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ARTICLE INFO ABSTRACT
Keywords: This paper analyses plethora of advanced multivariate econometric models, which forecast the
Asset management mean and variance-covariance of the asset returns to create optimal asset allocation models. Most
Asset allocation existing studies use a limited number of Generalized Autoregressive Conditional
GARCH

Heteroscedasticity (GARCH) models. In this study, we provide an in-depth knowledge of large
asset modeling and optimization strategies for solving a portfolio selection problem involving the
dynamic conditional correlation models (DCC). Specifically, we use symmetric GARCH models
and an asymmetric version of it (GJR-GARCH). Several studies have also tried to examine the
effectiveness of using parametric copula in estimating portfolio risk measures but their results

Copula
Dynamic conditional correlation
Portfolio optimisation

JEL classification:

g?? have been inconclusive. We are interested in evaluating if Copula-GARCH could be an optimal
G15 model for assessing the performance of a portfolio. This study, therefore, implemented various
G17 Copula-GARCH based models using the static and dynamic estimation of the correlation. By
G32 employing different model specifications, we are able to explore the empirical applicability of the

multivariate GARCH models when estimating large conditional covariance matrices. In con-
structing the optimal portfolios, we evaluate the minimum variance, mean-variance, maximising
Sharpe ratio, mean-CVaR, and maximization of Sortino ratio. We compare the out-of-sample
performance for each of the models based on the risk-adjusted performance for a portfolio with
and without short sales, consisting eight stocks and four bond indices of 10 years maturity, in the
United States (US), United Kingdom (UK), Germany, Japan, Netherlands, Canada and Hong
Kong. Our results suggest that the dynamic models are more capable of delivering better per-
formance gains than the static models. These models reduce portfolio risk and improve the
realized return in the out-of-sample period. This paper concludes that by adding copula functions
to the model, it does not give a better performance model when compared to the dynamic cor-
relation model.

1. Introduction

With today’s challenging environments and highly volatile markets, the study of asset management has become important for
organizations in managing their assets to obtain the best possible returns. Asset allocation aims to balance the risk and return by
adjusting the percentage of each asset in an investment portfolio to meet the investor’s goals, investment objectives, risk tolerance,
and investment horizon.

The future forecast is highly dependent on the choice of the volatility modeling. It is known that volatility is not directly
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observable, which makes it important to have a good model to predict future volatilities. Obtaining an optimal portfolio requires
estimating and forecasting very large conditional covariance matrices of the asset returns which depend on many parameters (Billio,
Caporin, & Gobbo, 2006; Lee, Chiou, & Lin, 2006). Over the past years, several studies have developed methods and approaches to
examine the dynamics of covariance of assets. Previous studies on asset allocation, focus on a limited or specific econometric model to
model its asset return covariances (see, for example, Koivu, Pennanen, & Koivu (2005), Ferstl & Weissensteiner (2011), Hoevenaars,
Molenaar, Schotman, & Steenkamp (2013)). One of the widely used model is the Vector Autoregressive (VAR) model which is an
extension of the univariate autoregressive model to dynamic multivariate time series.

To deal with a large number of parameters in multivariate models, Bollerslev, Engle, and Wooldridge (1998) suggest a Constant
Conditional Correlation (CCC) model such that the conditional correlations are assumed to be constant. This model reduces the
number of parameters and thus simplifies the estimations considerably. However, the assumption of this model may not be realistic
because the conditional shocks are correlated only in the same market, and not across markets (Chang, McAleer, & Tansuchat, 2013).
Engle (2002) proposes a generalization of CCC model, by allowing the correlations to change over time, known as the Dynamic
Conditional Correlation (DCC) model. This model is estimated using a two-steps approach: the estimation of mean and variance by a
series of univariate GARCH models, and the correlation estimation.

Alternative DCC models also have been proposed in the literature which are aiming to solve problems associated with the basic
DCC model. The limits of the DCC model are constrained by the equal dynamics for the correlations of all the assets (Billio et al.,
2006). To avoid this problem, Billio et al. (2006) propose the Flexible DCC (FDCC) model such that the correlation dynamic is
constrained to be equal only between w groups of variables, providing flexible dynamics. Another study by Otranto (2010) examines
the performance of optimal asset allocation strategies using FDCC models with regime switching as compared to alternative models.
Recently, Aielli (2013) suggests a more tractable dynamic conditional correlation model, known as a corrected DCC model or ¢cDCC
model, which involves the three-step approach that is feasible with large systems and provides unbiased estimations (Boudt et al.,
2013). Recent proposals of multivariate GARCH models include the asymmetric DCC model (aDCC) of Cappiello, Engle, and Sheppard
(2006), the Copula GARCH of Patton (2004), the dynamic equicorrelation (DECO) model of Engle and Kelly (2012) and the smooth
transition conditional correlation (STCC-GARCH) of Silvennoinen and Terasvirta (2015).

The copula theory was introduced by Sklar (1959). It states that any multivariate distribution function can be decomposed into its
marginal distributions and a copula function. The application of copula function was only being introduced in the late 1990’s in
actuarial science and finance by Embrechts, McNeil, and Straumann (1999) and Li (2000), and more recently by Hurlimann (2014)
and Wu and Lin (2014). Over the years, copula function has been popular in the financial research, especially because of its ap-
plication to risk management and asset allocation. However, there are very few studies assessing the out-of-sample performance of a
portfolio based on the copula model (see, for example, Patton (2004), Ricetti (2013), Wu & Lin (2014), Kresta (2015)).

This paper makes several contributions to the literature. First, this paper involves a large class of different advanced multivariate
DCC GARCH models. We use 26 different model specifications using multivariate GARCH processes in modeling the mean returns and
variance-covariance matrices. Specifically, we use a symmetric GARCH model and an asymmetric version of it (GJR-GARCH), such
that the models are implemented with the multivariate normal and student distributions. For the conditional mean dynamics, this
study allows a constant, univariate autoregressive (AR), autoregressive-moving average (ARMA) or vector autoregression (VAR)
model to be fit. In general, the model specifications to model covariances includes DCC models, aDCC models, FDCC models,
Generalized Orthogonal GARCH (GO-GARCH) and copula-GARCH models. For the normal DCC models, the conditional mean is
jointly estimated with the first stage GARCH while, whereas for the GO-GARCH models, the dynamics for the conditional mean are
defined from the general ARFIMAX model of Engle, Lilien, and Robins (1987), assuming constant variance to obtain the parameter
estimates. The copula-GARCH models are implemented using the static and dynamic estimation of the correlation. We apply different
model specifications to obtain out-of-sample forecasts of the mean returns and the conditional covariance matrix of all assets and use
the estimated matrices to construct optimal short selling-constrained and unconstrained portfolios. The portfolio is constructed by
using different optimization strategies such as minimum variance, mean-variance, maximization of the Sharpe ratio, maximization of
Sortino ratio for a given risk and mean-CVaR. To our best knowledge, we are the only one who provide a comprehensive comparative
study involving various multivariate GARCH models in an optimal asset allocation setting. From this study, we can capture different
characteristics in the data which improve the portfolio performance and are useful for the construction of optimal portfolios. This
paper differs from previous studies by assessing the out-of-sample performance of large groups of different multivariate DCC GARCH
models in different optimization schemes considering portfolios with and without short sales. Most of the existing literature compares
the performance of limited GARCH models, and they are based on a specific optimization model. Several studies have tried to
examine the effectiveness of using parametric copula in estimating portfolio risk measures, but they have been inconclusive. It is
unclear whether it is optimal to use copula-GARCH over the sophisticated DCC model. This study, therefore, will provide useful
insights for those wishing to explore the different GARCH models that are available, from the simplest autoregressive models up to
more complex models. and use a dynamic approach for asset allocation and portfolio construction purposes.

The remainder of the paper is organized as follows: Section 2 discusses the econometric models we use to model the asset returns
covariances. Section 3 describes the portfolio optimization strategies used to construct optimal asset portfolios and look at how the
models evolve. Section 4 presents the data, empirical analysis and results of the proposed models and methods, while Section 5
provides concluding remarks and identifies the shortcomings and future implications of the study.

2. Econometric models for asset return

The multivariate GARCH requires mean and covariance estimation values as inputs for the portfolio optimisation. In this paper,
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we consider different econometric methodologies to model mean asset return and covariances.

Volatility has some characteristics that are not directly noticeable but are commonly seen in asset returns; i.e, the presence of
volatility clustering in the data, a volatility jump is rare, stationary, and has a leverage effect (Tsay, 2013). Various volatility models
were introduced, particularly to correct the weaknesses of their inability to capture the characteristics mentioned previously.

Consider the vector stochastic process x; which is the T' X 1 vector of log returns of n assets at time t and y, is the T X 1 vector of
the expected value of conditional x; such that ¢, may be modeled as a constant vector or a time series model. The multivariate GARCH
models are written as

X = + ¢, &I®_1~N(O,H), (€))]

where ¢, is the residuals of the process which follows a conditionally multivariate normal distribution with mean 0 and time-varying
conditional covariance matrix H;, given ®,_; the information set at time t—1. The residuals are modelled as

1
& = H?z;, 2

1
where H, is T X n positive definite matrix of conditional variances of x; at time t. H? is the Cholesky factorization of the time varying
conditional covariance matrix of H;. The symbol z; is T X 1 vector of independent and identically distributed random errors such that
Elz;] = 0 and E[z,z/] = I, whereby I denotes the identity matrix of order T. The conditional covariance matrix H; of x, may be
defined as

Var [x,|.#1] = Van_ [x = Var_ [&]
1 1
= H?Var_,(&)(H?) = H;, 3)

where % = {x;, x;_1, ...}]. We use different specifications for multivariate GARCH processes of forecasting mean asset return and
covariances. By using different econometric models, we are able to capture different characteristics in the data which improve the
portfolio performance and are useful for the construction of optimal portfolios. We then compare the results of each model to see their
ability in optimizing portfolio.

2.1. Modeling mean returns

There are various models for time series which are divided into the AR and MA models. The AR(m) model can be written as

m
Xt = 2 ¢xi—i + &.
i=1

4
For the moving average, MA (n) refers to
n
X, = €— Z 6 &_j.
=1 5)

These models are commonly used to generate new models, i.e., ARMA or VAR models. We model the mean returns using different
estimation processes, either using a constant mean, AR, ARMA or VAR models.

