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Abstract

NAP, a detection and recovery based scheme for
implementing fault-tolerant itinerant computations, is
presented. We give the semantics for the scheme
and describe a protocol that implements NAP in
tacoma.

1 Introduction

One use of mobile agents is support of itinerant
computation [5]. An itinerant computation is a pro-
gram that repeatedly moves from host to host in a
network. The sequence of hosts the program visits is
determined by the program: the program can have
a pre-de�ned itinerary or can choose the next host
to visit based on its current state. The program can
repeatedly visit the same host or can even create mul-
tiple concurrent copies of itself on a single host.

Itinerant computations are distributed programs,
so they are susceptible to processor failures, commu-
nications failures, and crashes due to programs con-
taining bugs. Techniques are needed to deal with
such failures. Prior work in fault-tolerance for itiner-
ant computations has focused on masking techniques.
For example, [14] presents a technique for replicating
on independently failing processors the environment
(which we call a landing pad) in which an itinerant
computation executes. Thus, failures are masked be-
low the landing pad. The attraction of this approach is
that the itinerant computation need not concern itself
with failures. Masking, however, has limitations. It
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requires replication below the landing pad, which can
be expensive. Furthermore, preserving replica consis-
tency can only be done e�ciently within a local-area
network. If that network becomes unreachable to a
mobile agent, then the entire replicated landing pad
becomes unavailable to that agent. Replication is also
unable to mask crashes due to program bugs. Hence, a
fault-tolerance method based on failure detection and
recovery seems more appropriate for real mobile agent
systems.

We present such a method in this paper. Our ap-
proach has its roots in the primary-backup approach
for making services highly available [1, 4]. At critical
points in the execution of an itinerant computation,
its state is stored on a set of backups that we call rear
guards [9]. If there is a failure, then one of these rear
guards continues the itinerant computation.

The essential di�erences between our approach and
primary-backup are:

� Unlike primary-backup, the recovering rear guard
executes recovery code rather than the code that
was executing when the program failed. The re-
covery code can be identical to the code that was
executing when the failure occurred, but it need
not be.

� The rear guards are not a single, �xed set of back-
ups. Instead, they are the landing pads where
the itinerant computation had recently executed.
This is a signi�cant di�erence from primary-
backup, and much of the work in implementing
the approach concerns orchestration of the back-
ups.

We call the protocol that implements our approach
NAP.1 The idea for this protocol was �rst suggested
in [9]. In this paper, we 
esh out that idea, giving the
tacoma landing pad support and semantics of the

1NAP stands for Norwegian Army Protocol. The protocol
was motivated by the failure detection and recovery approach
used by one of the author's troop when moving in a hostile
territory.
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approach as well as describing the �rst action imple-
mentation of the protocol itself. We also give some
details about a Python-based implementation [11] of
NAP.

2 Assumptions
Each host runs a landing pad. A mobile agent can

be started at a host H by giving the landing pad at
H the program text and the initial state of the mobile
agent.

A program running on a host can crash, and a host
itself can crash thereby crashing all programs running
on that host. If a landing pad crashes, then all of the
mobile agents currently executing at that landing pad
also crash. We assume that the crash of a landing
pad is eventually detected by a small, well-de�ned set
of landing pads. This is equivalent to assuming the
fail-stop failure model of [13].

One must have enough replication to ensure that an
itinerant computation is recoverable. A common way
to ensure su�cient replication is to compute a value
f such that if no more than f crashes occur then the
computation is recoverable. A straightforward way to
de�ne such an f is as follows:

Bounded Crash Rate For any integer 0 �
i � f , there can be no more than i crashes of
hosts or landing pads during the maximum
period of time it takes the agent to traverse
i distinct hosts.

This de�nition is convenient because f does not
change during the itinerant computation. A more
practical approach of ensuring su�cient replication
could be to have f depend on the current state of
the itinerant computation. We use the simpler ap-
proach in this paper, but the generalization is straight-
forward.

