ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology
1214

Jesper Bengtson

Formalising process calculi

UPPSALA
UNIVERSITET

Abstract page

As the complexity of programs increase, so does the complexity of the mod-
els required to reason about them. Process calculi were introduced in the
early 1980s and have since then been used to model communication pro-
tocols of varying size and scope. Whereas modeling sophisticated protocols
in simple process algebras like CCS or the pi-calculus is doable, express-
ing the models required is often gruesome and error prone. To combat this,
more advanced process calculi were introduced, which significantly reduce
the complexity of the models. However, this simplicity comes at a price —
the theories of the calculi themselves instead become gruesome and er-
ror prone, and establishing their mathematical and logical properties has
turned out to be difficult. Many of the proposed calculi have later turned
out to be inconsistent.

The contribution of this thesis is twofold. Firstly we provide methodolo-
gies to formalise the meta-theory of process calculi in an interactive theo-
rem prover. These are used to formalise significant parts of the meta-theory
of CCS and the pi-calculus in the theorem prover Isabelle, using Nomi-
nal Logic to allow for a smooth treatment of the binders. Secondly we in-
troduce and formalise psi-calculi, a framework for process calculi incor-
porating several existing ones, including those we already formalised, and
which is significantly simpler and substantially more expressive. Our meth-
ods scale well as complexity of the calculi increases.

The formalised results include congruence results for both strong and
weak bisimilarities, in the case of the pi-calculus for both the early and the
late operational semantics. We also formalise the proof that the axioma-
tisation of strong late bisimilarity is sound and complete in the finite pi-
calculus. We believe psi-calculi to be one of the most expressive frameworks
for mobile process calculi, and our Isabelle formalisation to be the most ex-
tensive formalisation of process calculi ever done inside a theorem prover.

To my beloved Eva — for her love, her understanding,
and her infinite support.

Contents

1

Introduction e 17
1.1 Formalmethods it 18
1.2 Parallel systemsc.oouiiiinniniininiinennnn 20
1.3 Processcalculi.......... ... i 21
1.4 Theorem provingc.euuiermeneinenneneenennnn 22
1.5 Contributionsot e 24
1.6 Thesisoutline i, 24
1.6.1 Partl: Background, 25
1.6.2 Part II: The Calculus of Communicating Systems 25
1.6.3 PartIll: The pi-calculus 25
1.6.4 PartIV:Psi-calculi.............. 26
1.6.5 PartV:Conclusionscoiiiiiina... 27
1.7 Mypublications i 27
1.7.1 Articles contributing to this thesis 27
1.7.2 Otherpublicationsciiiiiia... 28

Part I: Background

2

Processcalculi i 33
2.1 SYNtAX .t e 33
2.2 Structural COongruencec.oeuieinenenenenennnn.. 34
2.3 Operationalsemanticscoviiiiienennnn.. 34
24 Bisimilarity 35
2.5 Weakbisimilarity i i 36
2.6 Structural congruencerevisited 38
Alpha-equivalenceo it 41
3.1 Manual proofs with penandpaper........................ 41

3.1.1 The Barendregt variable convention 42
3.2 Machine checked proofs 43

3.2.1 deBruijnindices............. i 44

3.2.2 Higherorder abstractsyntax 44

3.2.3 Nominallogicc. i, 45
Nominallogic, 47
4.1 Nominalsets.......... ..ot ininnnennn. 47
4.2 Supportandfreshness, 48
4.3 Binding construct.............c.coiiuiiniin .. 49

4.4 EqQUIVarianCeuuuitintnte it 49

5 Isabelle 51

5.1 Thelsabelle meta-logic o, 51
5.2 Writing proofsinIsabelle............ 52
5.2.1 Applyscriptscoviiiiii 53
5.2.2 Inductiveproofs 53
5.2.3 Inversionproofs i, 56
5.2.4 Coinductive proofs..........coviiiinnnnnnnn.. 58
5.3 NominallogicinlIsabelle 60
5.3.1 Atom swapping and permutations 60
5.3.2 Supportandfreshness oL, 61
5.3.3 Atomabstraction, 62
5.3.4 Nominaldatatypescoouiiuirinininvnnnnnn.. 62
5.3.5 Inductionrules.......... ..., 63
5.3.6 Inversionrules i, 65
5.3.7 Equivariance properties.c.oiiiiio. .. 68
5.4 Writing human readable proofs 68
5.4.1 Inductiveproofs, 70
5.4.2 Inversion proofscouiiiiiiiiiiiiiiii.. 71
5.4.3 Coinductiveproofs.......... 73
5.5 Setcomprehension i ... 75
5.6 Concludingremarks.............. 76
Part II: The calculus of communicating systems
6 The Calculus of Communicating Systems 79
6.1 Operationalsemantics.............coviinininenennnn.. 80
6.2 Nominal infrastructure, 81
6.3 Inductionrules 84
6.4 Inversionrules 84
6.5 Induction onreplicatedagents iian.. 87
7 Strongbisimilarity 89
7.1 Definitions i e 89
7.1.1 Primitive inferencerules 90
7.2 Bisimulation is an equivalencerelation 91
7.3 Preservation properties, 91
731 PrefiX ..o e 92
7.3.2 SUIM .ottt e e et e 92
7.3.3 Restriction......... ..o, 92
734 Parallel....... ... 93
7.3.5 Replicationt 97
7.4 Bisimilarityisacongruencec.. ... 97
8 Structuralcongruence it 99
8.1 Abelian monoid laws forparallel 99
8.1.1 Parallelis commutative 99

8.1.2 Parallelisassociativeccuiuiiiiineeennn. 100

8.1.3 ParallelhasNilasunit iiiin.. 101

8.2 Abelian monoidlawsforSum 101
8.2.1 Sumiscommutative............ 101
8.2.2 Sumisassociative...........coiiiiiiiiiiii 102
8.2.3 SumhasNilasunit............ 102

8.3 Scopeextensionlaws 103
8.3.1 Scope extensionforparallel 103
8.3.2 Scopeextensionforsum 104
8.3.3 Scope extension of prefixes 105
8.3.4 Restrictioniscommutative 105