The ARMA model provides a parsimonious parametrization and further simplification in modeling multivariate time series. It has
both stationary stochastic processes of the autoregression and moving average methods, which are applied to a multivariate time
series data. The ARMA (m, n) model refers to the m autoregressive terms and n moving average terms, which includes the AR (m) and
MA (n) models. Thus, the mean of the process modeled by ARMA (i, n) is

m n
X =@, + Z $ixe—i + Z 0 &j + &,

i=1 j=1 6)
where ¢, € R and «; and §; are T X n diagonal matrices. The autoregressive coefficients is denoted by ¢, and moving average
coefficients is denoted by 6; if there exist real coefficients ¢,, ...,¢,, and 6, ...,6,, such that ¢ is the linear innovation process of x;. ¢,
and §; are T X n matrices with ¢, # 0 and §; # 0.

The VAR model is one of the most commonly used multivariate econometric models. We allow the conditional mean to follow a

VAR structure, where the model can be represented by

m
Xr=¢C+ z ¢Xi—i + &,
im1 )]

where x; is vectors and cdenotes T X 1 dimensional vector of constants. ¢,, ...,¢,, is parameter matrices. This model has an important
characteristic which is its stability. It generates stationary time series with time invariant means, variances and covariances.

2.2. Modeling covariances matrix

We use different specifications for multivariate GARCH processes of forecasting a variance-covariances matrix, i.e., (i) Dynamic
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Conditional Correlation (DCC), (ii) Asymmetric Dynamic Conditional Correlation (aDCC), (iii) Flexible Dynamic Condition
Correlation (FDCQC), (iv) Generalized Orthogonal GARCH (GOGARCH), and (v) Copula GARCH (C-GARCH).

2.2.1. Dynamic Conditional Correlation (DCC)

The DCC model was proposed by Engle (2002), which is a generalization of the Constant Conditional Correlation (CCC) model
from Bollerslev et al. (1998), to allow for the time-varying correlation matrix of multiple asset returns. In the CCC model, the
conditional covariance matrix is decomposed into conditional standard deviations and a constant correlation as

H; = D\RD,, (€)

where D; is the T X n diagonal matrix of time-varying standard deviations from univariate GARCH models, {D; = diag (\/hi¢, - \/int),
and R = p; is the positive definite constant conditional correlation matrix with o, = 1 fori = 1, ...,n. The off-diagonal elements of H,,
are given by

(Hily = pyvhie Jhies i # J. ©)

This model is computationally attractive and simple because of the constant correlation. However, the assumptions of constant
conditional correlations may be unrealistic in practice and it may be too restrictive in some cases. The DCC model allows the time-
varying correlation dynamics, R = R,. It is defined as

X= My + &
1
€= H?Zz
H= DR, D, (10)

such that x; is a T X 1 vector of log returns of n assets at time t. €, is a T X 1 vector of mean corrected returns of n assets at time t such
that E[e] = 0 and Cov[e] = H,. u, is a T x 1 vector of the expected value of the conditional x,. H,; is a T X n matrix of conditional
variances of €, at time t, and D, is a T x n diagonal matrix of conditional standard deviation of ¢, at time t. Note that the conditional
correlation matrix of €, is now time varying and denoted by a symbol R,. While z, is T X 1 vector of independent and identically
distributed random errors such that E[z;] = 0 and E [z,z/] = Ir. The conditional variances, H, can be estimated separately by a simple
univariate GARCH specification of

q P
2 2 2
H =0,=g+ Z Bioii-1 + z Qi GL(,t)—m’
I=1 m=1 (11)

where g; is T X 1 vector of constant, o; and §; are T X n diagonal matrices. egz_)m = €_m O €y, is the Hadamard product, which is the
element by element product. H; is a positive definite matrix such that g, > 0 and «;, 8, > 0. R, is also a positive definite conditional
correlation matrix of the standardized disturbances of z; such that

z: =D ¢ ~ N(0, R). 12)

Thus, the elements of H; = D,R,D; with p,;, = 1 can be written as

[Ht]ij = Pij,m/hithjp 13)

The conditions for the positivity of the covariance matrix H; requires R, to be positive definite, g, and all diagonal elements of
matrices §; and «; are all positive. Therefore, we need to decompose R, into:

R = (Qt*)_th(Qt*)_l
Q= (1-a=b)Q + azi1z/ 1 + bQ,_1. (14)

Q=Covlz;z/]=E[z:z/]] is a Txn unconditional matrix of the standardised errors z;,, where 2, =D "¢,
Q = diag(/qy;» /%> -/ );a and b are non-negative parameters to be estimated such that a + b < 1 to ensure stationarity and
positive definiteness of Q,. As in Engle (2002), Q, can be estimated by

1 T
Q== g
T t=1

(15)
In general, as in Engle (2002), the DCC-GARCH model is given by
M N M N
Qt = (1_ z A= Z bn]Ql + Z amztflztl—l + Z ant—1~
m=1 n=1 m=1 n=1 (16)

This model is estimated using a two-step approach: the first implies the estimation of univariate GARCH, and the second step is
the correlation estimation. The number of the estimated parameters in the correlation process of DCC-GARCH is independent of the
number of series correlated, hence allowing for a potentially large correlation matrices to be feasibly estimated. The limitation of this
model is to hypothesis the same correlation dynamics of all the assets (Billio et al., 2006; Otranto, 2010).
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2.2.2. Asymmetric Dynamic Conditional Correlation (aDCC)

Cappiello et al. (2006) introduced an aDCC model to investigate whether conditional variances, covariances, and correlations of
assets in a portfolio are sensitive to the sign of past innovations. Compared to the DCC model, this model further explores whether the
positive and negative shocks are of the same magnitude or have different impacts. As in Eq. (10), the matrix H, is decompose into
H, = D,R,D,.

The conditional variances, H; is assumed to follow the GJR-GARCH models,

q p
O.i?[ =g+ Z 5101',2r—l + z (ot; + %‘I’i,t—m)ez(,zf)—m,
I=1 m=1 17)
where w;, a;, B, % > 0, and ¥;,_,, is an indicator function such that ¥;,_,, = 1, if¢;, < 0 and 0 otherwise. In this model, Eq. (14) can be
extended to consider the asymmetries, which can be written as

Q: = (Q—A'QA-B'QB-G'NG) + Az12/1A + B'Q_1B + G'%z/G, (18)

where N = E[z;z/] and n, = ¥[z,_; < 0] ® z,. The @ symbol is the element by element product of the residuals if shocks are negative,
and n, = 0, otherwise. The asymmetric term is denoted by a symbol G, which captures the period when both markets experience
negative shocks, resulting [nn/] = ¥. The symbols A, B, and G represent the diagonal parameter matrices, where A, B, G > 0 to
ensure the positiveness and stationarity of Q,. Q = E[z,z/] is a T X n unconditional matrix of the standardised errors z;.

2.2.3. Flexible Dynamic Condition Correlation (FDCC)

Billio et al. (2006) proposed the FDCC model that allows for equal correlation dynamics between w groups of assets, providing a
flexible parameterisation of correlation dynamics. The FDCC model, which is the extension of the DCC model, introduces a block
diagonal structure to solve the problem of equal correlations dynamics in the assets. As in Billio et al. (2006), this model can
parsimoniously be written as

X = + &

H; = D;R;D;

R = (Q) ' (@)™

Q =cc' +ad ©nn +bb' O Q1, (19)

where 7, is the standardised residuals, 7, = D! €, and the variables ¢, a and b are partitioned n-dimensional vectors of groups of
assets,

a= [a1 X gy @ X Ay G X i,’nk]',
where m;(i = 1, ...,k) is the number of assets in the group i; and similarly for b and c. i, is an h-dimensional vector of ones. The
coefficients must satisfy these constraints: a;a; + b;b; < 1(i, j = 1, ..., k), such that k is the number of blocks or asset classes. In this
study, we divided the assets into two blocks: stock and bond indices groups. This is reasonable since the correlation dynamics within
the stock group is almost similar from one asset to another, and this is also the same for bond indices.

2.2.4. Generalised orthogonal GARCH (GO-GARCH)

OGARCH was introduced by Ding (1994) and Alexander and Chibumba (1996). The observed time series can be linearly
transformed to a set of uncorrelated time series using a principal component analysis. This model has commonly been used in much
research to model the conditional covariance of financial time series due to its feasibility in estimating large covariance matrices
(Weide, 2002; Luo, Seco, & Wu, 2015). For non-Gaussian data, the independent component analysis (ICA) is used to perform the
orthogonal transformation. Weide (2002) applies the concept of ICA to propose the generalized OGARCH model for volatility
modeling. It consists of a set of conditionally uncorrelated univariate GARCH and a linear map that allows the linkage between these
components and the observed data (Boswijk et al., 2006).

Consider a set of n assets with returns x;, which are observed for T periods, with conditional mean of E [x;|.%,_,] = m,. % is the
information set at time ¢, which is the o-algebra generated by the lagged values of the outcome process of x;, i.e, # = o (X;—1, X¢—2, ...).
The GO-GARCH model of Weide (2002) maps x,—m; onto a set of unobserved independent factors f;. The process x; satisfies the
representation

Xy =m + & (20)
& = Cf, (21)

where f; = (f;;,...f,,)’. C is a non singular matrix which is invertible and constant over time. It may be decomposed into the de-
whitening matrix %!/, i.e., the square root of unconditional covariance and an orthogonal matrix U. U, can be estimated using a
computational method for separating multivariate mixed signals into additive statistically independent and non-Gaussian compo-
nents using ICA (Broda & Paolella, 2009; Zhang & Chan, 2009).

Let C be the map that links the uncorrelated components with the unobserved process, so that

C = 3%, (22)
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Table 1

Statistical characteristics and Ljung-Box of historical monthly returns for the analysed assets from January 1985 to December 2014. The Ljung-box
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Fig. 1. Plots of the monthly analysed asset returns series from January 1985 to December 2014.

test is computed using 12 lags.

