
Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.1

Design of resilient
systems

Architectural, paradigmatic
and algorithmic issues

a Tutorial

Paulo Veríssimo
Univ. of Lisboa Faculty of Sciences

Lisboa – Portugal
pjv@di.fc.ul.pt

http://www.navigators.di.fc.ul.pt

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized direct reproduction in any form.

Citations to parts can be made freely with acknowledgment of the source.

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.2

Pointers to tutorial material
• With the aim of disseminating resilience and intrusion

tolerance concepts and techniques to a wide audience, the
following documents are available from the University of
Lisboa web site.

• http://www.navigators.di.fc.ul.pt/it/index.htm

• Intrusion-Tolerant Architectures: Concepts and Design (Extended version).
Veríssimo, P. E., and Neves, N. F., and Correia, M. P. In: Architecting Dependable
Systems. Springer-Verlag LNCS 2677 (2003). Technical Report DI/FCUL TR03-5,
Dept. of Informatics, University of Lisboa (2003). abstract – pdf

• Intrusion-tolerant middleware: The road to automatic security. P. Verissimo, N. F.
Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud, and I.Welch. IEEE
Security & Privacy, 4(4):54-62, Jul./Aug. 2006.

• Intrusion-Resilient Middleware Design and Validation. P. Verissimo, M. Correia, N.
Neves, P. Sousa. “Annals of Emerging Research in Information Assurance, Security
and Privacy Services”. Elsevier 2008 (to appear).

41

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.3

Why do systems need resilience?

• a non-canonical definition of resilience:
– “Ability to recover from or adjust easily to misfortune or

change.”
• the case for resilience:

1. we want systems to operate through faults and attacks in a
seamless manner, in an automatic way

• intrusion tolerance lets us achieve that
2. operating conditions and environments are everyday more

uncertain and/or hostile
3. we want to deploy systems in unattended manner

• intrusion tolerance insufficient
4. we need extra predicates

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.4

Designing for resilience

• Architecting intrusion-tolerant systems
– usual InTol systems live off some middleware layers that mask

failures below, used by upper layers transparently of how
tolerance is achieved

– middleware is generally composed of n replicas cooperating
through distributed protocols

• Tolerating Intrusions
– replicas are attacked and corrupted at the measure of the

power of threats (attacks, accidents)
– as long as there are sufficient replicas to perform the service

correctly, the system continues to function
– … sometimes even without the user noticing anything

42

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.5

Designing for resilience

• Handling Attack Severity
– expected threats are severe (e.g., malicious intelligence), so

protocols should resist to arbitrary faults (i.e., Byzantine)
– necessary quorum for Byzantine resilience to faults is typically

n = 3f +1 replicas
– for InTol middleware, the goal is to always preserve the

number of replicas above the minimum threshold mentioned
above

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.6

Designing for resilience

• Resisting Attacks
– faults and attacks erode systems inexorably so an unattended

(automatic) system faces inevitable resource exhaustion which
leads to inevitable failure

– threats are so intense that this is not an academic possibility:
they are exacerbated by attacker power and common-mode
vulnerabilities

– additional defences are often required to shrink attackers’
chances and slow down the rate of failures in order to prevent
resource exhaustion: diversity, obfuscation, hybridization,
trusted-trustworthy components, rejuvenation

43

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.7

Designing for resilience

• Validating attacks
– necessary to study and understand malicious faults in order to

validate the fault assumptions underlying the above-mentioned
intrusion-tolerant algorithms

– for InTol middleware, this would allow algorithm and system
designers to introduce more realistic assumptions

– we are still far from a thorough understanding of the
mechanisms behind the trilogy attack-vulnerability-intrusion

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.8

Further Reading

44

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.9

Further Reading
• E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, M. Herrb, Lessons learned from the

deployment of a high-interaction honeypot, Proceedings of the 6th European Dependable
Computing Conference, October 2006, Coimbra, Portugal , pp 39-46

• L. Alvisi, D. Malkhi, E. Pierce, M. K. Reiter, and R. N. Wright, Dynamic Byzantine
quorum systems," in Proc. Int’l Conference on Dependable Sys and Networks (FTCS-
30/DCCA-8), pp. 283-292, 2000.

• Y. Amir et al. Secure group communication in asynchronous networks with failures:
Integration and experiments. In Proc. The 20th IEEE International Conference on
Distributed Computing Systems (ICDCS 2000), pages 330-343, Taipei, Taiwan, April
2000.

• Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen, and D.
Zage. Scaling Byzantine fault-tolerant replication towide area networks. In Proceedings
of the International Conference on Dependable Systems and Networks, pages 105–114,
June 2006.

• G. Ateniese, M. Steiner, G. Tsudik: Authenticated group key agreement and friends. In
Proceedings of the 5th ACM Conference on Computer and Communications Security (CCS-
98), pages 17-26, New York, November 3-5 1998. ACM Press.

• Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. New multi-party authentication
services and key agreement protocols. IEEE Journal of Selected Areas on
Communications, 18, March 2000.

• A. N. Bessani, M. Correia, J. S. Fraga, and L. C. Lung. Decoupled quorum-based
Byzantine-resilient coordination in open distributed systems. In Proceedings of the 6th
IEEE International Symposium on Network Computing and Applications, pages 231–238,
July 2007.

• Christian Cachin. Distributing Trust on the Internet. In Procs. of the Int’l Conf. on
Depend. Systems and Networks (DSN-2002), Gotteborg, Sweden, 2001.

• C. Cachin, K. Kursawe and V. Shoup, “Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography”, in Proc. 19th ACM Symposium on
Principles of Distributed Computing (PODC), pp.123-32, 2000b.

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.10

Further Reading
• C. Cachin and J. A. Poritz, Hydra: Secure replication on the Internet," In Procs. of the

Int’l Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.
• M. Castro and B. Liskov, Practical Byzantine fault tolerance," in Proc. Third Symp.

Operating Systems Design and Implementation (OSDI), 1999.
• M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems, 20(4):398–461, Nov. 2002.
• M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault

tolerance. ACM Transactions Computer Systems, 21(3):236–269, Aug. 2003.
• T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed

systems," Journal of the ACM, vol. 43, no. 2, pp. 225-267, 1996.
• Nick Cook, Santosh Shrivastava, Stuart Wheater. Distributed Object Middleware to

Support Dependable Information Sharing between Organisations. In Procs. of the Int’l
Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• M. Correia, N.F. Neves, P. Veríssimo, Lau Cheuk Lung, Low Complexity Byzantine-
Resilient Consensus, Distributed Computing, vol. 17, n. 3, pp. 237--249, March 2005.

• M. Correia, N. F. Neves, and P. Ver´ıssimo. From consensus to atomic broadcast: Time-
free Byzantine-resistant protocols without signatures. Computer Journal, 41(1):82–96,
Jan. 2006.

• M. Correia, N. F. Neves, and P. Verissimo. How to tolerate half less one Byzantine
nodes in practical distributed systems. In Proceedings of the 23rd IEEE Symposium on
Reliable Distributed Systems, pages 74–183, Oct. 2004.

• M. Correia, Lau Cheuk Lung, Nuno Ferreira Neves, and P. Veríssimo. Efficient
Byzantine-Resilient Reliable Multicast on a Hybrid Failure Model. In Proc. of Symp. of
Reliable Distributed Systems, October 2002, Japan.

• M. Correia, P. Veríssimo, and N. F. Neves. The design of a COTS real-time distributed
security kernel. In proceedings of the EDCC-4, Fourth European Dependable Computing
Conference, Toulouse, France - October 23-25, 2002.

45

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.11

Further Reading
• W. S. Dantas, A. N. Bessani, J. Fraga, and M. Correia. Evaluating Byzantine quorum

systems. In Proceedings of the 26th IEEE Symposium on Reliable Distributed Systems,
Oct. 2007.

• H. Debar, M. Dacier, A. Wespi: Towards a taxonomy of intrusion detection systems.
Computer Networks, 31:805-822, 1999.

• Y. Desmedt: Society and group oriented cryptography: a new concept; Crypto ‘87, LNCS
293, Springer-Verlag, Berlin 1988, 120-127.

• Y. Desmedt, Threshold cryptography," European Transactions on Telecommunications,
vol. 5, no. 4, pp. 449-457, 1994.

• Y. Deswarte, N. Abghour, V. Nicomette and D. Powell, “An internet authorization
scheme using smart card-based security kernels”, in Int’l Conf. on Research in Smart
Cards (E-smart 2001), (Cannes, France), Lecture Notes in Computer Science, pp.71-82,
Springer-Verlag, 2001.

• Y. Deswarte, L. Blain, J.-C. Fabre: Intrusion tolerance in distributed systems. In Proc.
Symp. on Research in Security and Privacy, pages 110-121, Oakland, CA, USA, 1991.
IEEE CompSoc Press.

• Durward McDonell, Brian Niebuhr, Brian Matt, David L. Sames, Gregg Tally, Szu-Chien
Wang, Brent Whitmore. Developing a Heterogeneous Intrusion Tolerant CORBA System.
In Procs. of the Int’l Conf. on Dependable Systems and Networks (DSN-2002),
Washigton, USA, 2002.

