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ABSTRACT 

We present a conceptual framework for validating reusable 
behavioral models.  The setting for this work is a modern 
product development environment in which design is per-
formed by teams of specialists that collaborate through 
model reuse.  The various modes of model reuse separate 
validation-relevant knowledge from the tasks for which it 
is needed.  To enable efficient and effective transfer of this 
knowledge to the tasks for which it is needed, we propose a 
framework for validating reusable behavioral models based 
on formal representations of validation-relevant knowl-
edge.  The framework defines the abstract knowledge rep-
resentation as well as an abstract process for applying this 
knowledge to validate reusable behavioral models.  Al-
though this framework is not a complete solution to the 
validation problem in design, it forms a foundation for un-
derstanding and solving the problem and represents a start-
ing point for future investigation.   

1 INTRODUCTION 

Engineering design is the process of mapping a set of re-
quirements into a definition of an artifact that will meet 
those requirements (Pahl and Beitz 1996).  It is an iterative 
process in which designers must evaluate the properties and 
performance of an alternative—i.e., its behavior—relative to 
the stated requirements.  These behavioral evaluations guide 
decision making when comparing and refining alternatives 
and thus are central to engineering design.   

Designers commonly use computer-based modeling 
and simulation (M&S) methods to make predictions about 
artifact behavior.  One benefit of computer-based models is 
their ease of reuse.  This trait corresponds well with the it-
erative and evolutionary nature of engineering design.  
Furthermore, it enables designers to speed design evalua-
tion and to amortize the cost of model development over 
many uses.  However, that one can easily (re)use a model 
says nothing about whether one should (re)use it.  A model 

 

of a system is said to be valid if one can use it instead of 
the system to achieve one’s objectives (Law and Kelton 
2000); the process of establishing validity is known as 
model validation.   

The validation needs of engineering design differ from 
those of other M&S problems.  Behavioral model reuse is 
commonplace in design and advances in technology are 
making model reuse easier and more widespread.  How-
ever, model reuse can result in a segmentation of the 
knowledge required to perform validation across several 
tasks.  Validating a model for a new use is difficult when 
these tasks are distributed in space and/or time.   

We propose a conceptual framework for validating re-
usable behavioral models.  This framework is based upon 
formal representations of validation-relevant knowledge 
and defines the abstract process for applying such knowl-
edge.  This framework is a departure from prior thinking in 
several ways.  Most significantly:  

 
• We recognize that in addition to validating behav-

ioral models, one must also validate the predic-
tions generated from them and must do so using 
the same formalisms. 

• We identify three complementary validation prob-
lems—validity characterization, compatibility as-
sessment and adequacy assessment—that indi-
vidually provide insight into the properties of a 
behavioral model or prediction and together solve 
the validation problem. 

• We argue for formal descriptions of the limitations 
of behavioral models and predictions.  These 
descriptions—called validity descriptions—provide 
a user with assurances about a model’s or predic-
tion’s accuracy over a specific set of uses and 
forms an interface between creators and users. 

 
We note that this framework is not a complete solution 

to the validation problem but serves as a conceptual road-
map to understanding and solving the problem—it repre-
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sents a starting point for future investigation and dialogue 
between the design and M&S communities. 

The organization of this paper is as follows.  Section 2 
is a discussion of the challenges of validating reusable be-
havioral models.  Section 3 contains a description of the 
framework for validating reusable behavioral models.  Sec-
tion 4 contains an example that illustrates the framework 
on a simple engineering example.  Section 5 is a discussion 
of the implications of the proposed framework and areas 
for future work. 

2 CHALLENGES OF VALIDATING RESUABLE 
BEHAVIORAL MODELS  

2.1 Model Validation 

Model validation commonly is defined as the “substantia-
tion that a computerized model within its domain of appli-
cability possesses a satisfactory range of accuracy consis-
tent with the intended application of the model” 
(Schlesinger, Crosbie et al. 1979).  Typically, validation is 
considered to be a process that runs concurrent to model 
development (Sargent 2001).  Many works present process 
flows for the activities and interactions of subject-matter 
experts (SMEs) who work throughout a M&S lifecycle to 
ensure model validity (e.g., (Balci 1998; Law and Kelton 
2000; Law and McComas 2001)).  The SMEs use various 
analysis methods, both qualitative and quantitative, to 
gauge a “degree of credibility” for a model (Balci 1997). 