8.4 Theunfoldinglaw........ i i, 105

8.5 Bisimilarity includes structural congruence 106

9 Weak Bisimilarityc. 107

9.1 7T-chains...... 107
9.1.1 Corelemmas..........c.oouiuiiniiniineinennenennn. 107
9.1.2 Liftingt-chains.......... i, 108

9.2 WeaksemantiCsc.oouiiierneniinennennenennnn 109
9.2.1 Liftedsemanticsuuuiiniininennenann.. 110

9.3 Weak Bisimilarity i 111
9.3.1 Primitive inferencerules 111
9.3.2 Weak bisimilarity includes strong bisimilarity........... 112
9.3.3 Structuralcongruence 112

9.4 Weak bisimulation is an equivalence relation 113

9.5 Preservation properties 115
9.5.1 Prefixii e 115
9.5.2 Restriction......... ..., 115
953 Parallel....... .. . i 116

9.6 Bisimulation up-to techniques 116
9.6.1 Replicationt 121

10 Weak CONGIUENCEocittit ittt ee e 123

10.1 Definitionsc.ioiii i e 123
10.1.1 Primitive inferencerules 124
10.1.2 Weak congruence includes strong bisimilarity 125
10.1.3 Weak bisimularity includes weak congruence 125
10.1.4 Structural congruence, 126

10.2 Weak congruence is an equivalence relation 126

10.3 Preservation propertiesc.cuuiitienennenn. 127
10.3.1 Prefix «ovoe it e 128
10.3.2 SUM . ..ot e 128
1033 Parallel 129
10.3.4 Restrictionottt 129
10.3.5 Replication 130

10.4 Weak congruence isa congruence 131

11 ConclUSIONS . ..ot i i e e e 133

11.1 Reusingresultsottt 133
Part III: The pi-calculus
12 Introduction ottt e 139
121 Partoutlinettt 140
13 Formalising the pi-calculus 143
13.1 Substitutionc.. i e 144
13.1.1 Lemmas for substitution 145
13.2 Early operational semanticsccciinen... 145
13.3 Nominal inductionruleso ... 150
13.4 Inversionrules i 155
13.4.1 Nominalinversion oiiuiinenann .. 155
13.4.2 Ensuring freshness of new boundnames............... 155
13.4.3 Rules with multiple binders.......................... 160
13.5 Induction on replicatedagents 160
14 Strong bisimilarity 163
14.1 Definitionsot e 164
14.1.1 Primitive inferencerules 165
14.1.2 Equivariance properties.couvineenene. .. 166
14.2 Bisimulation is an equivalence relation 167
14.3 Preservation propertiesc..uueieeneneenennnn.. 168
14.3.1 OutputandTau.ot 168
14.3.2 MatchandMismatch 169
1433 Sum . ..o e 170
1434 ResStrictionot v i 170
1435 Parallel 170
14.3.6 Replicationot iiinnnnn.. 176
14.4 Strongequivalencecooiiiiiii i, 177
14.4.1 Sequential substitution 177
14.4.2 Closure under substitution 178
14.4.3 Strongequivalenceo, 179
15 Weak bisimilarityc i 183
15.1 T-Chainsot e 183
15.2 Weak Semanticsouiiiiienenenenenenenennnnn. 184
15.2.1 Liftingthesemantics oo .. 188
15.3 Weak bisimilarity i 188
15.3.1 Primitive inferencerules 190
15.3.2 Equivariancecvit it e 191
15.3.3 Weak bisimilarity includes strong bisimilarity........... 192
15.4 Weak bisimulation is an equivalence relation 192
15.5 Preservation propertiesouuvtiiininennenan. 194
15.5.1 OutputandTau............ ..o, 194

15.5.2 MatchandMismatch 195

15.5.3 ReStrictionooviiii e e e e 196

1554 Parallel 197
15.5.5 Replicationo, 202

16 Weak CONGIUENCEttt et i 205
16.1 7-bisimilarity 205
16.1.1 Primitive inferencerules 205
16.1.2 7-bisimilarity includes strong bisimilarity 207
16.1.3 Weak bisimilarity includes 7-bisimilarity............... 207
16.2 7-bisimilarity is an equivalence relation 208
16.3 Preservation propertiesoouuvuininnenennanan. 209
16.3.1 OutputandTau............ ..., 209
16.3.2 MatchandMismatch 209
16.3.3 SUMo e 210
16.3.4 Restrictionttt 210
1635 Parallel o i 211
16.3.6 Replicationcoiiiiiiiiiiiinnnn.. 211
16.4 Weak CONGIUENCEo\ttt ettt et e eeeenes 212
16.4.1 Inputt e e 213
16.4.2 Weak congruence is a congruence 213

17 Late operational semanticso uviiinininen... 215
17.1 Formalising the semantics.c..covuieanaun.. 216
17.1.1 Theresidual datatype.c.cooiinenenennean.. 216
17.1.2 Defining the semanticso .. 219
17.1.3 Inversionrules i 219
17.2 Bisimilarity 219
17.2.1 Introduction and eliminationrules 222
17.3 Preservation propertiesc..ouuvueninnenennenan. 223
17.4 Strongequivalence c.iiniiiinnnn.. 223
17.5 Weak equivalences enen... 229
17.5.1 Weak semanticsc.couiniininennenenn .. 230
17.5.2 Weak bisimilarity o i ... 231
17.5.3 7-bisimilarity i 233
17.5.4 Weak cOngruenceoueuieneunennenenn... 240
18 Structural congruenceo i, 241
18.1 Abelian monoid laws forSum 241
18.1.1 Sumiscommutative., 241
18.1.2 Sumisassociative.c.o i i, 242
18.1.3 SumhasNilasunit..............co ... 243
18.2 Scopeextensionlaws i 243
18.2.1 Scope extensionforSum 243
18.2.2 Discharging impossible transitions 244
18.2.3 Restricting deadlocked agents........................ 245
18.2.4 Scope extension for prefixes 245

