544 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

Efficient Management of Schema Versioning in
Multi-Temporal Databases

Zouhaier Brahmia', Mohamed Mkaouar?, Salem Chakhar’, and Rafik Bouaziz'
'Faculty of Economic Sciences and Management, University of Sfax, Tunisia
*Faculty of Science, University of Tunis-El Manar, Tunisia
3 LAMSADE Laboratory, University of Paris Dauphine, France

Abstract: To guarantee a complete data history in temporal databases, database management systems have to manage both
evolution of schema over time, through their versioning, and evolution of data defined under different schema versions. This
paper proposes a new approach for schema versioning in multi-temporal databases. It allows an efficient management of
schema versions and their underlying data, through a smooth conversion of the temporal database. When creating a new
schema version, the basic idea consists in forbidding 1) any automatic transfer of data defined under previous schema versions
to this new version, in order to avoid data loss and ambiguousness in the interpretation of temporal intervals of data, and 2)
any change in the structures of previous schema versions, in order to permit to the legacy applications to remain operational

after this schema evolution.

Keywords: Schema evolution, schema versioning, temporal databases, multi-temporal databases, application time,

database conversion.

Received July 31, 2010; accepted October 24, 2010

1. Introduction
1.1. Temporal Databases

Many computational applications like banking,
auditing, flight reservations, and weather monitoring
have to store evolution of data over time. Each of these
applications requires a temporal DataBase (DB) which
records time-referenced data [9, 14, 18, 22], so, each
entity is represented by a set of tuples. Temporal DBs
use one or two time dimensions to timestamp data:
transaction time, which indicates when an event is
recorded in the DB, and valid time, which represents
the time when an event occurred, occurs or is expected
to occur in the real world. Temporal DBs are
classified, according to these time dimensions, into
four categories [9]: Snapshot (SN), Transaction Time
(TT), Valid Time (VT), and Bi-Temporal (BT) DBs.

e Snapshot DBs, which contain only
relations, are traditional DBs.

e Transaction time DBs, which contain only
transaction time relations, timestamp tuples with
their transaction times: transaction start time (TST)
and transaction end time (TET). Changes can only
apply to the current tuples; past data can not be
modified and future tuples can not be introduced.
The domain of TET includes the value “UC” (Until
Change) [22]; a tuple that has UC as the value of its
TET represents the current tuple of an entity.

e Valid time DBs, which contain only valid time
relations, timestamp tuples with their valid times:
Validity Start Time (VST) and Validity End Time

snapshot

(VET). So, it is possible to store past, current and
future data. But after any data correction, the
erroneous value will not be retained. The domain of
VET includes the value “Now” [22], a tuple that has
now as the value of its VET represents the current
tuple of an entity until some changes occur.

e Bi-temporal DBs, which contain only bi-temporal
relations, use both transaction time and valid time to
timestamp tuples.

A DB which contains relations of different formats
(SN, TT time, VT, and BT) is called a multi-temporal
DB [7].

In this paper, we consider multi-temporal relational
DBs. This is justified as follows:

e The choice of the multi-temporal environment is
due to our aim to study all cases of schema
evolution, including format changes (e.g., migration
from SN to BT format).

e The choice of the relational environment is due to
our aim to establish foundations of schema
versioning for temporal DBs through a well-
founded data model (i.e., relational model). We will
proceed later to the revision and to the extension of
our approach to make it applicable in an object-
oriented or an XML environment.

1.2. Schema Versioning
1.2.1. Schema Evolution Versus Schema Versioning

In DBs, schemas are also subject to change. There are

Efficient Management of Schema Versioning in Multi-Temporal Databases 545

two techniques [19, 20] to manage this change:

e Schema Evolution: Which is provided by a system
that allows recovery of previous extensional data
after each schema change, except data of dropped
columns. Only the last schema version is kept.

o Schema Versioning: Which is provided by a system
that allows both maintenance of extensional data
and management of previous schema after any
schema changes. It offers facilities which subsume
those of “Schema evolution”.

Before going farther, we need to define the concept of
schema version of a relation.

o Definition 1: A schema version of a relation
corresponds to the result of either the creation of
this relation or the application of change operations
on its schema.

1.2.2. Motivations

Schema of DBs can evolve over time due to many
reasons such as changes in user requirements, new
functionalities, compliance to new regulations,
correction of deficiencies in the current schema, and
migration to a new platform.

Schema versioning is highly required for several
reasons like avoiding loss of data after schema
changes, maintenance of legacy data formatted
according to past schemata, reuse of legacy
applications, and auditing purposes.

