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We analyze the one dimensional scattering produced by all variations of the Pöschl–Teller potential, 
i.e., potential well, low and high barriers. The transmission coefficients of Pöschl–Teller well and low 
barrier potentials have an infinite number of simple poles corresponding to bound and antibound states. 
However, the Pöschl–Teller high barrier potential shows an infinite number of resonance poles. We 
have constructed ladder operators connecting wave functions for bound and antibound states as well 
as for resonance states. Finally, using wave functions of these states, we provide some examples of 
supersymmetric partners of the Pöschl–Teller Hamiltonian.
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1. Introduction

One dimensional models in quantum mechanics are relevant 
as they may serve to test a wide range of quantum properties. 
They are also useful in the study of spherically symmetric three 
dimensional models. Although many studies of quantum one di-
mensional models have been addressed to the analysis of bound 
or scattering states, there are also a big number of works concern-
ing unstable quantum states, which occur quite often in nature. 
Resonances can be identified with unstable quantum states, which 
are two equivalent manners for the description of the same real-
ity [1–4]. In addition, there exists another type of not normalizable 
states with real negative energy called antibound states [1,5–7].

Resonances are defined as pairs of poles of the analytic con-
tinuation of the scattering matrix (S matrix). In the momentum 
representation, this analytic continuation is given by a meromor-
phic function S(k) on the complex plane. Then, resonance poles 
are symmetrically located on the lower half of the complex mo-
mentum plane with respect to the imaginary axis. In the energy 
representation, the analytic continuation of the S matrix is mero-
morphic on a two sheeted Riemann surface [1]. Now, each pair of 
resonance poles are complex conjugated of each other with real 
part E R and imaginary part ±�/2. These parameters E R and �
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are the same that characterize a quantum unstable state: the reso-
nant energy E R (which is the difference between the energy of the 
decaying state and the decay products) and the width � (which 
is related with the inverse of the half life of the unstable state). 
These states can also be represented by wave functions, which 
are eigenfunctions of the Hamiltonian with complex eigenvalue 
E R ± i �/2. Since the Hamiltonian is usually taken to be self ad-
joint on a Hilbert space, these wave functions called Gamow states
(resonance states), can not be normalized [1,8,9]. There are some 
other definitions of resonances and quantum unstable states, not 
always equivalent, see references and a brief review in [10]. In the 
present paper for practical reasons, we deal with resonances as 
pair of poles of the S matrix in the momentum representation. For 
details concerning other formalisms we address to the literature 
on the subject [5,11–15].

In the study of the analytic properties of the S matrix in the 
momentum representation [5], one sees the existence of three 
types of isolated singularities. One is the mentioned resonance 
poles, which may have multiplicity one or higher [16,17]. In ad-
dition, simple poles on the positive part of the imaginary axis may 
exist, (ik, k > 0) with energy E = −h̄2|k|2/2m. Each one determines 
the existence of one bound state ψ and vice versa for each bound 
state there exists one of such poles. In this case ψ is normalizable, 
i.e., square integrable. Simple poles on the negative part of the 
imaginary axis (ik, k < 0) correspond to other type of states called 
antibound or virtual states. Wave functions of antibound states are 
not square integrable; furthermore they blow up at the infinity. 
Their physical meaning is sometimes obscure (see [1,6] and refer-
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ences quoted therein). The presence of a simple pole at the origin 
without physical meaning is also possible.

These three types of states: resonance, bound and antibound, 
corresponding to the singularities of the S matrix, can also be ob-
tained by imposing purely outgoing conditions to the solutions of 
the Schrödinger equation, as we shall see in the next sections.

Coming back to resonance poles, we know that they come into 
pairs. In the energy representation, these pairs are complex con-
jugate of each other, so that if zR = E R − i �/2 is one such pole, 
z∗

R = E R + i �/2 is another one. Then, for each resonance, there are 
two Gamow states, the so-called decaying Gamow state, ψ D , satis-
fying Hψ D = zRψ D and the growing Gamow state, ψG with HψG =
z∗

RψG . The decaying Gamow state ψ D decays exponentially to the 
future, i.e., e−it Hψ D = e−iE R t e−t�/2ψ D , while the growing Gamow 
vector decays exponentially to the past (and grows exponentially 
to the future, hence its name), i.e., e−it HψG = e−iE R t et�/2ψG . 
These formulas make sense in an appropriate rigged Hilbert space 
[8,9]. In the momentum representation, poles on the forth quad-
rant correspond to decaying Gamow states and poles on the third 
quadrant correspond to growing Gamow states.

In the present paper we shall deal with the hyperbolic Pöschl–
Teller potential characterized by a parameter λ. Depending on the 
values of such parameter, this potential admits bound and anti-
bound or even resonance states. Their corresponding poles of the S
matrix will be determined analytically, contrarily to most of known 
resonance models where the poles have to be computed by numer-
ical methods [7,18–20].

The factorization method has been used since the early times 
of quantum mechanics in order to obtain the spectrum of some 
Hamiltonians by algebraic means [21,22]. For the hyperbolic 
Pöschl–Teller potential, we may distinguish three different situ-
ations: potential well, low barrier and high barrier. In the first 
case, there exists bound and antibound states which are obtained 
from each other through ladder operators. In the second, there ex-
ist antibound states only, although the situation is similar to the 
former. Finally, the high barrier has an infinite number of reso-
nances and the corresponding growing and decaying Gamow states 
are related by two different types of ladder operators. The lad-
der operators form an algebra supported by eigenfunctions of the 
Hamiltonian, which in general lie outside the Hilbert space. Up to 
now, this type of ladder operators were applied to bound states 
but they have never been applied to antibound states and reso-
nances. This is a very important result: resonance and antibound 
states share the same algebraic properties as bound states.

