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Research on cleavage site prediction for signal peptides has focused mainly on the application of 
different classification algorithms to achieve improved prediction accuracies. This paper addresses 
the fundamental issue of amino acid encoding to present amino acid sequences in the most beneficial 
way for machine learning algorithms. A comparison of several standard encoding methods shows, 
that for cleavage site prediction the frequently used orthonormal encoding is inferior compared to 
other methods. The best results are achieved with a new encoding method named BLOMAP – based 
on the BLOSUM62 substitution matrix – using a Naïve Bayes classifier. 

1. Introduction 

Transport of proteins is controlled by signal peptides, sequences of 15 to 25 amino acid 
residues attached to the N-terminal end of a protein [6]. Signal peptides basically serve as 
zipcodes, ensuring that a protein is delivered to its correct secretory pathway. The signal 
peptide is removed by signal peptidase when the mature protein is translocated through 
the membrane. Since defects in the protein sorting process cause many diseases, there is 
considerable scientific and commercial interest in identifying signal peptides and their 
cleavage sites [3, 12]. 

The standard way to identify the function of a polypeptide is by sequence homology 
determined by sequence alignment against other polypeptides of known function. The 
method of homology fails for signal peptides because, in spite of shared functionality, 
their sequence similarity is usually low [10]. Several alternative methods have been 
developed to overcome this difficulty.  

The earliest approach is based on the (-3,-1) rule which states that the residues at 
positions -3 and -1 (relative to the cleavage site) are small and neutral whereas the 
residue at position -2 is usually aromatic, charged or polar [21]. However, the prediction 
accuracy using this simple rule is low, 64% for eukaryotic proteins and 47% for 
prokaryotic proteins [22]. In 1986, von Heijne introduced the concept of weight matrices 
for signal peptide identification and cleavage site prediction. Weight matrices are 
calculated from position specific amino acid frequencies when the signal peptides are 
aligned to their cleavage sites. To locate the cleavage site within a new sequence, a 
sliding window is moved along the sequence and the sum of the weighted residues serves 
as an indicator for a cleavage site at the window centre. One of the first attempts to tackle 
the problem of cleavage site prediction with machine learning algorithms employed a 
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neural network whose topology and weights were adapted using an evolutionary strategy 
and seven physicochemical features to encode the amino acids [17]. However the method 
did not achieve the accuracy of the simpler weight matrix method. More recently, 
Nielsen [12] developed another neural network approach, SignalP, which uses two 
Multilayer Perceptrons trained by backpropagation. The first network has an asymmetric 
input window around a hypothetical cleavage site and outputs the validity of it. The 
second network has a symmetric input window around a residue and classifies the 
residue as belonging to a signal peptide or not. The outputs of both networks are 
combined, yielding an accuracy of 79%, 85% and 92% for three different data sets [1]. In 
a subsequent study, Nielsen used hidden Markov models (HMM) for the same task but 
the results were not as good as the neural network approach [1,13]. SignalP is currently 
considered to be the benchmark algorithm for the signal peptide cleavage prediction. 

Ladunga [10] has applied a software package, PHYSEAN, designed for protein 
classification, to the cleavage site prediction task. When the amino acids were encoded 
by a set of 126 normalized physicochemical features, PHYSEAN outperformed SignalP 
(version 1.2) by 12% but using a different data set than that of Nielsen. None of the 
studies described above examined the effect of different amino acid encodings on 
prediction accuracy. It is therefore an open question which method of encoding is 
appropriate for the cleavage site prediction task.  

Some machine learning methods, such as the HMM [13] and the Bayes classifier [3] 
accommodate symbolic input and do not require numerical encoding of the amino acids. 
For example, Vert [20] has developed a new class of string kernels for support vector 
machines (SVM) that can evaluate amino acid sequences directly. Neural networks, on 
the other hand, do require some form of numerical encoding. The typical numerical 
encoding is the orthonormal, but we demonstrate in this paper that this encoding is sub-
optimal. We explore several other encodings including a new encoding called BLOMAP 
and compare their performance for the cleavage site prediction task using Nielsen's data 
sets from 1999. 