Each pair of hosts is assumed to be connected by
a FIFO communications link. In this paper, we as-
sume that the underlying transport protocol masks
communications failures. In Section 6, we discuss how
to adapt NAP to networks that can su�er from parti-
tions.

3 Fault-Tolerant Itinerant Computa-

tions
A tacoma mobile agent can be used to implement

an itinerant computation: it can either move to an-
other host using a move operation or continue exe-
cuting on the current host and create a new agent on
another host using a spawn operation. More formally,
execution of a tacoma mobile agent is a sequence of
actions. A mobile agent executing its ith action is said

to be version i of the mobile agent. For a mobile agent
a, we denote version i of this agent as a[i].

Without NAP, a crash experienced during the ex-
ecution of an action causes the agent to be lost. An
option of move speci�es that action restarted upon
recovery of the landing pad [8]. We therefore extend
the de�nition of a tacoma action to better accom-
modate crashes. The de�nition we use is based on
fault-tolerant actions [13].

A fault-tolerant action FTA can be written as

FTA: action A recovery A

where A is called a regular action and A is called the
recovery action associated with A. The execution of
FTA satis�es the following properties:

1. A executes at most once, either with or without
failing.

2. If A fails, then A executes at least once and exe-
cutes without failing exactly once.

3. A executes only if A fails.

An action fails when it experiences a fault during
its execution. A fault that occurs between the execu-
tion of two fault-tolerant actions can be attributed to
one or the other of the two actions. So, it is possible
for all of the user's code in A to execute, yet to have
A also execute because a fault occurs after A �nishes.
However, once a subsequent action A0 starts execut-
ing, a fault will result in A0 executing rather than A

executing.
Fault-tolerant actions are general enough to pro-

gram any kind of fault-tolerance scheme based on de-
tection and recovery. For example, given an operation
undo/redo mechanism [3], fault-tolerant actions can
be used to implement atomic transactions.

The recovery action that an agent should take will
most likely change when that agent moves or spawns a
new agent. Hence, bothmove and spawn both termi-
nate an action.2 For example, Figure 1 shows a mobile
agent computation originating with a1[1]. The second
version of agent a1, a1[2], starts when a1[1] executes
move naming host H2 and terminates by executing
spawn. The spawn creates both the third version
a1[3] of a1, still on H2 and the third version a2[3] of
a new agent a2 on H4. By convention we de�ne a1[2]
to be the second version of both mobile agents a1 and
a2.
tacoma agents can be written in many di�erent

languages, so a fault-tolerant action is not encoded

2A third operation, checkpoint, also terminates an action.
This operation is described later in this section.



a1[2] a1[3] a1[4] a1[5]

a2[4]a2[5]a2[3]

a1[1]

Host H1 Host H2 Host H3

Host H5Host H4

move

move checkpointmove

move
spawn

Figure 1: Versions of Mobile Agents

using the syntax described above. Instead, the state
of a tacoma mobile agent is describe in a data struc-
ture called a briefcase. A briefcase is a named set of
hname; valuei pairs, where names in the briefcase are
unique. Each such pair is called a folder. A mobile
agent's briefcase has �ve folders associated with fault-
tolerant actions and two additional folders associated
with recovery actions. The purpose of these folders is
summarized in Table 1.

The semantics of move and spawn can be de-
scribed operationally in terms of folders. For exam-
ple, move(b) starts executing the program given as
the head3 of b:code at the landing pad named in the
head of b:host4. When this code starts executing as
a regular action, it is given a briefcase b0 identical to
b except that:

� b0:host is the tail of b:host.

� b0:code is the tail of b:code.

� b0:recovery is the tail of b:recovery.

� b0:version is b:version+ 1.

A failure of a regular action invokes the associated
recovery action, and the failure of a recovery action
causes its re-execution. In NAP, the recovery action
executes on some landing pad that was recently vis-
ited by the itinerant computation. When the failure
occurs during a regular action executing with brief-
case b, the code for the recovery action is the head of

3Given a list `, the head of ` is the �rst element of the list
and the tail of ` is the list with the head removed.

