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Abstract

High resolution multispectral satellite images with multi-angular look capability have tremendous potential

applications. We present an object tracking algorithm that includes moving object estimation, target modeling,

and target matching three-step processing. Potentially moving objects are first identified on the time-series images.

The target is then modeled by extracting both spectral and spatial features. In the target matching procedure, the

Bhattacharyya distance, histogram intersection, and pixel count similarity are combined in a novel regional operator

design. Our algorithm has been tested using a set of multi-angular sequence images acquired by the WorldView-2

satellite. The tracking performance is analyzed by the calculation of recall, precision, and F1 score of the test. In

this study, we have demonstrated the capability of object tracking in a complex environment with the help of high

resolution multispectral satellite imagery.

Index Terms

Object tracking, high resolution, multispectral satellite imagery

I. INTRODUCTION

Object tracking in a complex environment has long been an interesting and challenging problem [1]. In the

remote sensing context, it has often been applied to the use of aerial or satellite imagery to track ground vehicle

traffic [2]. Algorithms have been developed to demonstrate vehicle tracking using low-rate video or visible imagery

sequences collected by sensors on aircraft [3]–[8]. Airborne spectral imagery [9], as well as spectral combined with

polarimetric imaging [10], have also been used to demonstrate the capability of remote sensing platforms to track

vehicles. In another application, satellite imagery [11] along with other data sources [12] have been used to track

ships in the ocean. Additionally, synthetic aperture radar airborne and satellite sensors have also been shown to

have surface object tracking capabilities [13].

Current satellite platforms offer limited utility for surface object tracking primarily due to inherent tradeoffs

in resolution and spatial/temporal coverage. High resolution satellites located in low earth orbits with adequate

resolution (~1 meter) to resolve surface objects offer limited spatial coverage (10’s of sq. km.) and long repeat
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intervals (days). Satellites with short repeat intervals (minutes) are located in geosynchronous orbits and offer poor

ground resolution (~1 km). However, as satellite technology matures and more satellites are launched into orbit, it

is appropriate to consider the possibilities for tracking surface objects offered by these new systems.

One example is the WorldView-2 (WV2) satellite which was launched by DigitalGlobe in 2009 [14]. WV2

collects one panchromatic and eight multispectral bands with center wavelengths at 425, 480, 545, 605, 660, 725,

835, and 950 nm. The collected panchromatic imagery has a spatial resolution of 0.5 m, and multispectral imagery

has 2 m spatial resolution. WV2 overcomes some of the limitations for object tracking by satellite by providing the

combination of high spatial and spectral resolution together with a very agile satellite platform. The agility of WV2

enables the capability of rapid retargeting which allows a sequence of images to be collected within minutes as

the satellite passes over a given location [15]. All of these exciting features of WV2 provide a platform to further

demonstrate the capability of object tracking with the help of spaceborne sensors.

In this work, we propose an object tracking algorithm for use with multitemporal and multispectral satellite

imagery. Multiple objects can be tracked simultaneously with user-initialized starting points. At this point, the

tracking algorithm only relies on the intensities of the pixels and does not include any kinematic capability to

account for the smooth movement of the objects. The outline of the paper is as follows. In Section II, the proposed

object tracking algorithm is introduced. Then in Section III the proposed algorithm is validated by performing

object tracking on a set of WV2 multi-sequence images provided by DigitalGlobe. Discussion and conclusions are

presented in Section IV.

II. OBJECT TRACKING PROBLEM FORMULATION

The proposed object tracking algorithm is illustrated in Fig. 1. The algorithm consists of three steps, which are

moving object detection, target modeling, and target tracking. Potentially moving objects are first identified based

on the time-series images. A reference target is then modeled by extracting spectral and spatial features. Finally a

regional feature matching operator is applied to estimate the object motion trajectory. The algorithm is introduced

below in detail.