Another application of the factorization method is to find 
Hamiltonian hierarchies starting from a given Hamiltonian, see [21]
and references therein. In order to obtain a Hamiltonian of a hi-
erarchy, one uses in general an eigenfunction without zeros of 
the initial Hamiltonian, often corresponding to the ground state. 
However, one rarely uses an antibound state or a Gamow state 
to construct supersymmetric partners [23–25]. With these ideas in 
mind, we give some examples in which we build supersymmetric 
partners of Pöschl–Teller potentials using wave functions of anti-
bound and Gamow states.

This paper is organized as follows: In the next section, we re-
view some basic and important facts, concerning the hyperbolic 
Pöschl–Teller potential and introduce the basic notation. In Sec-
tion 3, we discuss some of its scattering properties. We show that 
all poles of the S matrix corresponding to the purely outgoing 
boundary conditions, giving the energies and momenta of bound, 
antibound and resonance states, can be obtained analytically and 
exactly. This is a very exceptional outcome, since for the vast ma-
jority of worked potentials these poles can only be obtained by 
numerical methods. The construction of ladder operators relating 
eigenfunctions for bound and antibound states, growing and de-
caying Gamow states is done in Section 4. In section 5, we get 
Fig. 1. Plot of the Pöschl–Teller potential for different values of λ. The continuous
line corresponds to λ = 3.5 (well), the dashing line to λ = 0.6 (low barrier), the 
dotted line to λ = 1/2 + i 2 (high barrier).

SUSY partners of the Pöschl–Teller Hamiltonian, using antibound 
and Gamow states. We close our presentation with concluding re-
marks.

2. The hyperbolic Pöschl–Teller potential

Let us consider the following one dimensional Hamiltonian:

H = − h̄2

2m

d2

dx2
− h̄2

2m

α2 λ(λ − 1)

cosh2 αx
, (1)

where the second term in the right hand side of (1) is known as 
the real hyperbolic Pöschl–Teller potential. Here, α is a fixed con-
stant while λ is a parameter. Along the present paper, we shall 
consider three possibilities for λ each one giving a different shape 
for the potential. They will be studied separately:

• λ > 1, potential well,
• 1

2 ≤ λ < 1, low barrier,
• λ = 1

2 + i�; � > 0, high barrier.

The justification for the assigned names comes from their 
shapes shown in Fig. 1. Obviously, for the value λ = 1 the poten-
tial vanishes. For integer values of λ, greater than one, it is well 
known that the resulting potential is reflectionless.

The time independent Schrödinger equation produced by the 
Hamiltonian (1), has been widely studied [30,31]. Nevertheless, 
the forthcoming presentation is quite relevant in order to follow 
our arguments. If we denote by U (x) the wave function, the time 
independent Schrödinger equation obtained after the Hamiltonian 
(1) is given by:

U ′′(x) +
[

k2 + α2λ(λ − 1)

cosh2 αx

]
U (x) = 0 , (2)

where k2 = 2mE

h̄2
and U ′′(x) = d2U

dx2
. Then, let us introduce the fol-

lowing new variable

y(x) := tanhαx (3)

and the new function ν(y),

U (y) = (1 + y)r(1 − y)sν(y) , (4)

where r and s are

r = ik
, s = − ik

. (5)

2α 2α



1602 D. Çevik et al. / Physics Letters A 380 (2016) 1600–1609
With these choices, equation (2) becomes the Jacobi equation,

(1 − y2) ν ′′(y) +
[

2ik

α
− 2y

]
ν ′(y) + λ(λ − 1) ν(y) = 0 . (6)

In order to write (6) in the standard form of the hypergeometric 
equation, we need to use the following change of variable

z := y + 1

2
, (7)

so that (6) takes the form:

z(1 − z) ν ′′(z) +
[

ik

α
− 2z + 1

]
ν ′(z) + [λ(λ − 1)]ν(z) = 0 . (8)

Note that ν ′(z) denotes dν/dz, etc. We have finally reached the 
hypergeometric equation z(1 − z) ν ′′(z) + [c − (a + b + 1)z]ν ′(z) −
abν(z) = 0, with a = λ, b = 1 − λ and c = ik/α + 1. Two inde-
pendent solutions are given in terms of hypergeometric functions: 
2 F1(a, b; c; z) and z1−c

2 F1(a − c + 1, b − c + 1; 2 − c; z) (provided 
that c is not an integer [26]). Therefore, the general solution of 
equation (2) can be reached after some evident manipulations and 
is given by:

U (x) = A (1 + tanhαx)ik/2α(1 − tanhαx)−ik/2α

× 2 F1

(
λ,1 − λ; ik

α
+ 1; 1 + tanhαx

2

)
+ B 2ik/α(1 + tanhαx)−ik/2α(1 − tanhαx)−ik/2α

× 2 F1

(
λ − ik

α
,1 − λ − ik

α
;1 − ik

α
; 1 + tanhαx

2

)
(9)

where A and B are arbitrary constants.
The S matrix connects the asymptotic forms of the incom-

ing wave function with outgoing wave function. Fortunately the 
asymptotic behavior of the hypergeometric functions is well 
known [26] and the asymptotic form of (9) is:

• For x �−→ +∞

U+(x) =
[

A
�

(
ik
α + 1

)
�

(
ik
α

)
�

(
ik
α + 1 − λ

)
�

(
ik
α + λ

)

+ B
�

(
1 − ik

α

)
�

(
ik
α

)
� (1 − λ)� (λ)

]
eikx

+
[

A
�

(
ik
α + 1

)
�

(
− ik

α

)
� (1 − λ)� (λ)

+ B
�

(
1 − ik

α

)
�

(
− ik

α

)
�

(
λ − ik

α

)
�

(
1 − λ − ik

α

)]
e−ikx

= A′ eikx + B ′ e−ikx . (10)

• For x �−→ −∞
U−(x) = A eikx + B e−ikx . (11)

We recall that α is a given positive constant. In the sequel, we 
shall fix α = 1 for simplicity. Then, we can define the S matrix 
that relates the asymptotically incoming wave function with the 
asymptotically outgoing wave function [27]:(

B
A′

)
=

(
S11 S12
S S

)(
A
B ′

)
. (12)
21 22
The matrix elements Sij of the S matrix are usually written in 
terms of the elements Tij of the transfer matrix T which relates 
the asymptotic wave functions in the negative infinity and in the 
positive infinity is defined as(

A′
B ′

)
=

(
T11 T12
T21 T22

)(
A
B

)
, (13)

in the following form:

S = 1

T22

⎛
⎝ −T21 1

T11T22 − T21T12 T12

⎞
⎠ . (14)

The explicit form of the transfer matrix T [28,29], obtained 
from (10), (11) and (13), is the following:

T =

⎛
⎜⎜⎝

� (ik + 1)� (ik)

� (ik + 1 − λ)� (ik + λ)

� (1 − ik)� (ik)

� (1 − λ)� (λ)

� (ik + 1)� (−ik)

� (λ)� (1 − λ)

� (1 − ik)� (−ik)

� (λ − ik)� (1 − λ − ik)

⎞
⎟⎟⎠

(15)

It is easy to check that in this case det T = 1 and S S† = S† S = 1. 
Thus, we have obtained the explicit form of the S matrix in 
the momentum representation, which will be henceforth denoted 
by S(k).

Now, we define the purely outgoing states of the Schrödinger 
equation in this case, as the solutions characterized by (10) and 
(11) such that: A = B ′ = 0. In other words, the asymptotic behavior 
consist in outgoing waves to the right and to the left of the po-
tential range. From the T matrix equation (13), B ′ = T21 A + T22 B . 
Therefore, the values of k satisfying the purely outgoing bound-
ary conditions reduce to the solutions of T22(k) = 0. As it is seen 
from (14), this equation characterizes the poles of S(k) which are 
related with purely outgoing states. For such values of k, accord-
ing to (9), the wave functions corresponding to outgoing states are 
given (up to a constant factor) by

U (x) = 2ik/α(1 + tanhαx)−ik/2α(1 − tanhαx)−ik/2α

× 2 F1

(
λ − ik

α
,1 − λ − ik

α
;1 − ik

α
; 1 + tanhαx

2

)
. (16)

3. Three types of Pöschl–Teller potentials

Along this present section, we intend to analyze all kind of fea-
tures that emerge from a scattering analysis of the three types of 
hyperbolic Pöschl–Teller potentials under our study. This includes 
scattering states, resonances, bound and antibound states. We shall 
follow the order beginning with the potential well, then low bar-
rier to conclude with the high barrier.

3.1. Potential well (λ > 1)

One of the most interesting objects in the study of scattering 
is the explicit forms of the reflection and transmission coefficients. 
The point of departure is now an asymptotic incoming plane wave 
from the left that after interaction with the potential comes into 
a reflected and a transmitted plane waves characterized by k ∈ R. 
This means that in (10) and (11), we take A = 1 and B ′ = 0. Then, 
we obtain the following reflection r and transmission t amplitudes:

r = B = S11 = − T21

T22
= � (ik)� (λ − ik)� (1 − λ − ik)

� (−ik)� (1 − λ)� (λ)
,

t = A′ = S21 = 1 = � (λ − ik)� (1 − λ − ik)
. (17)
T22 � (1 − ik)� (−ik)
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Fig. 2. Well potential: Plot of T (k) and R(k) for λ = 3.5.

Then, the reflection and the transmission coefficients are given by

R = |r|2 =
∣∣∣∣� (ik)� (λ − ik)� (1 − λ − ik)

� (−ik)� (1 − λ)� (λ)

∣∣∣∣2

,

T = |t|2 =
∣∣∣∣� (λ − ik)� (1 − λ − ik)

� (1 − ik)� (−ik)

∣∣∣∣2

. (18)

We can check that T + R = 1 for k ∈ R. In Fig. 2, we plot T (k)

versus R(k) for λ = 3.5. We recall that when λ is an integer, then 
the transmission coefficient is equal to one: T = 1. Consequently, 
R = 0 and we have a reflectionless potential.