4The list of hosts b:host can be changed at any time, so the
itinerary of a mobile agent changes under program control.

b:recovery. The briefcase b0 for this recovery action
is identical to b except that the two new folders are
added:

� b00:recovery host is the identity of host upon
which the recovery action is executing.

� b00:failure status is information about the na-
ture of the failure of the regular action.

A mobile agent will interact with its environment,
and at times the mobile agent will need to change its
recovery action based on that interaction. For exam-
ple, upon �nding some information at a host, a mobile
agent may decide to delete a local �le. Before delet-
ing the �le, the mobile agent may wish to start a new
fault-tolerant action to install a recovery action that is
aware of the agent's intention of deleting the �le. This
is an instance of the output commit problem [6]: before
taking an irrevocable action, the mobile agent ensures
that its current state is stable so that any recovery
action will both have the information that led to the
irrevocable action and will be able to complete the ac-
tion even if the regular action failed. A third tacoma
operation, checkpoint, can be used to do this. For
example, Figure 1 shows version a1[4] creating ver-
sion a1[5] by executing checkpoint. Operationally,
checkpoint(b) is the same as move(b) except that
the new action head(b:code) is executed at the cur-
rent landing pad rather than at head(b:host). The
implementation of checkpoint can be more e�cient
than implementing it directly with move.

Appendix A gives a simple tacoma mobile agent
that illustrates the use of fault-tolerant actions with
move, spawn, and checkpoint.



folder use

host list of hosts to be visited (head is the next host to visit)
code list of regular actions (head is next to be executed)
recovery list of recovery actions (head is associated with this action)
version the version of the current action
num guards minimum number of rear guards
rally point list of hosts to retreat to in case of disaster

recovery host host on which recovery action is executing
failure status information regarding failure of regular action

Table 1: Folders relevant to Fault-Tolerant Actions

4 Protocol
Our realization of NAP is simple. Consider a regu-

lar action a[i] executing at a landing pad Li. When a[i]
terminates the identity of the next landing pad Li+1 is
the head of the host folder in the current briefcase b.
Li uses a reliable broadcast protocol [7] to send b to a
set G(a[i]) of landing pads, where the rear guards for
a[i] and the landing pad Li+1 are in G(a[i]). Reliable
broadcast guarantees that all nonfaulty landing pads
in G(a[i]) either deliver b or do not deliver b.

There are three outcomes to the reliable broadcast:

1. No landing pad delivers b. This implies that the
landing pad Li failed. This implies that the re-
covery action a[i] will be executed by one of the
rear guards in G(a[i]).

2. Li+1 delivers b. This implies that all nonfaulty
landing pads in G(a[i]) have delivered b. The reg-
ular action a[i+ 1] will thus begin to execute.

3. Some landing pad delivers b, but Li+1 does not.
This implies that Li+1 failed. A rear guard for
a[i+ 1] in G(a[i]) will determine this fact and ex-
ecute the recovery action a[i+ 1].

4.1 Runtime Architecture

A host has in one process a landing pad thread and
a failure detection thread. The landing pad maintains
a NAP state object that stores the information about
mobile agents that host is executing or for which it
serves as a rear guard. The landing pad thread informs
the failure detection thread which landing pads are
to be monitored. Which landing pads to monitor is
explained below. The failure detection thread uses
periodic messages and timeouts to detect crashes of
landing pads and uses the SIGCHLD signal to detect
the crash of a locally-running agent.

Each mobile agent at a host executes in its own
process; that process was created by the host's landing

pad. The reliable broadcast is initiated when mobile
agent process exits.

4.2 Reliable Broadcast

The reliable broadcast protocol we use for NAP
is a re�nement of the one presented in [15] instan-
tiated with a linear broadcast strategy. We start by
describing how this protocol works for a linear broad-
cast strategy.