2. Encodings 

The most frequently used encoding is the orthonormal, also known as distributed 
encoding, sparse encoding or encoding with indicator vectors. Each letter l  of the amino 
acid alphabet 
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The orthonormal encoding has two drawbacks. First, the dimension of the feature space 
is twenty times the sequence length resulting in a sparsely populated feature space. 
Second, since the Euclidian distance between two encoded amino acids is always two, all 
information about similarity between amino acids is lost. Polymers with different 
sequences but similar physicochemical properties will not appear closer in the input 
space than dissimilar polymers. One common method to alleviate this disadvantage is to 
group similar amino acids into sub-alphabets. Amino acids have a great variety of 
properties such as mass, polarity, hydrophobicity, so many groupings are possible [25]. 
In this paper, we use the well known Exchange-group G:=({H,R,K} {D,E,N,Q} {C} 
{S,T,P,A,G} {M,I,L,V} {F,Y,W}) and a hydrophobicity alphabet G:=({D,E,N,Q,R,K} 
{C,S,T,P,G,H,Y}  {A,M,I,L,V,F,W}) from Wu [24] which are encoded as 
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where N is the number of groups within the sub-alphabet. Encoding amino acids with 
sub-alphabets reduces the dimension of the input space but there is no information about 
the distance between groups and the feature space remains sparsely populated. In 
addition, it is usually uncertain which grouping scheme is appropriate for a given 
problem. 

Another popular method is to encode amino acids directly, using a set of 
physicochemical features :  if
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where N is the number of features. The AAindex database [8] currently contains 494 
features and the question is how to select a suitable subset. We took the following seven 
properties: volume, mass, hydrophobicity, surface area, α-helix, β-strand and turn 
propensity described in [24, page 70]. 

Amino acids of homologous sequences which are frequently substituted by each 
other are regarded as similar and the relationships are described by substitution matrices, 
like the BLOSUM62 matrix [7]. The matrix rows m can be interpreted as feature 
vectors which describe and encode the similarity between amino acid [24]:  
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This real value encoding expresses the similarity between amino acids more accurately 
than the binary encoding by sub-alphabets, but increases the dimension of the feature 
space by factor 20. 

An extremely compact one-dimensional encoding of amino acids can be achieved by 
use of scales. A scale defines a value for each amino acid according 
to some similarity measure and the encoding becomes:  
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Two widely used amino acid scales are the hydropathy scales of Kyte [9] and Eisenberg 
[4]. But two problems remain with scales: First, the selection of an appropriate scale - 
Trinquier [19] has reviewed over 40 of them - and second, complex relationships 
between amino acids can not be captured by a single value.  

Taylor [18] classified amino acids according to their physicochemical properties and 
created a Venn-diagram of ten overlapping classes (see Fig. 1). In 1987 Zvelebil [25] 
derived a ‘truth table’ from Taylor's Venn-diagram which describes the membership of 
an amino acid to one of ten classes as a binary vector ( )10,2,1, .,,: iiii vvv K=v  with 

. This representation of amino acids can be used for encoding as well: { }1,0, ∈jiv
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The Zvelebil-encoding has the advantage to preserve some of the multifaceted 
relationship between amino acids without the high dimensionality of the orthonormal 
encoding. However, the restriction to binary vectors results in information loss. 

It would be desirable to have an encoding which captures the important amino acid 
properties without excessively increasing the dimensionality of the feature space. In the 
next section we introduce such an encoding. 

3. BLOMAP-encoding 

In this section we describe a new dense encoding, named BLOMAP. A common way to 
measure the similarity between amino acids is by substitution matrices, which contain the 
substitution frequencies for amino acids in homologous sequences. Amino acids which 
are frequently mutually substituted are regarded to be similar. The BLOMAP-encoding 
utilizes a non-linear projection method to exploit the similarity information in a 
substitution matrix and constructs feature vectors which preserve this information 
optimally. 