5

Assets Rate of Returns, R; Sq. returns, R? Abs. returns, [R;!
Mean Stdev Skewness Kurtosis Q(12) Q(12) Q(12)

FTSE100 0.0046 0.0455 —1.1387 5.3324 7.1110 8.1196 34.587
MSEXUK 0.0073 0.0563 —0.8630 1.8616 14.1310 55.498"" 72.312""
S.PCOMP 0.0070 0.0444 —1.1008 3.6350 7.7062 20.4750 51.275""
DAXINDX 0.0069 0.0631 —0.9101 2.6948 7.3127 23.453"" 35.758""
AMSTEOE 0.0044 0.0581 —1.3154 4.2702 15.0920 43.91*" 57.092""
TOKYOSE 0.0012 0.0564 —0.3667 1.2278 16.2010 30.392"" 11.320
HNGKNGI 0.0083 0.0782 —1.3354 8.8759 22.723** 3.5307 31.804""
TTOCOMP 0.0050 0.0437 —1.4879 6.1225 15.1270 7.1863 30.113*"
BMUK10Y 0.0021 0.0206 —0.1586 1.3692 19.9310 40.983"" 37.633""
BMUS10Y 0.0015 0.0218 0.0523 0.9303 16.3820 15.2260 9.5042
BMBD10Y 0.0015 0.0162 —0.2619 0.4050 27.532** 8.5521 11.2980
BGILALL 0.0044 0.0196 0.5009 2.4422 15.7770 23.109"" 19.5850

Note: ™ represents the p-value of <0.05, indicating that the null hypothesis of no autocorrelation is rejected at 95% confidence level (critical value of

21.026).
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Table 2

Correlations for the analysed asset returns series from January 1985 to December 2014.
Assets FTSE100 MSEXUK S&PCOMP DAXINDX AMSTEOE TOKYOSE HNGKNGI TTOCOMP BMUK10Y BMUS10Y BMBD10Y BGILALL
FTSE100 1.0000 0.6990 0.7950 0.6840 0.7560 0.4300 0.6300 0.6850 0.1480 0.0736 0.0709 0.2200
MSEXUK - 1.0000 0.7360 0.7830 0.7270 0.4920 0.5770 0.6530 0.0008 0.0586 0.0772 0.1450
S&PCOMP - - 1.0000 0.6910 0.7320 0.4630 0.6100 0.7820 0.0080 0.0259 0.1140 0.1410
DAXINDX - - - 1.0000 0.8140 0.4220 0.5240 0.5970 0.0499 0.1820 0.0997 0.0579
AMSTEOE - - - - 1.0000 0.4430 0.5680 0.6660 0.0806 0.2210 0.1580 0.0808
TOKYOSE - - - - - 1.0000 0.3570 0.4480 0.0409 0.1120 0.0836 0.0668
HNGKNGI - - - - - - 1.0000 0.6500 0.0210 0.0918 0.1180 0.1040
TTOCOMP - - - - - - - 1.0000 0.0375 0.0776 0.1290 0.1590
BMUK10Y - - - - - - - - 1.0000 0.5820 0.7090 0.5820
BMUS10Y - - - - - - - - - 1.0000 0.6930 0.3010
BMBD10Y - - - - - - - - - - 1.0000 0.3920
BGILALL - - - - - - - - - - - 1.0000

Table 3

Descriptive statistics and out-of-sample performance of minimum variance efficient portfolio without short sale for the econometric models under
study from January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0027 0.3272 0.0191 0.1447 —0.0141 —0.0245 —0.0508
DCC-MVT 0.0031 0.3732 0.0191 0.1643 —0.0159 —0.0215 —0.0625
aDCC-MVN 0.0033 0.4007 0.0192 0.1723 —0.0137 —0.0238 —0.0627
aDCC-MVT 0.0038 0.4548 0.0192 0.2013 —0.0151 —0.0239 —0.0663
FDCC-MVN 0.0027 0.3223 0.0192 0.1420 —0.0142 —0.0244 —0.0507
VAR-MVN 0.0026 0.3081 0.0191 0.1329 —0.0136 —0.0246 —0.0681
VAR-MVT 0.0023 0.2780 0.0188 0.1207 —0.0141 —0.0252 —0.0611
ARMA-MVN 0.0027 0.3228 0.0194 0.1430 —0.0140 —0.0229 —0.0513
ARMA-MVT 0.0027 0.3286 0.0188 0.1452 —0.0138 —0.0235 —0.0673
GG-MVN 0.0031 0.3665 0.0188 0.1653 —0.0155 —0.0255 —0.0652
ARMA-GG-MVN 0.0026 0.3119 0.0188 0.1371 —0.0165 —0.0275 —0.0656
VAR-GG-MVN 0.0026 0.3104 0.0184 0.1428 —0.0160 —0.0299 —0.0612
SCop-MVN 0.0022 0.2696 0.0191 0.1209 —0.0195 —0.0331 —0.0605
SCop-MVT 0.0021 0.2526 0.0201 0.1012 —0.0212 —0.0320 —0.0663
ARMA-SCop-MVN 0.0020 0.2388 0.0189 0.1060 —0.0191 —0.0315 —0.0656
ARMA-SCop-MVT 0.0021 0.2482 0.0187 0.1109 —0.0187 —0.0285 —0.0689
VAR-SCop-MVN 0.0033 0.3936 0.0188 0.1766 —0.0184 —0.0299 —0.0623
a-SCop-MVN 0.0022 0.2639 0.0191 0.1148 —0.0183 —0.0333 —-0.0613
a-SCop-MVT 0.0020 0.2453 0.0201 0.0975 —0.0209 —0.0303 —0.0673
DCop-MVN 0.0024 0.2848 0.0191 0.1253 —0.0180 —0.0333 —0.0645
DCop-MVT 0.0024 0.2915 0.0203 0.1196 —0.0207 —0.0334 —-0.0718
ARMA-DCop-MVN 0.0025 0.2968 0.0193 0.1298 -0.0177 —0.0334 -0.0777
ARMA-DCop-MVT 0.0027 0.3265 0.0192 0.1379 —0.0163 —0.0314 —-0.0707
VAR-DCop-MVN 0.0026 0.3147 0.0189 0.1373 —0.0194 —0.0311 —0.0670
a-DCop-MVN 0.0024 0.2841 0.0191 0.1248 —-0.0118 —0.0333 —0.0644
a-DCop-MVT 0.0024 0.2917 0.0203 0.1196 —0.0207 —0.0334 —-0.0717

The factors are represented as
f, = HY?z, (23)

where H; = E[f,f/|.#;_1] is a diagonal matrix for all t with elements (hy, ...,h,,), which are the conditional variances of f;. The symbol
Z: is T x 1 vector of independent and identically distributed random errors such that E[z,] = 0 and E|[z,z/] = 1; implies that
E[f,|.#_1] = 0 and E[&|.#_1] = 0. The returns for the GO-GARCH model may be expressed as

X, = m + CH}'?z,. 24
For the conditional covariance matrix, it may be written as

H; = E[(x;—m)(x,—m;)'|.#_,] = CH,C". (25)

2.2.5. Copula-GARCH (C-GARCH)

We describe the multivariate random variable using a copula function to capture and model non-linear relationships between the
asset returns. In the multivariate GARCH, the model assumes the stock and bond returns follow a multivariate normal or student
distribution with linear correlation; and these assumptions are normally disregarded in many empirical finance studies. This study
proposes various copula-GARCH based models considering the static version of copulas and dynamic copulas (more realistic in
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Table 5
Descriptive statistics and out-of-sample performance of minimum variance efficient portfolio with short sale for the econometric models under study
from January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0029 0.3444 0.0187 0.1611 —0.0138 —0.0219 —-0.0317
DCC-MVT 0.0039 0.4670 0.0187 0.2148 —-0.0107 —0.0160 —0.0374
aDCC-MVN 0.0038 0.4567 0.0187 0.2100 —0.0114 —0.0167 —0.0462
aDCC-MVT 0.0048 0.5734 0.0189 0.2603 —0.0098 —0.0163 —0.0432
FDCC-MVN 0.0029 0.3474 0.0189 0.1596 —0.0139 —0.0205 —-0.0317
VAR-MVN 0.0029 0.3439 0.0185 0.1569 —0.0139 —0.0199 —0.0409
VAR-MVT 0.0027 0.3269 0.0181 0.1508 —0.0118 —0.0188 —0.0404
ARMA-MVN 0.0030 0.3588 0.0191 0.1644 —-0.0116 —0.0186 —0.0281
ARMA-MVT 0.0034 0.4025 0.0184 0.1870 —0.0114 —0.0192 —0.0392
GG-MVN 0.0039 0.4676 0.0186 0.2127 —0.0134 —0.0228 —0.0379
AR-GG-MVN 0.0038 0.4513 0.0189 0.1980 —0.0164 —0.0226 —0.0428
VAR-GG-MVN 0.0035 0.4213 0.0183 0.1915 —0.0125 —0.0242 —0.0364
SCop-MVN 0.0020 0.2380 0.0184 0.1133 —0.0199 —0.0242 —0.0534
SCop-MVT 0.0018 0.2147 0.0205 0.0817 —0.0194 —0.0311 —0.0624
ARMA-SCop-MVN 0.0021 0.2525 0.0181 0.1174 —0.0161 —0.0289 —0.0532
ARMA-SCop-MVT 0.0021 0.2482 0.0178 0.1170 —0.0169 —0.0248 —0.0550
VAR-SCop-MVN 0.0035 0.4162 0.0172 0.2002 —0.0167 —0.0274 —0.0610
a-SCop-MVN 0.0019 0.2251 0.0184 0.1069 —0.0193 —0.0237 —0.0559
a-SCop-MVT 0.0018 0.2156 0.0205 0.0806 —0.0203 —0.0289 —0.0645
DCop-MVN 0.0017 0.2088 0.0187 0.0988 —0.0166 —0.0243 —0.0630
DCop-MVT 0.0016 0.1917 0.0211 0.0761 —0.0205 —0.0352 —-0.0793
ARMA-DCop-MVN 0.0022 0.2689 0.0195 0.1188 —0.0152 —0.0206 —0.0804
ARMA-DCop-MVT 0.0024 0.2921 0.0188 0.1248 —0.0164 —0.0224 —0.0642
VAR-Cop-MVN 0.0027 0.3261 0.0186 0.1389 —0.0201 —0.0262 —0.0487
a-DCop-MVN 0.0017 0.2082 0.0187 0.0984 —0.0166 —0.0245 —0.0624
a-DCop-MVT 0.0016 0.1906 0.0211 0.0755 —0.0205 —0.0353 —0.0794

describing time-varying dependence structure between assets returns). We then examine the out-of-sample performance and compare
with other models discussed earlier.

Let F, (), ...,F,(x,) be the marginal distributions with a random vector X = (x;, ...,X,,). The random vector has uniform marginal
distributions when we apply the probability integral transform to each of the component (Uy, U,, ..., U,) = F;(x), ...,E,(x,). Sklar
(1959) showed that the copula can be depicted as

F(x, X)) = C(FL(%), woor B (X)), (26)

such that n-dimensional copula C (i, ...,u,) is an n-dimensional random vector on [0, 1]¢ with uniform marginals. The copula can be
deduced from Eq. 26 as

C(r, woytty) = F(F (), F3' (W), ... By ' (un)). 27)

The copula (X3, X5, ...,X,) is defined as the joint cumulative distribution function of the continuous marginal distributions, which may
be written as

C(uy, wytty) = P[F(0) < uy, (%) < Uy, ..., Fi(x5) < Uy (28)

The density function may be obtained as

£ O Xn) = c(FL 00, By (1)) fi ),
1 11 g (29)

such that f; are marginal densities and F; ! is the quantile function of the margins. The density function of a copula is given by
_ FE W), ' (1))
= - .

fE W)
:ll;!: (30)

€ (i s Un)

We use elliptical copulas which have been widely used in the literature for multivariate volatility modeling, i.e, Gaussian and
Student-t copulas. The d-dimensional Gaussian copula C% (uy, uy, ...,u,) is an n-dimensional distribution over the unit hypercube
[0, 1]" with uniform margins. The dependence structure is determined by the standardized correlation matrix R, such that the dis-
persion parameter p, , is estimated using Kendall’s 7 method. The Gaussian copula is represented by

& Lu) @ (upn) 1 _lyp-
C8(y, Uy, ...,UyR) = ./_‘m ! f [ S e{ 2R 1x}dxl, v dX.