From a procedural standpoint, the challenge of model 
validation is to bring together various sources of valida-
tion-relevant knowledge.  This includes knowledge about a 
model (its “domain of applicability” and “range of accu-
racy”) and an intended application (the corresponding do-
main and accuracy needs).  Much of this knowledge is 
generated during the model development process, which is 
why validation typically is integrated with development. 

Efficiency is a major concern in engineering design.  
Pressures to minimize design times while keeping costs 
low require that one perform M&S—and therefore, model 
validation—quickly and inexpensively.  This is a major 
motivation for model reuse, which saves the time and ex-
pense of model development.  However, long validation 
times can undermine the benefits of model reuse.  Intui-
tively, one might suspect that having validated a model for 
one use will permit faster validation for a different, but 
similar use.  Although some have speculated that this may 
be the case (e.g., (Balci, Nance et al. 2002)), the literature 
provides little guidance on how to accomplish it. 

2.2 Behavioral Model Reuse in Engineering Design 

In cases of model reuse, it is not possible to perform vali-
dation and model development concurrently.  This is be-
cause one cannot know about all possible applications of a 
model at the time it is developed.  Moreover, some valida-
tion-relevant knowledge is missing and model validation 
cannot proceed without it.  Conversely, it can be difficult 
to acquire validation-relevant knowledge about a model at 
the time that its application is known when the model user 
is not its creator.   

Just like the validation of any other model, the valida-
tion of reusable models requires one to bring together vari-
ous sources of relevant knowledge.  However, the chal-
lenge with model reuse is that this knowledge can be far 
removed from where it is needed.  To better understand 
this, it is useful to consider a couple of potential model re-
use scenarios. 

In engineering design, a prototypical model reuse sce-
nario involves decision-making and design-analysis tasks.  
Decision making involves identifying preferable design al-
ternatives based upon predictions generated during design 
analyses.  In general, one decision-making task involves 
predictions from multiple analysis tasks.  Design analysis 
involves the (re)use of behavioral models to generate the 
desired predictions.  In this situation validation-relevant 
knowledge is distributed among the various tasks: model-
specific knowledge is localized in the analysis tasks and 
application-specific knowledge is localized in the decision 
making task.  The challenge is to integrate these sources of 
knowledge in a timely and effective manner.  This can be 
difficult in general.  Research on design repositories 
(Szykman, Sriram et al. 1998; Szykman, Sriram et al. 
2000) and behavioral knowledge repositories (Mocko, 
Malak Jr. et al. 2004) promise to make behavioral models 
and the predictions they yield accessible indefinitely.  This 
means that designers may have to validate the use of mod-
els without consulting their creators.   

In another scenario, behavioral models can be shared 
across corporate or organizational boundaries.  This mode of 
reuse could be important in the defense industry where gov-
ernment agencies often perform situational analyses using 
models of their assets and personnel (e.g., war gaming, lo-
gistical analyses, etc.).  Rather than modeling an asset (e.g., 
a tank, ship, building, etc.) themselves, the government 
agency can require a behavioral model as a deliverable from 
the contractor who designs and constructs the asset.  This 
would be an efficient reuse of resources, since often the 
government requests a model to be developed as part of the 
design process.  However, it raises validation issues with re-
spect to applying the model.  In this situation, a model is be-
ing reused by an entirely different organization than the one 
who created it.  This results in a separation of validation-
relevant knowledge on a very large scale. 

An efficient approach is required to transfer validation-
relevant knowledge to where it is needed.  Although system-
atic documentation may satisfy this requirement in some 
cases, it is not a good approach in general.  A major draw-
back is that documentation is informal and therefore can be 
ambiguous.  This is particularly problematic in multidisci-
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plinary settings where one designer may not understand the 
assumptions implicit in the work of another.  Incorrect inter-
pretations can lead to mistakes during model validation.  
Another drawback to documentation is that it does not scale 
well.  As the complexity of models and model applications 
grow, so does the size and scope of their corresponding 
documentation.  This poses a practical challenge for those 
who must read and interpret the documents, possibly result-
ing in long validation times and/or mistakes.   