Now, consider that k ∈ C. As was settled earlier, singularities 
of S(k) corresponding to outgoing states, are determined via the 
equation T22(k) = 0, which in our case takes the form:

1

t(k)
= �(1 − ik)�(−ik)

�(λ − ik)�(1 − λ − ik)
= 0 . (19)

Therefore, such singularities of S(k) coincide with the singulari-
ties of t(k) or T (k). Since the Gamma function has no zeros, the 
solutions of (19) are restricted to the poles of the two Gamma 
functions in the denominator. Therefore, solutions of (19) satisfy 
either λ − ik = −n or 1 − λ − ik = −n, with n = 0, 1, 2, . . . . If we 
call k1(n) and k2(n) to the solutions of the first and second types, 
respectively, we have that

k1(n) = −i(n + λ) , k2(n) = −i(n − λ + 1) . (20)

When λ > 1, where λ is not an integer, solutions k1(n) are 
all located in the negative part of the imaginary axis. Poles on 
the negative imaginary axis are called antibound poles. Their cor-
responding real energies are eigenvalues of the Hamiltonian and 
their respective eigenstates are called antibound states. Wave func-
tions for antibound states are not square integrable and diverge 
at the infinity. All this means that our potential shows an infi-
nite number of equally spaced antibound poles. Now, let us focus 
our attention in the second identity in (20), k2(n). The inequality 
n − λ + 1 < 0 has at least one solution and the number of its solu-
tions is always finite. Consequently, the solutions k2(n) give a finite 
number of poles in the positive imaginary semiaxis, which define 
bound states [5] and an infinite number of antibound poles.

No resonances appear for these specific values of λ (λ > 1). In 
Fig. 3, bound and antibound poles are shown in the plot of T (k), 
k ∈ C (as mentioned above, such singularities coincide with the 
poles of T .) In Fig. 4, we plot the first three bound state wave 
functions and in Fig. 5 first six antibound state wave functions for 
the value λ = 3.5.

3.2. Low barrier ( 1
2 ≤ λ < 1)

The transmission and the reflection coefficients are respectively 
given by:
Fig. 3. Well potential: Plot of T (k) for λ = 3.5, and complex values k = kr + iki . 
The singularities are shown at k2(n) : i 2.5, i 1.5, i 0.5, −i 0.5, −i 1.5, −i 2.5, −i 3.5
(above). Below, it is shown the profile of T (k) when ki = 0. This coincides with 
the transmission coefficient of Fig. 2 (extended to −∞ < k < +∞).

Fig. 4. Well potential: The plot of bound state wave functions with λ = 3.5 and 
n = 0 (continuous), n = 1 (dotted) and n = 2 (dashed). Its corresponding values of 
k2(n) are: i2.5, i1.5 and i0.5.

T = sinh2(πk)

sin2(πλ) + sinh2(πk)
, R = sin2(πλ)

sin2(πλ) + sinh2(πk)
.

(21)

Obviously, T + R = 1 for k ∈R.
In this case, the singularities of S(k), k ∈ C, are also given by 

equations (20). However, since 1
2 ≤ λ < 1, we always have that 

n + λ > 0 and n − λ + 1 > 0, so that no bound states exist here. 
Instead, we have two different series of antibound states, where 
the antibound poles are given by k1(n) and k2(n) as in (20). This is 
illustrated in Fig. 6, where T (k), for λ = 0.75, is represented. The 
plot of T (k), R(k) and the shape of wave functions for antibound 
states are quite similar to the previous case.

3.3. High barrier (λ = 1
2 + i�)

To start with, let us give the expressions for the transmission 
and reflection coefficients:

T = sinh2(πk)

cosh2(πk) + sinh2(π�)
, R = cosh2(π�)

cosh2(πk) + sinh2(π�)
.

(22)
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Fig. 5. Well potential: Plot of the antibound wave functions for the first three even 
values of n, n = 4 (continuous line), n = 6 (dashed line) and n = 8 (dotted line) 
with λ = 3.5 (above). Below it is displayed the wave functions for the three first 
odd values of n, n = 3 (continuous line), n = 5 (dashed line) and n = 7 (dotted line).

Fig. 6. Low barrier potential: Plot of T (k) for λ = 0.75 and complex values k = kr +
iki . The singularities are shown at k2(n) : −i 0.25, −i 1.25, −i 2.25, −i 3.25, −i 4.25
(above). Below, it is shown the profile of T (k) when ki = 0. This coincides with the 
shape of the transmission coefficient.

Again, T + R = 1 for k ∈ R. This is possibly the most interesting 
case, as it shows resonance phenomena. Here, we are assuming 
that � > 0. Then, both series of pole solutions can be written as:

k1(n) = � − i

(
n + 1

2

)
, k2(n) = −� − i

(
n + 1

2

)
, (23)

where n = 0, 1, 2, . . . . For each value of n, solutions k1(n) and 
k2(n) give a pair of resonance poles. Note that, as expected, they 
are located in the lower half of the k plane symmetrically with re-
Fig. 7. High barrier potential: Plot of T (k) for λ = 1/2 + i2 and for complex values 
k = kr + iki . The singularities are shown at k2(n): ±0.5 − i 0.5, ±0.5 − i 1.5, ±0.5 −
i 2.5, ±0.5 − i 3.5, ±0.5 − i 4.5 (above). Below, it is shown the shape of T (k) when 
ki = 0. This coincides with the value of the transmission coefficient.

spect to the imaginary axis. Let us write each pair of resonance 
poles as k1(n) = � − iγn and k2(n) = −� − iγn with γn = n + 1/2. 
Then, the corresponding energy levels are:

zR = h̄2

2m
k1(n)2 = E R − i

�

2
,

z∗
R = h̄2

2m
k2(n)2 = E R + i

�

2
(24)

with

E R = h̄2

2m

(
�2 − γ 2

n

)
, � = h̄2

2m
4�γn . (25)

As seen on these formulas, both real and imaginary parts of res-
onances depend on n. There do not exist any other singularities of 
S(k) like bound or antibound poles, see Fig. 7. In Fig. 8 we plot the 
modulus and the real part of wave functions of the poles k1(n) for 
the first three even values of n. For the odd values of n the wave 
functions are odd, so they include zeros in the origin. We should 
recall that, as a consequence of the general theory, the modulus of 
these wave functions are exponentially growing at the infinity [32].

