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Abstract

If a finite two person game form has the property that every 2×2 fragment is Nash consistent,
then no derivative game admits an individual improvement cycle.

1 Introduction

Shapley (1964) showed that if every 2 × 2 submatrix of a payoff matrix possesses a saddle point,
then the whole matrix also possesses a saddle point. Such matrices were studied by Gurvich and
Libkin (1990). The result does not extend even to bimatrix games.

The purpose of this note is to show that a strengthened version of Shapley’s theorem holds for
bimatrix game forms: If a finite two person game form has the property that every 2× 2 fragment
is Nash consistent, then no derivative game admits an individual improvement cycle (hence the
whole game form is Nash consistent as well).

The notions of individual improvement paths and cycles are taken from Monderer and Shapley
(1996). If a finite strategic game admits no improvement cycle, then every fragment possesses a
Nash equilibrium. The converse does not hold even for two person games (Takahashi and Yamamori,
2002). For two person game forms, however, it happens to hold; whether it holds for more than
two players remains an open question.

Nash consistency of a game form satisfying our condition can be derived from the existing liter-
ature (Vladimir Gurvich, personal communication): If the players are given arbitrary antagonistic
preferences, then the derivative game possesses a saddle point by Shapley (1964); by Moulin (1976),
the game form must be tight; by Gurvich (1988), it is Nash consistent. However, the absence of
improvement cycles is a much stronger requirement. Several examples of such game forms are
given in Kukushkin (2002). Theorem 1 from that paper describes a class of games with perfect
information satisfying the requirement; the class contains Rosenthal’s (1981, Example 3) centipede
game (the last observation is due to Dave Furth).

Milchtaich (1996) introduced a more restrictive notion of a best response improvement path
(cycle). Kukushkin (2004) obtained natural sufficient conditions for the absence of such cycles in
a strategic game. Corollary 2 below shows that there is no difference between the two acyclicity
notions as long as two-person game forms are considered.

Section 2 contains the basic definitions and the formulation of the main result; its proof is in
Section 3. Possible extensions and open questions are presented in Section 4.
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2 Formulations

A finite game form G is defined by a finite set of players N , a finite strategy set Xi for each i ∈ N ,
a finite set of outcomes A and a mapping g : XN → A, where XN =

∏
i∈N Xi is the set of strategy

profiles. Once preferences of the players over the outcomes are specified, and we always assume this
to be done with a list υN of ordinal utilities υi : A → R, i ∈ N , a derivative game G(υN ) emerges,
in which the set of players is N , the strategy sets are Xi’s and utilities are ui(xN ) = υi(g(xN )).

A strategic path is a finite or infinite sequence {xk
N}k=0,1,... of strategy profiles such that xk+1

N

and xk
N differ in the choice of just one player. A strategic cycle is a strategic path x0

N , x1
N , . . . , xM

N

such that x0
N = xM

N and M > 0. A strategic path (cycle) is an improvement path (cycle) in a
derivative game G(υN ) if ui(xk+1

N ) > ui(xk
N ) whenever xk+1

N and xk
N differ in xi. If, additionally,

xk+1
i is a best response to xk

−i, we have a best response improvement path (cycle).

A game form G is acyclic if no derivative game G(υN ) admits an improvement cycle. A game
form G is Nash consistent if every derivative game G(υN ) possesses a Nash equilibrium. Since we
only consider finite games, every acyclic game form is Nash consistent.

Lemma 2.1. A 2× 2 game form a b
c d is Nash consistent if and only if {a, d} ∩ {b, c} 6= ∅.

Proof. The sufficiency immediately follows from Gurvich (1988); the necessity, from Moulin (1976).
Both are easy to check by themselves. Note that every Nash consistent 2×2 game form is acyclic.

A fragment G′ of G is a game form with the same set of players N and nonempty subsets
∅ 6= X ′

i ⊆ Xi for all i ∈ N . If G is acyclic, then so is every fragment of G; Nash consistency need
not be “inherited” in this sense.