A. Moving Object Detection

One of the approaches for detecting moving objects is to calculate the frame difference pixel by pixel. For a

sequence of images f(x, t1),· · · ,f(x, tn) acquired from time t1 to tn, an accumulative difference image (ADI) can

be formulated. The values of the ADI at location x are counts, and can be calculated as [16]

Aj(x) =

Aj−1(x) + 1 if [f(x, tr )− f(x, tj)] > η

Aj−1(x) otherwise

, (1)

where Aj(x) is the ADI after the jth image f(x, tj) in the sequence, f(x, tr) is the reference image on which we

want to find the moving objects, and η is the threshold, which is approximated to be 5% - 10% of the maximum

image difference between the reference and the jth images in this work. For a sequence of images collected within
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a short time frame, the ADI can be calculated based on the accumulation of all the frames. Any pixel with large

ADI value is highly likely to be a moving object in the reference image. A threshold that is a count lower than

the total number of frames can be further applied to the ADI to filter out the possible background pixels, and a

binary mask image Mi(x) can be found accordingly to highlight the moving objects. The filtered ith image in the

sequence can be found as

f ′(x, ti) = f(x, ti) ·Mi(x). (2)

In this work the moving object detection is performed on all the frames by iteratively using each frame as the

reference image.

B. Target Model

The target is defined as the interested object to be tracked. The reference target can be represented by a user-

defined region R (window) centered at x∗ in the filtered first frame f ′(x, t1). The target model is represented by

spectral and spatial features as illustrated in Fig. 1. The spectral and spatial features are defined below respectively.

The spectral feature is defined as the target’s probability density function (PDF). The PDF of the reference target

model is estimated by discrete densities, and m-bin histograms have been shown to be sufficient for object tracking

purpose [17]. The m-bin histograms Hb of the reference target model in the bth spectral band can be expressed as

Hb = {h1, · · · , hm}b b = 1 · · ·S, (3)

where S is the number of spectral bands. The histogram of the lth bin in Hb can be computed as

hl =

Nt∑
i=1

K(|xi − x∗|)δ [ind(xi)− l] , (4)

where δ is the Kronecker delta function, ind(xi) is the index of histogram bin associated with image intensity at

location xi, K(|xi − x∗|) is the isotropic kernel which could be monotonic decreasing to reduce the background

occlusion effect, or could be uniform to satisfy low computational cost, and Nt will be introduced in Eq. (5). In

this paper a uniform kernel is used to accelerate the computation. The width of the kernel is determined by the

size of the window. It should be noticed that only the target pixels are used for the calculation of hl, and all the

background pixels are eliminated.

The spatial feature is defined as the geometric area of the reference target surface in the window region R, and

is estimated based on its pixel count Nt which can be estimated as

Nt =
∑
x∈R

sgn [f ′(x, t1)] , (5)

where sgn is the signum function and is defined as
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sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

. (6)

Given the reference target model, we want to find a best matching target candidate window in other image

sequences. The target candidate windows are those centered on potential moving objects identified in the ADI, and

are also represented using both spectral and spatial features. The histogram of a target candidate centered at y can

be represented as

Pb(y) = {p1, · · · , pm}b b = 1 · · ·S, (7)

where pl is the histogram of the lth bin in Pb(y). The pixel count of a target candidate centered at y can also be

estimated in a similar way as Eq. (5), and is denoted as N(y).

C. Target Matching

A sliding window over other image sequences is used to indicate the possible presence of the reference target. A

regional feature matching operator is applied to find the similarity between the target model and the pixels within

the window. Three different metrics are used to define the operator. For spectral feature matching, Bhattacharyya

distance and histogram intersection are used. The Bhattacharyya distance [17] can be found as

dB(y) =
1

S

S∑
b=1

√
1− ρB [Hb,Pb(y)], (8)

where

ρB [Hb,Pb(y)] =

m∑
i=1

√
hi · pi(y)∑m

i=1 hi ·
∑m

i=1 pi(y)
. (9)

For Bhattacharyya distance, low values indicate good matching.

The histogram intersection [18] can be calculated using

dI(y) =
1

S

S∑
b=1

ρI [Hb,Pb(y)] , (10)

where

ρI [Hb,Pb(y)] =
m∑
i=1

min [hi, pi(y)] . (11)

For histogram intersection, high values indicate good matching.