Consider a process p0 that broadcasts a value b

to a group G = fp0; p1; : : : ; pn�1g. Process p0 en-
sures that all nonfaulty processes in G either deliver
b or do not deliver b. It does so by sending b to p1
and waiting for an acknowledgment from p1. Pro-
cess p1 ensures that, assuming it does not fail, all
nonfaulty processes in G � fp0g deliver b. In gen-
eral, when pi receives b it is responsible for ensur-
ing that b is delivered by all nonfaulty processes in
G � fp0; p1; : : : ; pi�1g = fpi; pi+1; : : : ; pn�1g. When
this obligation is discharged, pi sends an acknowledg-
ment to pi�1. Thus, if there are no crashes, then the
message b will travel from p0 to p1 to p2 and so on to
pn�1, and then the acknowledgment will travel back
from pn�1 to pn�2 to pn�3 and so on back to p0.

Once pi sends b to pi+1 it monitors for the crash
of pi+1. If pi detects pi+1's crash before receiving the
acknowledgment, then pi takes over establishing that
all of the nonfaulty processes in fpi+1; pi+2; : : : ; pn�1g
deliver b. Process pi does so by sending b to pi+2 and
waiting for an acknowledgment from pi+2. pi+2 sends
the acknowledgment to pi when it can (for example,
pi+2 can immediately send the acknowledgment if it
has already sent an acknowledgment to pi�1). If pi
detect pi+2's crash before receiving this acknowledg-
ment, then pi continues by sending b to pi+3, and so
on.

The reliable broadcast protocol in [15] also imple-
ments an election protocol: there is always eventually
one process, initially p0, that knows itself to be elected.



A process remains elected until it fails. This is impor-
tant for arbitrary broadcast strategies because if p0
fails, then a process must take over to complete the
broadcast.

NAP also uses an election protocol run in parallel
with the reliable broadcast protocol: there is always
one process, initially p0, that knows itself to be elected.
A process remains elected until it fails. The election
protocol is as follows [3]:

1. Upon receiving b from pi�k, process pi monitors
for the crash of pi�k.

2. If pi then detects the crash of pi�k it either mon-
itors for the crash of pi�k�1 (if k 6= i) or it elects
itself (if k = i).

4.3 NAP

NAP re�nes the reliable broadcast protocol just
given. First, let process p` in the reliable broadcast
protocol be assigned to the landing pad Li+1�` that
executed regular action a[i+1�`]. Two simple changes
are:

1. By the Bounded Failure Rate assumption, once
f + 1 landing pads have b, then b cannot be lost
due to crashes. Thus, once f + 1 landing pads
have b it is safe for Li+1 to start executing a[i+ 1]
because should a[i+ 1] fail, a[i+ 1] will be exe-
cuted. Hence, once a landing pad L determines
that f +1 landing pads have b (equivalently, that
b:NUM GUARDS rear guards have b), L sends
a b stable message to Li+1. Li+1 does not start
executing a[i+ 1] until it receives this message.

2. If a landing pad �nds itself elected after having
last received b, then it starts executing the recov-
ery action a[i].

In the remainder of this section we describe other
re�nements. Appendix B gives the complete protocol
in pseudocode.

Membership One can think of NAP as a reliable
broadcast protocol to a process group that changes
with each broadcast. The changes are determined by
a set of membership rules: G(a[i]) is de�ned to be
G(a[i� 1]) plus a set of landing pads that join G(a[i])
and minus a set of landing pads that leave G(a[i]).
The only rule we impose is that G(a[i]) include Li+1.

The size of the group G(a[i]) need not be larger
than f+1. Thus, any landing pad that receives b after
f + 1 landing pads have received it need not deliver
b nor need be in G(a[i+ 1]). Hence, we have the rule
that when a landing pad receives b, if it can determine

that f+1 other landing pads have already delivered b,
then it leaves G(a[i]). This rule is attractive, because
it is simple to implement and has an intuitive appeal.

There are other plausible rules for choosing which
landing pads leave G(a[i]). For example, one could
have the oldest landing pads remain in G(a[i]) on the
basis that they have not failed in the longest period
and thus are apparently stable. With this rule, the
latest rear guard would drop out of G(a[i]) once it re-
ceived the acknowledgment that the broadcast of b is
complete. More generally, landing pads could piggy-
back information with their NAP acknowledgments.
The information, for example, might include perfor-
mance measurements provided by the failure detection
thread. Li+1 could use this information to determine
which rear guard is introducing the most latency and
therefore should leave G(a[i+ 2]). This rear guard's
identity could be included in the broadcast of bi+1.