A more suitable approach is to use formal representa-
tions to support the transfer and use of validation-relevant 
knowledge.  Formal representations are unambiguous and 
computer-interpretable.  This would admit the use of auto-
mation to manage the complexity of large models and model 
applications.  In the next section, we describe a framework 
for validating reusable behavioral models that is based on 
formal representations of validation-relevant knowledge.  
This framework defines the abstract knowledge representa-
tion as well as an abstract process for applying this knowl-
edge to validate reusable behavioral models. 

3 VALIDATING REUSABLE  
BEHAVIORAL MODELS  

3.1 A Framework for Behavioral Model Validation 

We begin this section with a definition:  A validity descrip-
tion is a formal statement about an upper bound on the inac-
curacy of a model or prediction over a particular set of con-
ditions, or context.  The notions of context and inaccuracy 
correspond to the ideas from Section 2 of “domain applica-
bility” and “range of accuracy,” respectively.  Thus, a valid-
ity description is a representation of the validation-relevant 
knowledge about a model or a prediction.  Specifically, it 
represents assurances about the properties of a model or pre-
diction under specific conditions.  Context and inaccuracy 
are described in Sections 3.2 and 3.3, respectively. 

We extend the notion of validation-relevant knowl-
edge to predictions because they play a key role in deter-
mining the validity of models.  A prediction from one 
model can serve as an input to another.  As such, predic-
tions define the context for the application of a model.  
This is discussed in greater depth in Section 3.2. 

Given the concept of a validity description, validation 
can be decomposed into a three-step process: 

 
• Validity Characterization.  The process of de-

veloping a validity description. 
• Compatibility Assessment.  The process of de-

termining whether the context of the intended use 
of a behavioral model or prediction is consistent 
with the context of its validity description. 

• Adequacy Assessment.  The process of determin-
ing whether the accuracy of a behavioral model or 
prediction is adequate for the user’s objectives. 
This three-step process is appropriate for reusable be-
havioral models because it allows for the efficient creation, 
transfer and use of validation-relevant knowledge.  Valid-
ity characterization is performed during model develop-
ment where knowledge about a model is produced.  It re-
sults in a formal description of the model that is relevant in 
subsequent validation steps.  Because this description is 
formal, it can be interpreted unambiguously by both hu-
mans and computers.  The assessment steps define how 
this knowledge is used by subsequent M&S tasks.   

The following sections discuss the notions of context 
and inaccuracy in greater detail.  The semantics of these 
concepts are defined.  Additionally, well-defined condi-
tions for when two contexts are consistent with one another 
are presented and the relationship between context and in-
accuracy is discussed. 

3.2 Context 

The term context refers to the limited domain over which a 
model or prediction applies.  Several researchers within the 
artificial intelligence community have discussed the for-
malization of context for knowledge-based systems (e.g., 
(Guha and Lenat 1992; McCarthy 1993; Akman and Surav 
1997); see (Guha and McCarthy 2003) and (Akman and 
Surav 1996) for surveys).  The general approach they take 
is to state assumptions about the world as propositions in a 
logic.  Falkenhainer and Forbus take such an approach for 
describing behavioral model components (Falkenhainer 
and Forbus 1991).  The basis for formalizing assumptions 
comes from the mechanics of mathematical modeling 
where analysts make simplifications such as assuming a 
derivative is exactly zero or that a system is completely 
closed.  However, assumptions like these seldom are satis-
fied exactly.  Analysts make these assumptions because the 
resulting models often are useful as long as the assump-
tions are “close enough” to reality.  For example, an ana-
lyst might assume a derivative is exactly zero when devel-
oping a mathematical model with the knowledge that the 
inaccuracy of that model is small as long as the actual 
value of the derivative is small.  The person most qualified 
to judge whether an assumption is met “closely enough” is 
the creator of the model.  However, this person may not be 
the user.  An assumption-based approach is insufficient for 
representing context to a user because the user may lack 
the domain expertise required to make this determination.   

