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Abstract

We consider an extension of bi-intuitionistic logic with the traditional modalities ♦, �, � and � from
tense logic Kt. Proof theoretically, this extension is obtained simply by extending an existing sequent
calculus for bi-intuitionistic logic with typical inference rules for the modalities used in display logics.
As it turns out, the resulting calculus, LBiKt, seems to be more basic than most intuitionistic tense
or modal logics considered in the literature, in particular, those studied by Ewald and Simpson, as it
does not assume any a priori relationship between the modal operators ♦ and �. We recover Ewald’s
intuitionistic tense logic and Simpson’s intuitionistic modal logic by modularly extending LBiKt with
additional structural rules. The calculus LBiKt is formulated in a variant of display calculus, using a
form of sequents called nested sequents. Cut elimination is proved for LBiKt, using a technique similar
to that used in display calculi. As in display calculi, the inference rules of LBiKt are “shallow” rules,
in the sense that they act on top-level formulae in a nested sequent. The calculus LBiKt is ill-suited
for backward proof search due to the presence of certain structural rules called “display postulates”
and the contraction rules on arbitrary structures. We show that these structural rules can be made
redundant in another calculus, DBiKt, which uses deep inference, allowing one to apply inference rules
at an arbitrary depth in a nested sequent. We prove the equivalence between LBiKt and DBiKt and
outline a proof search strategy for DBiKt. We also give a Kripke semantics and prove that LBiKt is
sound with respect to the semantics, but completeness is still an open problem. We then discuss various
extensions of LBiKt.

Keywords: Intuitionistic logic, modal logic, intuitionistic modal logic, deep inference.

1 Introduction

Intuitionistic logic Int forms a rigorous foundation for many areas of Computer Science
via its constructive interpretation and via the Curry-Howard isomorphism between nat-
ural deduction proofs and well-typed terms in the λ-calculus. Central to both concerns
are syntactic proof calculi with cut-elimination and backwards proof-search for finding
derivations automatically.

In traditional intuitionistic logic, the connectives → and ∧ form an adjoint pair in
that (A∧B)→ C is valid iff A→ (B → C) is valid iff B → (A→ C) is valid. Rauszer [22]
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obtained BiInt by extending Int with a binary connective −< called “exclusion” which
is adjoint to ∨ in that A→ (B ∨C) is valid iff (A −< B)→ C is valid iff (A −< C)→ B

is valid. Crolard [4] showed that BiInt has a computational interpretation in terms of
continuation passing style semantics. Uustalu and Pinto recently showed that Rauszer’s
sequent calculus [21] and Crolard’s extensions of it fail cut-elimination, but a nested
sequent calculus with cut-elimination [9] and a labelled sequent calculus [18] with cut-
free-completeness have been found for BiInt.

The literature on Intuitionistic Modal/Tense Logics (IM/TLs) is vast [6,24] and
typically uses Hilbert calculi with algebraic, topological or relational semantics. We omit
details since our interest is primarily proof-theoretic. Sequent and natural deduction
calculi for IMLs are rarer [14,1,17,3,5,12,7]. Extending them with “converse” modalities
like � and � causes cut-elimination to fail as it does for classical modal logic S5 where
♦ is a self-converse. Labels [15,24,16] can help but are not purely proof-theoretic since
they encode the Kripke semantics.

The closest to our work is that of Sadrzadeh and Dyckhoff [23] who give a cut-free
sequent calculus using deep inference for a logic with an adjoint pair of modalities (�,�)
plus only ∧, ∨, > and ⊥. As all their connectives are “monotonic”, cut-elimination
presents no difficulties.

Let BiKt be the bi-intuitionistic tense logic obtained by extending BiInt with two
pairs of adjoint modalities (♦,�) and (�,�), with no explicit relationship between the
modalities of the same colour, namely, (♦,�) and (�,�). The modalities form an
adjunction as follows: A→ �B iff �A→ B and A→ �B iff ♦A→ B.

Our shallow inference calculus LBiKt is a merger of two sub-calculi for BiInt and
Kt derived from Belnap’s inherently modular display logic. LBiKt has syntactic cut-
elimination, but is ill-suited for backward proof search. Our deep inference calculus
DBiKt is complete with respect to the cut-free fragment of LBiKt and is more amenable
to proof search as it contains no display postulates and contraction rules. To complete
the picture, we also give a Kripke semantics for BiKt based upon three relations ≤, R♦

and R�. The logic BiKt enjoys various desirable properties:

∗ Conservativity: it is a conservative extension of intuitionistic logic Int, dual intu-
itionistic logic DInt, and bi-intuitionistic logic BiInt;

∗ Classical Collapse: it collapses to classical tense logic by the addition of four struc-
tural rules;

∗ Disjunction Property: If A∨B is a theorem not containing −< then A is a theorem
or B is a theorem;

∗ Dual Disjunction Property: If A∧B is a counter-theorem not containing → then
so is A or B;

∗ Independent ♦ and �: there is no a priori relationship between these connectives.

The independence of ♦ and � is a departure from traditional intuitionistic tense or modal
logics, e.g., those considered by Ewald [6] and Simpson [24]. Both Ewald and Simpson
allow a form of interdependency between ♦ and �, expressed as the axiom (♦A →
�B)→ �(A→ B), which is not derivable in LBiKt. However, we shall see in Section 7
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τ−(A) = A τ+(A) = A

τ−(X,Y ) = τ−(X) ∧ τ−(Y ) τ+(X,Y ) = τ+(X) ∨ τ+(Y )

τ−(X . Y ) = τ−(X) −< τ+(Y ) τ+(X . Y ) = τ−(X)→ τ+(Y )

τ−(◦X) = ♦τ−(X) τ+(◦X) = �τ+(X)

τ−(•X) = �τ−(X) τ+(•X) = �τ+(X)

τ(X . Y ) = τ−(X)→ τ+(Y )

Fig. 1. Formula Translation of Nested Sequents

that we can recover Ewald’s intuitionistic tense logic and Simpson’s intuitionistic modal
logic by extending LBiKt with two structural rules.

Due to space limit, some proofs are omitted, but they can be found in an extended
version of this paper [11].

2 Nested Sequents

The formulae of BiKt are built from a set Atoms of atomic formulae via the grammar
below, with p ∈ Atoms:

A ::= p | > | ⊥ | A→ A | A −< A | A ∧A | A ∨A | �A | ♦A | �A | �A.

A structure is defined by the following grammar, where A is a BiKt formula:

X := ∅ | A | (X,X) | X .X | ◦X | •X.

The structural connective “,” is associative and commutative and ∅ is its unit. We
always consider structures modulo these equivalences. To reduce parentheses, we assume
that “◦” and “•” bind tighter than “,” which binds tighter than “.”. Thus, we write
•X,Y . Z to mean (•(X), Y ) . Z.

A nested sequent is a structure of the form X . Y . This notion of nested sequents
generalises Kashima’s nested sequents [13] for classical tense logics, Brünnler’s nested
sequents [2] and Poggiolesi’s tree-hypersequents [19] for classical modal logics. Figure 1
shows the formula-translation of nested sequents. On both sides of the sequent, ◦ is
interpreted as a white (modal) operator and • as a black (tense) operator. Note that
however, on the lefthand side of the sequent, . is interpreted as exclusion, while on the
righthand side, it is interpreted as implication.

