respectively, for 

atmospherically connected domains. (f) Percentages of cases where the pair of correlations 

were positive and significant in each region. 

 


