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Abstract
We introduce Z-MERT, a soware tool for minimum error rate training of machine translation sys-

tems (Och, 2003). In addition to being an open source tool that is extremely easy to compile and run,
Z-MERT is also agnostic regarding the evaluation metric, fully configurable, and requires no modification
to work with any decoder. We describe Z-MERT and review its features, and report the results of a series
of experiments that examine the tool’s runtime. We establish that Z-MERT is extremely efficient, making
it well-suited for time-sensitive pipelines. e experiments also provide an insight into the tool’s runtime
in terms of several variables (size of the development set, size of produced N-best lists, etc).

1. Introduction

Many state-of-the-art machine translation (MT) systems over the past few years (Och and
Ney, 2002, Koehn, Och, and Marcu, 2003, Chiang, 2007, Koehn et al., 2007) rely on several
models to evaluate the “goodness” of a given candidate translation in the target language. e
MT system proceeds by searching for the highest-scoring candidate translation, as scored by
the differentmodel components, and returns that candidate as the hypothesis translation. Each
of these models need not be a probabilistic model, and instead corresponds to a feature that is
a function of a (candidate translation,foreign sentence) pair.

Treated as a log-linearmodel, we need to assign aweight for each of the features. Och (2003)
provides empirical evidence that setting those weights should take into account the evaluation
metric by which the MT system will eventually be judged. is is achieved by choosing the
weights so as to maximize the performance of the MT system on a development set, as mea-
sured by that evaluation metric. e other insight of Och’s work is that there exists an efficient
algorithm to find such weights.

is process has come to be known as theMERT phase (forMinimum ErrorRateTraining)
in training pipelines of MT systems. e existence of a MERT module that can be integrated
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with minimal effort with an existing MT system would be beneficial for the research com-
munity. For maximum benefit, this tool should be easy to set up and use and should have a
demonstrably efficient implementation. We describe here one such tool, Z-MERT, developed
with these goals in mind. Great care has been taken to ensure that Z-MERT can be used with
any MT system without modification to the code, and without the need for an elaborate¹ web of
scripts, which is a situation that unfortunately exists in practice in current training pipelines.

We first review log-linear models in MT systems and Och’s efficient method (Section 2)
before introducing Z-MERT and its usage (Section 3). We also report experimental results
that demonstrate Z-MERT’s efficiency (Section 4). Finally, we provide details on how to take
full advantage of Z-MERT’s unique features (Section 5). Readers already familiar with MERT
should feel free to skip to the last paragraph of Section 2.

2. Log-linear Models in Machine Translation

Given a sentence to translate f in the source (aka ‘foreign’) language, a MT system attempts
to produce a hypothesis translation ê in the target (aka ‘English’) language that it believes is
the best translation candidate. is is done by choosing the target sentence with the highest
probability conditioned on the given source sentence. at is, the chosen translation is:

ê = argmax
e

Pr(e | f) (1)

One could model the posterior probability Pr(e | f) using a log-linear model. Such a model
associates a sentence pair (e, f) with a feature vector Φ(e, f) = {ϕ1(e, f), ..., ϕM(e, f)}, and
assigns a score

sΛ(e, f)
def
= Λ · Φ(e, f) =

M∑
m=1

λmϕm(e, f) (2)

for that sentence pair, where Λ = {λ1, ..., λM} is the weight vector for the M features. Now,
the posterior is defined as:

Pr(e | f)
def
=

exp(sΛ(e, f))∑
e ′ exp(sΛ(e ′, f))

(3)

and therefore, the MT system selects the translation:

ê = argmax
e

Pr(e | f) = argmax
e

exp(sΛ(e, f))∑
e ′ exp(sΛ(e ′, f))

= argmax
e

sΛ(e, f). (4)

2.1. Parameter Estimation Using Och’s Method

How should one set the weight vector Λ? Och (2003) argues it should be chosen so as to
maximize the system’s performance on some development dataset as measured by the evalu-
ation metric of interest. e error surface in this approach is not smooth, which means that

¹Elaborate, as in complicated, hard to navigate, and headache-inducing.
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gradient-based optimization techniques cannot be used. A grid search by repeated line opti-
mizations is not a good option either, since the function is quite expensive to evaluate at a given
point p ∈ ℜM, as this would require rescoring the candidate set² for each sentence to find the
1-best translations at p. Och suggests an alternative efficient approach for this optimization,
which we review here.