Several studies of real-world cases in seven DB
applications from different fields [21], in a business
system [8], or in the DB of wikipedia [5] show that we
need generic solutions for schema versioning.

1.2.3. Discussed Issues

If a DataBase Management System (DBMS) does not
record all schemas and their evolutions over time, then:
1) Manipulation and querying of temporal data defined
under these schemas become insufficient and
inefficient. 2) History of data can not be complete.
Take for example the case when the DB administrator
drops an attribute “A” from a schema “S”. Values of
“A” can not be retrieved after doing this operation if
the DBMS does not keep track of the schema “S” and
all tuples defined under “S”. So, the DBMS has to keep
track of both schema and data evolution, through
schema and data versions, respectively.

In this paper, we deal with schema versioning in
multi-temporal relational DBs (schema change
operations and their effect on the underlying data). We
propose an approach for schema versioning that avoids
the three following problems which arise when the
DBMS does not support schema versioning.

e Problem 1: Existing applications written before a
schema change can not work after this change when
the schema is being updated in a destructive

manner. To be operational, they must be rewritten
and recompiled after such a schema change (e.g.,
drop of columns or relations), since these
applications were compiled against this schema.

e Problem 2: Possible ambiguity can occur for the
interpretation of temporal dimensions of tuples after
a schema change that modifies the format: “How to
interpret the valid times of tuples defined under a
snapshot relation when the DB administrator
changes its format to be a bi-temporal one?”.

e Problem 3: Loss of data can occur after dropping a
relation or after a schema change which drops or
modifies domains of some attributes of a relation.

1.3. Structure of the Paper

The rest of the paper is organized as follows. Section 2
introduces basic features of our approach for schema
versioning in multi-temporal relational DBs. Section 3
presents our technique for multi-temporal DBs
conversion when their schemas evolve. Section 4
illustrates our approach by an example. Section 5 is
devoted to a brief review of related works and to the
discussion of our approach in such a context. Finally,
conclusions can be found in section 6.

2. Basic Features of the Proposed Approach
for Schema Versioning

2.1. VERSIOS: The Multi-Temporal Data
Model Supporting Schema Versioning

The model that we propose for schema versioning in
multi-temporal DBs is named VERSIOS. It is
temporally ungrouped [9]. We think that temporally
ungrouped models are better advisable to relational
DBs, at the logical and the physical levels. They
provide a simple extension of relational DBMS to the
temporal dimension. We do not adopt temporally
grouped models because they are better advisable for
object-oriented or XML DBs which do not respect the
first normal form.

Our model [1, 2, 3] is briefly described below. Let
us take: R as a relation; VR as the table that stores
tuples of R defined under its schema version number k;
KA; as a key attribute of R and NKA; as a non-key
attribute of R. According to the format of the schema
version number k of R, Vi R will be defined as

follows:

o Vk_R(Mla KAz, . KAD, NKA], NKAQ, ey
NKA,,) if its format is snapshot; this table stores
only current tuples.

e Vi R(KA,, KA,, ..., KA, TST, TET, NKA,,
NKA,, ..., NKA,) if its format is transaction time;
this table stores past and current tuples.

e Vi R(KA,, KA,, ..., KA, VST, VET, NKA,,
NKA,, ..., NKA,) if its format is valid time; this
table stores past, current and future tuples.

546 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

e Vi, R(KA,, KA, ..., KA,, VST, VET, TST, TET,
NKA;, NKA,, ..., NKA,) if its format is bi-
temporal; it stores past, current and future tuples.

Notice that the DBMS creates VR automatically and
without any tuple, at the application time of the schema
version number k of R.

To store information about schema of relations and
to be able to maintain history of schema changes, we
propose the catalogues presented below. Among all the
relational system catalogues, we present only the two
catalogues describing the relations and their attributes,
since they are those mostly involved in schema
versioning.

Relation (Relation_Name, Schema_Version_Number,
Schema_Version _Format, Application_Start_Time,
Application_End_Time, Schema_Version_State)

This catalogue keeps for each relation its name, and for
each schema version of this relation its number, its
format, its application start time (i.e., the time from

which this schema version is applied), its application
end time (i.e., the time from which this schema version
is considered as a past one), and its state (Past,
Erroneous, or Current).

Attribute (Relation_Name, Schema_Version_Number,
Attribute_Name, Domain, Key,
Attribute_Order Number)

This catalogue stores information about attributes of
relations under their different schema versions. It
keeps, for each attribute, the name of the relation and
the number of the schema version to which it belongs,
its name, its domain (string, integer, real...), if it is part
of the primary key, and its order number in this schema
version.