A set-based approach is more appropriate for repre-
senting context.  Conceptually, a context defines a set of 
“world states” within which one has some assurance of 
correctness or accuracy.  There may be no such assurances 
outside of this region.  In principle, a context specifies al-
lowable values of every variable in the “world.”  In prac-
tice, the concept of near-decomposability states that only a 
handful of variables affect a system significantly (Simon 
1996); all others have so little impact on a model’s predic-
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tions that they can be assumed unbounded.  In the simplest 
of situations, a context set is a hypercube created by 
bounds on the problem variables.  In more complex cases, 
a context is a region of space defined by functional rela-
tionships among the variables and it may include con-
straints on variables not present in a model. 

Each behavioral prediction contributing to a decision 
must satisfy its own contextual obligations.  These obliga-
tions relate to the particular aspect of behavior—or behav-
ioral attribute—a decision maker wants to be predicted.  
Decision makers typically require predictions about differ-
ent behavioral attributes of a system, and each behavioral 
attribute can have a different context.  For example, a deci-
sion maker might require one prediction about structural 
stress under steady-state conditions and another about the 
probability of failure under specific dynamic conditions.  
We refer to the context requirements for a particular 
behavioral attribute in a particular decision problem as a 
behavioral attribute context.  A decision maker performs 
compatibility assessment for a prediction by comparing its 
context to that of the corresponding behavioral attribute.  A 
decision maker can use a prediction only if it applies over 
the entire behavioral attribute context.  Otherwise, there 
will be portions of the behavioral attribute context in which 
the prediction cannot be trusted.  Decision makers take de-
cisions in this circumstance at their own risk; to do so 
would be like making decisions about a supersonic aircraft 
based upon subsonic performance predictions. 

In general, one can rationally execute a decision if and 
only if each prediction is of the same or broader context than 
its corresponding behavioral attribute—that is, they must 
subsume the behavioral attribute contexts.  Figure 1 contains 
conceptual depictions of two possible decision making sce-
narios, each with a behavioral attribute context and the con-
text of a corresponding prediction.  In Figure 1(a), a rational 
decision is possible because the context of the prediction in-
formation subsumes the behavioral attribute context; they 
are context-compatible.  However, a rational decision cannot 
be made in the situation depicted in Figure 1(b).  Here, the 
prediction and the behavioral attribute are not context-
compatible.  All is not lost if the context requirements for a 
decision cannot be met at first.  It is often possible to expand 
the context of a prediction if one is willing to trade a degree 
of accuracy for it (we discuss accuracy and the context-
accuracy relationship in the next subsection).  

A simulation experiment is comprised of a model and 
the inputs and parameters for the model.  For a design 
problem, parameters specialize a behavioral model to a 
particular design alternative (i.e., they specify physical di-
mensions or other quantities that remain constant through-
out the simulation) and inputs represent external stimuli.  
Each element of a simulation experiment is associated with 
a particular context and the context of a prediction made by 
the simulation is the intersection of these contexts.  Figure 
2 contains a conceptual depiction of the relationship of a 
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Figure 1:  Conceptual Depiction of 
Contexts that are Compatible (a) and 
Not Compatible (b) 
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prediction context to the contexts in a simulation experi-
ment.  Mathematically, one can state this relationship as 
 

 
1

P M j
j n

C C C
=

  =    …
∩ ∩ , (1) 

 
where PC  is the context of the prediction, MC  is the 
model context and jC  is the context of the jth input or pa-
rameter to the model.  This means that the context of a 
prediction is never more general than the least general con-
text from which it is formed.   

One can assess the compatibility of a model on two 
levels.  First, one can ask whether a model is appropriate 
for a given simulation experiment.  To answer this ques-
tion, one compares the context of a model to those of the 
parameters and inputs of an experiment.  One can say that 
the model is compatible with the other elements of the ex-
periment if the intersection of these contexts—i.e., the con-
text of the resulting prediction—is not the empty set. 