A context is a structure with a hole or a placeholder []. Contexts are ranged over by
Σ[]. We write Σ[X] for the structure obtained by filling the hole [] in the context Σ[]
with a structure X. A simple context is defined via:

Σ[] ::= [] | Σ[], (Y ) | (Y ),Σ[] | ◦Σ[] | •Σ[]

Intuitively, the hole in a simple context is never under the scope of .. Positive and
negative contexts are defined inductively as follows:
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∗ If Σ[] is a simple context then Σ[] . Y is a negative context and Y . Σ[] is a positive
context.

∗ If Σ[] is a positive/negative context then so are (Σ[], Y ), (Y,Σ[]), •(Σ[]), ◦(Σ[]), Σ[].Y ,
and Y . Σ[].

We write Σ−[] to indicate that Σ[] is a negative context and Σ+[] to indicate that it is
a positive context. Intuitively, if one views a nested sequent as a tree (with structural
connectives and formulae as nodes), then a hole in a context is negative (positive) if it
appears to the left (right) of the closest ancestor node labelled with .. As a consequence
of the overloading of . as a structural proxy for both → and −< , further nesting of a
positive/negative context within . does not change its polarity. This is different from
the traditional notion of polarity which is defined in terms of either → or −< alone,
but not both. This aspect is different from display calculi and may cause confusion at
first reading. Our statement of the display property in Lemma 3.2–Lemma 3.2 accounts
for this difference.

The context Σ[] is strict if it has any of the forms:

Σ′[X . [ ]] Σ′[[ ] . X] Σ′[◦[ ]] Σ′[•[ ]]

Intuitively, in the formation tree of a strict context, the hole must be an immediate child
of . or ◦ or •. This notion of strict contexts will be used in later in Section 3.

Example 2.1 The context •([], (X . Y )) is a simple context but •(([], X) . Y ) is not.
Both •([], (X . Y )) . Z and •(([], X) . Y ) . Z are negative contexts. The context •[] . Z
is a strict context but •(([], X) . Y ) . Z is not.

3 Nested Sequent Calculi

We now present the two nested sequent calculi that we will use in the rest of the paper: a
shallow inference calculus LBiKt and a deep inference calculus DBiKt. Fig. 2 gives the
rules of the shallow inference calculus LBiKt. The inference rules of LBiKt can only be
applied to formulae at the top level of nested sequents, and the structural rules sL, sR,
.L, .R, rp◦ and rp•, also called the residuation rules, are used to bring the required sub-
structures to the top level. These rules are similar to residuation postulates in display
logic, are essential for the cut-elimination proof of LBiKt, but contain too much non-
determinism for effective proof search. Another issue with proof search in LBiKt is the
structural contraction rules, which allow contraction on arbitrary structures, not just
formulae as in traditional sequent calculi. LBiKt is as a merger of two calculi: the
LBiInt calculus [9,20] for the intuitionistic connectives, and the display calculus [8] for
the tense connectives.

We use ◦ and • as structural proxies for the non-residuated pairs (♦,�) and (�,�)
respectively, whereas Wansing [25] uses only • as a structural proxy for the residuated
pair (�,�) and recovers (♦,�) via classical negation, while Goré [8] uses ◦ and • as
structural proxies for the residuated pairs (♦,�) and (�,�) respectively. As we shall
see later, our choice allows us to retain the modal fragment (♦,�) by simply eliding all
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Identity and logical constants:

id
X,A . A, Y

⊥L
X,⊥ . Y

>R
X .>, Y

Structural rules:

X . Z wL
X,Y . Z

X . Z wR
X . Y,Z

X, Y, Y . Z
cL

X,Y . Z

X . Y, Y, Z
cR

X . Y,Z

(X1 . Y1), X2 . Y2
sL

X1, X2 . Y1, Y2

X1 . Y1, (X2 . Y2)
sR

X1, X2 . Y1, Y2

X2 . Y2, Y1 .L
(X2 . Y2) . Y1

X1, X2 . Y2 .R
X1 . (X2 . Y2)

•X . Y
rp◦

X . ◦Y
◦X . Y

rp•
X . •Y

X1 . Y1, A A,X2 . Y2
cut

X1, X2 . Y1, Y2

Logical rules:

X,Bi . Y ∧L i ∈ {1, 2}
X,B1 ∧B2 . Y

X . A, Y X . B, Y ∧R
X . A ∧B, Y

X,A . Y X,B . Y ∨L
X,A ∨B . Y

X . Bi, Y ∨R i ∈ {1, 2}
X . B1 ∨B2, Y

X . A, Y X,B . Y →L
X,A→ B . Y

X,A . B →R
X . A→ B, Y

A . B, Y
−< L

X,A −< B . Y

X . A, Y X,B . Y
−< R

X . A −< B, Y

A . X
�L

�A . ◦X
X . ◦A

�R
X .�A

A . X
�L

�A . •X
X . •A

�R
X .�A

◦A . X ♦L♦A . X
X . A ♦R◦X . ♦A

•A . X �L�A . X
X . A �R•X . �A

Fig. 2. LBiKt: a shallow inference system for BiKt

rules that contain “black” operators from our deep sequent calculus.
Fig. 3 gives the rules of the deep inference calculus DBiKt. Here the inference rules

can be applied at any level of the nested sequent, indicated by the use of contexts.
Notably, there are no residuation rules; indeed one of the goals of our paper is to show
that the residuation rules of LBiKt can be simulated by deep inference and propagation
rules in DBiKt. Another feature of DBiKt is the use of polarities in defining contexts to
which rules are applicable. For example, the premise of the �L1 rule denotes a negative
context Σ which itself contains a formula A and a •-structure, such that the •-structure
contains �A.

DBiKt achieves the goal of merging the DBiInt calculus [20] and a two-sided version
of the DKt calculus [10]. While in the shallow inference case, a calculus for BiKt could
be obtained relatively easily by merging shallow inference calculi for BiInt and tense
logics, the combination of calculi is not so obvious in the deep inference case. Although
the propagation rules for .-structures remain the same as in the BiInt case [20], the
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Identity and logical constants:

id
Σ[X,A . A, Y ]

⊥L
Σ[⊥, X . Y ]

>R
Σ[X .>, Y ]

Propagation rules:

Σ−[A, (A,X . Y )]
.L1

Σ−[A,X . Y ]

Σ+[(X . Y,A), A]
.R1

Σ+[X . Y,A]

Σ[X,A .W, (A, Y . Z)]
.L2

Σ[X,A .W, (Y . Z)]

Σ[(X . Y,A),W . A,Z]
.R2

Σ[(X . Y ),W . A,Z]

Σ−[A, •(�A,X)]
�L1

Σ−[•(�A,X)]

Σ+[A, •(♦A,X)]
♦R1

Σ+[•(♦A,X)]

Σ−[A, ◦(�A,X)]
�L1

Σ−[◦(�A,X)]

Σ+[A, ◦(�A,X)]
�R1

Σ+[◦(�A,X)]

Σ[�A,X . •(A . Y ), Z]
�L2

Σ[�A,X . •Y, Z]