One additional rule is required for when a mobile
agent revisits a landing pad. That landing pad may
�nd itself twice in the broadcast strategy. For exam-
ple, consider agent a2 in Figure 1. If f = 3, then
G(a2[5]) = fH1; H2; H4; H5g where H4 both pre-
cedes and follows H5 in the broadcast strategy. When
this happens, the second entry drops from the broad-
cast strategy. For example, the broadcast to G(a2[5])
uses the broadcast strategy H4;H5;H2;H1.

Catastrophic Failure Although not covered in our
failure model, in practice there will be situations (such
as programming bugs) in which recovery action a[i]
will deterministically fail. Thus, all rear guards that
attempt to execute the recovery action will fail. A
reasonable response to take in this case is to pass the
briefcase b of the failing agent to a well-known host;
we call this host the rally point. The identity of the
rally point is speci�ed in the folder rally point.

One implementation of the rally point abstraction
would be to have the rally point prp a member of the
group G(a[i]) for each version i, and to have prp take
over should it detect all of the other members of the
group as having crashed. A more e�cient implemen-
tation is to have at least f + 1 rather than f rear
guards. When a rear guard �nds that all other rear
guards have failed, then it passes the briefcase to prp.

Termination When a mobile agent terminates, the
NAP for this agent also terminates. Surprisingly, even
though the reliable broadcast protocol that NAP is
based on cannot terminate [15], orchestrating termi-
nation of NAP is straightforward. Let the tacoma
operation exit be the command that instructs a land-



ing pad to terminate support for the corresponding
mobile agent, and let the last user-de�ned action be:

FTA!: action A! recovery A!

FTA! is replaced by the following two actions:

action f A! ; checkpointg recovery A!;
action exit recovery exit;

When the last landing pad executes exit, it will
terminate executing NAP for the agent, resulting in a
failure detection (the failure detection latency can be
reduced by sending an explicit message indicating that
the landing pad is terminating). The election proto-
col in NAP will choose a rear guard to execute the
recovery action. The agent that executes the recov-
ery action will then terminate executing NAP, causing
another failure detection and another rear guard exe-
cuting the recovery action. This will continue until all
rear guards have terminated executing NAP for this
program.

When a rally point is de�ned, this termina-
tion protocol will pass the �nal briefcase b! to
b!:rally point. Hence, all executions end up at the
rally point at termination. The reason for termina-
tion (abnormal or regular) can be recorded in the �nal
briefcase b!.

Reducing Latency Using a linear broadcast strat-
egy leads to a simple protocol, but it also has the worst
latency of all broadcast strategies. Before a version of
a mobile agent can start executing, a chain of f + 1
messages must be sent and received. As we show in
Section 5, for a move operation and for reasonably
small values of f , the latency of the reliable broad-
cast is subsumed by the latency of initializing the new
agent version, but for spawn and checkpoint the la-
tency can be signi�cant.

For spawn and checkpoint, a simple form of op-
timism can be used to mask at least some of the la-
tency imposed by the reliable broadcast. Instead of
blocking the execution of a new mobile agent version
a[i+ 1] until a \b stable" message is delivered, a[i+ 1]
can start executing as soon as possible. This creates
the danger that crashes may cause a[i] to be executed
after user code associated with a[i+ 1] starts execut-
ing. If this does pose a problem, then a[i+ 1] can use
the tacoma wait stable operation to block until b
has been delivered by at least f + 1 landing pads. If
a[i+ 1] does not explicitly execute wait stable, then
it is implicitly executed at the end of a[i+ 1].

An illustration of the use of this optimization is
given in Appendix A.