More commonly in design, one performs a simulation 
experiment to predict a specific behavioral attribute for use 
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in a decision.  In this case, one assesses the compatibility 
of a model relative to whether the resulting prediction is 
context-compatible with the behavioral attribute.  Given 
inputs and parameters for a model and a desired behavioral 
attribute, compatibility assessment shows that the a behav-
ioral model is compatible if the prediction yielded by the 
simulation experiment is context-compatible with the be-
havioral attribute.  This combines the concepts illustrated 
in Figures 1 and 2.  Combining the relationship in Equation 
(1) with the notion of context compatibility, we can say 
that a simulation experiment is context-compatible with  a 
behavioral attribute if and only if  

 

 
1

BA M j
j n

C C C
=

    ⊆        …
∩ ∩ , (2) 

 
where BAC  is the behavioral attribute context.  With respect 
to validating the use of a behavioral model, the condition 
BA MC C⊆  is necessary for Equation (2) to hold.  If a be-

havioral model is context compatible with a desired behav-
ioral attribute, one can proceed to assess its adequacy.  

3.3 Inaccuracy 

Inaccuracy refers to the total uncertainty in a prediction or 
model.  There are many ways in which one can characterize 
uncertainty.  For the discussion here, we distinguish between 
two types: aleatory uncertainty and epistemic uncertainty.  
Aleatory uncertainty is a potential deviation from reality in a 
prediction or model due to natural random behavior (Parry 
1996) and is also known as variability, stochastic uncer-
tainty, objective uncertainty (Ferson and Ginzburg 1996) 
and irreducible uncertainty.  Examples of phenomena that 
involve or exhibit aleatory uncertainty include machining 
error, annealing, errors in communications systems, many 
measurement errors and radioactive decay.   

Epistemic uncertainty is a potential deviation from real-
ity in a prediction or model due to a lack of knowledge or 
information (Parry 1996) and sometimes is called impreci-
sion (Antonsson and Otto 1995), reducible uncertainty or 
subjective uncertainty (Ferson and Ginzburg 1996).  Epis-
temic uncertainty often results from ignorance or modeling 
decisions, such as selecting one model over another or 
choosing to make particular approximations and simplifica-
tions.  Oberkapmf and coauthors distinguish between epis-
temic uncertainty and error, which they describe as resulting 
from deliberate simplifications or inadvertent mistakes in 
modeling (Oberkampf, DeLand et al. 2002).  However, error 
is a type of knowledge deficiency and is therefore better 
viewed as a subclass of epistemic uncertainty. 

One can represent aleatory uncertainty using classical 
probability theory, but it is not generally correct to repre-
sent epistemic uncertainty in this way.  This can be be-
cause one does not have enough information under epis-
temic uncertainty to describe the relative likelihoods of 
events or because a probabilistic interpretation is altogether 
invalid.  The latter case can result from modeling assump-
tions.  For example, an analyst might simplify a model by 
ignoring an energy loss (e.g., friction, thermal losses, etc.).  
This can result in a systematic deviation from reality where 
the precise deviation is uncertain.  It would be wrong to 
represent this uncertainty with classical probability theory 
because the deviation from reality is systemic, not stochas-
tic.  Formal approaches for representing and making deci-
sions under epistemic or combined epistemic-aleatory un-
certainty are still a topic of research.  Researchers have 
explored several alternatives to classical probability theory, 
including possibility theory (Dubois 1988), fuzzy set the-
ory (Zadeh 1965), Dempster-Shafer theory (Yager, 
Kacprzyk et al. 1994), probability-bounds analysis (Ferson 
2000) and interval analysis (Ferson and Ginzburg 1996).  
How one performs adequacy assessment depends on the 
chosen inaccuracy representation.  

Designers contend with both aleatory and epistemic 
uncertainty.  Aleatory uncertainty is particularly important 
when considering the impacts of manufacturing and envi-
ronmental variations (e.g., random deviations in part sizes 
or loading conditions).  Because they are approximations 
of reality, all models have epistemic uncertainty and, by 
virtue of being computed from a model, all predictions 
have epistemic uncertainty as well.  Another source of 
epistemic uncertainty is the incompleteness of a design 
specification (i.e., there is a lack of knowledge about what 
the final design will be).  This source of uncertainty mani-
fests itself in behavioral models since the model cannot 
“know” more about a design than is present in its specifica-
tion.  Also note that there can be epistemic uncertainty 
about an aleatory uncertainty.  For example, one may not 
know the precise mean of a probability distribution.   