Σ[◦(X . A), Y . Z,♦A]
♦R2

Σ[◦X,Y . Z,♦A]

Σ[�A,X . ◦(A . Y ), Z]
�L2

Σ[�A,X . ◦Y, Z]

Σ[•(X . A), Y . Z,�A]
�R2

Σ[•X,Y . Z,�A]

Logical rules:

Σ−[A ∨B,A] Σ−[A ∨B,B]
∨L

Σ−[A ∨B]

Σ+[A ∨B,A,B]
∨R

Σ+[A ∨B]

Σ−[A ∧B,A,B]
∧L

Σ−[A ∧B]

Σ+[A ∧B,A] Σ+[A ∧B,B]
∧R

Σ+[A ∧B]

Σ−[A −< B, (A . B)]
−< L

Σ−[A −< B]

Σ+[A→ B, (A . B)] →R
Σ+[A→ B]

Σ−[X,A→ B . A] Σ−[X,A→ B,B] →L
Σ−[X,A→ B]

Σ−[] is a strict context

Σ+[X,A −< B,A] Σ+[B . X,A −< B]
−< R

Σ+[X,A −< B]
Σ+[] is a strict context

Σ−[♦A, ◦A]
♦L

Σ−[♦A]

Σ+[�A, ◦A]
�R

Σ+[�A]

Σ−[�A, •A]
�L

Σ−[�A]

Σ+[�A, •A]
�R

Σ+[�A]

Fig. 3. DBiKt: a deep inference system for BiKt

propagation rules for ◦- and •-structures are not as simple as in the DKt calculus [10].
Since we do not assume any direct relationship between � and ♦, or � and �, propaga-
tion rules like �L2 need to involve the . structural connective so they can refer to both
sides of the nested sequent.

Note that in the rules →L and −< R in DBiKt, we require that the contexts in
which the principal formulae reside are strict contexts. This is strictly speaking not
necessary, i.e., we could remove the proviso without affecting the expressivity of the
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proof system. The proviso does, however, reduce the non-determinism in partitioning
the contexts in →L or −< R. Consider, for example, the nested sequent ◦(a, b→ c) . d.
Without the requirement of strict contexts, there are two instances of →L with that
nested sequent as the conclusion:

◦(a, (b→ c . b)) . d ◦(a, (b→ c, c)) . d
◦(a, b→ c) . d

→L

◦(a, b→ c . b) . d ◦(a, b→ c, c) . d
◦(a, b→ c) . d

→L

In the first instance, the context is ◦(a, [ ]) .d, which is not strict, whereas in the second
instance, it is ◦([ ]) . d, which is strict. In general, if there are n formulae connected to
b→ c via the comma structural connective, then there are 2n possible instances of →L

without the strict context proviso.
We write `LBiKt π : X . Y when π is a derivation of the shallow sequent X . Y in

LBiKt, and `DBiKt π : X.Y when π is a derivation of the sequent X.Y in DBiKt. In
either calculus, the height |π| of a derivation π is the number of sequents on the longest
branch.

Example 3.1 Below we derive Ewald’s axiom 9 for IKt [6] in LBiKt and DBiKt.
The LBiKt-derivation on the left read bottom-up brings the required sub-structure �A
to the top-level using the residuation rule rp◦ and applies �R backward. The DBiKt-
derivation on the right instead applies �R deeply, and propagates the required formulae
to the appropriate sub-structure using �R1. Note that contraction is implicit in �R1,
and all propagation rules.

id
A . A �R•A . �A rp◦
A . ◦�A

�RA .��A →R
∅ . A→ ��A

id∅ . (A . A, ◦(�A))
�R1∅ . (A . ◦(�A))

�R∅ . (A .��A) →R
∅ . A→ ��A

Display property
A (deep or shallow) nested sequent can be seen as a tree of traditional sequents.

The structural rules of LBiKt allows shuffling of structures to display/un-display a
particular node in the tree, so inference rules can be applied to it. This is similar to the
display property in traditional display calculi, where any substructure can be displayed
and un-displayed. We state the display property of LBiKt more precisely in subsequent
lemmas. We shall use two “display” rules which are easily derivable using sL, sR, .L

and .R:
(X1 . X2) . Y

rpL
.X1 . X2, Y

X1 . (X2 . Y )
rpR

.X1, X2 . Y

Let DP = {rpL
. , rp

R
. , rp◦, rp•} and let DP -derivable mean “derivable using rules only

from DP”.
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Lemma 3.2 (Display property for simple contexts) Let Σ[] be a simple context.
Let X be a structure and p a propositional variable not occurring in X nor Σ[]. Then
there exist structures Y and Z such that:

(i) Y . p is DP-derivable from X . Σ[p] and

(ii) p . Z is DP-derivable from Σ[p] . X.

Lemma 3.3 (Display property for positive contexts) Let Σ[] be a positive con-
text. Let X be a structure and p a propositional variable not occurring in X nor Σ[].
Then there exist structures Y and Z such that:

(i) Y . p is DP -derivable from X . Σ[p], and

(ii) Z . p is DP -derivable from Σ[p] . X.

Lemma 3.4 (Display property for negative contexts) Let Σ[] be a negative con-
text. Let X be a structure and p a propositional variable not occurring in X nor Σ[].
Then there exist structures Y and Z such that:

(i) p . Y is DP -derivable from X . Σ[p] and

(ii) p . Z is DP -derivable from Σ[p] . X.

Since the rules in DP are all invertible, the derivations constructed in the above
lemmas are invertible derivations. That is, we can derive Y . p from X . Σ[p] and vice
versa. Note also that since rules in the shallow system are closed under substitution,
this also means Y . Z is derivable from X . Σ[Z], and vice versa, for any Z.

Cut elimination in LBiKt
Our cut-elimination proof is based on the method of proof-substitution presented

in [9]. It is very similar to the general cut elimination method used in display calculi.
The proof relies on the display property and the fact that inference rules in LBiKt are
closed under substitutions. The proof is omitted here, but is available in the extended
version of this paper [11]. We illustrate one case with an example.

Consider the derivation below ending with a cut on ♦A:

Π1

X1 . Y1,♦A
Π2

♦A,X2 . Y2
cut

X1, X2 . Y1, Y2

Instead of permuting the cut rule locally, we trace the cut formula ♦A until it becomes
principal in the derivations Π1 and Π2, and then apply cut on a smaller formula. Sup-
pose that Π1 and Π2 are respectively the derivations (1) and (2) in Figure 4. We first
transform Π1 by substituting (X2 . Y2) for ♦A in Π1 and obtain the sub-derivation
with an open leaf as shown in Figure 4(3). We then prove the open leaf by uniformly
substituting ◦(X ′1) for ♦A in Π2, and applying cut on a sub-formula A, as shown in
Figure 4(4).

Theorem 3.5 If X . Y is LBiKt-derivable then it is also LBiKt-derivable without
using cut.
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Ψ1

X′1 . A ♦R◦(X′1) . ♦A

...
X1 . Y1,♦A

Ψ2

◦A . Y ′2 ♦L
♦A . Y ′2

...
♦A,X2 . Y2

◦X′1 . (X2 . Y2)

...