5 Implementation

We have implemented NAP in a Python-based5 ver-
sion of tacoma. We chose Python because it is a
convenient language for prototyping. Of primary im-
portance was to decide how we would integrate NAP
into the existing tacoma architecture. We have been
less concerned with performance in this �rst version
of NAP and tacoma.

With this in mind, the cost of doing a move with
NAP are given in Table 2. These values were ob-
tained on a system comprised of Pentium Pro pro-
cessors with a clock of 200 MHz. Each machine had
128MB of RAM and 100MB Ethernet. Each was run-
ning FreeBSD 2.2.7. To compute each value, 100 mea-
surements were made and the standard deviation was
within 5 percent of the average values.

A least-squares �t to these values gives the cost of
a move given g rear guards as 51:6+ 87:5g msec. We
expect to be able to lower this cost signi�cantly.

number of
rear guards

0 1 2 3 4

time (msec) 54 138 235 311 405

Table 2: Cost of NAP as a function of number of rear
guards

6 Conclusions

NAP provides fault-tolerance at a low cost. The
replication needed for fault-tolerance is obtained by
leaving some code running at landing pads which the
mobile agent has recently visited. No additional pro-
cessors are required. And, the recovery that a mobile
agent takes in the face of a failure is de�ned by the pro-
grammer. If a low cost method of recovery is possible,
then the programmer can use that rather than, for ex-
ample, active replication [14] or primary-backup [12].
We believe that this is especially important when par-
titioning is possible.

NAP is based on a linear broadcast strategy. A
linear broadcast strategy results in a simple rule for
determining when a landing pad should drop out of the
set of rear guards. For small values of f , the latency
of NAP is subsumed by the cost of a move, which is
the most common method of terminating a regular ac-
tion. It is not subsumed by the cost of a spawn. One
could reduce the latency by using a broadcast strat-
egy with a larger fanout. We are examining versions

5A reference manual for Python can be found at
http://www.python.org/doc/ref/.



of NAP built using such broadcast strategies for itin-
erant computations that frequently use spawn and
checkpoint.

A crash failure detector is not implementable in a
system that can su�er partitions. Hence, NAP as pre-
sented here can not be implemented in such a sys-
tem. For such systems, processes within the same
partition can agree on which processes are unreach-
able, but they cannot distinguish between the case of
the unreachable process being crashed or being par-
titioned away [16]. With such a failure detector, a
network partitioning into two connected components
may lead to a regular action and its recovery action
both executing without failing.

We are currently designing a version of NAP that
will provide better support for partitioned operation.
The failure detection thread of this version is as
described above: it implements consistent detection
within a set of connected landing pads of the unreach-
ability of the other landing pads. This version also
has a set of tools that aids the tacoma programmer
with writing a mobile agent that executes in a parti-
tionable environment. For example, tacoma already
provides a mechanism for the transactional update of
collections of folders on stable storage. We plan to use
this mechanism to allow applications to have the same
measure of fault-tolerance that, for example, the pro-
tocol of [12] gives. It will also allow for applications
more demanding than those supported by [12], such
as those for which a transaction spans many landing
pads. For those mobile agents that do not require such
strict semantics, we will have tools that provide infor-
mation on the network's topology and current per-
formance. Such tools allow one to write \partition-
aware" [2] mobile agents. The mobile agent described
in Appendix A is one that we believe would �t well
into this second class of applications.
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Appendices

A Example: License Checker
The following description of a tacoma mobile

agent illustrates the use of fault-tolerant actions. The
mobile agent visits a set of hosts, speci�ed as a pa-
rameter. For each host visited, the mobile agent cre-
ates a folder that describes the action the agent took
or whether it found the host to be unavailable. This
folder is returned to the originating host.

The mobile agent will take the following actions for
each host it visits:

� If the �le license exists and contains the word
\customer", then the mobile agent renames the
�le program to old_program and writes a new
�le program.

� If the �le license exists and contains the word
\demo", then the mobile agent takes no action.

� Otherwise, the mobile agent deletes the �le
program.