4. Ladder operators and singularities of the S matrix

In a previous paper [31], we have constructed the ladder oper-
ators for the bound states corresponding to the hyperbolic Pöschl–
Teller potential with λ > 1. Their explicit form is given by:

B−
n = − cosh x ∂x − √−E(n) sinh x ,

B+
n+1 = cosh x∂x − √−E(n) sinh x , (26)

where ∂x stands for derivative with respect to x and we have 
used h̄2/2m = 1 and α = 1 for simplicity. The sequence E(n) rep-
resents the energies of bound states, which are given by E(n) =
−(λ − n − 1)2, with n = 0, 1, . . . , [λ − 1], λ > 1. Here [a] is for the 
highest integer less than a. In [31], we have also studied the action 
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Fig. 8. High barrier potential: Plot of the absolute values of the wave functions for 
(even) resonances corresponding to λ = 1/2 + i 2 and resonance poles at k1(0) =
2 − i/2 (continuous line), k1(2) = 2 − i 5/2 (dashed line) and k1(4) = 2 − i 9/2 (dot-
ted line) (above). Below, it is shown the real part of the same wave functions.

of the ladder operators on the eigenfunctions ψn(x) corresponding 
to the eigenvalues E(n):

B−
n : ψn(x) �−→ ψn−1(x), B+

n : ψn−1(x) �−→ ψn(x) . (27)

The question that now arises is if we could construct ladder 
operators that behave in a similar manner on the antibound states 
or even on the resonance states (Gamow states), as stated in the 
Introduction. Thus, our next goal is to show that similar ladder op-
erators can be effectively constructed for antibound and resonance 
states. As previously done, we shall present this study case by case.

4.1. Cases λ > 1 and 1/2 ≤ λ < 1

In equation (20), we have given the two sequences of poles: 
k2(n), that contains bound and the antibound states and k1(n), 
which contains antibound states only. Their corresponding nega-
tive energies are

E1(n) = k2
1(n) = −(λ + n)2 , (28)

E2(n) = k2
2(n) = −(n − λ + 1)2 , (29)

with n = 0, 1, 2, . . . . In order to find the ladder operators, we ex-
tend the formula (26), simply replacing 

√−E(n) by k j(n), j = 1, 2. 
This ansatz will be applied to all the cases. Thus, the explicit form 
of the ladder operators should be in all cases:

B−
j,n = − cosh x ∂x + i k j(n) sinh x ,

B+
j,n+1 = cosh x∂x + i k j(n) sinh x , (30)

where the index j refers to each sequence of poles. Once we 
have obtained the wave functions that correspond to the antibound 
states, ϕ j,n(x), we have to show that the behavior of the operators 
(30) on ϕ j,n(x) just looks like formula (27), i.e.,

B−
j,n : ϕ j,n(x) �−→ ϕ j,n−1(x) ,

B+ : ϕ j,n−1(x) �−→ ϕ j,n(x) , (31)
j,n
where n = 0, 1, 2 . . . . In the next subsections we shall check that 
this action is indeed valid in all cases.

By means of these operators we can form an algebra. To this 
end, we introduce the diagonal operator B0

j,n , which is defined in 
terms of its action on the wave functions ϕ j,n(x) as:

B0
1,n ϕ1,n(x) = −i k1(n)ϕ1,n(x) = −(λ + n)ϕ1,n(x) ,

B0
2,n ϕ2,n(x) = −i k2(n)ϕ2,n(x) = −(−λ + n + 1)ϕ2,n(x) . (32)

With this definition, B0
j,n is diagonal on the vector space spanned 

by the {ϕ j,n(x)}. Then, the index free operators B0
j and B±

j (for 
each j) close a representation of the su(1, 1) algebra [31]:

[B0
j , B±

j ] = ∓B±
j , [B−

j , B+
j ] = B0

j . (33)

Depending on the value of λ, there are different cases of ladder 
operators:

• λ is positive half-odd integer,
• λ is integer,
• λ is neither integer nor half-odd integer.

Now, we study these three cases separately.

4.1.1. λ is a positive half-odd integer
When λ is a half-odd positive integer, equations (20) or alterna-

tively, equations (28) and (29) show us that the set of values given 
by k1(n) is included in the set of values given by k2(n), as we can 
see from this simple formula:

k1(n) = k2(2λ − 1 + n) , n = 0,1,2, . . . . (34)

Therefore, we can restrict to the sequence k2(n).
The number of bound states is given by [λ], which is the inte-

ger part of λ and in this case it coincides with λ − 1
2 . For instance, 

if λ = 3/2, we have a unique bound state, if λ = 5/2, we have 
two and so on. Since the energy of bound states is negative, the 
ground state corresponds to the highest pole on the imaginary 
axis, which lies at k2(0) = i(λ − 1). This ground state, ϕ2,0(x), is 
obtained through the condition B−

2,0 ϕ2,0(x) = 0,

[− cosh x ∂x − (λ − 1) sinh x]ϕ2,0(x) = 0 . (35)

The solution of (35) is quite simple and, as expected, square inte-
grable:

ϕ2,0(x) = N0(cosh x)1−λ (36)

where N0 is a normalization constant. Note that ϕ2,0(x) is an 
eigenfunction of the Hamiltonian H with h̄2/2m = 1 and eigen-
value E = −(λ − 1)2 as should be.