Several non-linear projection algorithms such as the Sammon-projection [16] or the 
FastMap-algorithm [5] are applicable but because of the small number of elements to 
map and its simplicity, we implemented an improved version of the Sammon-projection. 
Details of the algorithm are described in [11]. For the substitution matrix, we chose the 
common BLOSUM62 matrix [7]. 

The Sammon-projection maps a set of vectors from a high dimensional input space 
 to a usually lower dimensional target or feature space 
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with are the elements (log odd ratios) of the BLOSUM62 matrix. This allows us to 
apply the Sammon-projection to generate feature vectors of amino acids in  which 
optimally preserve the similarity information given by the BLOSUM62 matrix. The last 
remaining question is of which dimension the feature space should be. Tests show 
that almost all of the distance information  can be captured with five dimensions. 
Table 1 contains the code vectors for the BLOMAP-encoding in five dimensions. 
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Table 1. Code vectors for the BLOMAP-encoding in five dimensions. 

Letter BLOMAP62(5) Letter BLOMAP62(5) 
A -0.57 0.39 -0.96 -0.61 -0.69 L 0.65 0.84 1.25 -0.99 -1.90 
R -0.40 -0.83 -0.61 1.26 -0.28 K -0.64 -1.19 -0.65 0.68 -0.13 
N -0.70 -0.63 -1.47 1.02 1.06 M 0.76 0.05 0.06 -0.62 -1.59 
D -1.62 -0.52 -0.67 1.02 1.47 F 1.87 1.04 1.28 -0.61 -0.16 
C 0.07 2.04 0.65 -1.13 -0.39 P -1.82 -0.63 0.32 0.03 0.68 
Q -0.05 -1.50 -0.67 0.49 0.21 S -0.39 -0.27 -1.51 -0.25 0.31 
E -0.64 -1.59 -0.39 0.69 1.04 T -0.04 -0.30 -0.82 -1.02 -0.04 
G -0.90 0.87 -0.36 1.08 1.95 W 1.38 1.69 1.91 1.07 -0.05 
H 0.73 -0.67 -0.42 1.13 0.99 Y 1.75 0.11 0.65 0.21 -0.41 
I 0.59 0.79 1.44 -1.90 -0.93 V -0.02 0.30 0.97 -1.55 -1.16 

 
However, three dimensions already produce a reasonably good approximation of the 

distance structure, which gives us the possibility of a visual inspection. The diagram in 
Figure 1 compares a skyscraper-view on for L 3=lm  with the Venn-diagram by Taylor 
[18] on the right side. 
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Figure 1. Left: The three-dimensional BLOMAP encodings. The size of letters indicates the third dimension of 
the encoding (the other two are projected onto the x- and y-axes). Right: Taylor's Venn-diagram. 

The skyscraper-view in Figure 1 displays the (x,y)-positions of the amino acid letters 
in , whereas the z-axis or height is indicated by the letter size. Amino acids are similar 
if their locations are close and the letter sizes are similar. Unlike principal component 
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analysis (PCA) or any equivalent linear projection method, all axes of a Sammon-
projection are equally important. Moreover, PCA and similar techniques cannot be 
applied to a distance or similarity matrix.  

A comparison of the diagrams confirms that the BLOMAP-encoding preserves 
important physicochemical relationships between amino acids. However, in addition to a 
pure classification, the skyscraper-view provides useful distance information. According 
to Betts [2], Alanine(A) and Threonine(T) are known to be indifferent amino acids and 
these amino acids are placed in the diagram centre. All amino acids with a unique 
characteristic, like Proline(P), Glycine(G), Tryptophan(W), Cysteine(C) and Histidine(H)    
are located at the diagram borders. The Aliphatic-group {I,L,V} and the aromatic-group 
{F,Y,W} - without Histidine(H) - appear as distinct clusters. And all hydrophobic amino 
acids can be found in the lower right corner.  