The synoptic diagram of VERSIOS is depicted in
Figure 1. When receiving an order from the DB
administrator about changing the schema of a relation,
VERSIOS creates a new schema version of this
relation and updates the catalogues.

-
T
| DB state before schema change | b}
—_— __'_H_',. l
R
... W RS

VRl

Vi Rl(all, al2, a]3) Wy B9GP, a02)
stil _f_/’

% - Delete ald from R1

- Change domain of al3
i from string to real, in B1 '\
DB adreinistrator _ g 34 214 t0 R1 e
- &dd a03 to RO

P

VERSIOS

e T
| DB state after scherna change

¥,_R1

W RO

string

W, Rifall, al2, §‘13)
Vo R1(all, al3, ald)

al

Vi R9(a91, a92)
Vo BO(a01, a2, a0'3)

Figure 1. Synoptic diagram of VERSIOS.

2.2. Schema Change Operations

We have defined three categories of schema change
operations [3] that we consider the most useful for
applications using multi-temporal relational DBs.

o Operations Acting on a Relation: Creation, deletion,
renaming, or change of the format of a relation;
activating a deleted relation.

o Operations Acting on an Attribute of a Relation:
Addition, deletion, renaming, or change of the
domain of an attribute; transformation of an
attribute into a relation (i.e., reification).

e Operations Acting on More than one Relation at a
Time: Fusion of many relations into a single new
relation; splitting a relation into several relations.

Since our purpose, in this paper, is to describe logical
solutions for schema versioning, we limit the
discussion to a sub-set of changes applied to a single
relation and their attributes, changes that we judge the
most significant for applications. We study in
particular all the cases which imply an increase show
in Table 1 or a decrease show in Table 2 of the
temporal dimension of a relation when its format
changes.

The schema evolution of a relation from a version
V; to a version Vj; i1s the result of a set of schema
change operations performed on V; Notice that our
approach does not lead to proliferation of schema
versions. The application of a new schema version of a
relation is anyway a seldom task during the DB
lifetime, which can only be performed by a DB
administrator. This task may consist of dozens of
schema change operations which are grouped together
in the same single transaction.

Table 1. Cases of increase of the temporal dimension.

Format of the Last Schema Format of the New Schema
Version Version
SN TT, VT, BT
TT VT, BT
VT TT, BT

Table 2. Cases of decrease

of the temporal dimension.

Format of the Last Schema

Format of the New Schema

Version Version
BT SN, TT, VT
TT SN
VT SN

Efficient Management of Schema Versioning in Multi-Temporal Databases 547

2.3. A New Time Dimension for Schema
Versioning: Application Time

Three approaches for schema versioning are described
in [7]: transaction time, valid time, and bi-temporal
schema versioning. Among these approaches, we see
that valid time schema versioning is more appropriate
than the other approaches for the two reasons presented
below.

1. Valid time schema versioning provides more
facilities than transaction time schema versioning
since it supports retroactive and proactive changes
which are important tasks in information systems.
Consider for example the promulgation of a new law
enforcing a change of domain in some
administrative attribute with retroactive effect, or a
schema change which is designed and approved but
could not be implemented on time because of some
delay (e.g., retirement or illness of the DB
administrator, crash of or contractual dispute with
the software house in charge). These cases require
retroactive schema changes to be effected with the
stated validity.

2. Valid time schema versioning is simpler than bi-
temporal schema versioning which requires also the
management of transaction time of schema versions,
the management of inconsistent states of the DB
during some periods, etc. We think that schema
versioning in information systems does not need
these extensions.

However, we see that schema versioning is not a
simple management of meta-data along transaction
time and/or valid time axis, in a similar way to the
management of data along these axes. We believe that
schema versioning must be managed with a lot of
precaution, and requires suitable techniques which are
different of those used to manage temporal data.
Moreover, schema versioning must be piloted by the
DB administrator who creates, changes, and deletes
schema.

So, we propose a new approach [1, 3] which takes
into account all these aspects. It is based on schema
versioning along a constrained valid time axis that we
call “application time”. Each schema version is
timestamped with an application start time and an
application end time which are defined below:

o Definition 2: The application start time of a schema
version of a relation R is the instant fixed by the DB
administrator to apply this schema version. From
that instant, this schema version is considered to be
the current schema version for R.

o Definition 3: The application end time of a schema
version of a relation R is the instant fixed by the DB
administrator to make end to the application of this
schema version. From that instant, this schema
version is no longer the current one and is
considered to be a past schema version of R.