In order to obtain the wave functions corresponding to all other 
bound and antibound states, all we need is to apply successively 
the creation operators B+

2,n . Let us order the poles on the imagi-
nary axis starting with the highest, corresponding to the ground 
state, and going downwards. Assume the same ordering for their 
corresponding wave functions. Then, the wave function for the n-th 
pole is given by

ϕ2,n(x) = Nn B+
2,n B+

2,n−1 . . . B+
2,1 ϕ2,0(x) . (37)

It is straightforward to check that, indeed, the wave functions ob-
tained in this way by B+ coincide with the outgoing wave func-
tions characterized in (16).

Now, we have one stair of ladder operators that connect bound 
and antibound states as if they were of the same nature. The gen-
eral form of ϕ2,n(x) is given by

ϕ2,n(x) = Pn(sinh x)ϕ2,0(x) , (38)
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Fig. 9. Action of the ladder operators on the states corresponding to the poles of the 
series k1(n) (black disks) and k2(n) (white disks) for λ = 3.5 (up), λ = 3 (center) and 
λ = 2.25 (down).

Fig. 10. Plot of |t| = |1/T22| for λ = 3 for the imaginary values of k2. Above, we can 
appreciate the two singularities at k2 = i, i2 corresponding to bound states. Below, 
it is seen in more detail the two zeros of this function at k2 = −i, −i2.

where Pn(sinh x) is a polynomial of degree n in sinh x. This set 
of states span a space that supports the algebra given by (33). It 
is clear that for some values of n, in particular for 0 ≤ n < [λ], 
where [λ] is the integer part of λ, the function ϕ2,n(x) is square 
integrable. The wave functions ϕ2,n(x) with n ≥ [λ] are not square 
integrable and are the wave functions for the antibound states. 
These antibound states include those in the class k1(n) as in (34). 
In Fig. 9 (top), we have chosen λ = 3.5 as an example. There is a 
unique series of poles and their respective states (wave functions) 
are related via a unique series of ladder operators.

Note that for λ = 1/2 and only in this case, k1(n) = k2(n) for all 
values of n as we can see from (34). Here there is no bound states 
but an infinite number of antibound states.

4.1.2. λ is an integer
This is a very special case, since it corresponds to reflectionless 

potentials. When λ is an integer, the number of bound state poles 
is given by λ − 1 as can be seen from equation (29). The highest 
bound state pole is determined by k2(0) = i(λ − 1) and the lowest 
by k2(λ − 2) = i.

However, in this case, due to the explicit form of T22, we have 
the following results.

(i) For the values k2(n), from n = 0 up to n = λ − 2, the S matrix 
has singularities, corresponding to bound states mentioned 
above.

(ii) The value of k2(n), for n = λ −1, which gives k2 = 0, is neither 
a singularity nor a zero of the S matrix.

(iii) There is no other singularity for k1(n) or k2(n). For the values 
k2(n), from n = λ up to n = 2λ − 1, the S matrix instead of 
singularities, it has zeros.

These properties are illustrated in Fig. 10 where we represent 
|t| = |1/T22|, for λ = 3. In this case, the ladder operators connect 
the bound states with the state corresponding to k = 0, which is 
neither a bound nor an antibound state. The central diagram of 
Fig. 9 corresponds to this case for λ = 3. In summary, for the re-
flectionless potentials there are no antibound and resonance poles.
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4.1.3. λ is neither a half-odd integer nor an integer
In this situation, the two sequences given by k j(n), j = 1, 2

do not coincide. Each of the sequences is connected by its own 
sequences of ladder operators. The explicit construction does not 
differ from the previous cases. For example, in Fig. 9 (bottom), 
we have chosen λ = 2.25. In this case, we have two different se-
quences of poles on the imaginary axis with respective different 
and not connected sequences of ladder operators.

4.2. Ladder operators for resonance states

As we have seen, resonance poles appear when λ = i� + 1
2 only. 

Then, the S matrix has an infinite number of resonance poles 
which appear in pairs symmetrically located with respect to the 
negative part of the imaginary axis (as always, we have chosen 
α = 1):

k1(n) = � − i

(
n + 1

2

)
, k2(n) = −� − i

(
n + 1

2

)
, (39)

where n = 0, 1, 2, . . . . Then, according to (30), there is one set of 
ladder operators for k1(n) and another one for k2(n). Both sets are 
independent. The ladder operators for k1(n) are given by:

B−
n = − cosh x ∂x + (i� + n + 1

2
) sinh x ,

B+
n+1 = cosh x∂x + (i� + n + 1

2
) sinh x , (40)

with n = 0, 1, 2, . . . . The sequences for k2(n) are obtained just by 
replacing i� by −i� in (40). These two types of operators act as in 
(31) on the decaying and growing Gamow states, respectively. Each 
sequences of operators satisfy commutation relations as in (33).