X1 . Y1, (X2 . Y2)
sR

X1, X2 . Y1, Y2

Ψ1

X′1 . A

Ψ2

◦A . Y ′2 rp•
A . •Y ′2

cut
X′1 . •Y ′2 rp•
◦X′1 . Y ′2

...

◦X′1, X2 . Y2
.R

◦X′1 . (X2 . Y2)

(1) (2) (3) (4)

Fig. 4. An example of cut reduction

4 Equivalence between LBiKt and DBiKt

We now show that LBiKt and DBiKt are equivalent. We first show that every deriva-
tion in DBiKt can be mimicked by a cut-free derivation in LBiKt. The interesting
cases involve showing that the propagation rules of DBiKt are derivable in LBiKt
using residuation. This is not surprising since the residuation rules in display calculi
are used exactly for the purpose of displaying and un-displaying sub-structures so that
inference rules can be applied to them.

Theorem 4.1 For any X and Y , if `DBiKt π : X . Y then `LBiKt π
′ : X . Y .

Proof. (Outline) We show that each deep inference rule ρ is derivable in the shallow
system by a case analysis of the context Σ[ ] in which the deep rule ρ applies. Note that
if a deep inference rule ρ is applicable to X . Y , then the context Σ[ ] in this case is
either [ ], a positive context or a negative context. In the first case, it is easy to show
that each valid instance of ρ where Σ[ ] = [ ] is derivable in the shallow system. For the
case where Σ[ ] is either positive or negative, we use the display property. We show here
the case where ρ is a rule with a single premise; the other cases are similar. Suppose ρ
is as shown below left. By the display properties, we need to show only that the rule on
the right is derivable in the shallow system for some structure X ′:

Σ+[U ]
ρ

Σ+[V ]
X ′ . U
X ′ . V

A more detailed proof is given in the extended paper. a

We now show that any cut-free LBiKt-derivation can be transformed into a cut-free
DBiKt-derivation. This requires proving cut-free admissibility of various structural
rules in DBiKt. The admissibility of general weakening and formula contraction (not
general contraction, which we will show later) are straightforward by induction on the
height of derivations.
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Lemma 4.2 (Admissibility of general weakening) For any structures X and Y :
if `DBiKt π : Σ[X] then `DBiKt π

′ : Σ[X,Y ] such that |π′| ≤ |π|.

Lemma 4.3 (Admissibility of formula contraction) For any structure X and for-
mula A: if `DBiKt π : Σ[X,A,A] then `DBiKt π

′ : Σ[X,A] such that |π′| ≤ |π|.

Once weakening and contraction are shown admissible, it remains to show that the
residuation rules of LBiKt are also admissible. In contrast to the case with the deep
inference system for bi-intuitionistic logic, the combination of modal and intuitionistic
structural connectives complicates the proof of this admissibility. It seems crucial to first
show “deep” admissibility of certain forms of residuation for .. We state the required
lemmas below.

Lemma 4.4 (Deep admissibility of structural rules) The following statements
hold for DBiKt:

(i) Deep admissibility of sL. If `DBiKt π : Σ[(X . Y ), Z . W ] then `DBiKt π′ :
Σ[X,Z . Y,W ] such that |π′| ≤ |π|.

(ii) Deep admissibility of sR. If `DBiKt π : Σ[X . Y, (Z . W )] then `DBiKt π′ :
Σ[X,Z . Y,W ] such that |π′| ≤ |π|.

(iii) Deep admissibility of .L. If `DBiKt π : Σ[X . Y,Z] and Σ is either the empty
context [ ] or a negative context Σ−1 [ ], then `DBiKt π

′ : Σ[(X . Y ) . Z].

(iv) Deep admissibility of .R. If `DBiKt π : Σ[X,Y . Z] and Σ is either the empty
context [ ] or a positive context Σ+

1 [ ], then `DBiKt π
′ : Σ[X . (Y . Z)].

We now show that the residuation rules of LBiKt for ◦- and •-structures are admis-
sible in DBiKt, i.e., they can be simulated by the propagation rules of DBiKt.

Lemma 4.5 (Admissibility of residuation) The following statements hold in
DBiKt:

(i) Admissibility of rp•. If `DBiKt π : X . •Z then `DBiKt π
′ : ◦X . Z.

(ii) Admissibility of rp•. If `DBiKt π : ◦X . Z then `DBiKt π
′ : X . •Z.

(iii) Admissibility of rp◦. If `DBiKt π : X . ◦Z then `DBiKt π
′ : •X . Z.

(iv) Admissibility of rp◦. If `DBiKt π : •X . Z then `DBiKt π
′ : X . ◦Z.

The proof of admissibility of general contraction is more involved and requires proving
several distribution properties among structural connectives. The proof can be found in
Appendix A.

Lemma 4.6 (Admissibility of general contraction) For any structure Y : if
`DBiKt π : Σ[Y, Y ] then `DBiKt π

′ : Σ[Y ].

Once all structural rules of LBiKt are shown admissible in DBiKt, it is easy to
show that every derivation in LBiKt can be translated to a derivation in DBiKt.

Theorem 4.7 For any X and Y , if `LBiKt π : X . Y then `DBiKt π
′ : X . Y .
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Corollary 4.8 For any X and Y , `LBiKt π : X . Y if and only if `DBiKt π
′ : X . Y .

Proof. By Theorems 4.1 and 4.7. a

5 Proof Search

In this section we outline a proof search strategy for DBiKt, closely following the
approaches presented in [20] and [10]. Here we emphasize the aspects that are
new/different because of the interaction between the tense structures ◦ and • and the
intuitionistic structure ..

Our backward proof search strategy proceeds in three stages: saturation, propagation
and realisation. The saturation phase applies the “static rules” (i.e. those that do not
create extra structural connectives) until further backward application do not lead to
any progress. The propagation phase propagates formulaes across different structural
connectives, while the realisation phase applies the “dynamic rules” (i.e., those that
create new structural connectives, e.g., →R).

A context Σ[ ] is said to be headed by a structural connective # if the topmost symbol
in the formation tree of Σ[ ] is #. A context Σ[ ] is said to be a factor of Σ′[ ] if Σ[ ] is
a subcontext of Σ′[ ] and Σ[ ] is headed by either ., ◦ or •. We write Σ̂[ ] to denote the
smallest factor of Σ[ ]. We write Σ̂[X] to denote the structure Σ1[X], if Σ1[ ] = Σ̂[ ]. We
define the top-level formulae of a structure as:

{|X|} = {A | X = (A, Y ) for some A and Y }.

For example, if Σ[] = (A,B . C, •(D, (E . F ) . [])), then Σ̂[G] = (D, (E . F ) . G), and
{|D, (E . F )|} = {D}.