Assume we are performing a line optimization along the dth dimension. at is, we have
a weight vector Λ = {λ1, ..., λd, ..., λM}, and we would like to find a new weight vector for
which the dth dimension is optimal, keeping the other dimensions fixed.

Consider a foreign sentence f, and let the candidate set2 for f be {e1, ..., eK}. Recall from (4)
that the 1-best candidate at a given Λ is the one with maximum sΛ(ek, f), which (2) defines
as
∑M

m=1 λmϕm(ek, f). We can rewrite that sum as λdϕd(ek, f) +
∑

m̸=d λmϕm(ek, f).
e second term is constant with respect to λd, and so is ϕd(ek, f). If we rename those two
quantities offestΛ(ek) and slope(ek):

sΛ(ek, f) = slope(ek)λd + offsetΛ(ek). (5)

is is the equation for a line, and so when we vary λd, the score of a candidate varies
linearly. at is, if we plot the score for a candidate translation vs. λd, that candidate will be
represented by a line. If we plot the lines for all candidates (Figure 1), then the upper envelope
of these lines indicates the best candidate at any value for λd. is is basically a visualization
of the decision process of (4).

Observe now that the non-smoothness of the error function surface is not arbitrary, but is
in fact piece-wise linear along the λd dimension.³ e reason is that the error is calculated based
on the 1-best candidate translations, and a small change in λd usually does not change the top
candidate. ere is, however, a set of critical values along the λd dimension, corresponding
to the intersection points that form the abovementioned upper envelope. ese are the only
points at which the error changes (due to a change in the set of 1-best candidates).

If we can determine these intersection points for each sentence, and then merge them all
into one set of intersection points, we will then have an overall set of critical values along the
λd dimension, with each value corresponding to a 1-best change for a single foreign sentence.⁴

is means that if we have already calculated the error’s sufficient statistics for a λd value
just before some critical value, the sufficient statistics for a λd value just aer that critical value
can be calculated quite easily: simply adjust the original sufficient statistics as dictated by the
candidate change associated with that intersection point.

is way, there is no need to rescore the candidates, and we traverse the λd dimension by
considering only intersection points to find the optimum value. Finding those critical values
amounts to finding intersection points of the lines representing the candidates, which is an easy

²We have not yet indicated how this candidate set is obtained, but will do so shortly.
³Or, in fact, along any linear combination of the Mdimensions.
⁴In theory, a single critical value might correspond to a 1-best change for more than one foreign sentence. ough

infrequent, this does happen in practice and is accounted for in Z-MERT.
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Figure 1. Och’s method applied to a set of two foreign sentences.

process.⁵
One final piece of the puzzle is needed. We have been assuming that we have access to the

set of candidate translations for each foreign sentence. How is this set actually obtained? One
could try to enumerate all the possible candidates to cover the entire search space, but that may
not be possible, and is likely quite costly anyway.

So we need an approximation to the candidate set. We could use the top, say, 300 candidates
according the initial weight vector, but this set is quite concentrated, and is therefore not a good
representative of the search space.⁶ Instead, we alternate between optimizing the weight vector
and producing the set of top candidates, each time merging the new candidate set with the
existing candidates. e process is repeated until convergence, indicated by the candidate set
not growing in size.

Och’smethod corresponds to line 17 inAlgorithm1, which is the pseudocode for Z-MERT’s
optimization process. Notice that Z-MERT repeatedly performs a line optimization (lines
14–27) along one of the M dimensions, greedily selecting the one that gives the most gain
(lines 16–23). Notice also that each iteration optimizes several random “initial” points (line 9)
in addition to the one surviving from the previous MERT iteration (line 8). is is used as an
alternative to true multiple restarts.