S 271'"/2|R|1/2 ’ (31)
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Table 7
Descriptive statistics and out-of-sample performance of mean-variance efficient portfolio without short sale for the econometric models under study
from January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0031 0.3672 0.0203 0.1530 —0.0199 —0.0240 —0.0867
DCC-MVT 0.0034 0.4099 0.0213 0.1528 —0.0192 —0.0338 —0.0742
aDCC-MVN 0.0033 0.4007 0.0192 0.1723 —-0.0137 —0.0238 —0.0627
aDCC-MVT 0.0030 0.3629 0.0210 0.1356 —0.0182 —0.0288 —0.0801
FDCC-MVN 0.0031 0.1533 0.0203 0.1533 —0.0199 —0.0239 —0.0867
VAR-MVN 0.0038 0.4610 0.0200 0.1852 —0.0195 —0.0240 —0.0723
VAR-MVT 0.0036 0.4379 0.0205 0.1708 —0.0183 —0.0311 —0.0745
ARMA-MVN 0.0028 0.3400 0.0205 0.1457 —0.0193 —0.0258 —0.0857
ARMA-MVT 0.0022 0.2656 0.0189 0.1159 —0.0174 —0.0317 —0.0681
GG-MVN 0.0023 0.2816 0.0188 0.1282 —0.0175 —0.0295 —0.0743
ARMA-GG-MVN 0.0029 0.3440 0.0187 0.1534 —-0.0171 —0.0293 —-0.0719
VAR-GG-MVN 0.0021 0.2535 0.0184 0.1194 —0.0202 —0.0334 —0.0697
SCop-MVN 0.0022 0.2690 0.0191 0.1222 —0.0189 —0.0332 —0.0610
SCop-MVT 0.0022 0.2593 0.0201 0.1038 —0.0202 —0.0326 —0.0666
ARMA-SCop-MVN 0.0018 0.2157 0.0192 0.0991 —0.0186 —0.0332 —-0.0737
ARMA-SCop-MVT 0.0021 0.2519 0.0186 0.1135 —0.0189 —0.0301 —0.0699
VAR-SCop-MVN 0.0033 0.3919 0.0201 0.1624 —0.0211 —0.0302 —0.0589
a-SCop-MVN 0.0022 0.2611 0.0191 0.1176 —0.0194 —0.0336 —0.0598
a-SCop-MVT 0.0022 0.2609 0.0201 0.1039 —0.0205 —0.0516 —0.0645
DCop-MVN 0.0026 0.3142 0.0194 0.1293 —0.0160 —0.0263 —0.0674
DCop-MVT 0.0024 0.2824 0.0202 0.1167 —0.0208 —0.0329 -0.0717
ARMA-DCop-MVN 0.0026 0.3075 0.0195 0.1210 —0.0164 —0.0270 —0.0659
ARMA-DCop-MVT 0.0027 0.3265 0.0192 0.1379 —0.0163 —0.0314 —-0.0707
VAR-DCop-MVN 0.0023 0.2804 0.0189 0.1238 —0.0180 —0.0320 —0.0671
a-DCop-MVN 0.0026 0.3133 0.0194 0.1283 —0.0164 —0.0266 —0.0672
a-DCop-MVT 0.0024 0.2823 0.0202 0.1167 —0.0207 —0.0329 —-0.0717

The density of the Gaussian copula, of the d-dimensional random vector X may be written as in Bouye, Durrleman, and Roncalli
(2000):

1 11
C&(uy, Uy, ...,Up;R) = e{ 26’ ®1 1);}’

IRI'/2 (32)

where ¢ = (¢71(wy),...,¢~ ' (u,))’ represents the quantile of the probability integral transformed (PIT) values of X, f¢ is the multivariate
density of the normal distribution, f; is the density of the margin and I is the identity matrix. The Gaussian copula is not able to
account for tail dependence. Student-t copula model allows for joint fat tails and an increased probability of joint extreme events as
compared to Gaussian copula. This copula may be represented as

) r(”;")uel—“2

t5 ) 1 _v+n
CT(uy, uy, ...,upR, v) = f v f ‘(1 + =x'R™x) Vzndxl...dxn,
- - v

© w re)omm? (33)
and the density of the Student-t copula as
1“(3) et n(l + lg’R‘lg)_V;n
CT(wy, Uz, woyUy) = IRI‘”zr vil 2 . P
14 n 2\" 2
S F(Z) 11 (1 + %) ’
j=1 (34)

where ¢ = (¢, (w), ...,t; *(u,))’. In Student-t copula, the dependence structure introduces an additional parameter which is the degree
of freedom v. As the value of v increases, the tendency to exhibit extreme co-movements decreases. In our study, the copula-GARCH
models are implemented using the multivariate Gaussian and Student-t distributions, with static and dynamic (DCC) estimation of the
correlation. The margins and PIT estimations are performed using a parametric density approach following Joe (1997). For the
dependence measures, we use Kendall’s 7, as this method is based on order statistics of the sample which makes no assumption about
the marginal distribution but depends only on copula C. Kendall’s 7 is defined as

T(Xi, Xp) = Pr(Xi—X)—-(Y-Y)) > 0]-Pr [(Xi—X))—(¥-Y)) < 0], (35)

where (X;, ;)" and (X}, Y;)" are vectors of random variables. Kendall’s T measures the difference between the probability of concordant
and discordant pairs. The pairwise measure of concordance may be represented in terms of copula functions as

*(X,, X)= 4E[C(FCX), F ()1
= 4/(;1 J(;l C(u;, up)dC (u;, up—-1. 6
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Table 9
Descriptive statistics and out-of-sample performance of mean-variance efficient portfolio with short sale for the econometric models under study
from January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0026 0.3081 0.0207 0.1286 —0.0184 —0.0287 —0.1004
DCC-MVT 0.0032 0.3837 0.0220 0.1336 —0.0193 —0.0370 —0.0583
aDCC-MVN 0.0038 0.4567 0.0187 0.2100 —0.0114 —0.0167 —0.0462
aDCC-MVT 0.0026 0.3095 0.0215 0.1095 —0.0220 —0.0270 —-0.0767
FDCC-MVN 0.0026 0.3070 0.0207 0.1281 —0.0184 —0.0286 —0.1004
VAR-MVN 0.0038 0.4517 0.0208 0.1716 —0.0148 —0.0268 —0.0789
VAR-MVT 0.0038 0.4580 0.0209 0.1715 —0.0169 —0.0327 —0.0646
ARMA-MVN 0.0026 0.3123 0.0211 0.1568 —0.0180 —-0.0279 —0.0942
ARMA-MVT 0.0021 0.2491 0.0184 0.1170 —0.0160 —0.0288 —0.0555
GG-MVN 0.0029 0.3497 0.0186 0.1558 —0.0192 —0.0303 —0.0682
AR-GG-MVN 0.0036 0.4297 0.0189 0.1916 —0.0189 —0.0278 —0.0634
VAR-GG-MVN 0.0030 0.3610 0.0183 0.1613 —0.0191 —0.0294 —0.0646
SCop-MVN 0.0020 0.2379 0.0184 0.1155 —0.0197 —0.0240 —0.0550
SCop-MVT 0.0018 0.2175 0.0206 0.0819 —0.0198 —0.0290 —0.0640
ARMA-SCop-MVN 0.0016 0.1861 0.0193 0.0871 —0.0169 —0.0263 —-0.0751
ARMA-SCop-MVT 0.0023 0.2739 0.0178 0.1305 —0.0176 —0.0272 —0.0544
VAR-SCop-MVN 0.0042 0.5008 0.0192 0.2159 —0.0206 —0.0313 —0.0634
a-SCop-MVN 0.0019 0.2310 0.0184 0.1092 —0.0200 —0.0244 —0.0522
a-SCop-MVT 0.0019 0.2241 0.0205 0.0851 —-0.0197 —0.0290 —0.0629
DCop-MVN 0.0023 0.2703 0.0189 0.1148 —0.0146 —0.0246 —0.0604
DCop-MVT 0.0015 0.1806 0.0211 0.0713 —0.0210 —0.0352 —0.0791
ARMA-DCop-MVN 0.0022 0.2652 0.0191 0.1112 —0.0160 —0.0225 —0.0606
ARMA-DCop-MVT 0.0024 0.2921 0.0188 0.1248 —0.0164 —0.0224 —0.0642
VAR-Cop-MVN 0.0024 0.2898 0.0181 0.1356 —-0.0171 —0.0255 —0.0677
a-DCop-MVN 0.0023 0.2735 0.0189 0.1155 —0.0145 —0.0245 —0.0610
a-DCop-MVT 0.0015 0.1806 0.0211 0.0713 —0.0210 —0.0352 —0.0791

We also extend our analysis to include the dynamic copula models as investigated by Patton (2006), such that the vector sto-
chastic process of financial returns x; = Xy, ...,x,; follows a copula-GARCH model with 1, modeled as a time series model given by

F (e lpy, he) = CFRQagluy,, hae)s oo Byl i) (37)

Similar to other DCC models, the conditional variances H; can be estimated separately by a simple univariate GARCH specifi-
cation. For the conditional density, it is given by

J, F7 ieln), oo Fyt (une) IR, 1)

FF (ualn)1n)
E (38)

Ci (Wigs s Unt IR, 1) =

where u; = Fy(rtlu,, hy, &, v;) is the PIT transformation of each series, which are estimated using parametric approach via the first
stage GARCH process. The symbol F; ! (u; 1) represents the quantile function of the margins subject to the common shape parameter
v of the multivariate density function.

The inputs in this study are efficient (since large number of models is employed for the estimation) and necessary as they are
needed to perform the optimization procedure.