• Bruno Dutertre, Hassen Saïdi and Victoria Stavridou. Intrusion-Tolerant Group
Management in Enclaves. In Procs. of the Int’l Conf. on Dependable Systems and
Networks (DSN-2001), Gotteborg, Sweden, 2001.

• J. Fraga and D. Powell, “A Fault and Intrusion-Tolerant File System”, in IFIP 3rd Int.
Conf. on Computer Security, (J. B. Grimson and H.-J. Kugler, Eds.), (Dublin, Ireland),
Computer Security, pp.203-18, Elsevier Science Publishers B.V. (North-Holland), 1985.

• M. Kaâniche, E. Alata, V. Nicomette, Y. Deswarte, M. Dacier, Empirical analysis and
statistical modeling of attack processes based on honeypots, WEEDS 2006 - Workshop
on empirical evaluation of dependability and security, June 25 - 28, 2006,
Philadelphia,USA

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.12

Further Reading
• R. Guerraoui, M. Hurn, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper,

Consensus in asynchronous distributed systems: A concise guided tour," in Advances in
Distributed Systems (S. Krakowiak and S. Shrivastava, eds.), vol. 1752 of LNCS, pp.
33-47, Springer, 2000.

• R. Guerraoui and M. Vukolic. Refined quorum systems. In Proceedings of the 1st
Workshop on Recent Advances on Intrusion-Tolerant Systems, pages 8–12, 2007.

• V. Gupta and V. Lam and H. Ramasamy and W. Sanders and S. Singh, Dependability and
Performance Evaluation of Intrusion-Tolerant Server Architectures, Proceedings of the
First Latin-American Symposium, 2003

• V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems," in
Distributed Systems (S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley,
1993. An expanded version as Technical Report TR94-1425, Department of Computer
Science, Cornell University, Ithaca NY, 1994.

• HariGovind V Ramasamy, Prashant Pandey, James Lyons, Michel Cukier, William H.
Sanders. Quantifying the Cost of Providing Intrusion Tolerance in Group Communication
Systems, In Procs. of the Int’l Conf. on Dependable Systems and Networks (DSN-
2002), Washigton, USA, 2002.

• Matti A. Hiltunen, Richard D. Schlichting and Carlos A. Ugarte. Enhancing Survivability
of Security Services Using Redundancy. In Procs. of the Int’l Conf. on Dependable
Systems and Networks (DSN-2002), Gotteborg, Sweden, 2001.

• K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, The SecureRing protocolsfor
securing group communication," in Proc. 31st Hawaii Int’l Conf. on System Sciences, pp.
317-326, IEEE, Jan. 1998.

• J. H. Lala, “A Byzantine Resilient Fault-Tolerant Computer for Nuclear Power Plant
Applications”, in 16th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-16), (Vienna,
Austria), pp.338-43, IEEE Computer Society Press, 1986.

• B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a quorum system. In
Proceedings of the 26th Int’l Conference on Distributed Computing Systems, June 2006.

• B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, K. Trivedi. Modeling and
Quantification of Security Attributes of Software Systems. In Procs. of the Int’l Conf.
on Dep. Syst. and Networks (DSN-2002), Washigton, USA, 2002.

46

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.13

Further Reading
• D. Malkhi and M. K. Reiter, An architecture for survivable coordination in large

distributed systems," IEEE Transactions on Knowledge and Data Engineering, vol. 12, no.
2, pp. 187-202, 2000.

• D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–
213, 1998.

• Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin. Small Byzantine Quorums. Procs. of
Int’l Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• J. P. Martin and L. Alvisi. Fast Byzantine consensus. IEEE Transactions on Dependable
and Secure Computing, 3(3):202–215, 2006.

• Roy A. Maxion and Tahlia N. Townsen, Masquerade Detection Using Truncated Command
Lines. In Procs. of the Int’l Conf. on Dep. Syst. and Networks (DSN-2002),
Washington, USA, 2002.

• F. Meyer and D. Pradhan, “Consensus with Dual Failure Modes,” presented at The 17th
Int’l Symp. on Fault-Tolerant Computing Systems, Pittsburgh, PA, 1987, pp. 214--22.

• L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The SecureGroup communication
system. Procs of IEEE Information Survivability Confer., pages 507–516, January 2000.

• Peter G. Neumann, “Practical Architectures for Survivable Systems and Networks,”
Computer Science Laboratory, SRI International, Menlo Park, CA, Technical Report
http://www.csl.sri.com/~neumann/private/arldraft.{pdf|ps}, October 1998.

• Nuno Ferreira Neves, João Antunes, Miguel Correia, Paulo Veríssimo, Rui Neves, Using
Attack Injection to Discover New Vulnerabilities, Proceedings of the Int’l Conference on
Dependable Systems and Networks (DSN), Philadelphia, USA, pp. 457-466, June 2006

• N.F. Neves, M. Correia, P. Veríssimo, Solving Vector Consensus with a Wormhole. IEEE
Trans. Parallel and Distr. Systems, vol. 16, no. 12, pp. 1120-1131, Dec. 2005.

• S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, An Experimental Evaluation to Determine
if Port Scans are Precursors to an Attack, in Proc. Int’l Conf. on Dependable Systems
and Networks (DSN-2005), Yokohama, Japan, June 28-July 1, 2005, pp. 602-611

• P. Pal, F. Webber, and R. Schantz. The DPASA survivable JBI–a high-water mark in
intrusion-tolerant systems. In Proceedings of the 1st Workshop on Recent Advances on
Intrusion-Tolerant Systems, pages 33–37, 2007.

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.14

Further Reading
• P. Porras, D. Schnackenberg, S. Staniford-Chen and M. Stillman, “The Common

Intrusion Detection Framework Architecture”, CIDF working group,
http://www.gidos.org/drafts/architecture.txt, (accessed: 5 September, 2001).

• D. Powell, G. Bonn, D. Seaton, P. Veríssimo and F. Waeselynck, “The Delta-4 Approach
to Dependability in Open Distributed Computing Systems”, in 18th IEEE Int. Symp. on
Fault-Tolerant Computing Systems (FTCS-18), (Tokyo, Japan), pp.246-51, IEEE
Computer Society Press, 1988.

• D. Ramsbrock, R. Berthier, M. Cukier, Profiling Attacker Behavior Following SSH
Compromises, Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages: 119-124, 2007

• M. Reiter: Distributing trust with the Rampart toolkit; Comm’s of the ACM,39/4, 1996.
• F. B. Schneider, “Implementing fault-tolerant services using the state machine

approach: a tutorial”, ACM Computing Surveys, 22 (4), pp.299-319, 1990.
• Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo, How Resilient are Distributed f

Fault/Intrusion-Tolerant Systems?. In Proc’s of the Int’l Conference on Dependable
Systems and Networks (DSN'05). Yokohama, Japan, pages 98-107, June 2005.

• P. Verissimo, A. Casimiro and C. Fetzer, “The Timely Computing Base: Timely Actions in
the Presence of Uncertain Timeliness”, in Proc. of DSN 2000, the Int. Conf. on
Dependable Systems and Networks, pp.533-52, IEEE/IFIP, 2000.

• Paulo Veríssimo, Nuno~Ferreira Neves, and Miguel Correia. The middleware architecture
of MAFTIA: A blueprint. In Proceedings of the IEEE Third Information Survivability
Workshop (ISW-2000), Boston, Massachusetts, USA, October 2000.

• Paulo Veríssimo, Travelling through Wormholes: a new look at Distributed Systems
Models, SIGACTN: SIGACT News (ACM Special Interest Group on Automata and
Computability Theory), vol. 37, no. 1, (Whole Number 138), 2006.

• P. Veríssimo, Uncertainty and Predictability: Can they be reconciled?, Future Directions
in Distributed Computing, pp. 108-113,Springer Verlag LNCS 2584, May, 2003

• Chenxi Wang, Jack Davidson, Jonathan Hill and John Knight. Protection of Software-
Based Survivability Mechanisms. In Procs. of the Int’l Conf. on Dependable Systems and
Networks (DSN-2002), Gotteborg, Sweden, 2001.

47

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form 0.15

Further Reading
• Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure

reactive systems. 7th ACM Conference on Computer and Communications Security,
Athens, November 2000, ACM Press, New York 2000, 245-254.

• L. Zhou, F. B. Schneider, and R. van Renesse, COCA: A secure distributed online
certification authority,Tech. Rep. 2000-1828, CS Dpt, Cornell University, Dec. 2000.
Also ACM TOCS to appear.

• S. Bhatkar, R. Sekar and D. C. DuVarney. Efficient techniques for comprehensive
protection from memory error exploits. In Procedings of the 14th USENIX Security
Symposium, pages 271-286, Aug. 2005.

• R. R. Obelheiro, A. N. Bessani, L. C. Lung and M. Correia. How practical are intrusion-
tolerant distributed systems? DI/FCUL TR 06-15, Department of Informatics,
University of Lisbon, Sep. 2006.

• P. Sousa, N. F. Neves and P. Verissimo. On the resilience of intrusion-tolerant
distributed systems. DI/FCUL TR 06-14, Department of Informatics, University of
Lisbon, Sep. 2006.