We wish the agent to update the host with some
care, however. In the unlikely (or perhaps malicious)
event of the host crashing while the changes are taking
place, we would like to have the user who launched
the agent be noti�ed. Depending on the operating

system, the host's �le system may be corrupted, so a
compensating mobile agent should be later dispatched.
And, it may also be that the host was crashed in an
e�ort to thwart the mobile agent.

The program that the agent executes consists of
the �ve fault-tolerant actions launch, visit, update,
alert, and report. The agent is launched by exe-
cuting the action launch on a host that we call the
originating host. We assume that the originating host
does not crash (but it is easy to rewrite this program
to use a set of backup hosts should one wish to tolerate
failures of the originating host).

The �ve actions are:

1. launch This action executesmove of the action
visit to the �rst host if there is such a host.

There is no recovery action for this �rst action;
there is no rear guard yet de�ned that will execute
it.

2. visit This action determines the action to take
based on the license �le. It creates a folder with
the name of the host and records in this folder
the action to take. The action terminates with a
checkpoint leading to the action update.

The recovery action creates a folder with the
name of the host and records the fact that this
host was not available. The recovery action ter-
minates with a move of the action visit to the
next host if there is another host to visit. Oth-
erwise, it terminates with a move of the action
report to the originating host.

3. update This action updates the �les as in-
structed by the contents of the host's folder. It
records this fact in the host's folder. The action
terminates with amove of the action visit to the
next host if there is another host to visit. Oth-
erwise, it terminates with a move of the action
report to the originating host.

The recovery action records in the host's folder
that the host failed before the action could take
place. The action terminates with a move of the
action visit to the next host and a spawn of the
action alert to the originating host if there is a
next host to visit. Otherwise, it terminates with
a move of the action report to the originating
host.

4. alert This action writes a message indicating
that a host crashed while its �le system was being
updated. The crash may have left the �le system
in an inconsistent state, or the crash may have



been deliberate in an attempt to bypass the mo-
bile agent's action. The action terminates with
an exit. The recovery action is exit.

5. report This action writes the current contents
of the briefcase into a well-known place. The re-
covery action does the same thing. Both actions
terminate with exit.

If one wishes to use the optimistic method for re-
ducing latency as described in Section 4.3, then all but
visit can be executed without using the wait stable
operation. If wait stable were not used at the be-
ginning of the action visit, then it would be possible
that, due to a set of failures, both the �le system of
the host would be updated and the recovery action of
the preceding visit action would record that the host
was not visited because it was crashed.

B NAP
We present the NAP as an automaton executed by

each landing pad.
Each briefcase BC has a unique identi�er BC.ID that

is assigned when the briefcase is created. The unique
identi�er does not change when the briefcase is passed
to another landing pad.

A spawn operation is initiated by having the exit-
ing mobile agent give its landing pad two briefcases:
one for the newly-spawning agent and one for the con-
tinuing agent. A move operation is initiated by hav-
ing the exiting application mobile agent give only one
non-NULL briefcase. A spawn results in two con-
current reliable broadcasts, while a move results in
only one reliable broadcast. Although not described
above, a spawn can have the continuing agent and the
newly-spawned agent each execute on di�erent hosts.

A landing pad maintains a table NAPstate that
maps a briefcase identi�er to the following informa-
tion:

� The version of the agent active that the landing
pad believes is being executed;

� The version of the agent me that was last executed
at this landing pad;

� The landing pad's vector clock VC that is associ-
ated with this agent.

The vector clock is a table that maps a version i of
the agent to the host on which it executed VC[i].host

and the version of the briefcase that this landing pad
believes is stored there VC[i].vers. The host can ei-
ther be a host identi�er or the value UNKNOWN. The ver-
sion can be either a number, the value NONE indicating

that the agent has not executed at this landing pad,
or the value DOWN indicating that the landing pad has
either crashed or otherwise garbage collected informa-
tion concerning this briefcase. The value VC.vers can
be thought of as a vector clock of unbounded length
where the values of VC[i].vers for versions that have
not yet executed are set to NONE, and the values for
versions that have been garbage collected are set to
DOWN. Hence, only a bounded set of values need to be
maintained in VC[i].vers. The vers component of
VC is treated like any vector clock [10] where NONE less
than any integer and DOWN is greater than any integer.