18.2.5 Restriction is commutative 247

18.3 Bisimulation upto techniques............................ 247

18.3.1 Scope extension for Parallel.......................... 249
18.4 Abelian monoid laws for Parallel.......................... 250
18.4.1 Parallelhas Nilasunit 250
18.4.2 Parallel is commutative, 250
18.4.3 Parallelis associative, 251
18.5 Theunfoldinglaw. 251
18.6 Bisimilarity subsumes structural congruence 252
19 An axiomatisation of strong late bisimilarity 253
19.1 Proofoutline i e 253
19.1.1 Formalisationoutline............... 254
19.2 SOUNANESS . . v ot ettt e et e et e e e e 254
1921 Match. ... 256
19.22 Mismatchottt i e 256
1923 INput . ..o e 257
19.2.4 SUM ottt e e e e e 258
19.2.5 Restriction vt 258
19.2.6 SOUNANESS . . oottt e e e e 259
19.3 COmPleteness . ..o vv vttt it et et 259
19.4 Adding Restriction i 265
19.5 AddingParallel 266
19.5.1 SoUNANESS . ..ottt i e e 267
19.5.2 Completenesscvv e eie it ittt et 268
19.6 Conclusioni it it 269
20 Early late correspondencesc.iiiiiiiiiiaan.. 271
20.1 Transitions ..ottt 271
20.1.1 Outputactionseiitimntnnennennnennn.. 271
20.1.2 Bound outputactionsc.ciiiiiiiiiaa... 272
20.1.3 Inputactions.ottt e 272
20.1.4 Tauactionsvvit ittt 273
20.2 Strong bisimilarity i 273
20.3 Structural COngruencec.ooeeenenenenenennnn.. 274
21 ConcCluSIONS . ..o vt i e e 275
21.1 Futurework.o 276

Part IV: Psi-calculi

22 Parametriccalculi e 281
221 Psi-calculi e 281
22.2 Definitionsttt e 282

22.2.1 Terms, assertions, and conditions 283
22.2.2 FIAINES . . .ottt 284
2223 Agents ... 286
22.2.4 Operational semanticscovuenvenenn .. 288

22.2.5 Mllustrative examplescccoviiiiiinnnnnn... 291

223 Bisimilarity ... 294

22.3.1 Definition i 295

224 Partoutline e 296
23 Binding SEQUENCES c.vttt ettt 299
23.1 Definitionsot e 299
23.2 Generating fresh sequences, 300
23.3 Alpha-equivalence i 301
23.4 Distinct binding sequencesc.ciiiiiinn.. 302
24 Definitionsc.iuii 305
24.1 Defining psi-calculusagents oot 305
24.2 Substitution e 307
24.2.1 Substitution types.o vt it 307
24.2.2 Agentsubstitution i .. 308

24.3 Nominal morphisms, 309
24.3.1 Freshnessand support............ccovviininnnnnnn... 309
24.3.2 Staticequivalence. i, 310

244 Framesot e 311
24.4.1 Frame compositionc..co it 311
24.4.2 Frame extractionc.uuueniunnenennennn.. 312

245 Guarded agents.ttt e 313
24.6 Requisites of staticequivalence 314
25 Operational semanticsc.cutieieenenenenenennen.. 315
25.1 Residuals 315
25.1.1 Alpha-equivalenceot 317

25.2 Inductionrules e 319
25.2.1 Switchingassertions., 319
25.2.2 Deriving freshness conditions. 324

25.3 Frame inductionrules i i i, 331
25.4 Replication it e 336
26 Inversionrules e 339
26.1 Rulegeneration. iuiiuiiniiniinninn.. 339
27 Strong bisimilarity 347
27.1 Frameequivalencescouiiiiniiinenennnnnnnnns 347
272 Definitionsouiuii e 348
27.2.1 Primitive inferencerules 349
2722 EQUIVAIIANCE . . . ottt et e 351
27.2.3 Preserved by staticequivalence 353

27.3 Bisimulation is an equivalence relation 354
27.4 Preservation propertiesoueieiitinnan. 356
27401 OUtPUL . .ottt e e e e 356
2742 CaSE . oottt e 356
2743 Restriction i 358
2744 Parallel 360

27.5 Strongequivalencet i e 371

27.5.1 Sequential substitution 372

27.5.2 Closure under substitution 372
27.5.3 Strongequivalence o i, 373
28 Structural CONGruencec..oeuiunenneneuneneenennn. 375
28.1 Scopeextensionlaws i i 375
28.1.1 Scope extensionforCasec.covuiuiniua... 375
28.1.2 Discharging impossible transitions 377
28.1.3 Restricting deadlocked agents........................ 378
28.1.4 Scope extension for prefixes 378
28.1.5 Restriction is commutative 380
28.2 Bisimulation up-to techniques 382
28.2.1 Scope extension for Parallel.......................... 383
28.3 Abelian monoid laws for Parallel.......................... 384
28.3.1 Parallel has Nilasunit oo, 384
28.3.2 Paralleliscommutative 384
28.3.3 Parallelisassociative oL, 386
28.4 Theunfoldinglaw. o i, 387
28.5 Bisimilarity is preserved by Replication 388
28.6 Mainresultst 391
29 Weak bisimilarity i e 393
29.1 Psi-calculi with weakening 393
29.2 Psi-calculi without weakening 395
30 Formalising weak bisimilarity 401
30.1 Tauchains 401
30.2 Weak semantiCsc.ueneunennenenenneneenennnn 403
30.2.1 Liftingthesemanticscoviiuienaan .. 404
30.3 Weak Bisimilarity, 405
30.3.1 Primitive inferencerules 408
30.3.2 Equivarianceoiii i e 410
30.3.3 Preserved by static equivalence 411
30.4 Weak bisimulation is an equivalence relation 412
30.5 Equivalence correspondences.ouuenenenannnn.. 414
30.6 Preservation propertiescociuiitiiianan. 415
30.6.1 OUtPUL . ..ottt e e 416
30.6.2 Restrictionot 417
30.6.3 Parallel i 419
30.6.4 Replicationcoiiiiiiininii .. 426