• P. Sousa, N. F. Neves and P. Verissimo. Resilient state machine replication. In
Proceedings of the 11th Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 305-309, Dec. 2005.

• P. Sousa, N. F. Neves and P. Verissimo. Hidden problems of asynchronous proactive
recovery. In 3rd Workshop on Hot Topics in Sys. Dependability (HotDep’07), June 2007.

• D. Wang, B. Madan, K. Trivedi, Security analysis of SITAR intrusion tolerance system,
Proceedings of the 2003 ACM workshop on Survivable and self-regenerative systems,
pages 23 – 32, 2003

• J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement
from execution for Byzantine fault tolerant services. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pages 253–267, Oct. 2003.

• L. Zhou, F. B. Schneider and R. V. Renesse. APSS: proactive secret sharing in
asynchronous systems. ACM Transactions on Information and System Security,
8(3):259-286, 2005.

• P. Zielinski. Paxos at war. Technical Report UCAM-CL-TR-593, University of Cambridge
Computer Laboratory, Cambridge, UK, June 2004.

• J.~Xu, A.~Romanovsky, and B.~Randell. Concurrent exception handling and resolution in
distributed object systems. IEEE Trans. on Parallel and Distributed Systems,
10(11):1019--1032, 2000.

48

1.1

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

1
Introduction

to
Intrusion Tolerance

1.2

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Brief topics
on

security & dependability

49

1.3

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

The failure of computers
• Why do computers fail and what can we do about it?

[J. Gray]
• Because:

– All that works, fails
– We tend to overestimate our HW e SW--- that’s called faith☺

• So:
– We had better prevent (failures) than remedy

• Dependability is ...
– that property of a computer system such that reliance can

justifiably be placed on the service it delivers
• Why?

– Because (faith notwithstanding) it is the scientific way to
quantify, predict, prevent, tolerate, the effect of
disturbances that affect the operation of the system

1.4

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Does not get better with distribution

• A distributed system is the one that prevents you from working
because of the failure of a machine that you had never heard of.

[L. Lamport]
• Since:

– Machines fail independently, for a start
– But they may influence each other,
– They communicate through unreliable networks, with

unpredictable delays
• ...gathering machines renders the situation worse:

– The reliability (<1) of a system is the product of the individual
component reliabilities, for independent component failures

– R(10 @ 0.99)= 0.9910= 0.90; R(10 @ 0.90)= 0.9010= 0.35

50

1.5

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Can get much worse with malicious failures

• Failures are no longer independent

• Failures become more severe

• Fault models become less representative

1.6

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

sequence fault→ error→ failure

design/
operation

faultDesigner/
Operator

interaction
fault

error failure

51

1.7

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

fault
removal

Dependability measures

design/
operation

faultDesigner/
Operator

interaction
fault

error failure

fault
tolerance

imperfect

error
processing

fault
treatment

fault
prevention

1.8

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Interaction Fault classification

• Omissive
– Crash

• host that goes down
– Omission

• message that gets lost
– Timing

• computation gets delayed

• Assertive
– Syntactic

• sensor says air temperature is
100º

– Semantic
• sensor says air temperature is

26º when it is 30º

semantic

syntactic

timing

omission

crash

OMISSIVE ASSERTIV
E

ARBITRARY

52

1.9

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Security Properties

• Confidentiality
– the measure in which a service or piece of information is

protected from unauthorized disclosure
• Integrity

– the measure in which a service or piece of information is
protected from illegitimate and/or undetected modification

• Authenticity
– the measure in which a service or piece of information is

genuine, thus protected from personification or forgery (*)

• Availability
– the measure in which a service or piece of information is

protected from denial of authorized provision or access

(*) also defined as a form of integrity of meta-information

1.10

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Dependability properties
• Reliability

– the measure of the continuous delivery of correct service (ex.
MTTF)

• Maintainability
– the measure of the time to restoration of correct service (ex.

MTTR)
• Availability

– measure of delivery of correct service with respect to
alternation between correct and incorrect service (ex.
MTBF/(MTBF+MTTR))

• Safety
– the degree to which a system, upon failing, does so in a non-

catastrophic manner

53

1.11

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Some philosophy for a start
• What characterizes a dependable system?

– A set of safety and liveness properties
• What characterizes a secure system?

– A set of safety and liveness properties
• What may impair a dependable system?

– A set of faults -> failure
• What may impair a secure system?

– A set of faults (attacks, vulnerabilities, intrusions) -> failure
• How do I make a system dependable (normally)?

– Using fault avoidance (prevention, removal) and fault tolerance (error
detection, recovery, masking)

• How do I make a system secure (normally)?
– Using fault avoidance (attack prevention, vulnerability removal)

– and some bits of fault tolerance (intrusion detection)
– Nowadays, increasingly fault tolerance (intrusion detection, recovery,

masking)

1.12

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

54

1.13

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

What is Intrusion Tolerance?

• The tolerance paradigm in security:
– Assumes that systems remain to a certain extent vulnerable
– Assumes that attacks on components or sub-systems can

happen and some will be successful
– Ensures that the overall system nevertheless remains secure

and operational, with a measurable probability
• In other words:

– Faults--- malicious and other--- occur
– They generate errors, i.e. component-level security

compromises
– Error processing mechanisms make sure that security failure

is prevented

1.14

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Some preliminary observations...

55

1.20

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Did you say trusted?

• Sometimes components are tamper-proof, others
tamper-resistant...
– Watch-maker syndrome:

• --- “Is this watch waterproof?”
• --- “No, it’s water-resistant”
• --- “Anyway, I assume that I can swim with it!”
• --- “Well…yes, you can… but i wouldn't trust that very much"

• How can something trusted be not trustworthy?
– Unjustified reliance syndrome:

• --- “I trust Alice”
• --- “Well Bob, you shouldn’t, she’s not trustworthy”

• What is the difference? If we separate specification
from implementation, and provide a notion of coverage,
all becomes clearer

1.21

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Trust, Trustworthiness

• Trust
• the accepted dependence of a component, on a set of

properties (functional and/or non-functional) of
another component, subsystem or system
– a trusted component has a set of properties that are relied

upon by another component (or components).
– if A trusts B, then A accepts that a violation in those

properties of B might compromise the correct operation of A
• Trustworthiness
• the measure in which a component, subsystem or

system meets a set of properties (functional and/or
non-functional)
– trustworthiness of B measures the coverage of the trust of A

56

1.22

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Trusted vs.Trustworthy

• Thou shalt not trust non-trustworthy components!
• B is Trustworthy in the measure of the coverage with

which its assumed properties are met... and coverage is
never 1 in real systems...

• B should be Trusted only to the extent of its
trustworthiness
– trust may have several degrees, quantitatively or qualitatively
– related not only with security-relat. properties (e.g., timeliness)
– trust and trustworthiness lead to complementary aspects of the

design and verification process
• we should talk about trusted-trustworthy components

1.23

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Tamperproofness and its coverage
or “tamper-resistance” not needed

• Tamperproof
– Property of a system/component of being shielded, i.e. whose

attack model is that attacks can only be made at the regular
interface

– Coverage of the "tamperproof" assumption may not be
perfect, and there can be several degrees of such
tamperproofness

• Example:
– Implementation of a security service using Java Cards to

store private keys. We assume J.Cards are tamperproof, and
so we argue that they are trustworthy (they will not reveal
these keys to an unauthorised party). Hence we can justifiably
argue that the service is trusted, with the coverage given by
our assumptions, namely, the tamperproofness of JCards

57

1.24

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

terminology and concepts

Fault Models
Methodologies

Error processing
Fault treatment

1.25

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Attacks, Vulnerabilities, Intrusions
• Intrusion

– an externally induced, intentionally malicious, operational fault,
causing an erroneous state in the system

an intrusion has two underlying causes:
• Vulnerability

– malicious or non-malicious weakness in a computing or comm’s
system that can be exploited with malicious intention

• Attack
– malicious intentional fault introduced in a computing or comm’s

system, with the intent of exploiting a vulnerability in that
system

interesting corolaries:
– without attacks, vulnerabilities are harmless
– without vulnerabilities, there cannot be successful attacks

58

1.26

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Attack-Vulnerability-Intrusion composite fault model

AVI sequence : attack + vulnerability→ intrusion → error → failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder

attack
(fault)

intrusion
(fault)

error failure

Hence: attack + vulnerability → intrusion → error → failure
A specialization of the generic “fault,error,failure” sequence

1.27

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

attack
(fault)

intrusion

error

vulnerability
(fault)

failure

Cascading Faults through error propagation

ALLOWED

ALLOWED

NOT ALLOWED !

ALLOWED

ALLOWED

intrusion failureerror

intrusion failureerror

59

1.30

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

Fault Models
Methodologies

Error processing
Fault treatment

1.31

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Achieving trustworthiness w.r.t. malicious faults
(the classical ways...)