3. Application to portfolio optimization

One of the earliest approaches of the portfolio theory was developed by Markowitz (1952); a well-known approach known as a
mean-variance optimization. It is a myopic strategy which assumes that the decision maker has a mean-variance criterion defined
over the single period rate of return on the portfolio. Other related studies are Sharpe and Tint (1990), Engle and Colacito (2006),
Platanakis and Sutcliffe (2014), Santos and Moura (2014). Rockafellar and Uryasev (2000), Bogentoft, Romeijn, and Uryasev (2001)
and Alexander, Coleman, and Li (2006) have approached the optimization problem using the minimization of mean Conditional
Value at Risk (CVaR). Recently, Boubaker and Sghaier (2013) and Huang and Hsu (2015) have proposed minimizing the CVaR
assuming that the dependence structure is modeled by the copula parameter.

We employ five different optimization strategies: mean-variance, maximizing Sharpe ratio, mean-CVaR, and maximizing Sortino
ratio. Here, we construct efficient portfolios with and without short sales, which sets box and group constraints on the weights such
that the weights for each asset and the weights of groups of selected assets are restricted by lower and upper bounds, i.e., (i) portfolio
without short sales, where no more than 30% is invested in each asset (i.e., 0 < x; < 0.3,i =1, ..,n), and (ii) portfolio with short
sales, where a percentage between —0.3% to 0.3% is invested in each asset (i.e., —0.3 <x; <0.3,i=1, ..,n), and 50% is the
maximum percentage to invest in bonds and stocks.
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Table 11
Descriptive statistics and out-of-sample performance based on maximizing Sharpe ratio without short sale for the econometric models under study
from January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0041 0.4979 0.0235 0.1843 —0.0181 —0.0298 —0.0625
DCC-MVT 0.0049 0.5863 0.0239 0.1507 —0.0169 —0.0273 —0.0698
aDCC-MVN 0.0042 0.5091 0.0246 0.1796 —0.0156 —0.0320 —0.0706
aDCC-MVT 0.0053 0.6311 0.0248 0.2111 —0.0205 —0.0274 —0.0796
FDCC-MVN 0.0042 0.5047 0.0236 0.1864 —0.0181 —0.0300 —0.0625
VAR-MVN 0.0021 0.2469 0.0241 0.0783 —0.0212 —0.0400 —0.0861
VAR-MVT 0.0023 0.2744 0.0240 0.0870 —0.0229 —0.0400 —0.0846
ARMA-MVN 0.0075 0.9058 0.0243 0.3078 —0.0194 —0.0275 —-0.0735
ARMA-MVT 0.0086 1.0312 0.0230 0.3474 —0.0153 —0.0215 —-0.0518
GG-MVN 0.0047 0.5622 0.0256 0.1801 —0.0258 —0.0351 —0.0807
AR-GG-MVN 0.0132 1.5850 0.0249 0.5195 —0.0155 —0.0263 —0.0667
VAR-GG-MVN 0.0024 0.2938 0.0239 0.0934 —0.0247 —0.0400 —0.0835
SCop-MVN 0.0035 0.4151 0.0191 0.1842 —0.0191 —0.0437 —0.0689
SCop-MVT 0.0034 0.4034 0.0251 0.1354 —0.0220 —0.0428 —0.0674
ARMA-SCop-MVN 0.0049 0.5856 0.0236 0.2066 —0.0202 —0.0417 —-0.0728
ARMA-SCop-MVT 0.0046 0.5551 0.0226 0.2088 —0.0202 —0.0373 —0.0826
VAR-SCop-MVN 0.0047 0.5588 0.0243 0.1890 —0.0247 —0.0354 —0.0551
a-SCop-MVN 0.0033 0.4020 0.0249 0.1326 —-0.0177 —0.0360 —0.0875
a-SCop-MVT 0.0035 0.4236 0.0251 0.1409 —0.0212 —0.0413 —0.0686
DCop-MVN 0.0038 0.4571 0.0248 0.1508 —0.0181 —0.0426 —0.0915
DCop-MVT 0.0032 0.3844 0.0252 0.1318 —0.0189 —0.0406 —0.0730
ARMA-DCop-MVN 0.0035 0.4221 0.0236 0.1465 —0.0193 —0.0416 —0.0794
ARMA-DCop-MVT 0.0040 0.4763 0.0242 0.1608 —0.0250 —0.0436 —0.0700
VAR-Cop-MVN 0.0043 0.5184 0.0244 0.1906 —0.0223 —0.0341 —0.0763
a-DCop-MVN 0.0040 0.4768 0.0248 0.1567 —0.0166 —0.0385 —0.0982
a-DCop-MVT 0.0030 0.3566 0.0253 0.1245 —0.0196 —0.0403 —0.0700

3.1. Minimum-variance

The asset returns are assumed to be normally distributed and each investor wants to maximize their portfolio return at a minimal
risk. This portfolio problem involves quadratic programming with linear constraints such that we want to construct an efficient
portfolio with the lowest possible risk. We determine the optimal proportion allocation w; to the ith asset, where

n
w;, =1,
; (39

with the returns x; such that i =1, 2, ..,N, and x; ~ N (y;, o) is an independent and identically distributed random vector. To
characterize the portfolio, the expected return of a portfolio is written as

n
E[R,y] = E Xiw;,
i=1

and the variance of the portfolio is given by

n
— T
Z ajwiw; = w' Qw,

1 j=1

2
op =

™-

1

where Q is a T X n estimate of the covariance matrix of the assets returns. The vector w denotes the weight of the asset, subject to the
condition of 0 < w; < 1 for portfolio without short sales. To solve the optimization model, we choose to construct a portfolio of
minimal risk

Minimize w’Qw, (40)

subject to R, = Y rw; and Y w; = 1.

3.2. Mean-variance

In a mean-variance optimization model, we want to construct an efficient portfolio with the lowest possible risk such that the
return of the portfolio is greater than the target return. The mean-variance portfolios is constructed based on Eq. (40), subject to
Rp = E;l:l nw, E(Rp) > Target and zinzl w; =1
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Table 13
Descriptive statistics and out-of-sample performance based on maximizing Sharpe ratio with short sale for the econometric models under study from
January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0047 0.5592 0.0249 0.1953 —0.0240 —0.0414 —-0.0734
DCC-MVT 0.0064 0.7621 0.0252 0.2483 —-0.0137 —0.0290 —0.0420
aDCC-MVN 0.0055 0.6627 0.0285 0.1932 —0.0179 —0.0321 —0.0545
aDCC-MVT 0.0072 0.8675 0.0270 0.2707 —0.0161 —0.0254 —0.0519
FDCC-MVN 0.0046 0.5510 0.0247 0.1945 —0.0130 —0.0221 —0.0554
VAR-MVN 0.0042 0.5033 0.0263 0.1608 —0.0196 —0.0306 —-0.0713
VAR-MVT 0.0043 0.5216 0.0263 0.1681 —0.0181 —0.0312 —0.0702
ARMA-MVN 0.0159 1.9050 0.0263 0.5867 —0.0073 —0.0144 —0.0362
ARMA-MVT 0.0159 1.9046 0.0259 0.5961 —0.0039 —0.0145 —0.0292
GG-MVN 0.0061 0.7293 0.0279 0.2096 —0.0247 —0.0402 —0.0566
AR-GG-MVN 0.0244 2.9290 0.0263 0.9171 —0.0032 —0.0101 —0.0289
VAR-GG-MVN 0.0046 0.5485 0.0264 0.1748 —0.0238 —0.0364 —-0.0734
SCop-MVN 0.0027 0.3229 0.0184 0.1508 —0.0211 —0.0524 —0.0764
SCop-MVT 0.0025 0.2992 0.0277 0.0965 —0.0257 —0.0513 —0.0758
ARMA-SCop-MVN 0.0053 0.6332 0.0258 0.2224 —-0.0219 —0.0383 —0.0698
ARMA-SCop-MVT 0.0064 0.7665 0.0254 0.2668 —0.0223 —0.0423 —0.0632
VAR-SCop-MVN 0.0075 0.8961 0.0247 0.2939 —-0.0177 —0.0246 —0.0496
a-SCop-MVN 0.0026 0.3094 0.0272 0.1013 —0.0188 —0.0497 —0.0953
a-SCop-MVT 0.0030 0.3620 0.0278 0.1098 —0.0246 —0.0471 —0.0755
DCop-MVN 0.0034 0.4033 0.0277 0.1143 —0.0174 —0.0452 —0.1005
DCop-MVT 0.0029 0.3462 0.0284 0.1089 —0.0281 —0.0496 —0.0810
ARMA-DCop-MVN 0.0045 0.5428 0.0262 0.1604 —0.0210 —0.0434 —0.0705
ARMA-DCop-MVT 0.0044 0.5320 0.0281 0.1516 —0.0221 —0.0489 —0.0718
VAR-Cop-MVN 0.0042 0.5087 0.0260 0.1802 —0.0262 —0.0344 —0.0748
a-DCop-MVN 0.0033 0.4000 0.0277 0.1180 —0.0222 —0.0403 —0.1063
a-DCop-MVT 0.0026 0.3175 0.0284 0.0997 —0.0279 —0.0500 —0.0816

3.3. Maximizing the Sharpe ratio
Now, we consider another alternative of optimization strategy; instead of minimizing the risk, we maximize the Sharpe ratio for a
given risk free rate r;. We consider
aTw—ry
wliQw

subject to R, = ZLI x;w; and E:’zl w; = 1. The p-dimensional vector { is the estimates of the expected mean of the assets.

Maximize s

(41)

3.4. Mean-CVaR
Given a confidence level 8 and a fixed x € X, VaR is defined as the smallest number [ such that the probability of a loss L is not
more than 1—f for losses greater than [:
VaRg(x) = inf{le R: P(L> 1) < 1-} = inf{l e R: (1) > B}, (42)
where F; is the distribution function of the losses. The mean-CVaR optimisation model is formulated as
Minimize CVaRg(x) = Minimize E [RIR < VaRg(x)], (43)

such that R > Figger.
3.5. Maximization of the Sortino ratio

The last optimization strategy is the Sortino ratio, which is a modification of Sharpe ratio. This ratio uses downside deviation
rather than standard deviation as the measure of risk. The Sortino ratio S is defined as the ratio of the target return lowered by the
risk-free rate and the CVaR risk. The risk-free rate is set at r; = 0.

