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Transcription regulation is mediated by combinatorial interactions between diverse trans-acting pro-
teins and arrays of cis-regulatory sequences. Revealing this complex interplay between transcription
factors and binding sites remains a fundamental problem for understanding the flow of genetic infor-
mation. The oPOSSUM analysis system facilitates the interpretation of gene expression data through
the analysis of transcription factor binding sites shared by sets of co-expressed genes. The system
is based on cross-species sequence comparisons for phylogenetic footprinting and motif models for
binding site prediction. We introduce a new set of analysis algorithms for the study of the combina-
torial properties of transcription factor binding sites shared by sets of co-expressed genes. The new
methods circumvent computational challenges through an applied focus on families of transcription
factors with similar binding properties. The algorithm accurately identifies combinations of binding
sites over-represented in reference collections and clarifies the results obtained by existing methods
for the study of isolated binding sites.

1. Introduction

The interaction between transcription factor (TF) proteins and transcription factor bind-
ing sites (TFBS) is an important mechanism in regulating gene expression. Each cell in
the human body expresses genes in response to its developmental state (e.g. tissue type),
external signals from neighboring cells and environmental stimuli (e.g. stress, nutrients).
Diverse regulatory mechanisms have evolved to facilitate the programming of gene expres-
sion, with a primary mechanism being TF-mediated modulation of the rate of transcript
initiation. Given a finite collection of protein structures capable of binding to specific DNA
sequences and the diversity of conditions to which cells must respond, it is logical and
well-documented that combinatorial interplay between TFs drives much of the observed
specificity of gene expression. The arrays of TFBS at which the interactions occur are
often termed cis-regulatory modules (CRM).1

The sequence specificity of TFs has stimulated development of computational methods
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for discovery of TFBS on DNA sequences. Well established methods represent aligned col-
lections of TFBS as position weight matrices (PWM). Sequence specificity of individual
PWM profiles can be quantified by information content, and scoring a sequence against the
PWM of a TF gives a quantitative measure of the sequence’s similarity to the binding profile
(for review see Wasserman and Sandelin16). Searching for high scoring motifs in putative
regulatory sequences with a collection of profiles (for instance, JASPAR10) can suggest the
binding sites in the sequence and the associated TF. However, this methodology is plagued
by poor specificity due to the short and variable nature of the TFBS. Phylogenetic foot-
printing filters have been demonstrated repeatedly to improve specificity.6 Such filters are
justified by the hypothesis that sequences of biological importance are under higher selec-
tive pressure and will thus accumulate DNA sequence changes at a slower rate than other
sequences. Based on this expectation, the search for potential TFBS can be limited to the
most similar non-coding regions of aligned orthologous gene sequences from species of
suitable evolutionary distance. Further, one might expect that genes which are coordinately
expressed are under the control of the same TFs, suggesting that over-represented TFBS
in the co-expressed genes are likely to be functional. These concepts are implemented by
Ho Suiet al. in the web service tool oPOSSUM,3 which, when given a set of co-expressed
genes, can identify the TFBS motifs that are over-represented with respect to a background
set of genes. This approach has achieved success in finding binding sites known to con-
tribute to the regulation of reference gene sets.

Prior methods that attempt to address the known interplay between TFs at CRMs can
be difficult to interpret.2,5,12 We introduce a new approach rooted in the biochemical prop-
erties of TFs, which allows greater computational efficiency and improved interpretation
of results. The resulting method is assessed against diverse reference data to demonstrate
its utility for the applied analysis of gene expression data. Supplementary information is
available at http://www.cisreg.ca/oPOSSUM2/supplement/.

2. Methods

2.1. Background: the oPOSSUM database

Ho Suiet al.3 describe the creation of the oPOSSUM database which stores predicted, evo-
lutionarily conserved TFBS to support over-representation analysis of TFBS for single TFs.
Briefly, human-mouse orthologs are retrieved from Ensembl. TFBS profiles from the JAS-
PAR database are used to identify putative TFBS within the conserved non-coding regions
from 5000 base pairs (bp) upstream to 5000 bp downstream of the annotated transcription
start site (TSS) on both strands. The oPOSSUM database stores the start and end positions
and the matrix match score (> 70 %) of each site. This data is used by the oPOSSUM II
algorithm in searching for over-represented TFBS combinations (described below).