We obtain the first decaying Gamow state, corresponding to 
n = 0, by solving the differential equation B−

0 ϕ0(x) = 0 with B−
0

as in (40). For the first growing Gamow state, we just replace � by 
−� in (40) with n = 0. Up to a constant factor, we obtain

ϕD
0 (x) = (cosh x)i�+1/2 , ϕG

0 (x) = (cosh x)−i�+1/2 , (41)

where the superscripts D and G stand for decaying and growing. 
Here, i k1(0) = i� + 1/2 and i k2(0) = −i� + 1/2, respectively. Other 
Gamow states are found by successive application of creation op-
erators. They have the form ϕD

n (x) = Pn(sinh x)ϕD
0 (x) and ϕG

n (x) =
Pn(sinh x)ϕG

0 (x), respectively for decaying and growing Gamow 
states. Here, the polynomials of degree n, Pn(sinh x), have com-
plex coefficients. Note that HϕD

n (x) = [k1(n)]2ϕD
n (x) and HϕG

n (x) =
[k2(n)]2ϕG

n (x). These Gamow states obtained by ladder operators 
coincides with the solutions previously found in (16).

In conclusion, the set of decaying and growing Gamow vectors 
span two different spaces. Both serve as support of the Lie algebra 
su(1, 1) spanned by the ladder operators.

5. Supersymmetric partners using antibound and resonance 
states

A supersymmetric partner of a given Hamiltonian H = −∂2
x +

V (x) is another Hamiltonian H̃ = −∂2
x + Ṽ (x) constructed following 

a standard recipe. Let E(0) be the energy of the ground state of H . 
Next, we shall take a solution Hψ(x) = εψ(x) of the Schrödinger 
equation, such that (i) ε < E(0), (ii) ψ(x) have no zeros, and (iii) 
1/ψ(x) be square integrable. Then, construct the function W (x) :=
ψ ′(x)/ψ(x), where ψ ′(x) = dψ(x)/dx. This function W (x) is called 
the superpotential. Then, define the shift operators A± as:

A± := ±∂x + W (x) . (42)
Fig. 11. Pöschl–Teller well potential with λ = 2.5 (dashed) versus its potential part-
ner (46) (continuous).

Using the shift operator (42), one can show that H can be factor-
ized as [21,22]

H = A+ A− +ε = −∂2
x + W 2(x)+ W ′(x)+ε = −∂2

x + V (x) , (43)

where W ′(x) = dW (x)/dx. Then, the supersymmetric partner, H̃ , of 
H is obtained by reversing the order of the factor operators in the 
form

H̃ = A− A+ +ε = −∂2
x + W 2(x)− W ′(x)+ε = −∂2

x + Ṽ (x) . (44)

The potential Ṽ (x) is also called the supersymmetric partner 
potential of V (x). Then, the new Hamiltonian H̃ has one more 
bound state with wave function ψ̃(x) = 1/ψ(x) and energy ε <

E(0). However, the other bound states of H̃ are obtained from the 
bound states of H by means of the action of A− : ψ̃n(x) ∝ A−ψn(x)
for n = 1, 2, . . . .

5.1. SUSY partners by antibound states

The well (λ > 1) and the low barrier (1/2 ≤ λ < 1) Pöschl–Teller 
potentials have antibound states. If these states are represented by 
functions with square integrable inverse, these functions can be 
used to produce SUSY partners with discrete spectrum. As an ex-
ample, take λ = 2.5. This value corresponds to a potential well. 
This potential well has two bound states as shown by k2(n) in 
(20): E2(0) = k2(0)2 = −1.25, E2(1) = k2(1)2 = −0.25. The anti-
bound state corresponding to the pole k2(6) = −i4.5, with energy 
ε = E2(6) = −20.25, is positive for all values of x ∈ R and is

ϕ2,6(x) = (1 + 7 sinh2 x)(cosh x)5/2 , (45)

where we have choosen the positive branch for the square root. 
Hereafter we will use the notation ϕ2,6(x) := ϕ6(x) for simplicity. 
We use ϕ6(x) to construct the superpotential W (x) = ϕ′

6(x)/ϕ6(x). 
Then, the initial and partner potentials have the following form:

V (x) = − 15/4

cosh2 x
,

Ṽ (x) = −21(−161 + 55 cosh 2x + 120 sech2x)

2(5 − 7 cosh 2x)2
. (46)

The general theory [21] shows that the Hamiltonian H̃ = −∂2
x +

Ṽ (x) has one more bound state than the initial Pöschl–Teller po-
tential. This bound state has precisely the energy ε = E2(6) =
−20.25. In Fig. 11, we plot the Pöschl–Teller potential well for 
λ = 2.5 as well as the partner potential Ṽ (x). We observe that the 
partner potential is deeper than the original one, so that it seems 
natural that the latter has one more bound state. In Fig. 12, we 
plot the wave functions for the antibound state ϕ6(x) and the new 
bound state of H̃ , ϕ̃6(x) = 1/ϕ6(x).
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Fig. 12. Plot of the wave function corresponds to antibound state ϕ6(x) as in (45)
(dashed) and the wave function for bound state ϕ̃6(x) = 1/ϕ6(x) (continuous).

5.2. Complex potentials as SUSY partners of the Pöschl–Teller potential

A quite tantalizing possibility is the construction of partners po-
tentials of the Pöschl–Teller potential, using Gamow states. This 
will produce series of complex potentials, Ṽ = Vre + i V im , for 
which their properties have to be explored.