4. Data and Classifiers 

To evaluate the influence of amino acid encoding on cleavage site prediction, we 
downloaded the data suite from www.cbs.dtu.dk/ftp/hnielsen/ created by Nielsen [14]. 
This suite consists of three redundancy reduced data sets extracted from the SWISS-
PROT sequence data base. All sequences comprise the signal peptide part of variable 
length and the following 30 amino acids of the mature protein.  

To create a training set with labelled sequences of fixed length, a window slides over 
the sequences and produces a positive sample when the window centre hits the first 
residue of the mature protein. In all other cases a negative sample is generated. Nielson 
achieved the best results with asymmetric windows and we chose the same window 
parameters for our experiments. However, to keep the processing time reasonable and 
because we were only interested in the comparison of different encodings, we balanced 
the data sets by taking all positive samples and an equal number of randomly drawn 
negative samples.  

Since the performance of an encoding depends also on the chosen classifier, we 
selected the following set of typical classifiers from the Weka 3.4 data mining package 
[23] which we used for our experiments: 

• A Naïve Bayes (NB) classifier with distribution estimator. 
• A decision tree algorithm (J48),  C4.5 Revision 8. 
• A k-nearest neighbour classifier (IBk), k = 5. 
• A single layer perceptron (SLP),  max. epochs = 2000. 
• A support vector machine (SMO) with a linear kernel. 

 
The k-value for the k-nearest neighbour classifier was optimized on the HIV data set 

[15], which is another cleavage site prediction data set. Since the results of Rögnvaldsson  
[15] indicate that cleavage site prediction is a linear problem and Nielsen's SignalP 
software [12] is based on MLPs with zero or two hidden neurons, we used a linear 
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support vector machine and a single layer perceptron. All other classifier parameters kept 
their default values. 

5. Results and Discussion 

To evaluate the performance for the different encodings described above in combination 
with typical classifiers, we measured the mean error on the test set with ten fold cross 
validation and repeated this ten times. The bar plot in Figure 2 shows the mean test error 
and the lower and upper bound of the 95% confidence interval for all encodings 
calculated over all five classifiers and the three data sets. 

10 12 14 16 18 20 22 24 26

        Chemical (7)

BLOSUM62Matrix (20)

       Zvelebil (10)

        BLOMAP62 (5)

    Orthonormal (20)

       KyteScale (1)

   ExchangeGroup (6)

HydrophobicGroup (3)

  EisenbergScale (1)

Test error in %  
Figure 2. Mean test error and 95%-confidence intervals for all encoding with ten fold cross validation and ten 
repeats over all classifiers and data sets. Lower value is better. The numbers in brackets indicate the 
dimensionality of the encoding. 

The encoding based on physicochemical properties performed best and is 
significantly superior to the orthonormal encoding. Also the direct encoding of the 
BLOSUM62 matrix, Zvelebil’s truth table and the five dimensional BLOMAP-encoding 
outperform the orthonormal encoding.  

No significant difference can be found for the orthonormal encoding, Kyte's 
hydropathy scale and the Exchange-group. The good performance of Kyte's one 
dimensional hydropathy scale is noteworthy, compared to the 20 dimensions of the 
orthonormal encoding. None of the sub-alphabet encodings however, achieved lower test 
errors than the orthonormal encoding.  

In an implementation of a cleavage site predictor one would choose the classifier and 
encoding which performs best. Table 2 contains the mean test errors and 95%-confidence 
intervals of the different classifiers over all encodings and data sets. 

 
Table 2. Mean test error and 95%-confidence intervals for the different classifiers. 