• Attack prevention
– Ensuring attacks do not take place against certain components

• Attack removal
– Taking measures to discontinue attacks that took place

• Vulnerability prevention
– Ensuring vulnerabilities do not develop in certain components

• Vulnerability removal
– Eliminating vulnerabilities in certain components (e.g. bugs)

INTRUSION PREVENTION

60

1.32

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Examples
• Attack prevention

– selectively filtering access to internal parts of the system
(e.g., if a component is behind a firewall and cannot be
accessed from the Internet, attack from there is prevented)

– disabling JavaScript and/or Java prevents attacks by
malicious scripts or applets

• Attack removal
– identifying source of an external attack and taking measures

to terminate it
• Vulnerability prevention

– best practice in software development
– measures preventing configuration and operation faults

• Vulnerability removal
– of: coding faults allowing program stack overflow, files with

root setuid in UNIX, naive passwords, unprotected TCP/IP
ports

1.33

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

AVI Composite fault model

¾sequence : attack + vulnerability→ intrusion→ failure

Intruder

attack
(fault)

intrusion
(fault)

error failure

attack
prevention

vulnerability
prevention

intrusion
prevention

vulnerability
removal

Intruder/
Designer/
Operator

vulnerability
(fault)

61

1.34

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

vulnerability
removal

AVI Composite fault model

¾sequence : attack + vulnerability→ intrusion→ failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder

attack
(fault)

intrusion
(fault)

error failure

attack
prevention

vulnerability
prevention

intrusion
prevention

intrusion
tolerance

1.35

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

Fault Models
Methodologies

Error processing
Fault treatment

62

1.38

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Error processing at work

• backward
recovery

• forward
recovery

• error masking

Redo after attack

“Plan B” after intrusion

Whatever happens...

1.41

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis

63

1.43

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

ID: Error detection or fault diagnosis?

• classical IDS have two facets under intrusion tolerance
– detecting errors as per the security policy specification
– diagnosing faults as per the system fault model

• consider the following example:
– Organization A has an intranet with an extranet connected to

the public Internet. It is fit with an IDS
– the IDS detects a port scan against an internal host, coming

from the intranet
– the IDS detects a port scan against one of the extranet hosts,

coming from the Internet
– what is the difference?

1.46

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Forecasting

Attack injection
Vulnerability diagnosis
Assumption validation

64

1.47

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Approaches

• Fault injection
• Static vulnerability analyzers
• Run-time prevention mechanisms
• Vulnerability scanners
• Fuzzers
• Attack injection -Using Attacks to Find Vulnerabilities

1.48

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

TARGET SYSTEM

vulnerability

Using Attacks to Find Vulnerabilities

failureerrorintrusion

attack

Look for errors /
failures

(2)Generate various
attacks

(1)

Find the correspondent
vulnerability for that
particular attack

(3)

• Composite fault model AVI (Attack, Vulnerability, and Intrusion)

65

1.49

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Attack Injection Tool

• Architecture

Attack Injector

Target Protocol Specification

Monitor

responseattack synchronization

execution
data

XML spec

Target
System

1.51

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

A biologically inspired
metaphor of

intrusion tolerance

Courtesy Christian Cachin, MAFTIA consortium

66

1.52

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Computer system under attack

• no flaws, no vulnerabilities

1.53

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion detection

• Sensors for different attacks

Sensor

67

1.54

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Computer system under attack

• with vulnerabilities and
• successful attack

Attack that exploits the vulnerability

Vulnerability

1.55

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

• with replicated and diverse structure
– replicas have different vulnerabilities
– majority remains intact

Attack that exploits the vulnerability

Vulnerability

68

1.56

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance and Detection combined

• with replicated and diverse structure
• with detection sensors

Attack that exploits vulnerability

Vulnerability

69

2.1

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

2
Resilience
Building

Paradigms

2.2

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms
• Intrusion Detection
• Byzantine Failure Detection
• Self-enforcing vs.Trusted Third Parties
• Threshold cryptography
• Secret sharing
• Byzantine Reliable Broadcast
• Byzantine agreement
• Byzantine Consensus and Atomic Broadcast
• Byzantine State Machine Replication
• Quorums
• Fragmentation
• Randomisation
• Indulgence
• Separate execution and agreement
• Wormholes
• Reactive/Proactive recovery
• Diversity and obfuscation
• Proactive resilience

70

2.3

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Intrusion Detection

2.4

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis

71

2.5

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

ID system classes

• Behavior-based (or anomaly detection) systems
– no knowledge of specific attacks
– provided with knowledge of normal behavior of monitored

system, acquired e.g. through extensive training of the system
– advantages: they do not require a database of attack

signatures that needs to be kept up-to-date
– drawbacks: potential false alarms; no info on type of intrusion,

just that something unusual happened
• Knowledge-based (or misuse detection) systems

– rely on a database of previously known attack signatures
– whenever an activity matches a signature, an alarm is

generated
– advantage: alarms contain diagnostic information about cause
– drawback: potential omitted or missed alarms, e.g. new attacks

2.6

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Detection mechanisms

• consider system activity
specified by patterns

• anomaly detection
– looks for deviation from
NORMAL ACTIVITY PATTERNS

• misuse detection
– looks for existence of
ABNORMAL ACTIVITY PATTERNS

• we can have hybrids
• Quality of Service

– false alarm rate
– omitted alarm rate

72

2.8

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Self-enforcing vs.Trusted Third Parties

2.9

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Self-enforcing protocols

• Correct behaviour achieved by protocol participants alone
• They must build trust during protocol execution without trusting

each other initially, and some maybe being malicious (e.g., by
voting, k-out-of-n)

Alice Bob
Self-Enforcing Protocol

A lice B ob
Self-Enforcing Protocol

Luisa

Paul

73

2.10

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Trusted-Third-Party protocols
• Based on an apriori trusted

component (TTP)
• TTP may be single point of failure
• adjudicated

– Acting a posteriori if necessary to
recover from errors

• arbitrated
– Correct behaviour guaranteed

during execution, errors prevented
by arbiter

• certified
– Correct behaviour guaranteed

prior to execution through
credentials supplied which limit
participants misbehaviour during
execution (errors prevented)

Fault!

Adjudicated Protocol

Trent
(Adjudicator)

Alice Bob

Fault!

Trent
(Arbiter)

Alice Bob
Arbitrated Protocol

Alice Bob

Certified Protocol

Trent
(Certif. Auth)

2.11

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Threshold cryptography
• and secret sharing

74

2.12

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Threshold cryptography and secret sharing

• “Intrusion-tolerant” cryptography
• Given N processes each holding part of crypto secret

• Secret sharing:
– Example a shared secret key
– Any k-out-of-N processes combine their shares and reconstruct

secret s
– Any k-1 colluding or intruded processes cannot reconstruct s

• Function sharing:
– Example a threshold signature
– k processes together execute function F
– k-1 colluding or intruded processes cannot execute F

2.13

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proactive secret sharing

• A process cannot know whether its share is “good”
• If one share is corrupted the secret is not

reconstructed

• Proactive secret sharing
– A period Tf is assumed as an estimate of time for f+1=k

failures to be produced, e.g., to corrupt k processes
– (these k processes would be able to get the secret)
– Every Tss < Tf, protocol recalculates the shares

(reconstructs) without changing the secret

75

2.14

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Byzantine Reliable Broadcast/Multicast
• Byzantine agreement

2.15

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Basic failure modes

• Processes can fail in a Byzantine way:
– Crash, disobey the protocol, send contradictory messages,

collude with other malicious processes,...
• Network:

– Can corrupt packets (due to accidental faults)
– An attacker can modify, delete, and introduce messages in the

network

76

2.16

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Reliable multicast

• A reliable multicast protocol is defined formally in terms of the
following properties:

• Validity: If a correct process multicasts a message M then some
correct process in group(M) eventually delivers M.

• Agreement: If a correct process delivers a message M then all correct
processes in group(M) eventually deliver M.

• Integrity: For any message M, every correct process p delivers M at
most once and only if p is in group(M), and if sender(M) is correct then
M was previously multicast by sender(M).

2.17

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Byzantine Consensus and Atomic Broadcast

77

2.18

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Consensus properties

• Validity
– If all correct processes propose the same value v, then any

correct process that decides, decides v
• Agreement

– No two correct processes decide differently
• Termination

– Every correct process eventually decide

• With Byzantine failures, Validity makes little sense
• Vector consensus improves the situation

• Consensus is equivalent to atomic broadcast

2.19

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Vector Consensus properties

• Validity
– Every correct process decides on a vector vect of size n such

that:
– 1. For every 1 =< i =< n, if process pi is correct, then vect[i] is

either the initial value of pi or the value bottom
– 2. at least f+1 elements of the vector vect are the initial

values of correct processes.
• Agreement

– No two correct processes decide differently
• Termination

– Every correct process eventually decide

78

2.20

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Atomic Broadcast properties

• Validity
– If a correct processor multicasts a message M, then some

correct processor eventually delivers M.
• Agreement

– If a correct processor delivers a message M, then all correct
processors eventually deliver M.

• Integrity
– For any message M, every correct processor p delivers M at

most once, and if sender(M) is correct then M was previously
broadcast by sender(M).

• Total order
– If two correct processors deliver two messages M1 and M2

then both processors deliver the two messages in the same
order.