Let −< L1 and →R1 denote two new derived rules (see [20] for their derivation):

Σ−[A,A −< B]
−< L1

Σ−[A −< B]
Σ+[A→ B,B] →R1

Σ+[A→ B]

We now define a notion of a saturated structure, which is similar to that of a tradi-
tional sequent. Note that we need to define it for both structures headed by . and those
headed by ◦ or •. A structure X . Y is saturated if it satisfies the following:

(1) {|X|} ∩ {|Y |} = ∅
(2) If A ∧B ∈ {|X|} then A ∈ {|X|} and B ∈ {|X|}
(3) If A ∧B ∈ {|Y |} then A ∈ {|Y |} or B ∈ {|Y |}
(4) If A ∨B ∈ {|X|} then A ∈ {|X|} or B ∈ {|X|}
(5) If A ∨B ∈ {|Y |} then A ∈ {|Y |} and B ∈ {|Y |}
(6) If A→ B ∈ {|X|} then A ∈ {|Y |} or B ∈ {|X|}
(7) If A −< B ∈ {|Y |} then A ∈ {|Y |} or B ∈ {|X|}
(8) If A −< B ∈ {|X|} then A ∈ {|X|}
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(9) If A→ B ∈ {|Y |} then B ∈ {|Y |}

For structures of the form ◦X or •X, we need to define two notions of saturation, left
saturation and right saturation. The former is used when ◦X is nested in a negative
context, and the latter when it is in a positive context. A structure ◦X or •X is left-
saturated if it satisfies (2), (4), (8) above, and

6’ If A→ B ∈ {|X|} then B ∈ {|X|}.

Dually, ◦Y or •Y is right-saturated if it satisfies (3), (5), (9) above, and

7’ If A −< B ∈ {|Y |} then A ∈ {|Y |}.

We define structure membership for any two structures X and Y as follows: X ∈ Y
iff Y = X,X ′ for some X ′, modulo associativity and commutativity of comma. For
example, (A . B) ∈ (A, (A . B), ◦C). The realisation of formulae by a structure X is
defined as follows:

∗ A → B (A −< B, resp.) is right-realised (resp. left-realised) by X iff there exists
Z .W ∈ X such that A ∈ {|Z|} and B ∈ {|W |}.

∗ �A (♦A resp.) is right-realised (resp. left-realised) by X iff there exists ◦(Z .W ) ∈ X
or ◦W ∈ X (resp. ◦(W . Z) ∈ X or ◦W ∈ X) such that A ∈ {|W |}.

∗ �A (�A resp.) is right-realised (resp. left-realised) by X iff there exists •(W .Z) ∈ X
or •Z ∈ X (resp. •(Z .W ) ∈ X or •Z ∈ X) such that A ∈ {|Z|}.

We say that a structure X is left-realised iff every formula in {|X|} with top-level
connective −< , ♦ or � is left-realised by X. Right-realisation of X is defined dually.
We say that a structure occurrence X in Σ[X] is propagated iff no propagation rules
are (backwards) applicable to any formula occurrences in X. We define the super-set
relation on structures as follows:

∗ X1 . Y1 ⊃ X0 . Y0 iff {|X1|} ⊃ {|X0|} or {|Y1|} ⊃ {|Y0|}.
∗ ◦X ⊃ ◦Y iff •X ⊃ •Y iff {|X|} ⊃ {|Y |}.

To simplify presentation, we use the following terminology: Given a structure Σ[A],
we say that Σ̂[A] is saturated if Σ̂[A] is X . Y and it is saturated; or Σ̂[A] is either ◦X
or •X and it is either left- or right-saturated (depending on its position in Σ[A]). We
say that Σ̂[A] is propagated if its occurrence in Σ[A] is propagated, and we say that A
is realised by Σ̂[A], if either

∗ Σ̂[A] = (X .Y ) and either A ∈ {|X|} is left-realised by X, or A ∈ {|Y |} is right realised
by Y ; or

∗ Σ̂[A] is either ◦X or •X, and, depending on the polarity of Σ[ ], A is either left- or
right-realised by X.

We now outline an approach to proof search in DBiKt. We approach this by modi-
fying DBiKt to obtain a calculus DBiKt1 that is more amenable to proof search. Our
approach follows that of our previous work on bi-intuitionistic logic [20] since we define
syntactic restrictions on rules to enforce a search strategy. For example, we stipulate
that a structure must be saturated and propagated before child structures can be created
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using the →R rule (see condition ii of Definition 5.1). Additionally and more impor-
tantly, our proof search calculus addresses the issue that some modal propagation rules
of DBiKt, e.g. �L2, create .-structures during backward proof search. This property
of DBiKt is undesirable and gives rise to non-termination if rules like �L2 are applied
naively.

Definition 5.1 Let DBiKt1 be the system obtained from DBiKt with the following
changes:

(i) Add the derived rules −< L1 and →R1.

(ii) Restrict rules −< L, →R with the following condition: the rule is applicable only
if Σ̂[A#B] is saturated and propagated, and A#B is not realised by Σ̂[A#B], for
# ∈ {→, −< }.

(iii) Replace rules .L1 and .R1 with the following:

Σ[A, (A,X . Y ),W . Z]
.L1

Σ[(A,X . Y ),W . Z]
Σ[W . Z, (X . Y,A), A]

.R1
Σ[W . Z, (X . Y,A)]

(iv) Restrict rules .L2 and .R2 with the following condition: the rule is applicable only
if A 6∈ {|Y |}.

(v) Replace rules ♦L, �R, �L, �R with the following, where the rule is applicable
only if Σ̂[#A] is saturated and propagated and #A is not realised byΣ̂[#A], for
# ∈ {♦,�,�,�}:

Σ−[♦A, ◦(A . ∅)]
♦LΣ−[♦A]

Σ+[�A, ◦(∅ . A)]
�RΣ+[�A]

Σ−[�A, •(A . ∅)]
�LΣ−[�A]

Σ+[�A, •(∅ . A)]
�RΣ+[�A]

(vi) Replace rules �L2,�L2 with the following, where A 6∈ {|Y1|}:

Σ[�A,X . •(A, Y1 . Y2), Z]
�L2Σ[�A,X . •(Y1 . Y2), Z]

Σ[�A,X . ◦(A, Y1 . Y2), Z]
�L2Σ[�A,X . ◦(Y1 . Y2), Z]

(vii) Replace rules ♦R2,�R2 with the following, where A 6∈ {|X2|}:

Σ[◦(X1 . X2, A), Y . Z,♦A]
♦R2Σ[◦(X1 . X2), Y . Z,♦A]

Σ[•(X1 . X2, A), Y . Z,�A]
�R2Σ[•(X1 . X2), Y . Z,�A]

(viii) Replace rules �L1,♦R1, �L1,�R1 with the following:

Σ−[A, •(�A,X . Y )]
�L1Σ−[•(�A,X . Y )]

Σ+[A, •(Y . ♦A,X)]
♦R1Σ+[•(Y . ♦A,X)]

Σ−[A, ◦(�A,X . Y )]
�L1Σ−[◦(�A,X . Y )]

Σ+[A, ◦(Y . �A,X)]
�R1Σ+[◦(Y . �A,X)]
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(ix) Replace rules →L, −< R with the following:

Σ[X,A→ B . A, Y ] Σ[X,A→ B,B . Y ] →L
Σ[X,A→ B . Y ]

Σ[X . Y,A −< B,A] Σ[X,B . Y,A −< B]
−< RΣ[X . Y,A −< B]

(x) Restrict rules →L, −< R, .L1, .R1, ∧L, ∧R, ∨L, ∨R and all modal propagation
rules to the following: Let Σ[X0] be the conclusion of the rule and let Σ[X1] (and
Σ[X2]) be the premise(s). The rule is applicable only if: Σ̂[X1] ⊃ Σ̂[X0] and
Σ̂[X2] ⊃ Σ̂[X0].