2.2. Overview and rationale of oPOSSUM II algorithm

Finding over-represented combinations of TFBS presents several new issues that are not
encountered in single site analysis. We address two of the main challenges: computational
complexity and TFBS class redundancy. Firstly, the number of possible combinations of
sizen from m TFBS (n ≤ m) increases combinatorially with respect to bothm andn,
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which greatly impacts computing time. Secondly, several TFs have similar binding prop-
erties, thus subsets of profiles may be effectively redundant. Consequently, an exhaustive
search is not an efficient method to find over-represented combinations of patterns.

To address both problems we introduced two approaches. First, we used a novel method
to group the profiles into classes. Rather than using protein sequence similarity, a hierar-
chical clustering procedure was applied to group the profiles into classes according to their
quantitative similarity. One representative member was selected from each class for further
analysis. We then searched for the occurrences of class combinations in both co-regulated
genes (foreground) and a set of background genes. We considered unordered combinations
and applied an inter-binding site distance (IBSD) constraint to avoid exhaustive enumer-
ation of all combinations, since many co-operative TFBS are found to occur in clusters
without strict ordering constraints.1 Thus, we only need consider each set of TFBS where
all IBSDs satisfy the distance parameter. This approach can dramatically reduce the search
space when evaluating any combination size. A scoring scheme was adopted from the
Fisher exact test to compare the degree of over-representation of the class combinations.
The highly over-represented class combinations were re-assessed using all possible profile
combinations within the indicated classes.

The overall scheme of oPOSSUM II analysis is shown in Figure 1. The sections below
describe the details of each step.

Database of predicted,
evolutionarily conserved

TFBS

Set of co-expressed genes S
(foreground)

Set of TFBS found in S

JASPAR

1. Query for TFBS
found in S

2. Query for binding 
profiles of each TF 

Binding profiles of TFs
Distances between

pairs of TF binding profiles

3. CompareACE,
or matrix aligner

Classes of TFBS

4. Hierarchical 
clustering

Class combinations of TFBS

5. Select one TFBS from each class, 
combine selected TFBS from different classes

6. Count the number of genes with the 
combination found in the co-expressed 
set (foreground) and in all genes 
housed in the database (background)

Foreground and background
counts of each combinationScores for class combinations

7. Fisher exact test
Combinations of TFBS from 

over-represented classes

8. Expand the most over-represented 
class combinations, repeat steps 6 and 7

Figure 1. Overview of the oPOSSUM II analysis algorithm. Steps are numbered in the order executed. The
database of predicted TFBS is identical to that of the oPOSSUM analysis system (Ho Suiet al.3).
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2.3. TFBS in foreground gene set

When presented with a set of co-expressed genesS, oPOSSUM II queries the oPOSSUM
database for all putative TFBST present inS within a maximum of 5000 bp upstream
and 5000 bp downstream from the TSS on each gene. The analysis may be restricted to
those TFs found in selected taxonomic subgroups (plant, vertebrate and insect are currently
available), or TFs whose profiles exceed a minimum information content.

2.4. Classification of TFBS profiles

Binding profiles forT were retrieved from the JASPAR database. A profile compar-
ison algorithm, either CompareACE4 (default) or matrix aligner,11 calculated the pair-
wise similarity scores of all the profiles using profile alignment methods. The simi-
larity scores(ti, tj) between profilesti and tj was converted to distanced(ti, tj) by
d(ti, tj) = 1 − s(ti, tj). A distance matrixM was formed from these pairwise distances.
FromM , an agglomerative clustering procedure produced a hierarchy of clusters (subsets)
of T . The complete linkage method was used since it tends to find cohesive classes. Cutting
the cluster tree at a specified heightthrH partitionedT into classes.

2.5. Selection of TFBS and enumeration of combinations

For each classC, we selected the profile that is the most similar to other profiles inC as the
class representative. We chose this approach as we could not identify an adequate procedure
that would generate a consensus profile with comparable specificity to the matrices within
the class. To identify the class representative, we first calculated the sum of pairwise simi-
larity scoreσi between a profileti and other profiles inC, i.e.,σi =

∑
ti,tj∈C s(ti, tj). The

profile with the maximum sum of similarity score was chosen. From the selected TFBS,
unordered combinations of specified size (cardinality) were created. oPOSSUM II then
searched the foreground gene set (the co-expressed genes) and the background gene set
(default is all the genes in the database) for occurrences of these combinations. Letmaxd

be the maximum inter-binding site distance. For each gene, the occurrences of the com-
binations were found using a sliding window of width equal tomaxd within the required
search region. We counted the number of genes with a combination in both the foreground
and background gene sets.