4. Data and empirical results

We consider 12 assets consisting of eight stocks and four bond indices of 10 years maturity, in the United States (US), United
Kingdom (UK), Germany, Japan, Netherlands, Canada and Hong Kong. In particular, our data set consists of monthly observations on
eight stock indices: FTSE100, MSCI Europe Excluding UK (MSEXUK), S&P 500 composite (S.PCOMP), DAX30 (DAXINDX), AEX
(AMSTEOE), TOPIX (TOKYOSE), Hang Seng (HNGKNGI), and TSX composite (TTOCOMP). We also consider four bond indices: UK
Benchmark 10-Year Government (BMUK10Y), US Benchmark 10-Year Government (BMUS10Y), Germany Benchmark 10-Year
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Table 15
Descriptive statistics and out-of-sample performance based on Mean-CVaR without short sale for the econometric models under study from January
2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0158 1.8981 0.0226 0.6754 —0.0090 —0.0184 —0.0495
DCC-MVT 0.0020 0.2420 0.0197 0.1071 —0.0214 —0.0319 —0.0645
aDCC-MVN 0.0175 2.1035 0.0227 0.7545 —0.0068 —0.0156 —0.0492
aDCC-MVT 0.0022 0.2663 0.0181 0.1147 —0.0181 —0.0256 —0.0622
FDCC-MVN 0.0104 1.2471 0.0210 0.4620 —0.0144 —0.0224 —0.0581
VAR-MVN 0.0147 1.7618 0.0226 0.6176 —0.0110 —0.0288 —0.0683
VAR-MVT 0.0102 1.2266 0.0230 0.4409 —0.0011 —0.0208 —0.0766
ARMA-MVN 0.0173 2.0812 0.0227 0.7163 —0.0086 —0.0160 —0.0439
ARMA-MVT 0.0118 1.4152 0.0214 0.4847 —0.0114 —0.0208 —0.0621
GOGARCH-MVN 0.0183 2.1956 0.0232 0.7568 —0.0047 —0.0137 —0.0504
AR-GOGARCH-MVN 0.0150 1.7944 0.0230 0.6033 —0.0124 —0.0207 —0.0513
VAR-GOGARCH-MVN 0.0167 1.9996 0.0234 0.6979 —0.0099 —0.0245 —0.0554
SCop-MVN 0.0023 0.2766 0.0233 0.1025 —0.0262 —0.0396 —0.0886
SCop-MVT 0.0057 0.6888 0.0207 0.2661 —0.0174 —0.0306 —0.0648
ARMA-SCop-MVN 0.0159 1.9050 0.0229 0.6513 —0.0113 —0.0188 —0.0520
ARMA-SCop-MVT 0.0099 1.1857 0.0207 0.4368 —0.0104 —0.0221 —0.0510
VAR-SCop-MVN 0.0150 1.7993 0.0230 0.6125 —0.0091 —0.0191 —0.0728
a-SCop-MVN 0.0142 1.7008 0.0221 0.6080 —0.0111 —-0.0173 —0.0514
a-SCop-MVT 0.0062 0.7433 0.0208 0.2889 —0.0170 —0.0312 —0.0671
DCop-MVN 0.0033 0.4001 0.0225 0.1482 —0.0223 —0.0310 —0.0771
DCop-MVT 0.0032 0.3847 0.0210 0.1481 —0.0193 —0.0291 —0.0634
ARMA-DCop-MVN 0.0021 0.2483 0.0222 0.0953 —-0.0196 —0.0309 —0.0867
ARMA-DCop-MVT 0.0033 0.3910 0.0236 0.1452 —0.0209 —0.0408 —0.0833
VAR-Cop-MVN 0.0033 0.4009 0.0242 0.1444 —0.0289 —0.0407 —0.0840
a-DCop-MVN 0.0031 0.3684 0.0225 0.1388 —0.0216 —0.0303 —0.0802
a-DCop-MVT 0.0030 0.3550 0.0211 0.1403 —0.0210 —0.0262 —0.0810

Government(BMBD10Y), and FTSE Britain Government Linked Bond (BGILALL). All time series data were collected from Datastream
for 30 years from January 1985 to December 2014, yielding to 360 observations.

The historical monthly returns of these stocks from the preceding 240 months (from January 1985 to December 2004) are used as
the in-sample period to estimate the models. We employ recursive forecast (expanding-window) approach, where we use the data
from January 1985 to December 2004 to make the first estimation in January 2005, data from January 1985 to January 2005 to make
the second estimation in February 2005, and so on. The monthly returns for the considered time period are shown in Fig. 1, from
which we clearly see the presence of volatility clustering. It is also obvious that the volatility of the series changes over time.

Table 1 presents the basic statistical characteristics of the time series. There are substantial differences in the characteristics for
each of the analyzed asset return series; the stock indices have high average returns with a high volatility, while the bond returns
have relatively lower average returns and volatilities.

The kurtosis for all of the assets ranges from 0.4 to 8.9, indicating fat tails in the asset return distributions. For the skewness, most
of the assets are negatively skewed, indicating a distribution with an asymmetric tail extending toward more negative values. The
results indicate that the asset returns exhibit skewed distributions, large variance and they are not normally distributed, which means
that a time-varying conditional volatility exists. A normal distribution must be symmetric with excess kurtosis of zero.

We also examine if there is evidence for serial correlations in the asset returns by using the Ljung-Box Q(m) test statistics for the
rates of return R,, absolute rates of return IR,| and squared rates of return R? (see Table 1). There is evidence for a high level of
autocorrelation in the absolute returns and the squared returns in which the null hypothesis of no autocorrelation is rejected at 5%
level of significance for almost all of the assets series.

To test for normality, we conducted Shapiro test and obtained a p-value of 2.2¢71%, which again rejects the null hypothesis,
indicating that the distribution is not normal. Statistical tests on these data indicate that the hypotheses for normality cannot be
accepted for the majority of the assets. We use the covariance matrix of the portfolio to quantify the deviation from the expected
return and to capture the investment risk, given the standard deviations and the covariance, the correlation can be determined from
P = 2’—;] Table 2 reports the pairwise correlation coefficients for the analyzed asset returns.

It is evident that the correlations within the stock and bond indices are relatively high. However, the pairwise correlation
coefficients for the remaining pair asset returns exhibit low to medium correlations, indicating a potential for risk diversification in
the constructed portfolio. The results confirm the presence of the stylized facts such as heavy tails, volatility clustering and het-
eroskedasticity in the asset returns distributions. The multivariate GARCH models are suitable to use to deal with these kinds of data.

4.1. Empirical analysis

The objective of this study is to investigate which econometric model gives the best estimates for the asset return and covariances
in constructing optimal portfolio. By using different econometric models, we expect that this approach will be able to capture
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Table 17
Descriptive statistics and out-of-sample performance based on Mean-CVaR with short sale for the econometric models under study from January
2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0465 5.5828 0.0294 1.5766 0.0200 0.0159 0.0027
DCC-MVT 0.0399 4.7859 0.0266 1.4885 0.0135 0.0051 0.004
aDCC-MVN 0.0463 5.5511 0.0293 1.5780 0.0187 0.0091 0.0028
aDCC-MVT 0.0389 4.6720 0.0267 1.4563 0.0100 0.0045 —0.0006
FDCC-MVN 0.0446 5.3541 0.0287 1.5596 0.0187 0.0073 0.0000
VAR-MVN 0.0467 5.5993 0.0314 1.4776 0.0197 0.0051 —0.0056
VAR-MVT 0.0341 4.0925 0.0296 1.1401 0.0000 0.0000 0.0000
ARMA-MVN 0.0470 5.6432 0.0303 1.5548 0.0225 0.0123 —0.0054
ARMA-MVT 0.0443 5.3178 0.0293 1.5102 0.0194 0.0082 0.0014
GOGARCH-MVN 0.0468 5.6163 0.0296 1.5741 0.0202 0.0096 —0.0050
AR-GOGARCH-MVN 0.0464 5.5669 0.0296 1.5603 0.0197 0.0081 —0.0025
VAR-GOGARCH-MVN 0.0473 5.6746 0.0315 1.4939 0.0228 0.0076 —0.0068
SCop-MVN 0.0037 0.4487 0.0293 0.1294 —0.0350 —0.0443 —0.0739
SCop-MVT 0.0408 4.8908 0.0271 1.5015 0.0177 0.0046 —0.0019
ARMA-SCop-MVN 0.0481 5.7749 0.0320 1.5049 0.0242 0.0088 0.0001
ARMA-SCop-MVT 0.0428 5.1337 0.0285 1.4939 0.0171 0.0125 —0.0027
VAR-SCop-MVN 0.0477 5.7228 0.0305 1.5573 0.0249 0.0094 0.0019
a-SCop-MVN 0.0462 5.5412 0.0292 1.5803 0.0233 0.0105 —0.0019
a-SCop-MVT 0.0410 4.9226 0.0273 1.4946 0.0171 0.0062 —0.0068
DCop-MVN 0.0041 0.4881 0.0292 0.1343 —0.0334 —0.0405 —0.0771
DCop-MVT 0.0045 0.5391 0.0307 0.1388 —0.0350 —0.0500 —0.0806
ARMA-DCop-MVN 0.0008 0.0926 0.0299 0.0144 —0.0364 —0.0450 —0.1046
ARMA-DCop-MVT 0.0033 0.3964 0.0317 0.1126 —0.0363 —0.0547 —-0.1073
VAR-Cop-MVN 0.0041 0.4975 0.0292 0.1368 —0.0353 —0.0391 —0.0625
a-DCop-MVN 0.0365 4.3811 0.0263 1.4062 0.0121 0.0072 0.0000
a-DCop-MVT 0.0045 0.5382 0.0306 0.1472 —0.0325 —0.0469 —0.1015

different characteristics in the data and will have economic impacts to optimal asset portfolio construction. As mentioned in Section
4, we split the data set of 360 observations period into 240 initial in-sample estimation period, for the parameter estimation and
model selection to get the forecast for asset return and covariance matrix. Then, we have an initial out-of-sample period of 120
evaluation period, to evaluate the performance of the portfolio over the period. We generate each new forecast by adding new
observations and re-estimating the model with the new observations as the data become available. We repeat the steps for each of the
optimization strategies.

4.2. Evaluating the out-of-sample portfolio performance

To measure the performance of the portfolio, we evaluate 120 out-of-sample periods and perform the optimal asset allocation
with a difference covariance estimator depending on the time period for each of the optimization models.