The constraints that we have put on valid time axis to
have the application time for schema versioning are
described in the following:

e The application of a new schema version of a
relation with proactive effect is not authorized.

e The application of a new schema version of a
relation with retroactive effect is authorized only
and only if it is done with these tasks:

e Previous schema versions which are completely
overlapped by the application time interval of the
new schema version are not deleted but they are
kept with their underlying data without any
change. Only states of these schema versions are
changed from “Past” to “Erroneous”, in the
catalogues.

e Previous schema versions which are partially
overlapped by the application time interval of the
new schema version have their application time
intervals accordingly restricted.

o All programs that were executed using erroneous
schema versions (and thus they have produced
erroneous results) must be compiled and
performed again with the new schema version.
To do this, the DBMS must keep track of all
program executions and data that have been
manipulated by these programs.

Thus, in our approach, schema versions of a relation
are successive in time. There are neither parallel nor
merging schema versions.

3. A Smooth Conversion of Multi-Temporal
DBs when Schema Evolve

In order to guarantee a correct evolution of schema and
their underlying data, we define five rules [3] that
allow a smooth conversion (i.e., conversion without
problems and errors) of the DB when schema evolves.
We will illustrate these rules by an example of schema
evolution.

e Rule 1: At the application time of the new schema
version V;;; of a relation R, the DBMS must not
change structures of previous schema versions of R.
Such a change has to be forbidden in order to
guarantee that existing applications continue to be
operational after every schema evolution.

e Rule 2: At the application time of the new schema
version Vi, of a relation R, the DBMS must not do
any automatic migration of data from tables of
previous schema versions of R to the table(s) of
Vii1. Such a transfer of data has to be forbidden
since it can lead to loss of data when the new
schema version does not contain some attributes
belonging to the previous schema version.

e Rule 3: At the application time of the new schema
version Vi of a relation R, if this version changes

548 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

the format of the previous schema version V; with
an increase of the temporal dimension see Table 1,
the DBMS has to convert the format of every
previous schema version Vi (1<=k<=i) of R, which
is lower than the format of Vi;;, to a new format as
mentioned in Table 3.

Table 3. New formats of previous schema versions after increasing
the temporal dimension.

Format of Format of Version Vy (1<=k<=i)
Version Vi1 | Before Conversion After Conversion
TTsn: Transaction time originating from

T SN snapshot ¢ ¢
VT SN VTsn: Valid time originating from snapshot
BT SN
VT, BT TTsn BTsn: Bi-temporal originating from snapshot
TT, BT VTsx
VT. BT T BTrr: B‘i—ten'lporal originating from

’ transaction time
T, BT VT g["]l;?: Bi-temporal originating from valid

This rule allows avoiding ambiguity in the
interpretation of temporal dimensions of tuples defined
under previous schema versions when the format of the
new schema version is richer. To manipulate data
correctly, the new format of each previous schema
version keeps track of the original format.

For illustration, suppose that we have a TT schema
version V; of a relation R. Tuples defined under this
version were timestamped only through their
transaction times. Suppose that the DB administrator
applies a new BT schema version Vi, of R. If the
DBMS does not convert V; to become a BTt schema
version (by adding a valid time interval to every tuple
defined under V;; see Rule 3.1 presented below), we
will have problems since we have no information about
valid times of tuples that were defined under V.

In the same way, every previous schema version of
R that has a format which is lower than the BT format
must be converted. With such conversions, all involved
previous schema versions of R become in adequacy
with the format of the new schema version, but without
loss of data. The next two rules, Rule 3.1 and Rule 3.2,
show how Rule 3 is applied.

® Rule 3.1: At the application time of the new schema
version V;;; of a relation R with increase of the
temporal dimension, such that Vi;; hasa VT or a BT
format, the DBMS must add a valid time interval to
the table of each previous schema version of R
having a TT, a TTgy or a SN format. Then, the
DBMS must assign VST and VET values to each
tuple defined under these previous schema versions,
as presented below:

1. For each current tuple, the valid time interval is
defined as follows:

a. The VST takes one of the two following values:

e The value of the application start time of the
new schema version Vi, when this tuple is

defined under a previous SN (converted to
VTsy or to BTsy) schema version.

e The value of the transaction start time of this
tuple, when this tuple was defined under a TT
(converted to BTtr) or a TTsy (converted to
BTsn) schema version.

b. The VET takes the value “Now” [22], meaning
that it increases with time until some changes
occur.

2. For each past tuple, which was necessarily defined
under a TT or a TTgy schema version, VST and
VET attributes take respectively the value of the
TST attribute and the value of the TET attribute of
this tuple.