2.6. Scoring of combinations

The Fisher exact test detects non-random association between two categorical variables.
We adopted the Fisher P-values to rank the significance of non-random association between
the occurrence of a combination and the foreground gene set, i.e., over-representation of
the combination in the foreground compared to background. For each combination, a two-
dimensional contingency table was constructed from the foreground and background count
distributions:

Number of genes with a given
combination

Number of genes without a given
combination

Foreground a11 a12

Background a21 a22
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For i, j = 1, 2, row sumRi = ai1 + ai2 and column sumCj = a1j + a2j , and the
total countN =

∑
i Ri =

∑
j Cj . From the hypergeometric probability function, the

conditional probabilityPcutoff given the row and column sums is

Pcutoff =
(C1!C2!)(R1!R2!)

N !
∏

i,j=1,2

aij

.

We calculated the P-values for all other possible contingency tables with row sums equal
to Ri and column sums equal toCj . The Fisher P-value is the sum of all the P-values less
than or equal toPcutoff, which represent equal or greater deviation from independence than
the observed table.

Caution must be taken when interpreting these Fisher P-values. First, the foreground
and background genes are allowed to overlap, which is a violation of an assumption for
the statistical test. Secondly, the Fisher exact test model may not precisely characterize the
data sets being analyzed. As a result, the Fisher P-values were used purely as a measure to
compare the degree of over-representation between different combinations. We will here-
after refer to the P-values as “scores”. Although the scores do not describe the probabilistic
nature of the over-representation, the ranking they provide is shown to be useful.3

2.7. Finding significant TFs from over-represented class combinations

Let thrC be the maximum score for which a TFBS combination may be considered sig-
nificant. Our empirical studies of reference collections suggested that a default maximum
score value of 0.01 detects relevant TF combinations. Letxi be any TFBS class combina-
tion with a score less than or equal tothrC and X is the set of distinct class combinations
that satisfy the score threshold:X = {xi|score(xi) ≤ thrC}. For each combinationxi,
let each ofC1, C2, . . . , Ch be a set of TFBS profiles that are represented by each of theh

class profiles in that combination. Compute the Cartesian productCp of C1, . . . , Ch. We
call this “expanding the TFBS classes” from the class representatives. The enumeration
and ranking procedures were repeated for theh-tuples inCp.

2.8. Random sampling simulations of foreground genes

oPOSSUM II needs to accommodate input gene sets of different cardinalities, so we wished
to investigate the relationship between gene set size and the false positive rate. 100 ran-
dom samples ofr genes were selected from the background and given to oPOSSUM II as
foreground genes. For each sample, oPOSSUM II reported the scores for all the class com-
binations. As these random samples of genes were not expected to be co-regulated, any
combination was a false positive. Let(0,maxs] be the interval over which false positives
are accumulated. We recorded the number of false positive class combinations for a range
of maxs whenr = 20, 40, 60, 80, 100.

2.9. Validation

Three reference sets of human genes were used as input to oPOSSUM II to assess the per-
formance of the algorithm. Two independent sets of skeletal muscle genes were tested. The
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first set (muscle set 1) was compiled from the reference collection identified by Wasserman
and Fickett15 and updated by a review of recent literature. A second set (muscle set 2) com-
bines the results of microarray studies of Moranet al.8 and Tomczaket al.14 The third set
contains smooth muscle-specific genes experimentally verified by Nelanderet al.9 All sets
were validated withmaxd=100, matrix score threshold=75%, and conservation level=1.

As a further comparison to the methods in Kreiman,5 which were validated in part
against the yeast CLB2 gene cluster,13 the yeast CLB2 cluster was analyzed using the
yeast oPOSSUM database (Ho Sui, unpublished).

3. Results

3.1. TFBS classification

Since the three reference gene sets were restricted to vertebrates, the first step in oPOSSUM
II analysis was to cluster the available vertebrate TFBS. We cut the hierarchical cluster tree
at a height of 0.45 (thrH = 0.45) because the majority of resulting clusters correlated well
with the structural families defined in JASPAR (cluster tree available in web supplement).
Most notably, binding profiles from FORKHEAD, HMG and ETS families were grouped
according to classifications. However, as we expected, the zinc finger profiles were dis-
persed into new groupings due to their divergent binding profile composition. Using this
approach, the 68 vertebrate TFBS in JASPAR were partitioned into 32 classes. This step
produced a considerable reduction in the search space. For example, in the analysis of pair
combinations, the search space was reduced by a factor of four.