To keep the pseudocode for the protocol as short as
possible without losing its essential structure, it does
not implement initial agent startup, agent termination
or keeping additional rear guards such that when the
number of rear guards drops too low then moving the
agent to one of the hosts speci�ed in BC.rally_point.



catch agent_termination(sBC, mBC):

open e: NAPstate[mBC.ID] {

Host mh = head(mBC.host);

wait until (stable(e));

active = me+1;

VC[active].host = head(mBC.host);

VC[active].vers = NONE;

mBC.host = tail(mBC.host);

send <"move", VC, mBC, active>

to mh;

if (sBC != NULL)

open es: NAPstate[sBC.ID] {

Host sh = head(sBC.host);

es.active = active;

es.me = me;

es.VC = VC;

es.VC[active].host =

head(sBC.host);

sBC.host = tail(sBC.host);

send <"move", es.VC, es.sBC, es.active>

to sh);

}

}

catch failure_detect(host):

for each entry e in NAPstate {

if (host == MyChild(e)) {

e.VC[next(e, e.me)].vers = DEAD;

DoUpdate(e.BC.ID, e.me);

}

if (host == MyParent(e)) {

e.VC[prev(e)].host = DEAD;

if (host == e.VC[active].host) {

wait until (stable(e));

fork recovery agent (e.BC);

}

else DoAck(e.BC.ID);

}

}

receive move(newVC, newBC, newActive):

open NAPstate[newBC.ID] {

updateVC(newBC.ID, newVC);

me = active = newActive;

BC = newBC;

fork new agent (BC);

DoUpdate(BC.ID, me);

}

receive BC_stable(BC_ID):

open NAPstate[BC_ID] {

note briefcase stable;

}

receive update(newVC, newBC, vers, i):

open NAPstate[newBC.ID] {

if (active < vers) {

UpdateVC(newBC.ID, newVC);

if (VC[i].host == VC[me].host)

VC[i].vers = DOWN;

else {

BC = newBC;

active = VC[me].vers = vers;

}

DoUpdate(BC.ID, i);

}

else DoAck(BC.ID);

}

receive ack(BC_ID, newVC):

open NAPstate(BC_ID) {

UpdateVC(BC_ID, newVC);

DoAck(BC.ID);

}

void UpdateVC(BC_ID, newVC):

open NAPstate[BC_ID] {

for all entries i of newVC:

newVC[i].vers > VC[i].vers {

VC[i].vers = newVC[i].vers;

VC[i].host = newVC[i].host;

}

}

void DoUpdate(BC_ID, i):

open e: NAPstate[BC_ID] {

if (overstable(e)) VC[i].vers = DOWN;

else if (stable(e)) {

send <"BC_stable", BC.ID>

to VC[active].host;

}

if (next(e, i) == i) DoAck(BC_ID);

else if (VC[next(e, e.me)].vers

< active)

send <"Update", VC, BC, active,

next(e, i)>

to VC[next(e, i)].host;



}

void DoAck(BC_ID):

open e: NAPstate[BC_ID] {

if (prev(e) != me &&

VC[prev(e)].vers < active)

send <"Ack", BC_ID, VC>

to VC[prev(e)].host;

}

index next(e, j) {

return largest index i < j;

e.VC[i].vers is a number

else return j;

}

index prev(e) {

return smallest index i > e.me:

e.VC[i].vers is a number;

else if (e.VC[i].host != UNKNOWN)

return e.active;

else return e.me;

}

host MyChild(e) {

return e.VC[next(e, e.me)].host; }

host MyParent(e) {

return e.VC[prev(e)].host; }

boolean stable(e) {

return (number of entries in e.VC[*].vers

that equal e.active >=

e.BC.num_guards

|| next(e, e.me) == me);

}

boolean overstable(e) {

return (number of entries in e.VC[*].vers

that equal e.active >

e.BC.num_guards);

}