⁵And it can be done efficiently: many of the lines need not be considered at all, such as the one for e1
4

in Figure 1.
⁶We are not referring to the small number of candidates here (which we already accept as a compromise to avoid
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Algorithm 1 Z-MERT: Optimization of weight vector Λ to minimize error, using for line op-
timization (line 17) the efficient method of Och (2003).
Input: Initial weight vector Λ0 = {Λ0[1], ..., Λ0[M]}; numInter, the number of initial points

per iteration; and N, the size of the candidate list generated each iteration.
Return: Final weight vector Λ∗ = {Λ∗[1], ..., Λ∗[M]}.
1. Initialize Λ← Λ0

2. Initialize currError← +∞
3. Intialize the cumulative candidate set for each sentence to the empty set.
4. loop
5. Using Λ, produce an N-best candidate list for each sentence, and merge it with the

cumulative candidate set for that sentence.
6. if no candidate set grew then Return Λ // MERT convergence; we are done.
7.
8. Initialize Λ1 ← Λ

9. for (j = 2 to numInter), initialize Λj ← random weight vector
10.
11. Initialize jbest ← 0

12. for (j = 1 to numInter) do
13. Initialize currErrorj ← error(Λj) based on cumulative candidate sets
14. repeat
15. Initialize mbest ← 0

16. for (m = 1 to M) do
17. Set (λ,err) = value returned by efficient investigation of the mth dimen-

sion and the error at that value (i.e. using Och’s method)
18. if (err < currErrorj) then
19. mbest ← m
20. λbest ← λ

21. currErrorj← err
22. end if
23. end for
24. if (mbest ̸= 0) then
25. Change Λj[mbest] to λbest
26. end if
27. until (mbest == 0)
28. if (currErrorj < currError) then
29. currError← currErrorj

30. jbest ← j

31. Λ← Λj

32. end if
33. end for
34. if (jbest == 0) then Return Λ // Could not improve any further; we are done.
35. end loop
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3. Z-MERT

Z-MERT is part of a larger effort at Johns Hopkins University to develop Joshua (Li and
Khudanpur, 2008) into an open source soware package that includes a hierarchical phrase-
based decoder (Chiang, 2007), as well as the components of a complete MT training pipeline.
Two principles established by the developers were flexibility and ease of use, and were observed
in the development of Z-MERT, Joshua’s MERT module. Z-MERT also functions indepen-
dently as a standalone application. at is, Z-MERT is also publicly available⁷ separately from
Joshua, which is still under development, since Z-MERT does not rely on any of Joshua’s other
components.

3.1. Existing MERT Implementations

At first, it seemed reasonable to use some existingMERT implementation as a starting point
for Joshua’s MERT module and adapt it as we see fit. (Aer all, there is no point in reinventing
the wheel.) However, we found that existing implementations were not suitable for our needs,
and did not meet our standards of flexibility and ease of use. We review here two such open
source MERT implementations.

e first MERT implementation we examined is by Ashish Venugopal⁸, which appears to
have been first used by Venugopal and Vogel (2005). One immediate drawback of this imple-
mentation is that it is written in MATLAB®, which, like other interpreted languages, is quite
slow.⁹ Furthermore, MATLAB® is a proprietary product ofeMathWorks, which limits use of
Venugopal’s implementation to those who have access to a licensed installation of MATLAB®.

Beyond that, the tool needs to be launched aer every decoding step to perform the MERT
optimization.¹⁰ e user could certainly opt out of monitoring the MERT process to manually
launch the decoder at the end of each MERT run (and vice versa) by writing a script capable
of monitoring the two processes and launching them at appropriate times. But writing such a
script seems like an unnecessary nuisance.