3.2. Validation with reference data sets

3.2.1. Yeast CLB2 cluster

The yeast CLB2 gene cluster contains genes whose transcription peaks at late G2/early M
phase of the cell cycle. Transcription of these genes is regulated by the TF FKH, which is
a component of the TF SFF, and which interacts with the TF MCM1. Each of the top ten
scoring class combinations found by oPOSSUM II contained the binding sites of the ECB
class, of which MCM1 is a member. The highest ranked combination was{ECB, FKH1},
which is consistent with the literature and the results of Kreiman.5 The complete results
are available on the supplementary web site.

3.2.2. Three human reference gene sets

Figure 2 lists the top five over-represented class combinations for each of the three human
reference gene sets. The score values for these combinations were less than 2.0E-3. Also
listed are the five most over-represented TFBS classes in the total 32 classes created, as
reported by oPOSSUM single site analysis.

Prior studies involving muscle set 115 have identified the occurrence of clusters of mus-
cle regulatory sites including MEF2, SRF, Myf/MyoD, SP1 and TEF. The classes that con-
tain MEF2 and SP1 dominated the top combinations in both skeletal muscle sets (Figure 2a
and 2b). Yin-Yang modulates SRF-dependent, skeletal muscle expression. Thing1-E47 is
a bHLH TF localized to gut smooth muscle in adult mice, therefore, the presence of class
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Combination TFBS Pairs Single TFBS
8 (Bsap); 20 (MEF2*) 1 (Myf*)
8 (Bsap); 29 (SRF*) 8 (Bsap)
1 (Myf*); 31 (Yin-Yang*) 29 (SRF*)
20 (MEF2*); 28 (SP1*) 26 (RREB-1)
20 (MEF2*); 29 (SRF*) 28 (SP1*)

Combination TFBS Pairs Single TFBS
20 (MEF2*); 28 (SP1*) 20 (MEF2*)
20 (MEF2*); 32 (Thing1-E47*) 25 (Androgen)
20 (MEF2*); 21 (MZF5-13) 29 (SRF*)
8 (Bsap); 20 (MEF2*) 1 (Myf*)
1 (Myf*); 20 (MEF2*) 7 (Spz1)

a. Skeletal Muscle Set 1 b. Skeletal Muscle Set 2

Combination TFBS Pairs Single TFBS
28 (SP1*); 29 (SRF*) 29 (SRF*)
21 (MZF 5-13); 29 (SRF*) 26 (RREB-1)
29 (SRF*); 31 (Yin-Yang*) 20 (MEF2*)
29 (SRF*); 7 (Spz1) 7 (Spz1)
29 (SRF*); 32 (Thing1-E47*) 1 (Myf*)

c. Smooth Muscle Set

Figure 2. The top five over-represented pair combinations of TFBS classes reported by oPOSSUM II and over-
represented single TFBS sites reported by oPOSSUM for the skeletal and smooth muscle sets. The numbers are
the class identifiers and enclosed in parentheses is the name of a TF within that class, which is either known to
mediate transcription in the assessed tissue (*) or is a class representative.

32 in the list may be linked to other myogenic factors in the bHLH superfamily (such as
Myf). Bsap and MZF are not muscle specific. The Bsap motif is long (20 bp) and exhibits
an unusual pattern of low information content distributed across the entire motif, suggest-
ing that it may behave differently than other binding profiles. The inclusion of this profile
in the JASPAR database is under review (B. Lenhard, personal communication).

For the smooth muscle genes, the SRF class appeared in each of the top five com-
binations, consistent with established knowledge.7 The top combination,{SP1, SRF}, is
required for the expression of smooth muscle myosin heavy chain in rat. Yin-Yang can
stimulate smooth muscle growth. Spz1 acts in spermatogenesis, and has no known role in
muscle expression.

For all three reference sets, the top scoring combinations suggested new classes not
found in the single site analysis. In all cases, there were relevant TFBS identified only in
the combination analysis.

3.3. Effect of set size on false positive rate

The result of random sampling simulation of foreground genes is shown in Figure 3, which
plots the rate of false positive predictions for a range of gene set sizes as a function of
maxs. The data suggested no dependency of the false prediction rate on set size. We also
noted that at low score values, the proportion of false positives is low.