The purpose of a validity description is to provide a 
user with assurances about the inaccuracy of a behavioral 
model or prediction over a well-defined set of situations.  
In general, a user has no way of knowing if the inaccuracy 
of a model or prediction is actually larger than what is re-
ported.  Because of this, creators must ensure that their 
characterizations of inaccuracy do not understate the actual 
inaccuracy.  This suggests that a conservative approach to 
inaccuracy characterization is best.  Overly conservative 
characterizations are undesirable because they artificially 
limit the usefulness of an item.  However, it is better to err 
on the side of conservativeness than to take a chance that 
understating the inaccuracy will not matter.  If one models 
inaccuracy with a set-based approach (e.g., (Ben-Haim 
2001)), then the objective of inaccuracy characterization is 
to find the least upper bound, or supremum, of the inaccu-
racy set.  Any upper bound on the set is acceptable, though. 

For most models and predictions, its inaccuracy de-
pends upon the context in question.  For instance, a linear 
deflection model for a beam may be very accurate when 
the displacement is less than some upper bound, but inac-
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curate otherwise.  In general, inaccuracy never decreases—
and likely increases—as the context expands.  This results 
in an important tradeoff for analysts as they develop be-
havioral models: too narrow of a context can yield a very 
accurate model that is seldom useful (i.e., it frequently fails 
compatibility assessment), while too broad of a context can 
result in a model too inaccurate to be useful (i.e., it fre-
quently fails adequacy assessment). 

4 EXAMPLE PROBLEM 

In the following example, we demonstrate the semantics of 
validity descriptions and how one can propagate a validity 
description through a model.  We use a particular formula-
tion of Newton’s second law of motion as an example.  Us-
ing this example, we are also able to highlight the relation-
ship between context and inaccuracy.  Readers should note 
that the approach that we adopt for developing the validity 
characterization in this example is only one of many possi-
bilities.  The purpose of this example is to demonstrate the 
semantics of the concepts described in Section 3 rather 
than to promote a particular method.   

This example is based on a common formulation of 
Newton’s second law of motion,  

 
 ( ) ( )t m t=F a , (3) 
 
where ( )tF  is the net force vector on a particle as a func-
tion of time, m  is the particle mass and ( )ta  is the parti-
cle acceleration vector as a function of time.  This is the 
model of interest for this example.  Our first objective is to 
characterize it—that is, to define a context and find the in-
accuracy over that context.   

Equation (3) is a simplification of the more general re-
lationship 

 

 ( ) ( ) ( )( )
dt m t t
dt

=F v , (4) 

 
where ( )m t  is the time-varying particle mass and ( )tv  is 
the time-varying velocity vector.  Expanding the deriva-
tive, we have ( ) ( ) ( ) ( ) ( )t m t t m t t= +F v v� � , where m�  
and v�  are the time-derivatives of mass and velocity, re-
spectively.  The difference between the two model formu-
lations is the term ( ) ( )m t tv� .  Thus, the inaccuracy in the 
model in Equation (3) will depend on the velocity and the 
time-derivative of the mass.  Assume the context of interest 
is defined by bounds on these variables, with all other vari-
ables assumed to be free.  Moreover, the context is the set 
of world states for which the following inequalities hold:  

 
 ( ) ( )

2
,mm t t≤ ∆ ≤ ∆vv�� . 

With a context is defined, it now is possible to charac-
terize inaccuracy.  For this example, we adopt a set-based 
approach to representing inaccuracy with an additive inac-
curacy model, ( ) ( )t m t= +F a e , where e  is a vector 
inaccuracy term.  One can develop more complex inaccu-
racy models; see (Ben-Haim 2001) for examples.  In this 
case, a bound on the magnitude of the inaccuracy term 
over the given context defines the inaccuracy of the behav-
ioral model.  The ideal bound is the supremum.  Assuming 
that the model in Equation (4) is perfectly accurate, one 
can compute the inaccuracy term as the difference between 
the two models.  Thus, we have ( ) ( )m t t=e v�  which has 
a magnitude of 2 2mε = =e v� .  The supremum is 

maximum of this magnitude over the context set, C , or  
 

 
( )2 2sup

sup

max
C

m v

mε

ε

= =

= ∆ ∆

e v

�

�
. 