We conjecture that DBiKt and DBiKt1 are equivalent and that backward proof
search in DBiKt terminates. Note that by equivalence here we mean that DBiKt and
DBiKt proves the same set of formulae, but not necessarily the same set of structures.
This is because the propagation rules in DBiKt1 are more restricted so as to allow
for easier termination checking. For example, the structure A . •(♦A) is derivable in
DBiKt but not in DBiKt1, although its formula translate is derivable in both systems.
It is likely that a combination of the techniques from [20] and [10] can be used to
prove termination of proof search in DBiKt1, given its similarities to the deep inference
systems used in those two works.

6 Semantics

We now give a Kripke-style semantics for BiKt and show that LBiKt is sound with
respect to the semantics. Our semantics for BiKt extend Rauszer’s [22] Kripke-style
semantics for BiInt by clauses for the tense logic connectives. We use the classical
first-order meta-level connectives &, “or”, “not”, ⇒, ∀ and ∃ to state our semantics.

A Kripke frame is a tuple 〈W,≤, R♦, R�〉 where W is a non-empty set of worlds and
≤ ⊆ (W ×W ) is a reflexive and transitive binary relation over W , and each of R♦ and
R� are arbitrary binary relations over W with the following frame conditions:

F1♦ if x ≤ y & xR♦z then ∃w. yR♦w & z ≤ w
F2� if xR�y & y ≤ z then ∃w. x ≤ w & wR�z.

A Kripke model extends a Kripke frame with a mapping V from Atoms to 2W obeying
persistence: ∀v ≥ w. w ∈ V (p) ⇒ v ∈ V (p). Given a model 〈W,≤, R♦, R�, V 〉, we say
that w ∈ W satisfies p if w ∈ V (p), and write this as w 
 p. We write w 6
 p to mean
(not)(w 
 p); that is, ∃v ≥ w. v 6∈ V (p). The relation 
 is then extended to formulae
as given in Figure 5. A BiKt-formula A is BiKt-valid if it is satisfied by every world in
every Kripke model. A nested sequent X . Y is BiKt-valid if its formula translation is
BiKt-valid.

Our semantics differ from those of Simpson [24] and Ewald [6] because we use two
modal accessibility relations instead of one. In our calculi, there is no direct relationship
between ♦ and � (or � and �), but ♦ and � are a residuated pair, as are � and �.
Semantically, this corresponds to R� = R−1

� and R� = R−1
♦ ; therefore the clauses in
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w 
 > for every w ∈W w 
 ⊥ for no w ∈W
w 
 A ∧B if w 
 A & w 
 B w 
 A ∨B if w 
 A or w 
 B

w 
 A→ B if ∀v ≥ w. v 
 A⇒ v 
 B w 
 ¬A if ∀v ≥ w. v 6
 A

w 
 A −< B if ∃v ≤ w. v 
 A & v 6
 B w 
 ∼ A if ∃v ≤ w. v 6
 A

w 
 ♦A if ∃v. wR♦v & v 
 A w 
 �A if ∀z.∀v. w ≤ z & zR�v ⇒ v 
 A

w 
 �A if ∃v. wR−1
�
v & v 
 A w 
 �A if ∀z.∀v. w ≤ z & zR−1

♦ v ⇒ v 
 A

Fig. 5. Semantics for BiKt

Figure 5 are couched in terms of R♦ and R� only. Our frame conditions F1♦ and F2�
are also used by Simpson whose F2 captures the “persistence of being seen by” [24,
page 51] while for us F2� is simply the “persistence of �”.

LBiKt is sound with respect to BiKt. The soundness proof is straightforward by
the definition of the semantics and the inference rules.

Theorem 6.1 (Soundness) If A is a BiKt-formula and ∅.A is LBiKt-derivable, then
A is BiKt-valid.

We conjecture that DBiKt is also complete w.r.t. the semantics; an outline of the
proof will be given in the extended version of the paper.

7 Modularity, Extensions and Classicality

We first exhibit the modularity of our deep calculus DBiKt by showing that fragments
of DBiKt obtained by restricting the language of formulae and structures also satisfy
cut admissibility. We then show how we can obtain Ewald’s intuitionistic tense logic
IKt [6], Simpson’s intuitionistic modal logic IK [24] and regain classical tense logic Kt.
We also discuss extensions of DBiKt with axioms T , 4 and B but they do not correspond
semantically to reflexivity, transitivity and symmetry [24].

Modularity
A nested sequent is purely modal if contains no occurrences of • nor its formula

translates � and �. We write DInt for the sub-system of DBiKt containing only the
rules id, the logical rules for intuitionistic connectives, and the propagation rules for ..
The logical system DIntK is obtained by adding to DInt the deep introduction rules
for � and ♦, and the propagation rules �L2 and ♦R2. The logical system DBInt is
obtained by adding to DInt the deep introduction rules for −< . In the following, we
say that a formula is an IntK-formula if it is composed from propositional variables,
intuitionistic connectives, and � and ♦. Observe that in DBiKt, the only rules that
create • upwards are �L and �R. Thus in every DBiKt-derivation π of an IntK formula,
the internal sequents in π are purely modal, and hence π is also a DIntK-derivation.
This observation gives immediately the following modularity result.

Theorem 7.1 (Modularity) Let A be an Int (resp. BiInt and IntK) formula. The
nested sequent ∅ . A is DInt-derivable (resp. DBInt- and DIntK-derivable) iff ∅ . A
is DBiKt-derivable.
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A consequence of Theorem 3.5, Theorem 4.1, Theorem 4.7 and Theorem 7.1, is that
the cut rule is admissible in DInt, DBInt and DIntK. As the semantics of LBiKt
(hence, also DBiKt) is conservative w.r.t. to the semantics of both intuitionistic and
bi-intuitionistic logic, the following completeness result holds.

Theorem 7.2 An Int (resp. BiInt) formula A is valid in Int (resp. BiInt) iff ∅ . A is
derivable in DInt (resp. DBInt).

Obtaining Ewald’s IKt
To obtain Ewald’s IKt [6] we need to collapse R♦ and R� into one temporal relation R

and leave out our semantic clauses for −< and ∼. That is, we need to add the following
conditions to the basic semantics: R♦ ⊆ R� and R� ⊆ R♦. Proof theoretically, this is
captured by extending LBiKt with the structural rules:

X . •Y . •Z •.R
X . •(Y . Z)

X . ◦Y . ◦Z ◦.R
X . ◦(Y . Z)

We refer to the extension of LBiKt with these two structural rules as LBiKtE.
Simpson’s intuitionistic modal logic IK [24] can then be obtained from Ewald’s system

by restricting the language to the modal fragment. Note that cut-elimination still holds
for LBiKtE because these structural rules are closed under formula substitution and
the cut-elimination proof for LBiKt still goes through when additional structural rules
of this kind are added. We refer the reader to [10] for a discussion on how cut elimination
can be proved for this kind of extension.