We repeat the exercise several times using 26 different model specifications while considering efficient portfolios with and
without short sales: DCC GARCH Normal (DCC-MVN), DCC GARCH Student (DCC-MVT), Asymmetric DCC GJR-GARCH Normal
(aDCC-MVN), Asymmetric DCC GJR-GARCH Student (aDCC-MVT), FDCC GARCH Normal (FDCC), VAR DCC GARCH Normal (VAR-
MVN), VAR DCC GARCH Student (VAR-MVT), ARMA DCC GARCH Normal (ARMA-MVN), ARMA Student (ARMA-MVT), GOGARCH-
MVN (GG-MVN), ARMA GOGARCH-MVN (ARMA-GG-MVN), VAR GOGARCH-MVN (VAR-GG-MVN), Static Copula-MVN (SCop-
MVN), Static Copula-MVT (SCop-MVT), Static ARMA Copula-MVN (ARMA-SCop-MVN), Static ARMA Copula-MVT (ARMA-SCop-
MVT), Static VAR Copula-MVN (VAR-SCop-MVN), Static Asymmetric Copula-MVN (a-SCop-MVN), Static Asymmetric Copula-MVT
(a-SCop-MVT), Dynamic Copula-MVN (DCop-MVN), Dynamic Copula-MVT (DCop-MVT), Dynamic ARMA Copula-MVN (ARMA-
DCop-MVN), Dynamic ARMA Copula-MVT (ARMA-DCop-MVT), Dynamic VAR Copula-MVN (VAR-DCop-MVN), Dynamic
Asymmetric Copula-MVN (a-DCop-MVN), Dynamic Asymmetric Copula-MVT (a-DCop-MVT).

4.2.1. Efficient minimum variance portfolio without short sales

Table 3 presents the out-of-sample portfolio performance of minimum variance portfolio without short sales and restricting the
portfolio weights to be 0 < x; < 0.3,i =1, ..,n, and the investment of 50% in stocks and bonds. In general, the empirical results
suggest that the dynamic models are able to deliver performance gains over the static models. The best model is the aDCC-MVT,
which accrues significant average monthly return of 0.38%, cumulative return of 45.48% and Sharpe ratio of 0.2013. The next best
model is the VAR-SCop-MVN, which recorded an average monthly return of 0.33%, cumulative return of 39.36% and Sharpe ratio of
0.1766, but with a lower risk (1.88%) as compared to aDCC-MVT (1.91%).

Table 4 presents the average weight of an efficient portfolio without short sales using the minimum variance. We observe that all
models invested mainly in BMBD10Y which is a bond index, ranging from 20% to 30% out of the overall investment. The next biggest
allocation is invested in stock indices, i.e., FTSE100, S&PCOMP and TTOCOMP with around 10% to 22% of total investment. Note
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Table 19
Descriptive statistics and out-of-sample performance based on Maximizing Sortino ratio without short sale for the econometric models under study
from January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0171 2.0530 0.0233 0.7480 0.0000 —0.0131 —0.0440
DCC-MVT 0.0194 2.3319 0.0231 0.8408 0.0000 —-0.0119 —0.0440
aDCC-MVN 0.0170 2.0407 0.0230 0.7624 0.0000 —0.0129 —0.0450
aDCC-MVT 0.0191 2.2893 0.0228 0.8322 0.0000 —-0.0119 —0.0397
FDCC-MVN 0.0172 2.0604 0.0232 0.7497 0.0000 —0.0131 —0.0440
VAR-MVN 0.0087 1.0493 0.0229 0.3914 —0.0161 —0.0420 —0.0755
VAR-MVT 0.0031 0.3677 0.0242 0.1460 —0.0178 —0.0466 —0.0902
ARMA-MVN 0.0110 1.3225 0.0228 0.4989 0.0000 —0.0156 —0.0647
ARMA-MVT 0.0137 1.6495 0.0225 0.6074 0.0000 —0.0139 —0.0438
GOGARCH-MVN 0.0155 1.8607 0.0232 0.6801 0.0000 —0.0128 —0.0448
AR-GOGARCH-MVN 0.0149 1.7886 0.0229 0.6515 0.0000 —0.0144 —0.0576
VAR-GOGARCH-MVN 0.0080 0.9571 0.0236 0.3316 0.0000 —0.0254 —0.0629
SCop-MVN 0.0174 2.0886 0.0227 0.7775 0.0000 —0.0128 —0.0440
SCop-MVT 0.0186 2.2354 0.0228 0.8038 0.0000 —-0.0119 —0.0440
ARMA-SCop-MVN 0.0118 1.4117 0.0226 0.5306 —0.0011 —-0.0167 —-0.0775
ARMA-SCop-MVT 0.0148 1.7713 0.0228 0.6398 0.0000 —0.0128 —0.0479
VAR-SCop-MVN 0.0083 0.9946 0.0238 0.3338 0.0000 —0.0200 —0.0538
a-SCop-MVN 0.0168 2.0194 0.0226 0.7585 0.0000 —-0.0115 —0.0440
a-SCop-MVT 0.0190 2.2784 0.0231 0.8197 0.0000 —-0.0119 —0.0440
DCop-MVN 0.0168 2.0131 0.0229 0.7536 0.0000 —0.0128 —0.0440
DCop-MVT 0.0187 2.2452 0.0229 0.8165 0.0000 —-0.0119 —0.0440
ARMA-DCop-MVN 0.0104 1.2483 0.0221 0.4692 0.0000 —0.0142 —0.0618
ARMA-DCop-MVT 0.0103 1.2419 0.0212 0.4978 0.0000 —0.0156 —0.0446
VAR-Cop-MVN 0.0087 1.0434 0.0234 0.3681 —0.0012 —-0.0173 —0.0643
a-DCop-MVN 0.0170 2.0385 0.0230 0.7669 0.0000 —0.0128 —0.0440
a-DCop-MVT 0.0188 2.2518 0.0229 0.8177 0.0000 —0.0119 —0.0440

that, most of the models allocate only a very small percentage to DAXINDX with only 0 to 1% out of total investments.

4.2.2. Efficient minimum variance portfolio with short sales

The results presented in Table 5 are based on the out-of-sample performance of the constructed minimum-variance efficient
portfolio with short sales based on the constraints of the portfolio weights to be —0.3 < x; < 0.3, i = 1, ...,n and the investment of 50%
in stocks and bonds.

By using these constraints, we observe that the multivariate aDCC-MVT once again outperforms the other models. The aDCC-MVT
has the highest cumulative return of 57.34% with the Sharpe ratio of 0.2603, but at a higher risk of 1.89%. On the other hand, the
GOGARCH-MVN and DCC-MVT models produce a high average return at a lower risk. By incorporating the copula function, we can
see that it does not bring any improvement to the model performance. For mean-variance portfolios with short sales, the GOGARCH,
DCC and aDCC models perform well compared to the other models.

Similar to the portfolio without short sales, all models have invested mainly in bonds, i.e., the highest allocation is to asset
BMBD10Y with about 30% of the investment, while a substantial fraction of the investment is allocated to stock indices (see Table 6).
This is expected since bond indices are known to be ‘safer’ as they have medium volatilities with lower average returns. If the investor
is risk-averse, then he will take the risk of investing in a higher risk portfolio. Note that the allocation to DAXINDX, AMSTEOQE,
HNGKNGI, BMUK10Y, and BGILALL are different across the models.

4.2.3. Efficient mean-variance portfolio without short sales

By using the same constraints, we obtained the results of the out-of-sample performance of mean-variance optimization without
short sales, as presented in Table 7. Given a target return rig; = 0.33%, we observe that the multivariate DCC-MVT model has the
highest cumulative return of 40.99% and achieved a higher Sharpe ratio of 0.1528. Next, we present the average weight of an
efficient portfolio without short sales using the mean-variance optimization. On the basis of the results in Table 8, similar to
minimum-variance portfolios, we observe that all models invested mainly in the bond index BMBD10Y, ranging from 26% to 30% out
of the overall investment. FTSE100 also has a high allocation at around 10% to 22% across all models. Most of the models do not
invest in stock HNGKNGI, which has high volatility, while some models allocate only a small proportion, i.e., around 1%.

4.2.4. Efficient mean-variance portfolio with short sales

The results for the optimal mean-variance portfolios with the weights constraints of —0.3 < x; <0.3,i =1, ..,n, and a target
expected return of 0.34%, are presented in Table 9. We can see that the multivariate aDCC-MVT, VAR-MVT and VAR-MVN models
outperform the other competing models. In general, these models have higher Sharpe ratios, i.e., 0.2100 (aDCC-MVN), 0.1716 (VAR-
MVN) and 0.1715 (VAR-MVT). These models also have lower values of the corresponding risk measures such as the volatility and the
value at risk values. Table 10.
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Table 21
Descriptive statistics and out-of-sample performance based on maximizing Sortino ratio with short sale for the econometric models under study from
January 2005 to December 2014.

Model Return Cumulative Return Risk Sharpe Ratio VaR@90% VaR@95% VaR@99%
DCC-MVN 0.0362 4.3470 0.0272 1.3446 0.0014 0.0007 0.0000
DCC-MVT 0.0540 6.4811 0.0325 1.6599 0.0285 0.0172 0.0052
aDCC-MVN 0.0333 3.9977 0.0263 1.2776 0.0090 0.0000 0.0000
aDCC-MVT 0.0283 3.3954 0.0252 1.1447 0.0091 0.0000 0.0000
FDCC-MVN 0.0369 4.4271 0.0274 1.3605 0.0140 0.0074 0.0000
VAR-MVN 0.0268 3.2168 0.0292 0.9214 0.0000 0.0000 0.0000
VAR-MVT 0.0164 1.9721 0.0304 0.5471 0.0000 0.0000 0.0000
ARMA-MVN 0.0229 2.7496 0.0276 0.8444 0.0000 0.0000 0.0000
ARMA-MVT 0.0149 1.7829 0.0259 0.5799 0.0000 0.0000 0.0000
GOGARCH-MVN 0.0326 3.9096 0.0256 1.2733 0.0095 0.0000 0.0000
AR-GOGARCH-MVN 0.0125 1.4958 0.0254 0.4953 0.0000 0.0000 0.0000
VAR-GOGARCH-MVN 0.0294 3.5317 0.0303 0.9507 0.0000 0.0000 0.0000
SCop-MVN 0.0359 4.3089 0.0262 1.3844 0.0114 0.0000 0.0000
SCop-MVT 0.0339 4.0714 0.0257 1.3242 0.0122 0.0000 0.0000
ARMA-SCop-MVN 0.0275 3.2972 0.0283 0.9672 0.0000 0.0000 0.0000
ARMA-SCop-MVT 0.0231 2.7711 0.0265 0.8740 0.0000 0.0000 0.0000
VAR-SCop-MVN 0.0317 3.8009 0.0301 1.0673 0.0000 0.0000 0.0000
a-SCop-MVN 0.0362 4.3458 0.0263 1.3909 0.0123 0.0000 0.0000
a-SCop-MVT 0.0339 4.0639 0.0259 1.3170 0.0142 0.0000 0.0000
DCop-MVN 0.0358 4.2960 0.0261 1.3823 —0.0117 0.0000 0.0000
DCop-MVT 0.0333 3.9993 0.0257 1.3110 —0.0130 0.0000 0.0000
ARMA-DCop-MVN 0.0254 3.0434 0.0287 0.8573 0.0000 0.0000 0.0000
ARMA-DCop-MVT 0.0197 2.3607 0.0253 0.7462 0.0000 0.0000 0.0000
VAR-Cop-MVN 0.0283 3.3995 0.0300 0.9370 0.0000 0.0000 0.0000
a-DCop-MVN 0.0365 4.3811 0.0263 1.4062 0.0072 0.0000 0.0000
a-DCop-MVT 0.0329 3.9475 0.0259 1.2847 0.0000 0.0000 0.0000

In general, when we allow short sales, we observe that all models short sell the stock HNGKNGI, ranging from —1% to —6%. On
the other hand, all models take long positions of their portfolios to FTSE100, S&KPCOMP, TOKYOSE, TTOCOMP, BMUK10Y, and
BMUS10Y.