31 Weak CONGIrUENCEttt ettt et e 433
31.1 Weak t-bisimilarity 433
31.1.1 Primitive inferencerules 434
31.2 Weak t-bisimilarity is an equivalence relation 435
31.3 Equivalence correspondences.c.cuvuinenenenen.. 436
31.4 Preservation propertiescuuieiitnrenennanan. 437

3141 OUtpUt . ..o e 437

3142 CaS . i ittt e e 437

31.4.3 Restrictiont 439
3144 Parallelooo i 440
31.4.5 Replicationco i 441
31.5 Weak CONgruencec.veneinenneneneneenennnn 442
31.5.1 Primitive inferencerules 442
31.5.2 Preservation propertiescouiuiiiineno... 442
32 Psi-calculiwithweakening 445
32.1 Weak transitionsoovn it e 445
32.2 Simple bisimilarity 446
32.2.1 Primitive inferencerules 446
32.3 Weak and simple bisimilarity coincide..................... 448
32.3.1 Weak bisimilarity includes simple bisimilarity 448
32.3.2 Simple bisimilarity includes weak bisimilarity 451
32.3.3 Weak and simple bisimilarity coincide 454
33 Extendingpsi-calculi i 455
33.1 Encoding Sum. ... e 455
332 EncodingTauvuiiniiiininii i 457
33.3 Provingthe 7-laws i i 459
33.3.1 Encodingprefixest 459
34 Conclusionsttt 463
34.1 Inconsistent processcalculi 463
34.1.1 The Applied pi-calculus 463
34.1.2 The concurrent constraints pi-calculus 464
34.1.3 Extended pi-calculi L. 464
34.2 The Psi-calculi formalisation.............., 466
34.2.1 Exampleofavariant................, 468
34.2.2 Weakequivalencescoviiiiniiiinnnnnn.. 469
34.3 Extensibility 469
3431 CaSE . oottt e 469
34.3.2 The empty PrOCESS . . . v vttt et et e eeeenes 470
34.3.3 Axioms for substitution oL 470
344 Future Workot 473
34.4.1 Barbedcongruencec.. .., 473
34.4.2 Automatic instance verification 473
34.4.3 TYPES . v it 474

Part V: Conclusions
35 Conclusionsiuii i 477
35.1 NominalIsabelle........... i, 477
35.1.1 The futureofbinders, 478
35.1.2 Induction and inversionrules 479
35.1.3 Currentdevelopments, 479

352 IMPACt . oottt e 480

Index

Bibliography

1. Introduction

Adrian carefully replaced the small fluffy teddy bear above Hex’s keyboard.
Things immediately began to whirr. The ants started to trot again. The
mouse squeaked.

They'd tried this three times.

Ponder looked again at the single sentence Hex had written.

+++ Mine! Waaaah! +++

‘TIdon’t actually think,” he said, gloomily, ‘that I want to tell the Archchan-
cellor that this machine stops working if we take its fluffy teddy bear away. I
just don’t think I want to live in that kind of world.’

‘Er,’ said Mad Drongo, ‘you could always, you know, sort of say it needs to
work with the FTB enabled ... ?

‘You think that’s better?’ said Ponder, reluctantly. It wasn't as if it was even
a very realistic interpretation of a bear.

‘You mean, better than “fluffy teddy bear”?’

Ponder nodded. ‘It’s better,” he said.

Terry Pratchett, Hogfather (1996)

How do we ensure that a computer program is correct? This question is
as old as computer science itself. To obtain an answer it must first be es-
tablished what it means for a program to be correct. We can agree that the
program should not crash — we want to avoid any blue screens of death, or
images of bombs with an accompanying restart button. But that is only part
of the story. Most computers are not the types found on desktops, but small
embedded devices that control the functions of cars, airplanes, trains, med-
ical equipment, or MP3 players. A valid requirement of the software in a car
is that in the case of a collision, the airbag is inflated within five hundredths
of a second, and not within five seconds; if a piece of medical equipment
is distributing medicine, the correct amount of the drug must be adminis-
tered, possibly over a period of time; as for the MP3 player, it should not
play those favourite songs at dangerously loud levels. Moreover, modern
computers require that several programs run simultaneously on the same
machine, and interact with each other in desired ways only, but when hun-
dreds or even thousands of programs are running at the same time, the
sheer number of possible interactions quickly becomes overwhelming. The
Internet also imposes requirements on software. For instance, any transac-
tions with an Internet bank is required to be secure — no one should be able

17

to eavesdrop, learn any authentication codes, or empty the accounts. The
requirements that programs must be able to share resources with others
and withstand attacks from malicious users add a level of complexity not
present for programs running in isolation. This thesis focuses on how such
parallel systems can be modeled in simple intuitive ways, and how to prove
with absolute certainty that a program behaves the way it should. Consider
the following analogy:

We have been constructing bridges for thousands of years. In the begin-
ning they were small, just big enough to allow people to cross. As exper-
tise increased we learned how to build sturdier bridges that would support
more weight, such as that of carriages and horses, and today we are build-
ing huge technological marvels that transport thousands of cars and hun-
dreds of trains every day. We have been writing computer programs for a
bit over sixty years, and the lack of several thousands of years of experience
is apparent. When a bridge is built, there are extensive planning phases,
blueprints, and mathematical calculations to ensure that all parts of the
bridge will support the weight of whatever we are putting on it. When the
bridge is completed we are confident that it will not topple into the ocean
when the first train drives across. When a computer program is created, in
the worst case scenario, the programmer gets a sloppily written description
of what it is to do, the program is written in a rush since the deadline was
yesterday, and then fingers are crossed.

Often circumstances are better than this, but the fact is that we do not
know how to make blueprints for software of the complexity being written
today. A modern programmer is more of a craftsman and an artist than an
engineer — the correctness of a program is inferred from experience and
careful attention to detail, rather than from mathematical rigour. There is
a distinct gap between the programs being developed and the theories that
are designed to prove their correctness.

The purpose of this thesis is to reduce this gap. Process calculi is an area
of computer science designed to provide blueprints for concurrently run-
ning programs. The contribution is twofold. Firstly, we provide computer
verified proofs of theorems for existing process calculi; the proof strategies
are general enough to be used for calculi of varying complexity. Secondly,
we extend the state of the art by introducing a framework of calculi that
encompasses several existing ones, but which is substantially simpler and
more expressive.