A BiKt-frame is an E-frame if R� = R♦. A formula A is E-valid if it is true in all
worlds of every E-model. An IKt formula A is a theorem of IKt iff it is E-valid [6]. The
rules ◦.R and •.R are sound for E-frames. The proofs of the following lemmas can be
found in Appendix B.

Lemma 7.3 Rule ◦.R is sound iff R� ⊆ R♦.

Lemma 7.4 Rule •.R is sound iff R♦ ⊆ R�.

Theorem 7.5 If A is derivable in LBiKtE then A is E-valid.

Proof. Straightforward from the soundness of LBiKt w.r.t. BiKt-semantics (which
subsumes Ewald’s semantics) and Lemma 7.3 and Lemma 7.4. a

Completeness of LBiKtE w.r.t. IKt and IK can be shown by deriving the axioms of
IKt and IK. The completeness proof will be given in the extended version of the paper.

Theorem 7.6 System LBiKtE is complete w.r.t. Ewald’s IKt and Simpson’s IK.

Theorem 7.7 (Conservativity over IKt and IK) If A is an IKt-formula (IK for-
mula), then A is IKt-valid (IK-valid) iff ∅ . A is derivable in LBiKtE.
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Σ−[A,�A]
T�

Σ−[�A]

Σ[�A,X . ◦(�A . Y ), Z]
4�L

Σ[�A,X . ◦Y, Z]

Σ−[A, ◦(�A,X)]
B�L

Σ−[◦(�A,X)]

id
p,�p . p

T�
�p . p →R

. �p→ p

id
�p . ◦(�p .�p)

4�L
�p . ◦�p

�R
�p .��p →R

. �p→ ��p

id
p, ◦�p . p

B�L◦�p . p
♦L

♦�p . p →R
. ♦�p→ p

Fig. 6. Some example propagation rules and the axioms they capture

Regaining classical tense logic Kt
To collapse BiKt to classical tense logic Kt we add the rules •.R and ◦.L, giving

Ewald’s IKt with R♦ = R� via Lemmas 7.3-7.4, and then add following two rules:

X1, X2 . Y1, Y2
s−1

L(X1 . Y1), X2 . Y2

X1, X2 . Y1, Y2
s−1

RX1 . Y1, (X2 . Y2)

The law of the excluded middle and the law of (dual-)contradiction can then be derived
as shown below:

p . p,⊥
s−1

L(∅ . p), p .⊥ →R
(∅ . p) . (p→ ⊥)

sL∅ . p, (p→ ⊥) ∨L∅ . p ∨ (p→ ⊥)

p,> . p
s−1

R> . p, (p . ∅)
−< L(> −< p) . (p . ∅)
sR

p, (> −< p) . ∅ ∧R
p ∧ (> −< p) . ∅

Further extensions
Our previous work on deep inference systems for classical tense logic [10] shows that

extensions of classical tense logic with some standard modal axioms can be formalised by
adding numerous propagation rules to the deep inference system for classical tense logic
given in that paper. We illustrate here with a few examples how such an approach to
extensions with modal axioms can be applied to BiKt. Figure 6 shows the propagation
rules that are needed to derive axiom T, 4 and B. For each rule, the derivation of the
corresponding axiom is given below the rule. Other nesting combinations will be needed
for full completeness. Dual rules allow derivations of p → ♦p and ♦♦p → ♦p. The
complete treatement of these and other possible extensions of LBiKt is left for future
work.
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A Admissibility of general contraction

In the following, we label a dashed line with the lemma used to obtain the conclusion
from the premise.

Lemma A.1 If `DBiKt π : Σ+[◦(X.Y ), ◦Y ] and contraction on structures is admissible
for all derivations π1 such that |π1| ≤ |π| then `DBiKt π

′ : Σ+[◦(X . Y )].

Proof. By induction on the height of π. The interesting cases are when π ends with a
propagation rule that moves a formula into either ◦(X . Y ) or ◦Y :

∗ Suppose π ends as below left. Then by Lemma 4.4(ii), there is a derivation π2 of
�A.◦(A,X.Y ), ◦Y such that |π2| ≤ |π1|. Then we can apply the induction hypothesis
to π2 to obtain a derivation π3 of �A . ◦(A,X . Y ). Then the derivation below right
gives the required:

π1

�A . ◦(A . (X . Y )), ◦Y
�L2

�A . ◦(X . Y ), ◦Y

π3

�A . ◦(A,X . Y )
Lemma 4.4(iv)

�A . ◦(A . (X . Y ))
�L2

�A . ◦(X . Y )
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∗ Suppose π ends as below left. Then applying Lemma 4.2 twice, we obtain a derivation
π2 of �A.◦(A,X.Y ), ◦(A,X.Y ) such that |π2| ≤ |π1|. Then we apply the assumption
of this lemma to π2 to obtain a derivation π3 of �A.◦(A,X .Y ). Then the derivation
below right gives the required:

π1

�A . ◦(X . Y ), ◦(A . Y )
�L2

�A . ◦(X . Y ), ◦Y

π3

�A . ◦(A,X . Y )
Lemma 4.4(iv)

�A . ◦(A . (X . Y ))
�L2

�A . ◦(X . Y )

a

Lemma A.2 If `DBiKt π : Σ−[◦(X . Y ), ◦X] then `DBiKt π
′ : Σ−[◦(X . Y )].

Proof. By induction on the height of π. The interesting cases are when π ends with a
propagation rule that moves a formula into either ◦(X . Y ) or ◦X:

∗ Suppose π ends as below left. Then by Lemma 4.4(i), there is a derivation π2 of
◦(X.Y,A), ◦X.♦A such that |π2| ≤ |π1|. Then we can apply the induction hypothesis
to π2 to obtain a derivation π3 of ◦(X . Y,A) . ♦A. Then the derivation below right
gives the required:

π1

◦((X . Y ) . A), ◦X . ♦A
♦R2◦(X . Y ), ◦X . ♦A

π3

◦(X . Y,A) . ♦A
Lemma 4.4(iii)

◦((X . Y ) . A) . ♦A
♦R2◦(X . Y ) . ♦A

∗ Suppose π ends as below left. Then applying Lemma 4.2 twice, we obtain a derivation
π2 of ◦(X.Y,A), ◦(X.Y,A).♦A such that |π2| ≤ |π1|. Then we apply the assumption
of this lemma to π2 to obtain a derivation π3 of ◦(X .Y,A).♦A. Then the derivation
below right gives the required:

π1

◦(X . Y ), ◦(X . A) . ♦A
♦R2◦(X . Y ), ◦X . ♦A

π3

◦(X . Y,A) . ♦A
Lemma 4.4(iii)

◦((X . Y ) . A) . ♦A
♦R2◦(X . Y ) . ♦A

a

Lemma A.3 If `DBiKt π : Σ+[•(X . Y ), •(Y )] then `DBiKt π
′ : Σ+[•(X . Y )].

Lemma A.4 If `DBiKt π : Σ−[•(X . Y ), •(X)] then `DBiKt π
′ : Σ−[•(X . Y )].

Lemma 4.6 (Admissibility of general contraction) For any structure Y : if `DBiKt

π : Σ[Y, Y ] then `DBiKt π
′ : Σ[Y ].

Proof. By induction on the size of Y , with a sub-induction on |π|.