3.4. Web interface

oPOSSUM II web service is available at http://www.cisreg.ca/oPOSSUM2/opossum2.php.
A user enters a set of putatively co-expressed genes and specifies the parameter values
to be used in the analysis. Certain parameter values may produce lengthy runtimes. To
accommodate this possibility, our web service will queue the analysis request and will
notify the user via e-mail once the analysis is complete.
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Figure 3. Effect of gene set size on false positive rate observed from pairwise TFBS combinations in randomly
generated foreground gene sets.

4. Discussion

The analysis of over-represented combinations of TFBS in the promoters of co-expressed
genes is motivated by biochemical and genetic studies which reveal the functional impor-
tance of cis-regulatory modules. In contrast to previously described methods which identify
single over-represented motifs, the analysis of combinations must solve or circumvent the
consequence of a combinatoric explosion, which can precipitate prohibitive runtimes. To
reduce the search space, oPOSSUM II restricts its analysis to binding site combinations
using biologically justifiable criteria, namely, TF profile similarity.

Our results suggest two important contributions over the existing single-site TFBS over-
representation methods. Firstly, in each reference gene set, there is at least one relevant TF
class that appears in multiple combinations, an observation that is not immediately obvious
in single site analysis. Secondly, the algorithm finds functional TFBS that are not indicated
in single site analysis. For instance with the yeast CLB2 gene cluster, members of the
top scoring combination, ECB and FKH1, are ranked the first and eleventh in single site
analysis. In the smooth muscle reference set, the SRF and SP1 combination is the most
significant, but they are ranked the first and fourteenth in single site analysis. These results
clearly demonstrate the power of combination site analysis.

Analysis of the microarray-based skeletal muscle reference set correctly implicates the
combination of MEF2 and SP1 TFs in myogenesis. This result confirms the utility of high-
quality microarray data for regulatory sequence analysis.

While our result for the yeast CLB2 cluster is comparable to that reported by Kreiman,5

there are significant differences between the methods. Kreiman initially uses a motif dis-
covery algorithm to identify new motif patterns from a gene set and then subsequently looks
for over-represented combinations of motifs using both the new motif patterns and a TFBS
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profile database. In our interpretation, there is circular logic in looking for relevant motifs
in a reference gene set and then identifying their over-represented combinations. For the
CLB2 cluster, the profiles were taken from an existing database and our results are compa-
rable. For the first skeletal muscle collection, Kreiman reports the top scoring combination
as SP1, SRF, TEF and a motif drawn from the promoters of the positive gene set.

Although this paper presents the results for pairs of TFBS, the oPOSSUM II imple-
mentation is also able to evaluate combinations of higher cardinality. However, validation
of larger combinations is seriously limited by the lack of robust reference data sets that
include genes known to be regulated by multiple binding sites.

A few issues remain to be addressed by future research. First, the interpretation of
analysis results is confounded by intra-class binding similarity. While this property facil-
itates the oPOSSUM II algorithm, users must be prepared to consider which proteins in
a family are most likely to act within the tissue or under the condition studied. For in-
stance, the fact that an E-box motif is over-represented in the skeletal muscle data does
not directly lead the researcher to the MyoD protein; instead the user must consider the
entire range of bHLH-domain TFs. Second, inter-class similarity can influence the results.
Although oPOSSUM II does not allow overlap between TFBS in the analysis of a given
combination, TFBS from different combinations can overlap. Thus two G-rich motifs may
be reported as over-represented in different combinations (for instance, the SP1 and MZF
motifs in Figure 2c) but highlight the same candidate TFBS within the sequences analyzed.
A related issue is the compositional sequence bias in tissue specific genes,17 which would
motivate selection of a more refined background gene set. Finally, the required computing
time is prohibitively long for a synchronous web service. Parallelization of the enumeration
algorithm is a natural way to improve the running time.

5. Conclusion

oPOSSUM II utilizes putative TFBS identified from comparative genomic analysis, in con-
junction with knowledge of co-regulated expression, to search for functional combinations
of TFBS that may confer a given gene expression pattern. It uses a novel scheme to classify
similar binding site profiles. Using this clustering approach, the oPOSSUM II method is
able to circumvent the combinatorial challenge associated with the identification of sig-
nificant TFBS combinations. Furthermore, the application of an IBSD constraint limits
the number of possible combinations to analyze. Validation results suggest that TFBS
combination site analysis can provide valuable information that is not available through a
single-site analysis.
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