NB SMO SLP J48 IBk 
15.4% ±0.2% 17.6% ±0.3% 19.1% ±0.4% 20.6% ±0.3% 25.5% ±0.3% 

 
Surprisingly the Naive Bayes classifier significantly outperformed all other 

classifiers and the linear support vector machine comes second. An explanation for the 
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good performance of the Naive Bayes classifier might be that the closely related Weight 
matrices have already proven their usefulness for cleavage site prediction [22]. The 
single layer perceptron achieves a middle rank followed by the decision tree algorithm 
and the k-nearest neighbour classifier. 

The performances for the different encodings in combination with the Naïve Bayes 
classifier are summarized in Figure 3. 

10 12 14 16 18 20 22 24 26

        Chemical (7)

        BLOMAP62 (5)

    Orthonormal (20)

       Zvelebil (10)

BLOSUM62Matrix (20)

   ExchangeGroup (6)

       KyteScale (1)

HydrophobicGroup (3)

  EisenbergScale (1)

Test error in %  
Figure 3. Mean test error and 95%-confidence intervals for the Naïve Bayes classifier with ten fold cross 
validation and ten repeats over all data sets. Lower value is better. The numbers in brackets indicate the 
dimensionality of the encoding. 

The chemical and the BLOMAP-encoding are performing equally well for the Naïve 
Bayes classifier. However, the orthonormal encoding also achieves a low test error and 
Zvelebil’s truth table and the direct encoding of the BLOSUM62 matrix are not 
significantly inferior. On the other hand, the performance of the Exchange-group and 
Kyte's hydropathy scale is in this case significantly lower than that of the orthonormal 
encoding. All other encodings generate much higher test errors. 

The currently best results for cleavage site prediction are achieved by Nielsen's 
SignalP software [1,12] which is based on a multilayer perceptron with zero or two 
hidden neurons and orthonormal encoding. Therefore we were especially interested in 
the performance of different encodings with this type of network. The bar plot in Figure 
4 contains the results for the single layer perceptron. 

10 12 14 16 18 20 22 24 26

BLOSUM62Matrix (20)

       Zvelebil (10)

        Chemical (7)

        BLOMAP62 (5)

   ExchangeGroup (6)

HydrophobicGroup (3)

       KyteScale (1)

  EisenbergScale (1)

    Orthonormal (20)

Test error in %  
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Figure 4. Mean test error and 95%-confidence intervals for the Single Layer Perceptron with ten fold cross 
validation and ten repeats over all data sets. Lower value is better. The numbers in brackets indicate the 
dimensionality of the encoding. 

The bar plot shows that the orthonormal encoding in combination with a single layer 
perceptron is inferior to all other tested encodings for cleavage site prediction with single 
layer perceptrons. Note the large confidence interval, caused by performance 
fluctuations. Interestingly, encodings with equal dimensionality like the BLOSUM62 
encoding or encodings of similar structure like the Exchange-group display stable 
learning. Since the network does not contain hidden neurons, the reason can not be found 
in the presence of local minima of the error function. Furthermore, preliminary tests (not 
shown here) indicate that the orthonormal encoding performs well when used in 
connection with multilayer perceptrons with hidden neurons. However, it does not 
outperform the BLOMAP-encoding with the Naïve Bayes classifier. 

6. Conclusion 

We have demonstrated that the encoding of amino acids has a significant influence on the 
accuracy of cleavage site prediction and that the commonly used orthonormal encoding 
should not be used in combination with a single layer perceptron for this type of task. 

Since the best results to date have been achieved by SignalP, which implements 
single layer and multilayer perceptrons with orthonormal encoding, we expect that these 
results can be improved by using our new BLOMAP62-encoding and a Naïve Bayes 
classifier.  

Compared to other standard encodings, the BLOMAP-encoding has several 
advantages. First of all, it simplifies the selection of a suitable encoding for a specific 
problem. Known substitution matrices can be utilized or problem specific matrices can be 
calculated. The BLOMAP62-encoding optimally preserves the similarity information 
contained in a substitution matrix and is scaleable to accommodate memory or time 
limitations. The application of the Sammon-projection on problem specific substitution 
matrices could lead to new insights into the metabolic relationships between amino acids. 
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