∗ For the base case, use Lemma 4.3.
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∗ For the case where Y is a .-structure, we show the sub-case where Y in a negative
context, the other case is symmetric:

Σ[(Y1 . Y2), (Y1 . Y2) . Z]
Lemma 4.4(i)

Σ[Y1, (Y1 . Y2) . Y2, Z]
Lemma 4.4(i)

Σ[Y1, Y1 . Y2, Y2, Z]
IH

Σ[Y1 . Y2, Y2, Z]
IH

Σ[Y1 . Y2, Z]
Lemma 4.4(iii)

Σ[(Y1 . Y2) . Z]

∗ For the case where Y is a ◦− or •-structure and π ends with a propagation rule applied
to Y , there are three non-trivial sub-cases:
· A formula is propagated into Y and Y is in a positive context, as below left. Then

by Lemma A.1, there is a derivation π′1 of �A,X . ◦(A . Z). Then the derivation
below right gives the required:

π1

�A,X . ◦(A . Z), ◦Z
�L2�A,X . ◦Z, ◦Z

π′1
�A,X . ◦(A . Z)

�L2�A,X . ◦Z

· A formula is propagated into Y and Y is in a negative context, as below left. Then
by Lemma A.2, there is a derivation π′1 of ◦(Z . A) . X,♦A. Then the derivation
below right gives the required:

π1

◦(Z . A), ◦Z . X,♦A
♦R2◦Z, ◦Z . X,♦A

π′1
◦(Z . A) . X,♦A

♦R2◦Z . X,♦A

· A formula is propagated out of Y , as below left. In this case we use the sub-induction
hypothesis to obtain a derivation π′1 of X .A, ◦(�A,Z). Then the derivation below
right gives the required:

π1

X . A, ◦(�A,Z), ◦(�A,Z)
�R1

X . ◦(�A,Z), ◦(�A,Z)

π′1
X . A, ◦(�A,Z)

�R1
X . ◦(�A,Z)

a

B Modularity, Extensions and Classicality

Theorem 7.6. System LBiKtE is complete w.r.t. Ewald’s IKt and Simpson’s IK.

Proof. We show the non-trivial cases; the rest are similar or easier. Derivations of
Simpson’s axiom 2 and Ewald’s axiom 5 and 7 are given in Figure B.1, derivations of
Simpson’s axiom 5 and Ewald’s axiom 10 and 11’ are given in Figure B.2. a
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id
A . A wR

A . A, •♦B

id
B . B ♦R◦B . ♦B

rp•
B . •♦B

wL
B,A . •♦B

A→ B,A . •♦B
.R

A→ B . A . •♦B
�L

�(A→ B) . ◦(A . •♦B)
rp◦

•(�(A→ B)) . A . •♦B
sR

A, •(�(A→ B)) . •♦B
.R

A . •(�(A→ B)) . •♦B •.R
A . •(�(A→ B) . ♦B)

rp•
◦A . (�(A→ B) . ♦B)

♦L
♦A . (�(A→ B) . ♦B)

sR
�(A→ B),♦A . ♦B

→R ×2
.�(A→ B)→ (♦A→ ♦B)

id
A . A, •⊥

⊥L⊥, A . •⊥ →L
A→ ⊥, A . •⊥

.R
A→ ⊥ . A . •⊥

�L
�(A→ ⊥) . ◦(A . •⊥)

rp◦
•(�(A→ ⊥)) . A . •⊥

sR
A, •(�(A→ ⊥)) . •⊥

.R
A . •(�(A→ ⊥)) . •⊥ •.R
A . •(�(A→ ⊥) .⊥)

rp•
◦A .�(A→ ⊥) .⊥

♦L
♦A .�(A→ ⊥) .⊥

sR
�(A→ ⊥),♦A .⊥

→R ×2
.�(A→ ⊥)→ (♦A→ ⊥)

Fig. B.1. Derivations of Simpson’s axiom 2 and Ewald’s axiom 5 (left) and Ewald’s axiom 7 (right)

id
A . A ♦R◦A . ♦A

id
B . B

�L
�B . ◦B wL

�B, ◦A . ◦B →L
♦A→ �B, ◦A . ◦B

.R
♦A→ �B . ◦A . ◦B ◦.R
♦A→ �B . ◦(A . B)

rp◦
•(♦A→ �B) . A . B

sR
•(♦A→ �B), A . B →R
•(♦A→ �B) . A→ B

rp◦
♦A→ �B . ◦(A→ B)

�R
♦A→ �B .�(A→ B) →R

.(♦A→ �B)→ �(A→ B)

id
A . A

�L
�A . •A rp◦
◦(�A) . A

wR
◦(�A) . A, ◦(�B)

id
B . B �R•B . �B

rp◦
B . ◦(�B)

wL
B, ◦(�A) . ◦(�B) →L

A→ B, ◦(�A) . ◦(�B)
.R

A→ B . ◦(�A) . ◦(�B) ◦.R
A→ B . ◦(�A . �B)

rp•
•(A→ B) .�A . �B

sR
•(A→ B),�A . �B →R
•(A→ B) .�A→ �B

�L
�(A→ B) .�A→ �B →R

.�(A→ B)→ (�A→ �B)

Fig. B.2. Derivations of Simpson’s axiom 5 and Ewald’s axiom 10 (left) and Ewald’s axiom 11’ (right)

Lemma 7.3. Rule ◦.R is sound iff R� ⊆ R♦.

Proof. (⇐) We show that if the frame condition holds, then the rule is sound. We
assume that: (1) R� ⊆ R♦, and (2) that the formula translation ♦A → �B of the
premise is valid. We then show that the formula translation �(A→ B) of the conclusion
is valid. For a contradiction, suppose that �(A→ B) is not valid. That is, there exists
a world u such that u 6
 �(p → q). Then (4) there exist worlds x and y such that
u ≤ x & xR�y and y 6
 p → q. Thus there exists z s.t. z ≥ y and z 
 p and
z 6
 q. The pattern xR�y ≤ z implies there is a world w with x ≤ wR�z by F2�.
The frame condition (1) then gives wR♦z too, meaning that w 
 ♦p. From (2) we
get w 
 �q, which gives us z 
 q, giving us the contradiction we seek. Therefore the
premise �(A→ B) is valid and the rule is sound.

(⇒) We show that if the rule is sound, then the failure of the frame condition gives a
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contradiction. So suppose that the rule is sound. The rule implies that .(♦A→ �B)→
�(A → B) is derivable. For a contradiction, suppose we have a frame with R� 6⊆ R♦.
That is, (5): there exist x and y such that xR�y but not xR♦y. Let W = {u,w, x, y, z},
let < be the relation {(u, x), (x,w), (y, z)} and let ≤ be the reflexive-transitive closure
of < . Let R♦ = {}, R� = {(x, y), (w, z)} and let V (p) = {z}, V (q) = {}. Then the
model 〈W,≤, R♦, R�, V 〉 satisfies (5), and has u 
 ♦p→ �q but u 6
 �(p→ q). a

Lemma 7.4. Rule •.R is sound iff R♦ ⊆ R�.

Proof. R♦ ⊆ R� means R� ⊆ R�; the rest of the proof is analogous to the proof of
Lemma 7.3. a
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