1.1 Formal methods

Formal methods use mathematical models of programs and programming
languages and are created in such a way that many desired properties of
programs can be proven with absolute certainty. They are extensively used

18

in industrial applications. Airbus uses the SCADE suite from Esterel tech-
nologies to generate software for their aircraft [24]; the Paris Metro line 14
shuttles Parisians every day without a driver, and it had its software veri-
fied using the B method [9]; NASA has a Laboratory for Reliable Software
(LaRS), which was created in 2003, and are actively researching means to
make the software used in the space program more reliable [4]. The focus
lies on proving that a program will avoid certain undesired behaviours, such
as using too much memory or consuming resources required by other pro-
grams.

Software in embedded systems is typically smaller and more tailored to
do one specific thing, and analysing it is therefore not as daunting as for
bigger computer systems. Moreover, there are often economic incentives
to ensure that the software in cars, medical equipment, or rockets actually
works. In 1999 NASA lost a $125 million Mars orbiter because the software
confused English imperial units of measurements with those of the metric
system [1], and in 1996 an Ariane 5 rocket and its cargo, worth a total of $375
million, exploded because of a software error [37]. More recently, in 2010
Toyota announced that they would recall approximately 400 000 of their
Prius hybrid cars due to a software glitch that causes poor performance of
the anti-lock breaks [2].

Clearly there is a lot of money to be made by ensuring that programs
function the way they should from the start. For several years, a research
group at NICTA laboured to prove a micro-kernel for an operating system
correct [50]; a mathematical model was written which detailed the exact de-
sired behaviour of the kernel, and the code was then proven to correspond
precisely to this model. The program is around 7500 lines of C code, and
the effort was roughly 40 man years. Techniques were developed along the
way to make these types of tasks simpler in the future, but the amount of
work required to prove full functional correctness of a system, i.e. ensuring
that the system conforms completely to its specification, remains gargan-
tuous. Still, this project proves a point — it is becoming increasingly realistic
to verify complete software systems.

One difficulty with software verification is that the programming lan-
guages that the computer understands are not the same as the mathemat-
ical languages suited for proofs. A common approach when proving a pro-
gram correct is to formulate a model of its algorithms, using some high level
language, and prove that model correct. One problem then is translating the
model to a programming language, as there is always the risk that this trans-
lation is incorrect. Moreover, simplifications are often made, for example by
ignoring the possibility of running out of memory. This is not necessarily a
bad thing. If a model is simple and easy to understand then it is easier to
prove that the program does what it is supposed to. It is important to en-
sure that the simplifications are safe — just because an algorithm is correct
if it is assumed to have infinite amounts of memory at its disposal, there is

19

no a priori guarantee that it will work with the finite memory of a computer,
or in conjunction with other programs which might be running at the same
time.

Another problem with software verification is that even if a program has
been completely verified, and contains no mistakes, the language it is im-
plemented in can be incorrect. Usually there are extensive reference manu-
als that describe in detail what each command of the language does. These
are often written in English, which as any human language is subject to in-
terpretation. It is not uncommon that the same programming language is
interpreted differently by different computers.

An alternative to the reference manuals is to use a formal semantics for
the programming language. The semantics provides a mathematical de-
scription of each command of the language, and makes it possible to prove
general properties, such that a particular command always has a desired ef-
fect. Without a semantics, the correctness of programs cannot be proven — it
is not possible to mathematically prove correctness of something that can-
not be mathematically interpreted. Still, most modern programming lan-
guages, like C, Java, Erlang, or Scala, do not have a formal semantics, and
language designers do not have program verification in mind when design-
ing programming languages.

By reverse engineering a formal semantics, software written in these lan-
guages can still be verified. These semantics generally do not encompass
the full expressive power of the programming language but they are expres-
sive enough to prove correctness of simpler programs. The micro-kernel
mentioned above, which is written in C, is just one example.

In this thesis we will focus on the design of high level languages targeted
at parallel systems. We will provide semantics for these languages, discuss
what properties need to be proven and why. Moreover, we will ensure that
these proofs are correct with absolute certainty by having them checked by
a computer.

1.2 Parallel systems

Parallel systems are notoriously difficult to formalise. A sequential program
running in isolation has unique access to the resources of the machine it is
running on, and keeping track of the state of the system with each com-
mand is relatively straightforward; a parallel program must share its re-
sources with other programs running at the same time, making it more dif-
ficult to determine the state of the system at any given time, and hence also
the effect of each command.

The difficulty to check whether a program has the desired behaviour is
only one side of the coin; it is often difficult to write specifications for par-
allel systems for much the same reasons - the state space of a system with

20

many parallel components is too large to account for in a program, and
it is very difficult, if not impossible, to get a good view of how a parallel
system will react at any point in time. A famous example is the Needham-
Schroder public key protocol [63] from 1978. This protocol is designed such
that two parties can communicate with each other using encrypted mes-
sages. A trusted server is used to set up the communication, and manages
the encryption keys of the parties. This protocol was proven to be insecure
by Denning and Sacco in 1981 [35] — a malicious third party could crack
the protocol and take the place of one of the original trusted parties, com-
promising the system. The Needham-Schréder protocol is not particularly
large, but it still took three years to find the bug and fix it.

One reason that the bug was not found sooner was that there were few
formalisms to reason about parallel programs. Dijkstra had created a vari-
ant of ALGOL60 with a parallel construct in the language [36], and Hoare
extended on these ideas with his theory of Communicating Sequential Pro-
cesses (CSP) [27].

1.3 Process calculi

In 1980, Milner introduced a new field of research which today is com-
monly referred to as process calculi, or process algebras, with his Calcu-
lus of Communicating Systems (CCS) [55]. Process calculi are a family of
related formalisms that provide high level descriptive languages to reason
about concurrent systems. They also introduce a concept of equality be-
tween processes, and provide algebraic laws to reason about these equali-
ties. One such equality is bisimilarity, and its intuitive definition is that two
processes P and Q are bisimilar, written P ~ Q, if for every action that any of
the processes can do, the other can do the same action, and the states they
end up in are still bisimilar. An example of an algebraic law is the compo-
sitionality law which states that if two processes are bisimilar, P ~ Q, then
the processes resulting from putting another process in parallel with these
processes are also bisimilar, P| R ~ Q| R.