® Rule 3.2: At the application time of the new schema
version V;; of a relation R with increase of the
temporal dimension such that V;;; has a TT or a BT
format, the DBMS must add a transaction time
interval to the table of each previous schema version
of R having a VT, a VTgy, or a SN format. Then, the
DBMS must assign TST and TET values to each
tuple defined under these previous schema versions,
as follows:

1. For each current tuple, the TET attribute takes the
value “UC” [22] and the TST attribute takes one of
the two following values:

e The value of the application start time of the new
schema version Vi, when this tuple is defined
under any previous SN (converted to TTgy or to
BTsn) schema version V.

e The value of the validity start time of this tuple,
when this tuple was defined under any VT
(converted to BTyr) or any VTgy (converted to
BTgy) schema version.

2. For each past tuple, which was necessarily defined
under a VT or a VTgy schema version, TST and
TET attributes take respectively the value of the
VST attribute and the value of the VET attribute of
this tuple.

Rule 3.1 (respectively Rule 3.2) allows avoiding
overlap of valid time (respectively transaction time)
intervals of tuples defined under schema versions
which have been converted. As for the assignment of
approximate values to VST and VET attributes
(respectively to TST and TET attributes) for these
tuples, the DBMS is always able to interpret suitably
these values thanks to formats of these converted
schema versions (i.e., VTsy, TTsn, BTsn, BTyr, and
BTrr) and to inform users that the exact values of VST
and VET (respectively of TST and TET) are unknown
and generally precede the present values. The DBMS
can answer user queries with expressions like “valid
before the date & or “having an approximate valid
time interval I” (respectively “inserted in the DB

Efficient Management of Schema Versioning in Multi-Temporal Databases

before the date 7’ or “having an approximate
transaction time interval 7). Notice that:

e End users will be able to provide exact values for
VST and VET attributes, if possible.

e The addition of VST and VET attributes
(respectively of TST and TET attributes) to tables of
previous schema versions does not raise any
problem for existing applications using these tables.

4. An Illustrative Example

Assume that we have a DB that contains a snapshot
relation SALESMAN created on 2007/12/01 with the
attributes salesman ID, NAME, CITY and SALARY.
Table 4 shows the state of this relation on 2008/03/09.
Table 5 shows the state of the DB catalogues at the
same date.

Table 4. The state of the SALESMAN relation on 2008/03/09.

Vi_SALESMAN
ID NAME CITY SALARY
1 Ahmed Sfax 1000
2 Fares Sfax 1200

Assume that the following two schema changes are
applied to the SALESMAN relation:
e SC1: On 2008/03/10, the attribute CITY is dropped

549

from SALESMAN, a new attribute PHONE is
added to SALESMAN, and the format of
SALESMAN is changed to become transaction
time.

e SC2: On 2009/04/15, a new attribute BONUS is
added to SALESMAN and the format of
SALESMAN is changed to become bi-temporal.

Tables 6 and 7 show respectively the state of the
SALESMAN relation and the DB catalogues on
2008/03/10, after execution of SC1.

Suppose that we have manipulated some tuples
under the table V2_SALESMAN. Table 8 shows the
state of the SALESMAN relation before and after
execution of SC2. Table 9 shows the state of the DB
catalogues after execution of SC2.

Table 6. The state of the SALESMAN relation on 2008/03/10, after
SCI.

Vi_SALESMAN

D NAME CITY SALARY TST TET

1 Ahmed Sfax 1000 2008/03/10 uc

2 Fares Sfax 1200 2008/03/10 uc

V,_SALESMAN

D NAME | PHONE | SALARY TST TET
empty

Table 5. The state of the catalogues on 2008/03/09.

RELATION
Relation Name Schema_Version Number Schema_Version_Format | Application_Start_Time Application_End_Time Schema_Version_State
SALESMAN 1 SN 2007/12/01 null Current
ATTRIBUTE
Relation Name Schema Version Number Attribute Name Domain Key Attribute_Order_Number
SALESMAN 1 1D string Yes 1
SALESMAN 1 NAME string No 2
SALESMAN 1 CITY string No 3
SALESMAN 1 SALARY real No 4
Table 7. The state of the catalogues on 2008/03/10, after SC1.
RELATION
Relation Name | Schema Version Number | Schema_Version_Format | Application_Start Time | Application_End_Time Schema_Version_State
SALESMAN 1 TTen 2007/12/01 2008/03/09 Past
SALESMAN 2 TT 2008/03/10 null Current
ATTRIBUTE
Relation Name | Schema Version Number Attribute Name Domain Key Attribute_Order_Number
SALESMAN 1 ID string Yes 1
SALESMAN 1 NAME string No 2
SALESMAN 1 CITY string No 3
SALESMAN 1 SALARY real No 4
SALESMAN 2 ID string Yes 1
SALESMAN 2 NAME string No 2
SALESMAN 2 PHONE string No 3
SALESMAN 2 SALARY real No 4

Table 8. The state of the SALESMAN relation before SC2 (Part a) and after SC2 (Part b).