Z-MERT, on the other hand, is written in Java, making it orders of magnitude faster. is
also makes it usable by practically everybody, since Java compilers are freely available for all
common platforms, and users are likely to already have one installed and be familiar with it.
Z-MERT also requires no monitoring from the user – all the user needs to do is specify the
command that launches the decoder, and Z-MERT takes care of everything else.

enumerating all the candidates), but their limited distribution.
⁷Soware and documentation available at: http://www.cs.jhu.edu/∼ozaidan/zmert.html.
⁸Soware and documentation available at: http://www.cs.cmu.edu/∼ashishv/mer.html.
⁹It should be noted that the sufficient statistics for error are calculated outsideMATLAB®, since it is a “costly process

which is not well suited to MATLAB,” according to the documentation. is implies an external script in some other
language performs those calculations. It is not clear which language, since those scripts do not appear to be available
for download on the soware’s page.

¹⁰It essentially performs a single iteration of the outermost loop of Algorithm 1.
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Another implementation is the MERT module of Phramer¹¹, an open source MT system
written by Marian Olteanu as an alternative to Pharaoh (Koehn, Och, and Marcu, 2003). e
MERT module is written in Java, but a quick examination of the package’s source code reveals
that the mert folder contains a whopping 31 Java files! Granted, some of these are class defi-
nitions necessary for aspects like evaluation metrics, but the MERT “core” is still a large group
of 15–20 files. Compare this to Z-MERT, which consists of only 2 Java files, one of which is
a 20-line driver program. is makes compiling Z-MERT almost trivial and running it quite
easy.

e biggest drawback with Olteanu’s implementation, however, is that it is specifically
geared towards Phramer and Pharaoh. It is not immediately clear how one would adapt it
for use with other decoders.¹² Z-MERT, on the other hand, can be used immediately as a stan-
dalone application, without any modification to the code.

To summarize, Z-MERT is the first MERT implementation specifically meant for public
release and for easy use with any decoder. Besides some unique features (Subsection 3.2), there
are various advantages to using it: it is extremely easy to compile and run, it produces useful
verbose output, it has the ability to resume stopped runs, it is highly optimized (Section 4), and
its code is documented javadoc-style.

3.2. Z-MERT Usage and Features

Z-MERT is very easy to run. It expects a single parameter, a configuration file:
java ZMERT MERT_config.txt

e configuration file allows the user to specify any subset of MERT’s 20 or so parameters,
eight of which are shown in the sample file in Figure 2 (most parameters have default values
and need not be specified). is high degree of configurability is Z-MERT’s first feature. -cmd
specifies a one-line file that contains the command that Z-MERT should use to produce an
iteration’s N-best list (line 5 in Algorithm 1). It is assumed that this command makes use of a
decoder config file -dcfg, which Z-MERT updates just before producing the N-best list. Z-
MERT knows how to update the file because it is informed of the parameter names in the file
specified by -p.

e -decOut parameter indicates the file containing the newly created candidate trans-
lations. Z-MERT then proceeds by calculating the sufficient statistics for each candidate, as
calculated against the reference translations in the -r file. Notice that Z-MERT is agnostic
regarding the decoder, and treats it as a black box: Z-MERT prepares the configuration file,
starts the decoder, and expects an output file once the decoder is done. e output file, which
contains the candidate sentences and feature values, is expected to be in the familiar Moses-

¹¹Soware and FAQ for Phramer available at: http://www.utdallas.edu/∼mgo031000/phramer.
¹²We are assuming here that it is indeed possible to adapt Phramer’s MERT module to decoders other than Phramer

and Pharaoh. is appears to be the case according to Lane Schwartz, who used it to tune parameters for a third
decoder (personal communication). He mentions two Java classes that he needed to write to adapt Phramer’s MERT
module. We also imagine that, at a minimum, one would have to find and remove import and package statements
referring to the Phramer package.
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-cmd    dec_cmd.txt # decoder command file
-dcfg   dec_cfg.txt # decoder config file
-p      params.txt  # parameter file
-decOut nbest.out   # decoder output file
-N      300         # size of N-best list
-r      refs.txt    # reference sentences
-ipi    20          # numInter (see Alg. 1)
-m      BLEU        # evaluation metric

params.txt:

MERT_config.txt:

lm               |||  1.0  Fix  +0.5  +1.5
phrasemodel pt 0 |||  0.5  Opt  -1    +1
phrasemodel pt 1 |||  0.5  Opt  -1    +1
phrasemodel pt 2 |||  0.5  Opt  -1    +1
wordpenalty      ||| -2.5  Opt  -5    0

Initial        Range for
value       random values

Parameter name          Optimizable?