CCS was groundbreaking in that it introduced a formalism for comparing
programs based on how they communicate — which data is sent, which data
is received, and where do the programs go from there. It is a minimalistic
formalism with only a few basic operators — most notably processes may
run in parallel, and they can contain local information not available to any
other process. CCS will be described in detail in Part II of this thesis.

The pi-calculus was introduced by Milner, Parrow, and Walker in the late
1980s [58]. A pi-calculus process has the capability to create a local com-
munication channel, which only that process knows about, and which can
be sent to another process allowing for secure communication between the
two. The pi-calculus will be covered in detail in Part III.

21

Process calculi to date have been used extensively to model communica-
tion protocols. Many protocols make use of cryptography to be able to send
information over an insecure medium where anyone can intercept mes-
sages, and be confident that only the intended recipient can decipher and
read the message. In 1999, Abadi and Gordon introduced the spi-calculus
[8], which included cryptographic primitives such as encryption and de-
cryption as primitive operators of the calculus.

The spi-calculus has been used to verify a number of security protocols.
Its algebraic properties are more complicated than previous calculi. For the
pi-calculus and CCS, equality on processes is inferred just by looking at how
the processes interact with the environment; a spi-calculus process must
also keep track of information available to each process, as the knowledge
of cryptographic keys admits decryption of messages. There is a multitude
of different equivalences for spi-calculus processes, each suited for slightly
different tasks [26].

Many process calculi are tailored to solve a specific problem. This is prob-
lematic as it invariably leads to duplication in proof effort - whenever a new
calculus is created, all of its proofs must be redone, and these are often very
similar to corresponding proofs in previous calculi. Moreover, as the com-
plexity of the calculi increases, so does the complexity of their proofs. There
is therefore a need for frameworks that encompass a wide range of applica-
tions and calculi.

The applied pi-calculus was introduced by Abadi and Fournet in 2001 [7].
It was novel in the sense that the user supplies what data processes can
use; some examples are linked list, binary trees, or encrypted or decrypted
messages. The user also supplies an equation system to reason about the
data. A typical equation could state that

dec(enc(M, k), k=M

which means that a message M encrypted with a key k can be decrypted
with the same key. This generality allows the applied pi-calculus to model
the same cryptographic protocols as the spi-calculus, and it does this with
a leaner algebraic theory.

The applied pi-calculus is extensively used, with hundreds of papers cit-
ing it, but one of its semantics was discovered to be non-compositional in
2009 [17]. The fact that such a widely used calculus can still have a bug in it
after eight years hints at the difficulty of the proofs involved.

1.4 Theorem proving

Pen and paper proofs are often plagued by sweeping statements such as:
from Definition A we can clearly see that ..., or the proof follows trivially by

22

induction on x. These styles of proofs make use of the human intuition to
deduce what is clear or trivial, but care has to be taken to ensure that these
simplifications do not introduce any inconsistencies or flaws in the proof.

The main point of any mathematical proof is to form a convincing argu-
ment so that with a reasonable degree of certainty, the proof is correct, no
cases have been missed, and all appeals to intuition are safe. As the com-
plexity of the proofs increases, this becomes more and more time consum-
ing and increasingly error prone. Therefore, in order to ensure that a proof
actually is correct, it is desirable to have the proofs checked by a theorem
prover.

A theorem prover is a computer program, that given a proof in a lan-
guage the prover understands can check if the proof is correct. There are
many advantages of using theorem provers. Primarily they are used to en-
sure that all proofs actually are correct and no cases have been overlooked,
but that is only half the story. Once a theory has been proven correct in-
side a theorem prover, the user can make changes, and the ramifications
of these changes become instantly apparent. Consider doing the same to a
big pen-and-paper formalisation - it would be nearly impossible to foresee
all possible effects that a change has on different parts of the formalisation,
except by redoing all of the proofs. This process would be time consuming,
boring, and the risk of doing a mistake is far from negligible.

There exist several theorem provers: Coq [25], Isabelle [64], Agda [3], PVS
[66], Nuprl [31] and HOL [42], just to name a few. These theorem provers are
interactive. They have many automated tactics, and the user can provide
additional proof strategies. Many are also getting better and easier to use,
and so the concept of having fully machine checked proofs has recently be-
come far more realistic. As an indication of this, several major results have
been proven over the last few years, including the four and five colour the-
orems [14, 41], Kepler’s conjecture [65] and Gddel’s incompleteness theo-
rem [72]. Significant advances in applications related to software are sum-
marized in the POPLmark Challenge [11], a set of benchmarks intended
both for measuring progress and for stimulating discussion and collabo-
ration in mechanizing the meta-theory of programming languages. There
are, for example, results on analysis of typing in System F and light versions
of Java. The theorem prover Isabelle was recently used to verify software in
the Verisoft project [5]. Moreover, the verification of the operating system
micro-kernel discussed previously was verified using Isabelle.

A common criticism of theorem provers is that they are hard to use and
the amount of work required to formalise proofs significantly exceeds do-
ing them on paper. The reason for this is mainly that it is difficult to model
human intuition in a straightforward way - for a theorem prover, nothing
is clear or trivial, and a lot of time has to be spent proving the seemingly
obvious. However, the reason that intuitive truths are difficult to model can
be that they are actually not true. One famous such example is the Baren-

23

dregt variable convention, which intuitively states that the names chosen
for arguments of functions are unimportant. It will be discussed in detail in
Section 3.1.1.

So whereas the argument that theorem provers are difficult to use and re-
quire a considerable amount of work has merit, the fact is that they provide
a robust way of ensuring that a formalisation is correct, and they provide
a flexible working environment where theories can be modified without
running the risk of introducing inconsistencies. Moreover, modern theo-
rem provers are becoming increasingly powerful and easy to use.