2.21

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Byzantine State Machine Replication

79

2.22

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Byzantine State Machine Replication

SERVERS (N)

CLIENTS

REQ REPLY

• Rules:
– they execute atomic

commands, change state and
produce outputs

– commands are deterministic
• If:

– servers start in same state
– execute same sequence of

inputs in same order
• Then,

– all follow same sequence of
state/outputs

2.23

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Byzantine State Machine Replication

• input requirements:
– commands delivered by Byzantine atomic broadcast protocol

• Failures of servers can be arbitrary
• given N number of servers, maximum number of servers

that can fail is:
• or in other words:

• this limit is actually imposed by the protocol used to
disseminate messages (ABCAST)
– ex: N=4 servers tolerate f=1 corrupt;

N=7 tolerates f=2

80

2.24

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Where do we go from here?

• arbitrary failures / asynchrony thread
– are safe, but normally inefficient
– FLP: no deterministic solution of hard problems e.g. consensus,

BA, SMR with ABCAST
– does not solve timed problems (e.g., e-com, stocks)

2.25

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

• OBJECTIVE:
• solve most non-timed problems with high coverage

• tone down determinism:
– randomization (Maftia/IBMZurich/Cachin-et-al)
– semantics (+) - speed (-)

• tone down liveness expectations:
– sacrifice liveness guarantees (MIT/Castro-Liskov)
– termination (-) - speed (+)

• use weaker semantics
– avoid consensus (Cornell/APSS/Schneider-et-al)
– use quorums (Alvisi, Malki, Reiter)
– semantics (-) - termination (+)

• Coverage:
– very high, but still bound to crucial assumptions, such as number of failures

• Timeliness:
– none

Arbitrary failure / asynchrony assumptions

81

2.26

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

• OBJECTIVE:
• solve non-timed problems with high coverage

• tone down fault severity:
– hybrid faults (IBMZurich/Cachin-et-al) (Meyer, Pradhan, Walter, Suri)
– fault coverage (~)

• enforce hybrid behaviour (“strong” and “weak” components):
– architectural hybridization (U.Lisboa)
– speed (+) - termination (+) - semantics (+)
– fault coverage (+)

• Coverage:
– fair for hybrid fault coverage
– can get very high if bound to the “strong” components
– still bound to crucial assumptions, such as nr of failures

• Timeliness:
– none

Controlled failure assumptions

2.27

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Randomisation

82

2.28

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Randomisation

• Another way to overcome the asynchronous impossibility
of determinism is to use a probabilistic approach to
solve consensus

• It does not require any explicit or implicit timing
assumptions

• These algorithms usually have a large number of
excepted communication steps and/or rely heavily on
public-key cryptography

2.29

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

High-performance Randomisation

• These features have led to a couple of general (wrong)
beliefs about randomisation inefficiency:
– too slow to be used in practice
– local coin tossing slower than shared coin tossing

• But...two important points have been overlooked:
– Consensus protocols are not executed in oblivion
– The theoretical adversary models is not very realistic

• With this in mind, high-performance solutions were
recently found, bringing new practicality to randomised
consensus

83

2.30

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Indulgence

2.31

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Indulgence

• Another way to overcome hardness of asynchronous
non-determinism (FLP) is to:
– allow protocols not to have liveness (i.e., not to terminate)
– but guaranteeing that they always have safety

• This way, partial synchrony assumptions can be made in
a safe way
– if attacked, all that happens is that protocol stalls but never

makes mistakes

84

2.32

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Separate execution and agreement

2.33

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Separate execution and agreement

AGREE/EXEC SERVERS

CLIENT CLIENT

EXEC SERVERS

AGREE SERVERS

Normal architecture Separation

2f+1
service-executing
servers

3f+1
agreement-broking
servers
(agree on ordering)

[Yin et al.]

• Separate server sets allow to lower the number of required
execution servers to 2f+1, maintaining 3f+1 for agreement

85

2.34

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Quorums

2.35

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Quorums

• Another way to overcome limitations imposed by FLP in
arbitrary failure modes

• a quorum system Q is a server set such that
• forall Q1, Q2 in Q, Q1 and Q2 always intersect
• operations are performed over a quorum

86

2.36

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Quorums vs SM

• SM – generic solution for data and/or operations/services
• Quorums – dedicated to data repositories

RME QUORUNS

SERVERS (N)

CLIENTS

REQ REPLY

QUORUM Qi

DATA REPOSITORY

SERVERS (N)

CLIENTS

REQ REPLY

GENERIC SERVICE

2.37

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Fragmentation

87

2.38

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Quorums vs Fragmentation

• Quorums:
– emphasis on small memory objects (variables, tuples)

• Fragmentation:
– emphasis on large memory objects (files, archives)

2.39

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Fragmentation, Redundancy, Scattering – FRS

• Data endures three steps:
– fragmentation – data is fragmented, confidenctiality is not

perfect, but fragments yield practically nothing of whole
– redundancy – fragments are replicated to tolerate losses
– scattering – fragments are disseminated throughout system

repositories

[Fraga & Powell 85]

..

.

F R A G M E N T A T I O N R E D U N D A N C Y S C A T T E R I N G

S E R V E R S

A R Q U I V E F R A G M E N T S

88

2.40

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Wormholes

2.41

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Wormhole-aware
• Wormhole-aware server sets with a hybrid failure model allow to

lower the number of required servers to 2f+1

TTCB Wormhole control channel

TTCB
local

TTCB
local

TTCB
local

CLIENTS

AGREE/EXEC SERVERS (N)

WAN / LAN

WORMHOLE:
limited functionality
but trustworthy subsystem

Service is executed in servers with
occasional calls to TTCB
(agree on ordering)

[M. Correia, N. Neves,
P. Veríssimo], U. Lisboa

2f+1
agree/exec servers

89

2.42

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Exhaustion safety

2.43

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

• OBJECTIVE:
• keep systems working long enough

(non-timed problems, arbitrary failures / asynchrony thread)

• ensuring enough replicas
• using diversity and obfuscation

• OBJECTIVE:
• keep systems working long enough or in a perpetual manner

• reactive or proactive recovery (e.g., rejuvenation, refreshing)

Taking long detours…

90

2.44

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Detours may lead to dead ends…

• f fault-tolerance means at least (n-f) correct
nodes.

• Resource exhaustion: violation of a resource
assumption (e.g., f+1 nodes fail), which may lead to failure

• An exhaustion-failure is a failure that results from
resource exhaustion.

• A system is exhaustion-safe if resource exhaustion
never happens.

2.45

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

To Be or Not to Be Exhaustion-Safe

exhaustion-safe

non
exhaustion-safe

91

2.46

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Resilience building paradigms

• Reactive/Proactive recovery
• Diversity and obfuscation
• Proactive resilience

2.47

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Async Proactive Recovery

• How to guarantee that rejuvenations always terminate
before resource exhaustion?
– Rejuvenation start instant may be delayed.
– Rejuvenation actions may be delayed.
– These delays may be enforced by a malicious adversary!

• Async proactive recovery does not guarantee
exhaustion-safety.
– namely, in a malicious environment.

92

2.48

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Problems of proactive recovery

• Problems that may affect proactively recovered
intrusion-tolerant systems:
– 1. adversary may be more powerful than assumed
– 2. adversary may slow down the pace of recovery
– 3. adversary may perform stealth attacks on the system

timing
– 4. recoveries may reduce system availability

• Classical proactive recovery systems are affected by
all 4

• Proactive resilience deals with problems 2, 3 and 4.
(Problem 1 is fundamentally unsolvable) [Sousa et al.,
SAC06]

2.49

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Detours may lead to dead ends…

• An f fault-tolerant distributed system is exhaustion-
safe if it terminates before f+1 faults being produced

• Obvious?
• Impossibility of exhaustion-safe asynchronous

distributed systems (w/ or w/o proactive recovery)

93

2.50

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proactive resilience

• Combining proactive recovery and wormholes
– Proactive recovery is useful to postpone texhaust as long as it

has timeliness guarantees.
– Proposal: combine async payload system with

sync proactive recovery subsystem.

[Sousa, Verissimo, Neves]

2.51

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Limitations of
some current

IntTol paradigms

94

2.52

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Limitations of IntTol paradigms

• Resource exhaustion unnoticed
or
• why attackers work in real time

2.53

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Alice Bob

Paul

Trent

Async

N

Classical Model - Async System

95

2.54

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Burn like a candle or....
Burn like a match?

Classical Model vs. Reality

Alice Bob

Paul

Trent

tphi

tint

2.55

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proactive Recovery
• Goal: to constantly postpone texhaust through periodic rejuvenation.

– e.g., periodic rejuvenation of secret keys, OS code, etc .

t

tstart tend

rejuvenation
starts

rejuvenation
ends

texhaust texhaust

• A system is exhaustion-safe only if rejuvenations are always terminated
before exhaustion.

Proactive
recovery is
triggered

Proactive
recovery
finishes

96

2.56

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Physical Model - Async system
with hidden sync assumptions

Alice Bob

Paul

Trent

FT Protocol

Async

tphi
Sync

tphi

NOT Exhaustion-safe!