Figure 2. Sample MERT configuration file and parameter file.

and Joshua-like format.
e -m parameter illustrates another feature of Z-MERT: it is completely modular when it

comes to the evaluation metric. Z-MERT can handle any evaluation metric, as long as its suffi-
cient statistics are decomposable. is includes the most popular automatic evaluation metrics
in the MT community, such as BLEU and TER . e public release already includes an imple-
mentation of BLEU (both IBM and NIST definitions), and implementing a new evaluation
metric is quite easy (see Section 5).

4. Experiments

In Figure 3, we report the runtime of a number of experiments to demonstrate Z-MERT’s
efficiency by optimizing parameters for the Joshua decoder.¹³ e MERT optimization was
performed on a 2.0 GHz inkPad laptop. e development dataset is the text data of MT06,
with 4 references per sentence. e evaluation metric being optimized is 4-BLEU (IBM defi-
nition). e le graph illustrates the effect of the development set size, for two different N-best
sizes. e right graph illustrates the effect of numInter of Algorithm 1, for two different set
sizes. e reported times are averaged over the first 4 iterations, and are for MERT only and
do not include decoding times.
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Figure 3. Average iteration time for MERT under different settings.

¹³We use the same parameter file as in Figure 2, except all parameters are optimizable. e language model is a
5-gram LM trained on the English side of the Gigaword corpus (about 130M words). e translation model has about
7.8 million rules.
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5. Implementation Details

In addition to theMERTdriver and theMERTcore, Z-MERThas anabstractEvaluationMetric
class. For an evaluationmetric of interest, weneed a corresponding class thatextendsEvaluationMetric.
We need only two method definitions: one to calculate sufficient statistics for a candidate, and
one that calculates the error given sufficient statistics. Consider the following metric. A candi-
date is compared against the reference translations. If the first word in the candidate matches
the first in any reference, it gets +1, and similarly for the last word. So, a candidate translation
can have a score between 0 and 2. Define the error to be the ratio of the sum of those scores
divided by the maximum possible score. Here is the implementation:

public int[] suffStats(String cand_str, int i) {
// Calculate the sufficient statistics for cand_str, compared
// against the references for the ith source sentence.

int[] retA = new int[suffStatsCount]; // array of SS to be returned
int firstWordMatches = 0, lastWordMatches = 0;

for (int r = 0; r < refsPerSen; ++r) {
if (firstWord(cand_str).equals(firstWord(refSentences[i][r])))
firstWordMatches = 1;

if (lastWord(cand_str).equals(lastWord(refSentences[i][r])))
lastWordMatches = 1;

}

retA[0] = firstWordMatches + lastWordMatches;
retA[1] = 2;

return retA;
}
public double score(int[] stats) {
return stats[0]/(double)stats[1];

}

For clarity, we omit the trivial definitions for firstWord(.) and lastWord(.). Data
members such asrefSentences andrefsPerSen are already set by the parent classEvaluationMetric,
which also defines appropriate methods to sum the sufficient statistics. And so, the complexity
of the new code is a function of the complexity of themetric itself only; the user need not worry
about any kind of bookkeeping, etc.
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6. Conclusion and Acknowledgments

We presented Z-MERT, a flexible, fully configurable, easy to use, efficient MERT module
for tuning the parameters of MT systems. Z-MERT is agnostic when it comes to the partic-
ular system, the parameters optimized, and the evaluation metric. Compiling and running
Z-MERT is very easy, and no modification to the source code is needed. e user can eas-
ily perform MERT with a new evaluation metric by overriding only a small part of a generic
EvaluationMetric class.

e author would like to thank the members of the Joshua development team at JHU. is
research was supported in part by the Defense Advanced Research Projects Agency’s GALE
program under Contract No. HR0011-06-2-0001.
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