The spatial feature matching is based on the pixel count within the sliding window. As mentioned earlier, a pixel

count of the reference target Nt and a pixel count of the moving object N(y) can be estimated. It is assumed that
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the potential target candidate and reference target should have similar pixel counts, even though the target has been

moved or rotated. The similarity between the reference target and the potential region based on pixel count can be

found as

dP (y) = 1− |N(y)−Nt|
Nt

. (12)

A threshold could be applied to dP (y) to filter out the pixels with low similarities. Regional maxima can then be

found based on the dP (y) values. Regional maxima are defined as the connected pixels with a constant dP (y)

value, and their boundary pixels all have lower dP (y) values [19]. A binary image RMAX(y) can then be generated

to identify the locations of regional maxima. For a small reference target which may occupy only a few pixels, it

is quite possible that the edges of the background also will present high similarities in pixel count. An opening

morphological filter is therefore optional to eliminate this edge effect in the RMAX(y) binary image. The opening

morphological filter is the erosion followed by the dilation. The definition of the erosion and dilation operators can

be found in [16].

A regional matching operator is finally designed based on these three metrics, and can be defined as

ϕ(y) =
{
w1 ·

[
1− d̂B(y)

]
+ w2 · d̂I(y)

}
· RMAX(y), (13)

where d̂B and d̂I are normalized Bhattacharyya distance and histogram intersection whose original values are

divided by their maxima, and w1 and w2 are weighting coefficients. In this paper w1 and w2 are selected equally

as 0.5. A high ϕ(y) value indicates a good matching with the target model.

III. RESULTS

To validate the object tracking algorithm, a set of WV2 images provided by DigitalGlobe as part of the IEEE

DigitalGlobe 2011 Data Fusion Contest [20] has been used. The imagery was collected over Rio de Janeiro (Brazil)

in January 2010. The image sequences were collected within a three minute time frame with satellite elevation

angles of 44.7◦, 56.0◦, 81.4◦ in the forward direction, and 59.8◦ and 44.6◦ in the backward direction. The 16-bit

multispectral 8-band images were used for object tracking. The images were geo-registered by DigitalGlobe but

not corrected for parallax. Different subsets of images have been selected for our study. A subset collected over

a harbor area as shown in Fig. 2 and a subset collected over an airport region as shown in Fig. 3 are used for

algorithm validation.

To better explain the methodology introduced in the last section, some intermediate results of target matching

in the second frame of the harbor region are presented in Fig. 4. In the RGB image as shown in Fig. 4 (a), the

red outline indicate the interested ship target, whose target template is extracted based on the first frame. The

binary mask image Mi, 1− dB , dI , RMAX after applying opening morphological filter, and the combined feature

matching score ϕ, are also presented in Fig. 4. Note in Fig. 4 (b) there are many false detections due to uncorrected

parallax effects. Because the ship within the red outline shows both high spectral and spatial similarities to the

target template, it can be easily identified and tracked in Fig. 4 (f) based on its high feature matching score ϕ.



6

The ground truth of the interested moving targets has been identified manually per pixel in the image sequences.

The performance of the proposed algorithm is analyzed on a per pixel basis by the recall and precision, which are

calculated based on the number of true positives (tp), false positives (fp), and false negatives (fn). The recall (R)

and precision (P ) can be calculated as

R =
tp

tp+ fn
, (14)

P =
tp

tp+ fp
. (15)

A F1 score [21] which is also called F−measure can then be found as

F1 = 2 · R · P
R+ P

. (16)

The harbor area was first selected for algorithm testing. The RGB image of the first frame is shown in Fig. 5

(a). Our task was to track the ship shown within the red outline. The actual size of the target and the size of the

searching window are listed in Table. I. The target only occupies a few pixels, and exhibits very similar shape and

intensity value with a large amount of other objects in the scene. Several other small objects have also been found

to be moving in the following images. All these factors introduce significant difficulties for our tracking task. The

estimated trajectory of the ship movement based on the proposed object tracking algorithm is shown in Fig. 5 (b).

The calculated R, P , and F1 values are evaluated based on 50 pixels that are identified as ship target in the last

four frames, and are listed in Table II. It can be seen that the proposed algorithm has very high tracking accuracy.