NOT Exhaustion-safe!

Physical Model - shows Async system with unaccounted
for synchrony assumptions

2.57

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proactive Recovery
• Goal: to constantly postpone texhaust through periodic rejuvenation.

– e.g., periodic rejuvenation of OS code .

tphi

tstart tend

rejuvenation
starts

rejuvenation
ends

texhaust texhaust

tinttphi!tint?

Proactive
recovery is
triggered

Proactive
recovery
finishes

Rejuvenation
increases
texhaust

Proactive recovery
execution delayed
e.g., due to some

overload

Resources are
exhausted … system
correctness can be

compromised

97

2.58

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

The case for hybrid dis sys models

Alice Bob

Paul

Trent

FT Protocol

Async

Classical Model - Correct FT Async system

tphi

Exhaustion-safe!
Exhaustion-safe!

• in an asynchronous system, all synchrony must be
encapsulated

2.59

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Limitations of IntTol paradigms

• Homogenous models and hidden assumptions
or
• why attackers pick the weakest link

98

2.60

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Alice Bob

Paul

Trent

Async

N

Classical Model - Async System

2.61

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Alice Bob

Paul

Trent

FT Protocol

Sync
Async

N

tint

Classical Model - Async System
with hidden sync assumptions

NOT OK!NOT OK!

99

2.62

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (1)
• System Model:

– async model, malicious adversary.
– private key shared by servers using threshold cryptography.
– Shares are periodically refreshed through an asynchronous proactive

secret sharing protocol (APSS).
– Key is compromised if an adversary collects sufficient shares in the

interval between successive executions of the APSS.
• Algorithmic assumptions:

– n servers share the private key using (n, f+1) secret sharing scheme
– f+1 shares are sufficient to recover the key.
– less than f+1 shares give no knowledge about the key.
– At most f≤(n-1)/3 servers “are compromised at any time”.

• Excludes the possibility of an adversary controlling f+1 servers simultaneously,
• but “does not rule out learning f+1 shares one at a time” (mobile virus attack)

2.63

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

The problem

• when safety of an asynchronous system depends on
non-substantiated timing assumptions

• clocks with bounded rate of deviation to real-time
• capacity of performing periodic (timely) executions
• these assumptions can be violated either in the assumed async

environment and/or by a malicious adversary.

100

2.64

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (4)

• An attack that compromises safety:
– Two adversaries: ADV1 and ADV2.

– Step 1: ADV1 performs a mobile virus attack against f+1
servers

• slows the clock rate of each server.

– Step 2: ADV1 temporally cuts off the links between the f+1
servers and the rest of the system.

2.65

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (5)
• An attack that compromises safety:

– Step 3: ADV2 performs a mobile virus attack against the same
f+1 servers

• learns, one by one, f+1 private key shares.
• no rejuvenation occurs in between because in step 1 clocks are made as slow as

needed.

– Step 4: ADV2 discloses private key by combining the f+1
shares.

– Important Note: ADV1 actions simply enforce a behavior that
can occur in any fault-free async system.

101

2.66

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s01s01s01s01

A B C D

sXX: share version

2.67

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s05s05s05s05

A B C D

sXX: share version

ADV1 slows A
clock

102

2.68

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s15s15s15s15

A B C D

sXX: share version

ADV1 slows B
clock

2.69

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s25s25s25s25

A B C D

sXX: share version

ADV1 cuts off
connection

between A,B and
C,D

103

2.70

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s50s50s25s25

A B C D

sXX: share version

ADV2 gets A
share

2.71

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s70s70s25s25

A B C D

sXX: share version

ADV2 gets B
share

A share + B share =
private key

104

2.72

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

From Theory to Practice (6)

• Example with n=4, f=1

s70s70s70s70

A B C D

sXX: share version

ADV2
reconnects
network

2.73

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

The case for hybrid dis sys models

N>3f

Async

Classical Model - Correct FT Async system

Alice Bob

Paul

Trent

FT Protocol

All t factored out
e.g. to FD oracles

Sync
tint

OK!OK!

• in an asynchronous system, all timing assumptions must
be encapsulated

105

2.74

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Findings

• Current state-of-the-art with homogenous models
does not allow to construct exhaustion-safe
distributed systems, specially in face of
arbitrary/malicious faults:

– Sync systems are vulnerable:
• timing failures.

– Async systems are vulnerable:
• max number of faults + unbounded execution time.

– Async systems with async proactive recovery are vulnerable:
• max number of faults + unbounded rejuvenation period.

2.76

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proactive Resilience
Proactive Recovery in Wormhole (hybrid) models

– Using proactive recovery
• define the number of faults between rejuvenations
• compute rejuvenation period
• execute recovery:

• timely triggered
• executed in bounded time

Host A
local
PRW

Host B
local
PRW

Host C
local
PRW

optional control network

synchronous
any synchrony (payload)

application-dependent synchrony

106

3.1

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

3
Models

of
Resilient
Systems

3.2

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion Tolerance

strategies

107

3.5

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Failure assumptions in presence of intrusions
• Basic types of failure assumptions:

– Controlled failures : assume qualitative and quantitative
restrictions on failures, hard to specify for malicious faults

– Arbitrary failures : unrestricted failures, limited only to the
“possible” failures a component might exhibit, and the
underlying model (e.g. synchronism)

• Fail-controlled vs. fail-arbitrary models in face of
intrusions
– FC have a coverage problem, but are simple and efficient
– FA are normally inefficient, but safe

• What are malicious failures?
– There is an adversarial attitude and an intention to harm
– How do we model the mind and power of the attacker?

3.6

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Modelling malicious failures

• Failures are no longer independent
– Human attackers are the “common-mode” link
– Triggering simultaneous attacks
– Exploiting common vulnerabilities
– Performing collusion through distributed protocols

• Failures become more severe
– The worst possible behaviour: inconsistent output, at wrong

times, forged, etc.
– The greatest possible magnitude: patterns of occurrence no

longer stochastic, only limited by attacker power
• Fault models become less representative

– Maliciously induced failures defy qualitative (modes) and
quantitative (stochastics) models for fault distribution

108

3.9

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Asynchronous Fail-uncontrolled strategy

• Time-free
• Arbitrary failure environment
• Arbitrary failure protocols
• Used e.g. with: probabilistic Byzantine-agreement or consensus

protocols
• Impossibility results for deterministic protocols, and for any timed

operation

Ci

Host A

Cj

Host B

Ck

Host C

Cl

Host D

Arbitrary Failure Protocols

3.10

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Arbitrary failure assumptions

• operations of very high value and/or criticality:
– financial transactions of very high value (contracts,credencials)
– critical control operations in infrastructures
– whenever failure due to assumptions violation can’t be incurred
– AND, lack of performance and functionality can be accepted

• coverage of assumptions:
– maximal, since little is assumed

• arbitrary-failure resilient building blocks
– e.g. Byzantine agreement and consensus protocols
– no assumptions on existence of fail-controlled components
– impossibility of deterministic behaviour
– time-free approach, impossibility of any timed operation

109

3.11

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Partially-synchronous Fail-controlled strategy

• Timed, partially synchronous
• Non-Arbitrary failure environment and protocols
• Used e.g. with: classical reliable multicast and atomic broadcast
• Problem of coverage of assumpions

3.12

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Recapitulating
• If you want efficient/performant solutions to F/T

– assume controlled failure modes (omissive, fail-silent, etc.)
• If you want to build timely services (even soft R/T)

– assume synchronous models, or at least partially sync
• Some security-related systems take this approach

– partial synchronous environment
– well-behaved (e.g. fortress) hosts
– moderate level of threat in network

• They work, but only to the coverage of the assumptions
– which must be substantiated
– else we fall in the “well-behaved hacker” syndrome:

• ``Hello, I'll be your hacker today, here is the list of what I promise not to do.''
• ``Oh thank you! By the way, here are a few additional attacks we would also like

you not to attempt.''

110

3.13

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Where do we go from here?

• arbitrary failures / asynchrony thread
– are safe, but normally inefficient
– FLP: no deterministic solution of hard problems (e.g. ABCAST,

consensus, BA)
– does not solve timed problems (e.g., SCADA, CCC, e-com)

• controlled failures / synchrony thread
– hard to specify for malicious faults and that brings a coverage

problem
– susceptible to attacks on timing assumptions
– difficulty of implementation of sync. even in benign settings

3.14

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

• OBJECTIVE:
• solve most non-timed problems with highest possible coverage

• tone down determinism (e.g., randomisation)
• tone down liveness expectations (e.g., indulgence)
• use weaker semantics (e.g., thresholds, quorums)
• tone down allowed fault severity (e.g., hybrid faults)
• tone down asynchrony (e.g., parsync protocols, FDs)

• OBJECTIVE:
• solve timed problems with highest possible coverage

• tone down asynchrony (e.g., sync/parsync protocols)

Taking detours…

111

3.15

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Take time/synchrony facet

• OBSERVATION [Veríssimo and Casimiro. The Timely Computing Base model and
architecture. DI/FCUL TR-99-2, IEEE TOCS 2002]:
synchronism is not an invariant property of systems

• degree of synchronism varies in the time dimension:
– during the timeline of their execution, systems become faster

or slower, actions have greater or smaller bounds
• it also varies with the part of the system being

considered, that is, in the space dimension:
– some components are more predictable and/or faster than

others, actions performed in or amongst the former have
better defined and/or smaller bounds

3.16

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et
al, Castro et al, Zhou et al, Raynal et al,
Macêdo et al, Aguilera et al, Friedman et
al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete

112

3.17

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et
al, Castro et al, Zhou et al, Raynal et al,
Macêdo et al, Aguilera et al, Friedman et
al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete

HOW DOES IT WORK UNDER
HOMOGENEOUS MODELS?!