Parta
V;_SALESMAN
ID NAME CITY SALARY TST TET
1 Ahmed Sfax 1000 2008/03/10 2009/03/26
2 Fares Sfax 1200 2008/03/10 ucC
V, SALESMAN
ID NAME PHONE SALARY TST TET
3 Khadija 9633445 1200 2008/04/12 ucC
4 Aicha 9755667 1000 2008/06/22 ucC
1 Ahmed 9877889 1100 2009/03/27 ucC

550

The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

Partb

V_SALESMAN

ID NAME CITY SALARY TST TET VST VET
1 Ahmed Sfax 1000 2008/03/10 2009/03/26 2008/03/10 2009/03/26
2 Fares Sfax 1200 2008/03/10 ucC 2008/03/10 Now
V,_SALESMAN

ID NAME PHONE SALARY TST TET VST VET
3 Khadija 9633445 1200 2008/04/12 uc 2008/04/12 Now
4 Aicha 9755667 1000 2008/06/22 uc 2008/06/22 Now
1 Ahmed 9877889 1100 2009/03/27 ucC 2009/03/27 Now
V3;_SALESMAN

ID NAME PHONE SALARY | BoNus | vst | VET IST TET

empty
Table 9. The state of the catalogues after SC2.

RELATION

Relation Name Schema_Version Schema_Version_ Application_ Application_ | Schema_Version_

— Number Format Start_Time End_Time State
SALESMAN 1 BTsn 2007/12/01 2008/03/09 Past
SALESMAN 2 BTrr 2008/03/10 2009/04/14 Past
SALESMAN 3 BT 2009/04/15 null Current

ATTRIBUTE

Relation Name | Schema Version Number Attribute Name Domain Key Attribute_Order_Number
SALESMAN 1 ID string Yes 1
SALESMAN 1 NAME string No 2
SALESMAN 1 CITY string No 3
SALESMAN 1 SALARY real No 4
SALESMAN 2 D string Yes 1
SALESMAN 2 NAME string No 2
SALESMAN 2 PHONE string No 3
SALESMAN 2 SALARY real No 4
SALESMAN 3 1D string Yes 1
SALESMAN 3 NAME string No 2
SALESMAN 3 PHONE string No 3
SALESMAN 3 SALARY real No 4
SALESMAN 3 BONUS real No 5

5. Related Work and Discussion

A good survey of different schema versioning issues in
temporal DBs was presented in [19].

The paper [7] presents three approaches for schema
versioning: transaction time schema versioning, valid
time schema versioning and bi-temporal schema
versioning. Non-temporal schema versioning had been
proposed before for example in [15]. It is equivalent to
transaction time schema versioning without explicit
management of timestamps. We propose a new
constrained valid time axis for schema versioning. We
think that it is more suitable and more flexible for
schema versioning in enterprise information systems
than transaction time and valid time.

In [23], the author studies schema evolution and
schema versioning supports in SQL-99 language and
some commercial relational and object-relational
DBMS (like Oracle8i Server and Ingres II). These
systems support only schema evolution since they
retain always the last version of any schema. After
each schema modification, they kept only the updated
schema and they import and adapt data defined under
the past schema to the new schema. Also, most
existing object-oriented DBMS like O, [10] and
GemStone [4] support only schema evolution. Grandi
presents in [13] a tool prototype, named SVMgr, that

supports non-temporal schema versioning in snapshot
relational DBs.

Many works on schema versioning in object-
oriented DBs e.g., [15, 16] introduced a non-temporal
schema versioning and dealt with alternative schema
versions. Our approach does not provide alternative
schema versions since our environment is an enterprise
information system. In such an environment, schema
versions of relations are generally successive in time,
and applications use always one schema version of the
same relation at the same time.

Grandi and Mandreoli propose in [12] a formal
model called OODM-SV for temporal versioning of
schema and instances in a temporal object-oriented
DB. In [11], the authors introduce a temporal and
versioning model (called TVSE) to manage schema
evolution in object-oriented DBs. These two
approaches adopt temporal schema versioning and
manage simultaneously data and schema versioning.
Our approach is similar to these approaches by
supporting both data and schema versioning. But,
unlike them, our approach does not consider schema
versioning as a simple management of intentional data
(i.e., schema) along transaction time and/or valid time
axis, in a similar way to the management of
extensional data along these axes. In our approach,

Efficient Management of Schema Versioning in Multi-Temporal Databases 551

schema versioning is performed through suitable
techniques and rules, on the one hand, and it is piloted
by the DB administrator and not by the DBMS, on the
other hand.