We further analyze the algorithm in another subset of the images, which is the airport area. The RGB image

of the first frame is shown in Fig. 6 (a). The aircraft within the white outline is denoted as aircraft A, and the

other one within the red outline is denoted as aircraft B. The size of these two targets and the size of the searching

window are listed in Table. I. These two aircraft were found to be moving simultaneously in this area, and could not

be easily distinguished. Meanwhile, an amount of other aircraft with similar shape and spectral features were also

present in the scene. We applied the proposed algorithm to the image sequences to track aircraft A and aircraft B

simultaneously. The estimated movement trajectory of aircraft A is shown in Fig. 6 (b). Although some background

pixels were mis-detected as moving objects due to parallax, aircraft A can be tracked very accurately. The estimated

movement trajectory of aircraft B is shown in Fig. 6 (c). It can be seen that the aircraft B can also be tracked very

well, except several false alarms are present in the image. It is noticed that aircraft A shows as a false alarm in

the third frame, because it also presents a similar pose to the reference target model of aircraft B. The calculated

R, P , and F1 values are evaluated based on 324 pixels that are identified as aircraft A, and 265 pixels that are

identified as aircraft B in the last four frames. They are listed in Table II. It can be seen that the overall tracking

performance is satisfactory based on the relatively high F1 scores.
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TABLE I: Parameters of target template.

Target Actual size (pixel) Window (pixel×pixel)

Ship 17 11×11

Aircraft A 136 19×19

Aircraft B 104 19×19

TABLE II: Overall performance of the proposed algorithm.

Region Object R P F1

Harbor Ship 0.690 0.919 0.782

Airport
Aircraft A 0.833 0.495 0.621

Aircraft B 0.925 0.435 0.592

IV. DISCUSSION AND CONCLUSIONS

We have presented an object tracking algorithm applied to a sequence of multispectral satellite images. This unique

algorithm is developed for an optical multi-angular data set, and is designed based on moving object estimation,

target modeling, and target matching three-step processing. Potentially moving objects are first identified on the

time-series images. A reference target is then modeled by extracting spectral and spatial features. In the target

matching procedure, the Bhattacharyya distance, histogram intersection, and pixel count similarity are combined in

a novel regional operator design. The use of both spectral and spatial feature ensures better tracking accuracy than

using each of them alone as has been observed in the intermediate results of target matching. Our algorithm has

been tested using a set of multi-angular sequence images acquired by the WV2 satellite. Three different objects

have been successfully tracked at two regions. The tracking performance is analyzed by the calculation of recall,

precision, and F1 score of the test.

While we acknowledge the results shown are for a single data set with a limited number of objects the preliminary

results have demonstrated the capability of tracking objects in a complex environment with the help of high resolution

multispectral satellite imagery. The technique introduced in this paper also has potential applications in other research

areas, such as object velocity estimation, and traffic control. Based on the spatial resolution of the available data

set and also the relatively long time interval between two frames, it is very difficult to visually identify identical

objects with small geometric size in the image sequences. Tracking small objects, such as vehicles, in a more dense

scene is more challenging, and will be considered in our future work, as will extensions of the algorithm to include

a kinematic model to account for the smooth movement of objects.
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Fig. 1: Flowchart of the proposed object tracking algorithm.
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(a) (b) (c)

(d) (e)

Fig. 2: Subsets of five frames collected over a harbor region at different times (a) 13:09:23, (b) 13:09:54, (c)

13:10:46, (d) 13:12:00, and (e) 13:12:41. All times are local.
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(a) (b) (c)

(d) (e)

Fig. 3: Subset of five frames collected over an airport region at different times (a) 13:09:23, (b) 13:09:54, (c)

13:10:46, (d) 13:12:00, and (e) 13:12:41. All times are local.
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Fig. 4: Intermediate results of target matching in the second frame of harbor region. The target template is extracted

based on the first frame. (a) RGB image. The red outline indicates the interested ship target. (b) Binary mask image

Mi. (c) 1− dB . (d) dI . (e) RMAX. (f) Combined feature matching score ϕ.
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Fig. 5: Ship tracking in the harbor area. (a) Harbor area RGB image, where the ship is within red outline. (b) Ship

movement trajectory.
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Fig. 6: Aircraft tracking in the airport area. (a) Airport area RGB image, where aircraft A is within the white outline

and aircraft B is within the red outline. (b) Aircraft A movement trajectory. (c) Aircraft B movement trajectory.
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