3.18

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Homogeneous distr. sys. models

Pt

Pv

Pu

Ps

Pr

Wb

WG

synchronous/secure asynchronous/insecure

?

113

3.19

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Homogeneous distr. sys. models

Pt

Pv

Pu

Ps

Pr

Wd

Wc

We

Wb
Wa

?

synchronous/secure asynchronous/insecure

3.21

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Advanced modelling concepts

for IntTol systems

114

3.22

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Advanced models for IntTol systems

• Recursive building of trust and trustworthiness
– Trusted-trustworthy systems out of non-trustworthy

components
• System models of hybrid trustworthiness

– Trusted-trustworthy systems out of non-trustworthy AND
trustworthy components

3.23

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Advanced models for IntTol systems
• Intrusion-aware composite fault & intrusion models

– the competitive edge over the hacker
– AVI: attack-vulnerability-intrusion fault model

• Combined use of prevention and tolerance
– malicious failure universe reduction
– attack prevention, vulnerability prevention, vulnerability

removal, in system architecture subsets and/or functional
domains subsets

• Architecturally hybrid failure assumptions
– different failure modes for distinct components
– reduce complexity and increase performance, maintaining

coverage
• Quantifiable assumption coverage

– fault forecasting (on AVI)

115

3.24

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Recursive building of trust & trustworthiness

3.25

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Building trustworthiness

• Subsystem C designed to be trustworthy
– By construction

C1 C2

C3 C4 C5

C6

C1 C2

C3 C4 C5

C6

Trustworthy C

116

3.26

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Building trust

• Subsystem C designed to be trustworthy
– By construction

• Subsystem C becomes B ’s environment
– Properties of C are assumed by B

• B trusts C
– a trusted-trustworthy subsystem

C1 C2

C3 C4 C5

C6

C1 C2

C3 C4 C5

C6
B3

B5

B4

B2

B1

Trusted C (by B)

3.27

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

On coverage and separation of concerns
• predicate P holds with a coverage Pr

– we say that we are confident that P has a probability Pr of
holding

• environmental assumption coverage (Pre)
– set of assumptions (H) about the environment where system

will run
– Pre = Pr (H | f) f- any fault

• operational assumption coverage (Pro)
– the assumptions about how the system/algorithm/mechanism

proper (A) will run, under a given set of environmental
assumptions

– Pro = Pr (A | H)

Alice
Bob

Luisa

PaulAlicePr(A) = Pro x Pre = Pr (A | H) x Pr (H | f)

117

3.28

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

System models of hybrid trustworthiness

3.29

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Intrusion tolerance with hybrid failure assumptions

• How to achieve coverage of controlled failure
assumptions, given unpredictability of attacks and
elusiveness of vulnerabilities?
– E.g. considering that not everything is intruded

• Hybrid failure assumptions:
– the presence and severity of vulnerabilities, attacks and

intrusions varies
• Classic hybrid fault models [Meyer, Pradhan, et al]

– flat, use stochastic foundation to explain different behavior
from a collection of components of same type (i.e. k crash and w
byzantine in vector of values)

• Useless or at least risky in malicious environments
– lack of substance: intentional player defrauds these

assumptions

118

3.30

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Hybrid failure assumptions considered useful

• Architectural hybridisation
– the presence and severity of vulnerabilities, attacks and

intrusions varies from component to component, i.e., different
assumptions for distinct component subsets, possibly different

– behaviour enforced by construction: trustworthiness
– fail-controlled components or subsystems with justified

coverage (trustworthy), used in the construction of fault-
tolerant protocols under hybrid failure assumptions

• Using trusted-trustworthy components or subsystems:
– black boxes with benign behavior, omissive or weak fail-silent

type
– different capabilities (e.g. synchronous or not; local or

distributed), can exist at different levels of abstraction

3.32

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Fail-controlled IntTol system models
with Local Trusted Components

• Trustworthy subsystem (also called Wormhole) - e.g. smart or Java card;
appliance board

• Secure, and time-free or timed (as in figure)
• Arbitrary failure environment + Local Wormhole
• Hybrid failure protocols
• Example usage: FT distributed data dissemination with authentication and

authorisation protocols

119

3.34

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Fail-controlled IntTol system models
with Distributed Trusted Components

• Distributed Trustworthy subsystem (distr. Wormhole) - e.g. appliance boards
interconnected by dedicated network

• Secure, and time-free or timed (as in figure)
• Arbitrary failure environment + Distributed Wormhole
• Hybrid failure protocols
• Example: FT transac. prots requiring timing constraints (e.g. SCADA, DCS)

3.36

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Architecurally hybrid distributed systems models

120

3.37

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Architect.hybrid distr. sys. models

Pt

Pv

Pu

Ps

Pr

Payload
System

Sp

Wd

Wc

We

Wb

Wa

WG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Any-synchrony/security system WAny-synchrony/security system P

3.38

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Wd

Wc

We

Wb

Wa

Wormhole
Subsystem

Sw

WG

WG

WG

WG

WG

Architect.hybrid distr. sys. models

Pt

Pv

Pu

Ps

Pr

Payload
System

Sp

Any-synchrony/security system WAny-synchrony/security system P

121

3.39

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Shortcuts vs. detours

• Rendering the solution simpler
(without changing the problem!)

• Architectural hybridization
• Wormholes model

In
Paulo Veríssimo, Travelling through Wormholes: a new look at Distributed Systems
Models, SIGACTN: SIGACT News (ACM Special Interest Group on Automata and
Computability Theory), vol. 37, no. 1, (Whole Number 138), 2006.
Paulo Veríssimo, Uncertainty and Predictability: Can they be reconciled?, Future
Directions in Distributed Computing, pp. 108-113, Springer Verlag LNCS 2584, May,
2003

3.40

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Wormholes

• New design philosophy for
distributed systems:

• constructs with privileged
properties which endow systems
with the capability of evading the
uncertainty of the environment
(``taking a shortcut'') for
certain crucial steps of their
operation, in order to achieve the
required “hard properties”
(predictability)

Host A

Payload
System

Host C

Host B

Payload Network
(e.g. Internet/

Intranet)

WG - Wormhole GatewayHost D

Wormhole
subsystem

WG

WG

WG

WG

Host A

Payload
System

Host C

Host B

Payload Network
(e.g. Internet/

Intranet)

WG - Wormhole GatewayHost D

Local
Wormhole
subsystems

WG

WG

WG

WG

122

3.41

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Theoretical underpinnings

• A generic hybrid distributed systems model, or Wormholes Model

3.42

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

P

P P

P

P

PP

Theoretical underpinnings

• Processes and links in Wormholes models

123

3.43

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Site C

Site A
Site B

Payload
Network

Theoretical underpinnings

• Architecture imprinting in Wormholes models

P

P P

P

P

PP

Control Network

Worm
Worm

Worm

3.45

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

An example Wormhole:
Trusted Timely Computing Base (TTCB)

• Properties:
– trusted and timely execution; trusted timing failure detection
– secure (can only fail by crashing)
– real-time (capable of timely behavior)
– correct processes can interact securely with the TTCB

• TTCB can be seen as a distributed security kernel that provides a minimal set
of trusted and timely services to assist the execution of fault/intrusion-
tolerant algorithms, such as :

– provides a trusted environment for crucial steps
– local authentication
– agreement on a fixed sized block of data (TBA)
– globally meaningful timestamps

– Can be built (there is a COTS-based prototype)
Correia, Veríssimo, and Neves. The Design of a COTS Real-Time Distributed Security Kernel.
European Dependable Computing Conf., EDCC-4, October 2002

124

3.46

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Wormholes model in action
Example of deployment of systems with wormholes

3.47

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Designing algorithms with wormholes
(aka hybrid distributed systems models)

Payload
System

Sp

Pt

Pv

Pu

Ps

Pr

Wd

Wc

We

Wb

Wa

Postulate existence of
components (W) on a different

set of assumptions, e.g.:
- failure detector oracle
- set of fast(er) or synch.
channels

Assume basic system P model, e.g.
asynch. and Byzantine failures

Design your P algorithms and
prove them correct

•Proof correct
conditional to
truthfulness of
assumptions.
•What if assumptions
cannot be
substantiated?
•I.e. they do not
represent physical
reality?