In [3], we present basic principles of our approach
for schema versioning in multi-temporal DBs. Our
previous works [1, 2] prepare the present work by
showing the feasibility of our approach for the
management of multi-temporal DBs that support
schema versioning. In [1], we propose an approach and
a prototype (named VERSIOD) to manipulate (i.e.,
insert, update and delete) data under different schema
versions of relations in a multi-temporal DB. This
approach keeps track of data history, guarantees the
consistency of data and optimizes spaces of data
storage. In [2], we present a flexible solution and a
prototype to query multi-temporal data in a multi-
version environment; non-expert users are released
from syntactical difficulties of textual temporal query
languages like TSQL2, and they can easily express
multi-schemas temporal queries by means of
interaction with the system.

Recently, a lot of work has been done on schema
evolution in temporal XML and semi-structured DBs
e.g., [6, 17], often applying concepts and techniques
developed by temporal DB research.

6. Conclusions

In this paper, we propose a new approach for schema
versioning that ensures a smooth DB evolution and
conversion when creating a new schema version of a
relation, through:

1. Avoiding any automatic transfer of data defined
under previous schema versions to the new one.

2. Forbidding any change in structures of previous
schema versions.

3. Conversion of previous schema versions if the new
one leads to increase of the temporal dimension.

Our approach allows resolving three problems that
may hold when a schema evolves:

1. Applications that become non-operational after a
schema change that modifies the structure of the
current schema.

2. Possible confusion in the interpretation of temporal
intervals of tuples.

3. Data loss after dropping or changing the domain of
some attributes.

Moreover, we propose a new time axis, called
application time, which is a restriction of valid time. It
is more suitable for schema versioning in enterprise
information systems than the other temporal axes.

Our future work will aim at studying transaction
versioning within multi-temporal DBs. This versioning
is necessary to keep trace of the dynamic behaviour of
information systems, to re-execute transactions that

had used erroneous data for example, and to redress the
effects of using these erroneous data.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions
on the earlier version of the paper, which helped to
improve the quality of the paper.

References

[1] Bouaziz R. and Brahmia Z., “Gestion Des
Données Temporelles Dans Un Environnement
Multiversion De Schémas,” Technique et Science
Informatiques, vol. 28, no. 1, pp. 39-74, 2009.

[2] Brahmia Z. and Bouaziz R., “Interaction Visuelle
Pour L’interrogation Des Bases De Données
Temporelles Multi-Versions,” in Proceedings of
I'" International Conference on Information
Systems and Economic Intelligence, Tunisia, pp.
663-680, 2008.

[3] Brahmia Z., Bouaziz R., and Chakhar S.,
“Gestion De L’évolution Des Schémas Dans Les
Bases De Données Multi-Temporelles,” in
Proceedings of 14" International Business
Information Management Association
Conference, Turkey, pp. 1862-1874, 2010.

[4] Bretl R., Maier D., Otis A., Penney D.,
Schuchardt B., Stein J.,, Williams E., and
Williams M., “The Gemstone Data Management
System,” in Proceedings of Object-Oriented
Concepts, Databases, and Applications, pp. 283-
308, 1989.

[5] Curino C., Moon H., Tanca L., and Zaniolo C.,
“Schema Evolution in Wikipedia: Toward a Web
Information System Benchmark,” in Proceedings
of 10" International Conference on Enterprise
Information Systems, Spain, pp. 290-297, 2008.

[6] Curino C., Moon H., Ham M., and Zaniolo C.,
“The PRISM Workwench: Database Schema
Evolution without Tears,” in Proceedings of 25"
International Conference on Data Engineering,
China, pp. 1523-1526, 2009.

[7] De-Castro C., Grandi F., and Scalas M., “Schema
Versioning for Multitemporal Relational
Databases,” Information Systems, vol. 22, no. 5,
pp- 249-290, 1997.

[8] De-Vries D. and Roddick J., “The Case for
Mesodata: An Empirical Investigation of an
Evolving Database System,” Information and
Software Technology, vol. 49, no. 9-10, pp. 1061-
1072, 2007.

[9] Etzion O., Jajodia S., and Sripada S., Temporal
Databases: Research and Practice, Springer-
Verlag, 1998.

[10] Ferrandina F., Meyer T., Zicari R., Ferran G., and
Madec J., “Database Evolution in the O2 Object

552

[11]

[12]

[14]

[15]

[16]

[19]

The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

Database System,” in Proceedings of 21"
International Conference on Very Large Data
Bases, Switzerland, pp. 170-181, 1995.