1.5 Contributions

The main contribution of this thesis is to formalise the meta-theory of dif-
ferent dialects of process calculi in a theorem prover. I have created exten-
sive formalisations of three major process calculi: CCS [57] by Milner, the
pi-calculus [58] by Milner, Parrow, and Walker, and the psi-calculi [17] by
myself, Johansson, Parrow, and Victor. These calculi vary greatly in com-
plexity, but the proof strategy used to formalise their meta-theories is the
same, and have scaled remarkably well as complexity increases.

Another main contribution is the psi-calculi framework, which was de-
veloped in our research group. I participated in the development at the
same time as I formalised all theories in Isabelle. In this way the framework
was formalised in parallel with its development. Psi-calculi represents the
current state of the art of process calculi. We believe it to be one of the most
expressive frameworks for concurrent systems currently available, and its
formalisation in Isabelle to be the most extensive formalisation of process
calculi ever done in a theorem prover.

Every proofin this thesis has been machine checked using the interactive
theorem prover Isabelle — all definitions have been encoded, and all lemmas
and theorems have been proven. The advantage of this is clear - we know
that our proofs are correct and that nothing has been overlooked. Isabelle
also provides support for typesetting the theories which have been proven.
All lemmas in this thesis are generated directly from the Isabelle sources,
significantly reducing the risk that the formulas presented contain errors.

1.6 Thesis outline

This thesis is composed of five parts. Part I serves as an introduction,
and provides the technical background required for the rest of the thesis.
A reader familiar with the subjects may want to skip some or all of the
chapters presented. Part IT describes how Milner’s Calculus of Concurrent
Systems (CCS) [55] is formalised in Isabelle, and Part III does the same

24

for the pi-calculus [58]. Part IV introduces and formalises psi-calculi — a
general framework which captures both CCS, the pi-calculus and many
others. Part V concludes the thesis.

1.6.1 Part I: Background

Chapter 2 introduces process calculi, their background, structure, and ap-
plications. A reader familiar with process calculi may still want to read Sec-
tions 2.4 and onwards, as they cover the proof strategies that are used for
the rest of the thesis.

Chapter 3 introduces the concept of alpha-equivalence, how it is used
in process calculi, and different attempts to provide a smooth treatment in
theorem provers.

Chapter 4 describes Nominal Logic [69], which provides the logical in-
frastructure upon which the rest of the thesis builds.

Chapter 5 describes the interactive theorem prover Isabelle, and covers
the required material for understanding the Isabelle proofs presented in
this thesis.

1.6.2 Part II: The Calculus of Communicating Systems

Chapter 6 introduces the semantics of CCS, some example derivations, and
how the semantics is modeled in Isabelle.

Chapter 7 defines strong bisimilarity — an equivalence relation that
equates processes having the same behaviour.

Chapter 8 defines structural congruence — an equivalence relation that
equates processes that are intuitively considered equal. One such example
is that processes differing only by the order of their parallel components are
equal. Moreover, we prove that all structurally congruent terms are bisimi-
lar.

In Chapter 9 we define weak bisimilarity, which is an equivalence rela-
tion similar to strong bisimilarity, but it abstracts away from the internal
actions of the processes. We also prove that all strongly bisimilar processes
are weakly bisimilar.

1.6.3 Part III: The pi-calculus

Chapter 12 introduces the pi-calculus, its history and impact.

There are two types of operational semantics for the pi-calculus - the
early semantics, and the late one. In Chapter 13 we describe the early oper-
ational semantics, and how it is implemented in Isabelle. All the following
chapters up to Chapter 17 use the early semantics.

In Chapter 14 we define strong bisimilarity for the early semantics of the
pi-calculus.

25

In Chapter 15 we define weak bisimilarity.

In Chapter 16 we define weak congruence.

In Chapter 17 we define the late semantics of the pi-calculus, we also
define all the equivalences from the early semantics and prove the corre-
sponding results.

In Chapter 18 we define structural congruence for the pi-calculus, and
prove that all structurally congruent processes are also late bisimilar.

In Chapter 19 we prove that the axiomatisation of strong late bisimilarity
for the finite pi-calculus is sound and complete.

In Chapter 20 we prove that all late bisimilar processes are also early
bisimilar.

1.6.4 PartIV: Psi-calculi

In Chapter 22 we provide an in depth exposition of parametric process cal-
culi. We also introduce the psi-calculi framework including its strong bisim-
ulation equivalences.

In Chapter 23 we introduce the notion of binding sequences — a mecha-
nism for treating sequences of binders atomically, rather than working with
one binder at a time. The concept of binders in process calculi is defined in
Chapter 2.

In Chapter 24 we provide the Isabelle definitions for psi-calculi
processes, and cover how the parametricity of the framework is encoded in
Isabelle.

Chapter 25 covers the operational semantics of psi-calculi, as well as the
rules used to do induction over the transition system.

In Chapter 26 we describe a technique to derive general inversion rules
for calculi using binding sequences. Inversion rules are used for case anal-
ysis on transitions of the calculi.

In Chapter 27 we model strong bisimilarity in Isabelle.

Chapter 28 covers the structural congruence rules for psi-calculi, proves
that all bisimilar processes are also structurally congruent, and that bisim-
ilarity is a congruence.

Chapter 29 describes weak bisimilarity for psi-calculi. Weak bisimilarity
is considerably more complex than for other process calculi, and motivat-
ing examples are provided as to why this is the case. We also define a subset
of psi-calculi, where the logical environment satisfies weakening, i.e. that
nothing known by the environment can be made untrue by adding extra
information.

In Chapter 30 we formalise weak bisimilarity for arbitrary psi-calculi in
Isabelle.

In Chapter 31 we define weak congruence for psi-calculi and prove that
it is a congruence.

26

In Chapter 32 we add logical weakening to the psi-calculi framework, de-
fine the simpler version of weak bisimilarity and prove that the two versions
coincide.

In Chapter 33 we discuss extensions to the psi-calculi framework, and
encode new operators by adding extra constraints to the framework.

In Chapter 34 we compare psi-calculi to other calculi, and provide the
counter-examples to why the semantics for the applied pi-calculus and CC-
pi are not compositional. We also discuss in detail our experiences from
formalising a framework parallel to the development of its theories.