Let us consider a high barrier Pöschl–Teller potential with λ =
1/2 + i� and � = 3. One pair of resonance poles in momentum 
representation are located at ±3 − i5/2. Let us choose the pole at 
k1(2) = 3 − i5/2, which lies on the forth quadrant. This means that 
its Gamow state is a decaying Gamow state. One can easily obtain 
its explicit form from (37), (40) and (41):

ϕD
2 (x) =

(
1 + (3 + i6) sinh2 x

)
(cosh x)i3+1/2 . (47)

Note that ϕD
2 (x) never vanishes at any point, so that its inverse 

1/ϕD
2 (x) is always well defined. In addition, it is not difficult to 

check that 1/ϕD
2 (x) is square integrable. According to the gen-

eral theory, the new partner Hamiltonian H̃ = −∂2
x + Ṽ (x) has 

the bound eigenfunction 1/ϕD
2 (x) with eigenvalue ε = E1(2) =

(3 − i5/2)2. The initial and the partner potential are given by:

V (x) = 37/4

cosh2 x
,

Ṽ (x) = 15 ((−95 + i236) + (124 − i448) cosh 2x)

8 cosh2x ((1 + i6) − (3 + i6) cosh 2x)2

− 15 ((37 − i148) cosh 4x)

8 cosh2x ((1 + i6) − (3 + i6) cosh 2x)2
. (48)

In Fig. 13, we plot the partner potentials given by (48). Needless 
to say that the imaginary part of the original potential is identi-
cally zero and original potential is real. In Fig. 14, we plot above 
the Gamow state ϕD

2 (x) given by (47) and below, the normalizable 
eigenfunction 1/ϕD

2 (x) with eigenvalue E1(2) = (3 − i5/2)2.

6. Concluding remarks

The Pöschl–Teller potential has different shapes depending on 
the parameter λ as follows: a well (λ > 1), a low barrier (1/2 ≤ λ <
1) or a high barrier (λ = 1/2 + i �). The properties of the S matrix 
(S(k)) also change depending on the parameter λ. In the momen-
tum representation, the poles of S(k) corresponding to purely out-
going condition on the wave functions have been determined an-
alytically. As expected, the well potential is the only one that may 
have bound states, represented by simple poles of S(k) on the pos-
itive imaginary semi-axis. In addition, it has an infinite number of 
antibound (virtual) states, characterized by simple poles of S(k) on 
the negative imaginary semi-axis. There is one important exception 
for the integers values of λ, corresponding to reflectionless poten-
tials where there are no antibound poles. In this case, no resonance 
Fig. 13. Real and imaginary parts of the partner potential (48) (continuous line) 
plotted versus the original potential (dashed line).

Fig. 14. Above, it is modulus (continuous line), real (dashed line) and imaginary 
parts (dotted line) of the Gamow state ϕD

2 (x) in (47). Below, it is the same for the 
normalizable wave function 1/ϕD

2 (x).

poles are present, which is somehow a surprise. The low barrier 
potential has infinite antibound poles but neither bound nor res-
onance poles. In both cases, poles of S(k) of either type on the 
imaginary axis can be classified into two independent sequences: 
one is for k1(n) and the second for k2(n). For the potential well 
only the sequence k2(n) contains both bound and antibound poles.

The situation given by the high barrier is quite different, as S(k)

has now only resonance poles, which appear in pairs on the lower 
half plane, symmetrically located with respect to the imaginary 
axis. The number of these pairs is infinite. In this work, the poles 
of the S(k) and the corresponding bound, antibound and resonance 
states have been determined analytically.
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The eigenvalues of the Pöschl–Teller Hamiltonian are given by 
E = h̄2

2m k2. In particular, this formula includes the square of the 
poles as eigenvalues. Eigenfunctions corresponding to bound states 
are square integrable, but the corresponding eigenfunctions for an-
tibound and resonance poles are not normalizable. In fact, they 
diverge exponentially as x �−→ ±∞.

In previous studies concerning Hamiltonians with discrete spec-
trum, we have obtained creation and annihilation (ladder) opera-
tors which relate bound states of the Hamiltonian [33–35]. In this 
paper, we have shown that this formalism can be extended to wave 
functions related to antibound and resonance poles which have 
been found for this potential. We have obtained the explicit forms 
of these ladder operators for all cases. Furthermore, we show that 
these operators satisfy an algebra analogue to the spectrum gener-
ating algebra for bound states. This is one of the most interesting 
result presented in this paper. In all cases, there are two sequences 
of ladder operators corresponding k1(n) and k2(n). In the case 
of the potential well, they connect antibound states for k1(n) or 
bound and antibound states for k2(n). In the case of the low bar-
rier, ladder operators connect antibound states for both sequences. 
Concerning the high barrier, we have two sequences of resonance 
poles: those in the third and, independently, those in the forth 
quadrant. Their corresponding eigenfunctions, growing and decay-
ing Gamow states are related by two independent sequence of 
ladder operators.

Finally, the factorization method has been applied to this po-
tential in order to obtain new solvable potentials. Eigenfunctions 
of the Hamiltonian with real eigenvalues have been used in the 
literature in order to obtain the so-called partners potentials to 
a given one. We have applied this idea to construct Pöschl–Teller 
partner potentials using antibound eigenfunctions with real nega-
tive energies. By means of wave functions of the resonance states 
with complex energies we have also obtained complex partner po-
tentials having bound states. The interest of this kind of complex 
potentials will be a matter of future work.
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