Galante R., Dos-Santos C., Edelweiss N., and
Moreira A., “Temporal and Versioning Model for
Schema Evolution in Object-Oriented
Databases,” Data and Knowledge Engineering,
vol. 53, no. 2, pp. 99-128, 2005.

Grandi F. and Mandreoli F., “A Formal Model
for Temporal Schema Versioning in Object-
Oriented Databases,” Data and Knowledge
Engineering, vol. 46, no. 2, pp. 123-167, 2003.
Grandi F., “SVMgr: A Tool for the Management
of Schema Versioning,” in Proceedings of 23"

International ~ Conference on Conceptual
Modeling, China, pp. 860-861, 2004.
Jensen C. and Snodgrass R., “Temporal

Database,” in Proceedings of Encyclopedia of
Database Systems, Copenhagen, pp. 2957-2960,
2009.

Kim W. and Chou H., “Versions of Schema for
Object-Oriented Databases,” in Proceedings of
14™ International Conference on Very Large
Data Bases, California, pp. 148-159, 1988.
Lautemann S., “Schema Versioning in Object-
Oriented Database Systems,” in Proceedings of
5" International ~Conference on Database
Systems for Advanced Applications, Australia,
pp- 323-332, 1997.

Moon H., Curino C., and Zaniolo C., “Scalable
Architecture and Query Optimization for
Transaction-Time DBs with Evolving Schemas,”
in Proceedings of ACM SIGMOD International
Conference on Management of Data, USA, pp.
207-218, 2010.

Rahim M., Kurmin N., Wahid M., and Daman
D., “Equi-Join Table Optimization Technique for
Temporal Data,” The International Arab Journal
of Information Technology, vol. 4, no. 3, pp. 272-
280, 2007.

Roddick J., “A Survey of Schema Versioning
Issues for Database Systems,” Information and
Software Technology, vol. 37, no. 7, pp. 383-393,
1995.

Roddick J.,, “Schema Versioning,” in
Proceedings of Encyclopedia of Database
Systems, pp. 2499-2502, 2009.

Sjoberg D., “Quantifying Schema Evolution,”
Information and Software Technology, vol. 35,
no. 1, pp. 35-44, 1993.

Torp K., Jensen C., and Snodgrass R., “Effective
Timestamping in Databases,” The VLDB Journal,
vol. 8, no. 3-4, pp. 267-288, 2000.

Tiirker C., “Schema Evolution in SQL-99 and
Commercial Object-Relational DBMS,” in
Proceedings of 9" International Workshop on
Foundations of Models and Languages for Data
and Objects, Germany, pp. 1-32, 2000.

Zouhaier Brahmia received his
MSc in computer science from the
Faculty @ of Economics and
Management of Sfax, University of
Sfax, Tunisia, in July 2005, and a
PhD in computer science from the
same Faculty, in December 2011. He
joined the Department of Computer Science in the
Faculty of Economics and Management of Sfax as an
assistant professor, in September 2012. He is a member
of Multimedia, Information systems and Advanced
Computing Laboratory, since 2004. His scientific
interests include temporal databases, native XML
databases, schema versioning, data management, and
World Wide Web extensions.

Mohamed Mkaouar received his

MSc in computer science from the

Faculty of Science of Tunis,

== & & University of Tunis-Elmanar,

- Tunisia, in October 1999, and a PhD

% . in computer science from the same

' \. -J_ Faculty, in 2012. His research

interests include temporal databases and information
system modelling.

Salem Chakhar is with the Centre
for Research in Regional Planning
and Development, ESAD, Laval
University, Québec City, Canada. He
received his MSc in computer
science and modeling from the High
School of Management of Tunis,
Tunisia and a PhD in computer science from the
University of Paris-Dauphine, France. His research
interests include geographical information science and
systems, spatial modeling and analysis, database and
information systems, fuzzy theory and applications and
decision support systems. He has published in journals
such as International Journal of Geographical
Information Science, Computers, Environment and
Urban Systems, Information Sciences, Information and
Software Technology, European Journal of Operational
Research, and Environment and planning B: Planning
and Design.

0

Rafik Bouaziz is a doctor on
computer science. Currently, he is
the vice-dean of the Faculty of
- Economics and Management of
Stax, Tunisia. He was a consulting
engineer in the Organization and
; Computer Science and a head of the
Department of Computer Science at CEGOS-
TUNISIA between 1979 and 1986. His main research
topics of interest are temporal databases, real-time
databases, information systems, data warehousing and
workflows.