Remark. Shapley (1964) used the term “subgame,” but since then it has become widely used in
the literature on extensive games with a different meaning.

Theorem. A finite two person game form G is acyclic if and only if every 2× 2 fragment of G is
Nash consistent.

The necessity is straightforward; the sufficiency proof is deferred to the next section.

3 Proof

Till the end of the proof, we assume to the contrary that there is a strategic cycle x0
N , x1

N , . . . ,
xM

N = x0
N which becomes an improvement cycle in a derivative game G(υN ). Without restricting

generality, we may assume that there is no shorter improvement cycle in any derivative game,
hence the improvements of both players alternate along the cycle, hence M = 2m. Since every
2× 2 fragment is Nash consistent, m > 2.

Without restricting generality, we assume N = {1, 2}. Since the cycle could be started from
any position, we assume that x2k+i

i 6= x2k+i−1
i for all k and both i. Moreover, since the roles of

both players are symmetric, we often consider player 1 as the representative player. We denote
K = {0, . . . ,m− 1}, Ξi = {x2k+i

N }k∈K for each i ∈ N , and Ξ = Ξ1 ∪ Ξ2.

Step 3.1. If i ∈ N , k, h ∈ K, and x2k+i
i = x2h+i

i , then k = h.

Proof. Suppose the contrary: there are k > h such that x2k+1
1 = x2k+2

1 = x2h+1
1 = x2h+2

1 . If
u2(x2k+2

N ) ≥ u2(x2h+2
N ) [> u2(x2h+1

N )], then x0
N , . . . , x2h+1

N , x2k+2
N , . . . , x2m

N = x0
N is a shorter im-

provement cycle in G(υN ). If u2(x2h+2
N ) ≥ u2(x2k+2

N ) [> u2(x2k+1
N )], then x2k

N , x2k+1
N , x2h+2

N , . . . , x2k
N

is again a shorter improvement cycle in G(υN ).
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We denote B = g(Ξ), B0 = g(Ξ1) ∩ g(Ξ2), and, for each i ∈ N , Bi = g(Ξi) \ B0 and Y i =
g−1(Bi) ∩ Ξ. By definition, B1 ∩ B2 = ∅. We define υ∗i : υ∗i (a) = maxb∈B υi(b) for a ∈ Bi;
υ∗i (a) = minb∈B υi(b) for a ∈ B3−i; υ∗i (a) = υi(a) otherwise. It is easy to see that

Argmax
b∈B

υ∗i (b) = Bi = Argmin
b∈B

υ∗3−i(b) (1)

and that x0
N , x1

N , . . . , x2m
N = x0

N is an improvement cycle in G(υ∗N ) as well.

Step 3.2. For each i ∈ N , the set Y i is a singleton (hence Bi is a singleton as well).

Proof. First, we note that Bi 6= ∅ for each i ∈ N by (1). Let g(x2k+1
N ) ∈ B1 3 g(x2h+1

N ) and k > h;
note that x2k+1

2 = x2k
2 and x2h+1

2 = x2h
2 . Applying Lemma 2.1 to the fragment {x2h+1

1 , x2k+1
1 } ×

{x2h
2 , x2k

2 }, we obtain that either g(x2k+1
1 , x2h

2 ) ∈ B1 or g(x2h+1
1 , x2k

2 ) ∈ B1.

In the first case, x0
N , x1

N , . . . , x2h
N , (x2k+1

1 , x2h
2 ), x2k+2

N , . . . , x2m
N = x0

N is an improvement cycle in
G(υ∗N ): u∗1(x

2k+1
1 , x2h

2 ) > u∗1(x
2h
N ) because g(x2h

N ) /∈ B1 3 g(x2k+1
1 , x2h

2 ); u∗2(x
2k+2
N ) > u∗2(x

2k+1
1 , x2h

2 )
because g(x2k+2

N ) /∈ B1. In the second case, x2h+2
N , . . . , x2k

N , (x2h+1
1 , x2k

2 ), x2h+2
N is an improvement

cycle in G(υ∗N ) for similar reasons. In either case, we obtain a contradiction with the assumption
that a shorter improvement cycle is impossible.