 
Combining the model in Equation (3) with the context and 
inaccuracy, one gets 
 
( ) ( ) ( ) ( ){ }2, , , : , m vt m t t m t= + ≤ ∆ ∆F v e F v e e �� � , 

 
assuming that ( ) mm t ≤ ∆ ��  and ( )

2
t ≤ ∆vv  due to 

context restrictions.  This is a set of functions (due to the 
inaccuracy) over a set of conditions (the context) and 
represents the limitations of one’s knowledge about the 
model.  This characterization is unambiguous and, with it, 
a user can perform compatibility and adequacy assessment 
without consulting its creator. 

Given a behavioral model with a validity characteriza-
tion, our objective is to compute a prediction and its corre-
sponding validity description.  Assume we know that some 
force, maxF , is the maximum net force that will occur on a 
system of interest and that the system has an uncertain 
mass that is represented as an interval, s sm mρ± , 
0 1ρ< < .  Also, assume that these are context-
consistent with the model.  The desired behavioral attribute 
is the instantaneous acceleration, v� .  Reformulating the 
model in terms of v�  and substituting in the force and mass 
terms yields 
 

{ }max
2, , : , ,

s mm m v m sm meε ρε −
+ ≤= ≤ ∆ ∆F ev e v e �� � , 

 
assuming that ( ) mm t ≤ ∆ ��  and ( )

2
t ≤ ∆vv .  Let, 

 

 

max

9

3
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This reduces to the scalar case of  
 
 { }610

100, , : , 10 , 10
mx m x mv v ε
εε ε ε ε−−
+= ≤ ≤� � . 

 
One can condense this representation into a single inaccu-
racy parameter: 
 
 { }: 0.101 , 0.011

x xx x v vv v ε ε= + ≤� �� � . 
 
The context for this prediction is the intersection of the 
contexts of the inputs and model.  In this case, they are all 
identical, so the prediction has the same context. 

There are three particularly interesting features about 
this example.  First, the context for the model is defined by 
terms not actually in the model, namely m�  and v .  This 
happens when an analyst makes simplifications during 
modeling.  When terms are eliminated from a model be-
cause they are assumed “insignificant,” they must be 
bounded in its context.  Specifying bounds on these terms 
in a context defines the semantics of the assumption (i.e., 
what it means to be “insignificant”).  This explicit defini-
tion is necessary for information exchange and knowledge 
reuse to proceed effectively.   

The second feature illustrated in this example is the re-
lationship between context and inaccuracy.  In this case, ex-
panding the context (i.e., raising the bound on either or both 
context terms) results in an increased inaccuracy.  In gen-
eral, an expansion of a context cannot result in a decrease in 
inaccuracy, and often will result in an increase.  For the sin-
gle-parameter case illustrated above, this means that  
 
 1 2 1 2C C ε ε⊂ → ≤   
 
where 1C  and 2C  are contexts and 1ε  and 2ε  are the cor-
responding inaccuracy parameters.   

The third interesting feature of this example is that it 
fails to capture all of the inaccuracy in the model.  This is 
because it ignores the inaccuracy in Equation (4) and there-
fore the derived inaccuracy is not an upper bound on abso-
lute inaccuracy, but on the relative inaccuracy between the 
models in Equations (3) and (4).  To arrive at an inaccuracy 
bound that is more faithful to reality, one must either charac-
terize a bound using empirical means or relative to the best 
available model (i.e., one that is considered “ground truth” 
by experts in that domain).  For the present relationship, the 
best generally accepted model is Einstein’s theory of special 
relativity, which implies that (Ohanian 1995) 
 

 ( )
( ) ( )

( )2
21 v t
c

d m t tt
dt

  =    − 

vF , 

 
where ( ) ( )

2
v t t= v  is the particle speed and c  is the 

speed of light.  This model is nearly identical to that of 
Equation (4) as long as the particle speed does not become 
a significant fraction of the speed of light.  However, the 
inaccuracy can grow to be significant in other contexts.   

While relativistic effects are insignificant on most en-
gineering problems, it is still important to consider them 
when characterizing the model in Equation (3).  This is be-
cause characterization is the only means by which the crea-
tor of a model can control its use.  Failure to describe the 
limitations of a model adequately can result in improper 
use no matter how unlikely that use may seem to at the 
time it is created.   