4.2.5. Efficient portfolio based on maximizing Sharpe ratio without short sales

In this section, we construct an optimal portfolio based on maximizing the Sharpe ratio for a portfolio without short sales. The
results are presented in Table 11 assuming the risk-free rate r; to be 0%. From the results, we observe that the multivariate AR-GG-
MVN model outperforms the other models, by having the highest value in three out of five portfolio measurements, with a high risk of
2.49%. The other best optimal models are ARMA-MVT and ARMA-MVN. The results for the maximization of Sharpe ratio show that it
has a better portfolio in terms of higher return and Sharpe ratio as compared to the mean-variance optimization. However, this
optimization strategy has a higher risk in all of the models when compared to the mean-variance strategy.

Table 12 presents the average weight of an efficient portfolio without short sales based on maximizing the Sharpe ratio. In the
mean-variance optimization, the biggest proportion of investment goes to BMBD10Y, while in maximizing the Sharpe ratio, all
models invested mainly in a bond index BGILALL for about 20% to 30% of the overall investment.

4.2.6. Efficient portfolio based on maximizing Sharpe ratio with short sales

When we allow short selling, such that the constraints of the portfolio weights to be between —0.3 <x; < 0.3,i =1, ..,n, we
obtained a more attractive portfolio as we have higher monthly return, cumulative return and Sharpe ratio in most of the models as
compared to the portfolio without short sales. The risk-free rate r; is assumed to be 0%.

Table 13 presents the results obtained from constructing an efficient Sharpe ratio portfolio with short sales. From the results, we
observe that, once again, the multivariate AR-GG-MVN, ARMA-MVN and ARMA-MVT models outperform the other models. The AR-
GG-MVN and ARMA-MVN models have the highest risk of 2.63% among all models, whereas ARMA-MVT has a slightly lower risk of
2.59%.

The average weights of the efficient portfolios with short sales based on maximizing the Sharpe ratio are presented in Table 14.
Similarly as with the portfolio without short sales, the biggest asset allocation goes to BGILALL for about 18% to 30% out of the total
investment. Note that some assets have different allocations across the models.

4.2.7. Efficient portfolio Mean-CVaR portfolio without short sales

In the Mean-CVaR optimization, we compute the optimized efficient portfolio which has the lowest risk for a given return. The
portfolio is constructed by minimizing the conditional value at risk using a 95% probability level, with similar restrictions as in other
models. When the portfolio is in the long position, the results are presented in Table 15. The aDCC-MVN model once again out-
performs other models with the highest average return of 1.75%, followed by ARMA-MVN, which recorded average return of 1.73%
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with a similar volatility of 2.27%.

The highest asset allocation of this model mainly goes to stock TOKYOSE, which dominating the portfolio, for about 10% to 30%
of total investment. The other allocations are invested in bond indices, i.e., BMBD10Y and BMUS10Y with around 8% to 30%. The
average weights for the analyzed assets are presented in Table 16.

4.2.8. Efficient portfolio mean-CVaR portfolio with short sales

Table 17 reports the monthly average returns of the constructed portfolios, the cumulative returns, risk and value at risk at 90%,
95%, and 99% probability levels. The portfolio allows short selling, that is the portfolio is constructed when we restrict the portfolio
weights to be —0.3 < x; < 0.3, i = 1, ...,n, with a target expected return of 0.34%. The results show that the multivariate ARMA-SCop-
MVN model has the highest average return of 4.81% with a higher risk of 3.20%. Note that, model such as a-SCop-MVN has a higher
average return of 4.62 % and Sharpe ratio of 1.5803 with a much lower risk of 2.92%.

Table 18 indicates that the allocation of assets to MSEXUK, S&PCOMP, DAXINDX, AMSTEOE, HNGKNGI, BMUS10Y and BGILALL
are different across models. It is also interesting to note that, only the model a-DCop-MVT short sell the asset TOKYOSE when the
other models remain in long position. In particular, all model invested heavily in bond indices, i.e., BMUK10Y and BMBD10Y, ranging
from 15% to 22%, and 11% to 30%, respectively.

4.2.9. Efficient portfolio based on maximizing Sortino ratio without short sales

Now, we consider the case of the efficient Sortino ratio portfolio without short sales. This portfolio is constructed by maximizing
the Sortino ratio for a given risk-free rate with the same weight restrictions as in the previous models. Table 19 reports the per-
formance results of the portfolios. The DCC-MVT model has the highest average return of 1.94%, as well as the highest cumulative
return and a Sharpe ratio. The other best models are aDCC-MVT, a-Dcop-MVT and SCop-MVT.

The highest asset allocation of this model mainly goes to bond indices, i.e., BMUK10Y, BMUS10Y, and BMBD10Y dominates the
portfolio with about 7% to 20% of total investment. This is true for the entire model in mean-CVaR efficient portfolios without short
sales. The average weights for the analyzed assets are presented in Table 20.

4.2.10. Efficient portfolio based on maximizing Sortino ratio with short sales

We construct an optimal portfolio based on maximizing Sortino ratio, with short sales such that the portfolio weight is restricted
to be between —0.3 < x; < 0.3,i =1, ...,n at 95% probability level. Table 21 reports the performance measure for this optimization
strategy. The results show that the DCC-MVT model has the highest monthly average return, cumulative return and Sharpe ratio.
However, this model has the highest risk as compared to the other models. On the other hand, models like FDCC-MVN, aDCC-MVN,
SCop-MVN also have a high return with a high Sharpe ratio at a much lower risk.

The average weights of asset portfolios constructed based on maximizing Sortino ratio are reported in Table 22. The
asset allocation for assets MSEXUK, DAXINDX, AMSTEOE, HNGKNGI, and BGILALL are different across models. The allocation to
TOKYOSE asset is high; around 10% to 25% of total investment in most of the models. It is interesting to note that only the ARMA-
DCop-MVN model involves short sell for this optimization strategy.

5. Conclusion

This paper provides a comparative analysis of various multivariate DCC GARCH models using a portfolio allocation strategy as the
loss function. We examined the portfolio’s performance in terms of the returns, variance of returns, Sharpe ratio, and the value-at-
risk. We applied different multivariate GARCH models, i.e., VAR, ARMA, DCC, aDCC, FDCC, GOGARCH and copula-GARCH models
by using the normal and student distributions involving static and dynamic copulas. The use of the multivariate DCC-GARCH family is
particularly appealing as it preserves the ease of estimation with a small number of parameters involved, thus solving the problems of
dealing with a large number of parameters in other multivariate models. We considered different models for the asset allocation
process and also for risk management purposes to see which is the best model in optimising the portfolio return. The analysis focuses
on 12 assets consisting of four bonds and eight stock indices in the US, UK, Germany, Japan, Netherlands, Canada and Hong Kong.
The results confirm the presence of heteroskedasticity, fat tails and volatility clustering in the asset returns of the data. We fitted the
multivariate GARCH models to the portfolio returns to get the estimation of the variance-covariance matrix. Then, for the
asset allocation, we considered the box-group constrained portfolio, whereby the weights for each asset and the weights of groups of
selected assets are constrained by lower and upper bounds.

Specifically, for the minimum-variance portfolios, we found that the multivariate aDCC-MVT model outperformed the other
models, by having the highest average monthly return, cumulative return and Sharpe ratio for both portfolios, with or without short
sales. When we constructed the portfolio using the mean-variance optimization strategy such that we set the return of the portfolio to
be greater than the target return, we found that the multivariate DCC-MVT, aDCC-MVN, VAR-MVN and VAR-SCop-MVN models have
good performance measures as compared to the other models. As for maximizing the Sharpe ratio, the AR-GOGARCH-MVN and
ARMA-MVN models outperformed the other models. For the mean-CVaR optimisation, we found that the models DCC-MVT, aDCC-
MVT, FDCC and a-DCop-MVT are comparatively the best models. Finally, when maximizing the Sortino ratio, we observed that once
again the models DCC-MVT, aDCC-MVT, a-DCop-MVT and FDCC provide the best out-of-sample performance. Among the
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optimization strategies, the maximization of the Sortino ratio provides the best out-of-sample performance.

Two important results that emerge from this study is, first, the dynamic models are more capable of delivering better performance
gains than the static models. These models reduce portfolio risk and improve the realized return in the out-of-sample period.
Secondly, the results show that by adding copula functions to the models do not give a better performance when compared to the
dynamic correlation models. While adding copula may capture additional characteristics in the data, it does not improve model
selection outcomes in the performance of the portfolio. Our results are consistent with Weib (2013) and Ricetti (2013); the DCC
models are not easily outperformed by any of the parametric copula models. That is, the copula model may not perform well when
involving many related assets since we have only considered stock and bond indices in the portfolio. Overall, these findings are useful
for practitioners who are involved in portfolio optimization and risk measurement in pension schemes. It will help the fund manager
to decide the best investment strategies to ensure maximum benefit for its members.

This study can be extended in several ways. The problem has been solved using limited restrictions on the weights of the con-
structed portfolios. Future studies could incorporate different constraints to examine the robustness of the constructed portfolio and
make a comparison. There are also other possible ways to extend the study by looking at different situations in which the copula
model may perform better, i.e, by using other copula models, by looking at different asset allocation horizons, using multiple asset
class in the portfolio, or considering other frequency of asset returns. Future studies could also consider incorporating exogenous
factors-variables in the models, to see the effects it may have to the estimation of mean and variance-covariance matrix. It is
interesting to note that, so far we have examined the asset management in a portfolio, the research could be extended by including
the liabilities. In this context, the methodology proposed could be useful to pension managers and asset allocation purposes in
pension schemes to ensure that enough assets are available to support pension liabilities. This study, therefore, can be a good
benchmark for future related research.
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