Since m > 2, Step 3.2 immediately implies B0 6= ∅. We also see that each υ∗i actually coincides
with υi. Henceforth, we use the notation Y i = {yi

N}.
Step 3.3. There is i ∈ N such that y1

i = y2
i .

Proof. Since we can start the cycle anyplace, we assume that y2
N = x0

N . Suppose to the contrary
that y1

N = x2k+1
N with 0 < k < m−1. Applying Lemma 2.1 to the fragment {x0

1, x
2k+1
1 }×{x0

2, x
2k
2 },

we obtain that one of the following four alternatives must hold.

If g(x0
1, x

2k
2 ) = g(y1

N ), then x0
N , x1

N , . . . , x2k
N , (x0

1, x
2k
2 ), x0

N is an improvement cycle in G(υN ).
If g(x0

1, x
2k
2 ) = g(y2

N ), then x2k+1
N , . . . , x2m−1

N , (x0
1, x

2k
2 ), x2k+1

N is an improvement cycle. If
g(x2k+1

1 , x0
2) = g(y1

N ), then x0
N , (x2k+1

1 , x0
2), x

2k+2
1 , . . . , x2m

N = x0
N is an improvement cycle. If

g(x2k+1
1 , x0

2) = g(y2
N ), then x1

N , x2
N , . . . , x2k+1

N , (x2k+1
1 , x0

2), x
1
N is an improvement cycle.

As in the proof of Step 3.2, we have a contradiction with the assumption that a shorter im-
provement cycle is impossible.

We are approaching a final contradiction. Supposing, without restricting generality, that y1
2 =

y2
2, we pick a ∈ Argmaxb∈B0

υ1(b); by definition, there is k ∈ K such that g(x2k
N ) = a. Since

u1(x2k+1
N ) > u1(x2k

N ), we must have x2k+1
N = y1

N ; but then x2k
N = y2

N by Steps 3.3 and 3.1, hence
g(x2k

N ) /∈ B0.

4 Extensions

Corollary 1. Let G be a finite two person game form. If no antagonistic derivative game G(υ,−υ)
admits an improvement cycle, then G is acyclic.

Proof. Since the necessity in Lemma 2.1 was proven with a reference to Moulin (1976), where
antagonistic utilities were considered, we obtain that every 2× 2 fragment of G is Nash consistent.
Now our Theorem applies.

Corollary 2. Let G be a finite two person game form. If no derivative game G(υN ) admits a best
response improvement cycle, then G is acyclic.
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Proof. If G is not acyclic, it contains a fragment a b
c d with {a, d} ∩ {b, c} = ∅. We define υ1(a) =

υ1(d) = 1 and υ1(x) = 0 for x /∈ {a, d}; υ2(b) = υ2(c) = 1 and υ2(x) = 0 for x /∈ {b, c}. Clearly, the
fragment becomes a best response improvement cycle in G(υN ).

When there are more than two players, the straightforward analogue of our Theorem does not
hold.

Example. Let us consider a three person 2× 2× 2 game form with four outcomes, where player 1
chooses rows, player 2 columns, and player 3 matrices:

[
a c
a b

] [
a d
b b

]
.

Applying Lemma 2.1, we immediately see that every 2 × 2 fragment is Nash consistent. On the
other hand, let us consider the following utilities: υ1(c) = υ1(d) = 2, υ1(b) = 1, υ1(a) = 0;
υ2(b) = υ2(c) = 2, υ2(a) = 1, υ2(d) = 0; υ3(a) = υ3(d) = 1, υ3(b) = υ3(c) = 0. It is easily checked
that, at each strategy profile, there is a single player capable of improvement:

[
2 3
2 1

] [
1 2
3 1

]
,

hence there is no Nash equilibrium. Therefore, the game form is not even Nash consistent.

Hypothesis. A finite game form G is acyclic if and only if every fragment of G is Nash consistent.
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Mathématique de France, Supplémentaire Mémoire No. 45.
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