Ultimately, it is the responsibility of the modeler to 
characterize the inaccuracy conservatively without being 
so conservative that it becomes useless.  For the current 
example, a modeler could restrict the context to include 
only velocities for which the inaccuracy due to relativistic 
effects is small or could develop an inaccuracy model that 
accounts for these effects.  Complex problems will require 
numerical approaches for approximating the inaccuracy 
bound as well as approaches that admit empirical data.  
Also, any practical method must allow modeling experts to 
utilize their judgment.  The identification of such methods 
is an open research issue.   

While behavioral models are developed by domain 
experts, predictions are generated by performing simula-
tion experiments.  Given a simulation experiment and a 
behavioral model, one must ensure that the resulting pre-
diction and its validity description are computed properly.  
Existing simulation tools are not capable of propagating 
validity descriptions directly.  Research into propagation 
methods is an important issue to be tackled. 

5 DISCUSSION 

Given the conceptual nature of this paper, there remain 
many questions about how to implement our vision.  Among 
these, there are three major issues: establishing a basis for 
trust among collaborating designers, formalisms and meth-
ods for validity description and computational issues. 

A basis of trust is necessary in order for designers to 
accept the conclusions of others.  A validity description 
provides guarantees about a model or prediction, but a user 
must take these guarantees on faith.  The literature identi-
fies two ways of establishing such a baseline of trust: ac-
creditation and certification.  Under the ISO definitions for 
these terms, people and organizations can be accredited, 
while products, processes and services can be certified 
(Balci 2001). Accreditation helps to identify companies 
and individuals that meet minimum standards on some 
task, such as modeling in a particular domain.  Certifica-
tion increases a user’s confidence that a particular result—
a validity description, for instance—is as specified.  Alter-
nately, certification can apply to the methods used to de-
velop particular results.  From a validation perspective, ac-
creditation and certification can provide the basis for trust 
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among design specialists.  For instance, a user could accept 
a validity description on faith given that it has been certi-
fied or that its creator is accredited.  The definition of certi-
fication and accreditation procedures associated with the 
three validation problems identified in this paper is an is-
sue for future development. 

Further research also is needed on formalisms for rep-
resenting and methods for creating validity descriptions.  
While we present some preliminary ideas in this paper, 
they are insufficient for practical implementation.  For con-
text, the pressing issues are how to choose an appropriate 
context and how to decide whether a context captures all of 
the relevant variables.  For accuracy, designers need repre-
sentations and computational methods that can incorporate 
both aleatory and epistemic uncertainty.  Some researchers 
have begun to look at this issue (e.g., (Ferson and 
Ginzburg 1996; Ben-Haim 2001)).  These representations 
and methods must also be compatible with a decision the-
ory in order to be useful. 

Computational issues must also be addressed.  One 
question is how to compute a validity description for a pre-
diction based upon those of a model and its parameters and 
inputs.  We believe that current methods (deterministic or 
based on Monte-Carlo simulation) are ineffective for the 
evaluation of models that include epistemic uncertainty 
and that fundamentally different computation methods are 
required.  Another question is how to determine whether a 
validity description and a use are context-compatible.  On 
some problems, the number of variables in a context may 
grow large and, in principle, the context set may become 
non-convex.  Thus, general solutions for these problems 
may be computationally intensive.  It will be a challenge to 
balance the desire for fast computation with the desire for 
high fidelity representation. 

6 SUMMARY 

Collaborations among specialists create special challenges to 
validation in engineering design.  This paper contains a de-
scription of a conceptual framework for understanding these 
challenges.  The framework takes a novel approach by de-
composing validation into three complementary processes—
validity characterization, compatibility assessment and ade-
quacy assessment—based on a formal representation of 
validation-relevant knowledge.  This allows such knowledge 
to be acquired, transferred and used efficiently and enables 
effective validation of reusable behavioral models.   

Although the framework presented here is not a com-
plete solution to the problem of validation in engineering 
design, it does serve as is a conceptual roadmap to under-
standing and solving the problem.  Future research issues 
include the development of formal representations for ac-
curacy, methods for developing inaccuracy and context 
representations and methods for propagating validity de-
scriptions through simulations. 
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