Any-synchrony/security system WAny-synchrony/security system P

125

3.48

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Designing algorithms with wormholes
(aka hybrid distributed systems models)

Design system W’s
architect/algorithms to

provide properties
postulated earlier for

these components, e.g.:
- failure detector oracle
- set of fast(er) /synch.

channels

- Reiterate design, now of system W
- Assume basic system W model, e.g.

synch. and crash failure

Wd

Wc

We

Wb

Wa

Prove them correct

Assumptions substantiated
by architectural hybridization

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole subsystem
Wormhole Gateway

Wormhole
Subsystem

Sw

•Proof correct conditional to
truthfulness of assumptions.

“Main” or payload
subsystem

Any-synchrony/security system WAny-synchrony/security system P

3.49

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proof-of-concept systems with wormholes

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Wb

Any-synchrony/security system WAny-synchrony/security system P

126

3.50

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proof-of-concept:
COTS-based TCB Reference Architecture

Linux
Application

Linux
Application

APITCB Specific Linux

TFD

System HW Resources
(Clock, Processor, Interrupts, etc.)

Fail-Silence Switch

Regular Networking Infrastructure

Regular
Linux OS

DUR
EXEC

RT-Linux

Fast-Ethernet Network

RT-Linux
task

TCB

Self-checking
Mechanisms

RT-Linux
Driver

Regular
Linux Driver

HW

implementedTPM

3.51

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Example Hardware-based Wormholes

• Connectivity:
– Wireless WiFI, Bluetooth
– Wired RS-232, USB2, Ethernet

127

3.52

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proof-of-concept systems with wormholes

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Wd

Wc

We

Wb

Wa

Any-synchrony/security system WAny-synchrony/security system P

3.53

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proof-of-concept:
Distr. crash failure synch. wormhole

• TTCB is a distributed real-time and security kernel that provides a minimal
set of trusted and timely services, such as
– failure detection
– local authentication
– agreement on a fixed sized block of data (TBA)
– trustworthy global timestamps and random numbers

PAYLOAD:
Arbitrary
failures &
Asynchronous WORMHOLE:

Crash
failures &

Synchronous

128

3.54

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Weaker wormholes

• Wormholes can be any distributed subsystem/component
that follows different assumptions from “main” (payload)
system:
– watchdog
– crypto chip
– sync or parSync set of channels
– timely execution monitor

• There can be more than one wormhole subsystem
• Wormhole subsystems can be constructed as fault or

intrusion-tolerant subsystems

3.55

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Proof-of-concept systems with wormholes
Fault/Intrusion-tolerant wormholes

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

PrWG

WG

WG

WG

WG

Wormhole
Subsystem

Sw

Wd

Wc

We

Wb

Wa

B3

B5

B4

B2

B1

- Assume Byzantine failures in
Wormhole realm- Close the “lid”, you now

have a trustworthy Wormhole

Wd

Wc

We

Wb

Wa

Pt

Pv

Pu

Ps

Pr

Byzantine on failure system WAny-synchrony/security system P

- Use Byzantine resilient
algorithms to implement

Wormholes services

129

3.56

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Hybrid models/architectures more complex than
homogenous, why use them?

3.57

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et
al, Castro et al, Raynal et al, Aguilera et
al, Friedman et al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete

130

3.58

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Take time/synchrony facet

timepartial synchrony

(Dolev et al, Dwork et al, Chandra et al, Cristian et al, etc.)

space

partia
l synchrony

(Verissimo et al, Fetzer et al, LeLann et
al, Castro et al, Raynal et al, Aguilera et
al, Friedman et al, Baldoni et al, etc.)

- expecting
- eventual
- continuous

- expecting/enforcing
- eventual/perpetual
- discrete

- How to enforce perpetual,
discrete ?
- How to get synchrony out of
asynchrony?

SOLVED

3.59

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Review of

Strategies for construction

of IntTol subsystems

131

3.60

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Recursive use of F. Prevention and F.Tolerance

• The TTP protocol revisited
• Work at subsystem level to achieve justifiable behaviour
• Architectural hybridation w.r.t. failure assumptions

Alice Bob
Self-Enforcing Protocol

Luisa

PaulTTP

3.61

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Strategies for construction of IT subsystems

• Arbitrary model – no assumptions
• High coverage – very little to “cover”

Alice Bob
Self-Enforcing Protocol

Luisa

Paul

132

3.62

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Strategies for construction of IT subsystems

• Fail-controlled model -- unjustified environment
assumptions

• Fair coverage – no enforcement

Alice
Bob

Luisa

PaulAlice

3.63

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Strategies for construction of IT subsystems

• Fail-controlled model – little environment assumptions;
justified component assumptions

• High coverage – enforcement by Local Trusted Comp.

LSK

LSK

LSK

LSK

133

3.64

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Strategies for construction of IT subsystems

• Fail-controlled model – little environment assumptions;
justified component assumptions

• High coverage – enforcement by Distr. Trusted Comp.

DSK

DSK

DSK

DSK

3.65

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Wormhole-Aware Byzantine Protocols

134

3.66

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Efficient Byzantine-Resilient Reliable Multicast on
a Hybrid Fault Model

Efficient Byzantine-Resilient Reliable Multicast on a Hybrid Failure Model, Miguel Correia, Lau Cheuk Lung, Nuno
Ferreira Neves, Paulo Veríssimo. Proc’s of the 21st Symp. on Reliable Distributed Systems (SRDS'2002), Suita,
Japan, October 2002

3.67

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Basic failure modes

• Processes can fail in a Byzantine way:
– Crash, disobey the protocol, send contradictory messages,

collude with other malicious processes,...
• Network:

– Can corrupt packets (due to accidental faults)
– An attacker can modify, delete, and introduce messages in the

network

135

3.68

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

TTCB services

• The reliable multicast protocol uses only three TTCB
services:

• Local authentication service
• Trusted block agreement
• Trusted absolute timestamping

3.69

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Agreement Service

• A process makes two operations:
– propose, decide
– this works with “small” blocks of data

• agreement is defined by (elist, tstart, decision)
– elist: list of processes involved
– tstart: instant when the TTCB stops accepting proposals
– decision = TTCB_TBA_RMULTICAST; returns:

• value proposed by 1st process in elist
• mask proposed-ok: processes that proposed the value decided

136

3.70

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

First phase

• The protocol terminates in the first phase if there are
no faults or delays

• The sender:
– sends a data message (DAT)
– give the recipients a reliable hash of the message sent using

the TTCB Agreement Service
• The TTCB Agreement Service acknowledges the

processes that proposed the right hash
– if all proposed the protocol terminates

3.71

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

137

3.72

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Example: best case (1st phase only)

P1

P4

P2

P3

TTCB agreement

tstart

propose

decide

DAT msg msg delivery

M

H(M)
H(M), all proposed ok

Od = k

3.74

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Second phase (II)

• Each process that has the message for which H(M) =
value returned by the TTCB Agreement, resends M
until:
– All processes acknowledged:

• Proposing on time for the TTCB Agreement; or
• With an ACK

– Or until it sent Od+1 times:
• Processes that do not receive are failed

138

3.75

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Example: malicious sender

P1

P4

P2

P3

TTCB TTCB agreement

tstart

propose

decide

DAT msg

ACK msg

msg delivery

M

M

M’

H(M) H(M’)

M

M

M’

H(M)

Od = 1

3.76

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Example: message losses/delays

P1

P4

P2

P3

TTCB

tstart

propose

decide

DAT msg

ACK msg

msg delivery

msg lost

H(M)
H(M)

Od+1 Od+1

Od = 1

TTCB agreement

139

3.77

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

3. Protocol Performance

3.78

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Measurements

BRM

IPmcast

Typical values in earlier works: ~50ms

140

3.79

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Achievements

• Reliable multicast with Byzantine faults requires:
– asynchronous system: n ≥ 3f+1 [Bracha&Toueg]
– synchronous system: no limit (n ≥ f+2) [Lamport et al.]

• We follow a wormhole-aware model:
– payload is asynchronous and byzantine-on-failure
– TTCB is synchronous and crash-on-failure

• We achieve:
– n ≥ f+2 without asymmetric crypto (signatures)
– Efficiency: few phases, high performance

3.80

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

State machine replication on atomic multicast

How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems. Miguel Correia,
Nuno Ferreira Neves, Paulo Veríssimo. In Proceedings of the 23rd IEEE Symposium on Reliable
Distributed Systems. Florianopolis, Brasil, pages 174-183, October 2004.

141

3.81

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

System architecture

Host 2Host 1

OS

s 1

OS

Host n

OS

s 2 s n

OS

c 1

OS

c m

(possibly many) CLIENTS

SERVERS

Local
TTCB

Local
TTCB

TTCB Control Channel

TTCB

Local
TTCB

Payload Network

OS

c1

OS

c1

OS

c1

OS

c1

OS

c1

OS

c1

Only servers have wormholes

3.82

Design for Resilience

© 2002-08 Paulo Veríssimo - All rights reserved, no unauthorized reproduction in any form

Achievements

• First SMA service for practical byzantine distributed
systems with resilience f out of 2f+1
– Lower number of replicas reduces cost of hardware + cost of

designing different replicas (for fault independence)

• Low time complexity

• Good performance since it does not resort to public key
cryptography

142