1.6.5 PartV: Conclusions

The thesis is concluded with a discussion on what has been achieved and
learned through the formalisation efforts. We cover possible extensions to
Isabelle to make these types of formalisations easier. We come back to re-
lated work, what other process calculi have been formalised in theorem
provers, and which techniques were used. We also discuss possible future
work.

1.7 My publications

I have published eleven articles with different constellations of people, but
mostly with my supervisor and the rest of my research group. This thesis
builds on eight of these articles, where two are journal versions of confer-
ence articles.

1.7.1 Articles contributing to this thesis

1. Jesper Bengtson. Generic implementations of process calculi in Isabelle.
In The 16th Nordic Workshop on Programming Theory (NWPT'04), pages
74-78, 2004.

2. Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using
Nominal Logic. In Proceedings of the 10th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS),
volume 4423 of LNCS, pages 63-77, 2007.

3. Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using
nominal logic. Logical Methods in Computer Science, 5(2), 2008.

4. Jesper Bengtson and Joachim Parrow. A completeness proof for bisim-
ulation in the pi-calculus using Isabelle. Electronic Notes in Theoretical
Computer Science, 192(1):61-75, 2007.

5. Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Bjérn Victor.
Psi-calculi: Mobile processes, nominal data, and logic. In Proceedings of
LICS 2009, pages 39-48. IEEE, 2009.

27

6. Jesper Bengtson and Joachim Parrow. Psi-calculi in Isabelle. In Proceed-
ings of TPHOLSs 2009, volume 5674 of LNCS, pages 99-114. Springer, 2009.

7. Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Bjérn Victor.
Psi-calculi: A framework for mobile processes with nominal data and
logic Submitted to LICS 2009 special issue of LMCS.

8. Magnus Johansson, Jesper Bengtson, Joachim Parrow, and Bjérn Victor.
Weak equivalences in psi-calculi. In Proceedings of LICS 2010 (to appear).
IEEE, 2010.

In Article 1 I formalised an extensive part of the meta-theory of Milner’s
CCS. All of Part II stems from this article.

Article 2 presents the formalisation of the pi-calculus by Milner Parrow
and Walker. We later published Article 3, which is a journal version of Arti-
cle 2. All of Part III except Chapter 19 is based on these two articles.

In Article 4 we extended the pi-calculus formalisation to include the ax-
iomatisation of strong bisimilarity for the finite subset of the pi-calculus.
Chapter 19 builds on results from this article. I alone wrote all of the Isabelle
formalisations in Articles 1-4. The articles are written with my supervisor.

In Article 5 we introduce psi-calculi. This is a group effort where the theo-
ries were developed in parallel with my formalisation efforts. The only part
I did not have hand in is Section 3, which explains how to encode other
process calculi using psi-calculi. Chapter 22, and Sections 34.1.1 and 34.1.2
borrow heavily from this article.

In Article 6 we formalised all results of Article 5. I wrote the complete
formalisation. Chapters 23-28 are based on this article.

Article 7 is a journal version of Article 5. I participated significantly in all
parts except Sections 3 and 4.

In Article 8 we present weak equivalences for psi-calculi. I am responsi-
ble for all of the Isabelle formalisation and participated significantly in all
parts except Section 6 on barbed congruence. Chapter 29 borrows heavily
from this article. All of the results of Article 8, except the barbed equiva-
lence, have been formalised by me in Isabelle, and the results are presented
in Chapters 30-33. This work is still unpublished.

1.7.2 Other publications

The following are articles which I have coauthored during my Ph.D. but
which do not appear, or are only briefly touched upon in the dissertation.

1. Michael Baldamus, Jesper Bengtson, Gianluigi Ferrari, and Roberto
Raggi. Web services as a new approach to distributing and coordinating
semantics-based verification toolkits. Electronic Notes of Theoretical
Computer Science, 105:11-20, 2004.

2. Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Sergio Maffeis. Refinement types for secure implementa-
tions. In CSF '08: Proceedings of the 2008 21st IEEE Computer Security

28

Foundations Symposium, pages 17-32, Washington, DC, USA, 2008.
IEEE Computer Society.

3. Magnus Johansson, Joachim Parrow, Bjorn Victor, and Jesper Bengtson.
Extended pi-calculi. In Proceedings of ICALP 2008, volume 5126 of LNCS,
pages 87-98. Springer, July 2008.

In article 1 we presented a framework of tools for formal methods on the
web — the idea was to have them collaborate with each other and use each
other’s results. I wrote a few pages for this article, but the scientific work was
done by my coauthors.

Article 2 was written as a part of a three month internship at Microsoft
Research in Cambridge. We created a security type system for F#, which is
the .NET version of ML. The type system uses refinement types with logi-
cal predicates, and a type safe program is secure in the sense that e.g. only
trusted parties can decrypt messages being sent. The type system is expres-
sive enough to verify other safety properties as well. Programs are anno-
tated with types and the type checker sends proof obligations to an auto-
matic theorem prover. At the time we used SPASS [78], but later upgrades
uses Z3 [62]. I implemented the type checker, and coauthored the theories.

Article 3 describes extended pi-calculi, a precursor to the psi-calculi
framework. The theoretical development was a group effort, most of my
work was to build the infrastructure in Isabelle required to formalise
calculi of this caliber. Psi-calculi does everything that extended pi-calculi
does and more, and in a more elegant way. Work on extended pi-calculi
has been abandoned.

29

Part I
Background

2. Process calculi

Process calculi, introduced in the early 1980s, were pioneered by Milner
with the Calculus of Communicating Systems (CCS). The main contribution
of CCS is that it provides a clear and intuitive way to reason about parallel
systems in terms of their interactions with the environment.

This chapter introduces a simple process calculus which is used to cover
the basic concepts of process calculi, their terminology, and the proof
strategies that will be used throughout this thesis. This calculus is intended
only for explanatory purposes, and is not practically useful as a modeling
language — calculi which are suited for this purpose will be covered in
Parts II, I1I, and IV.

2.1 Syntax

Process calculi use names, which are an infinite number of atomic building
blocks, to build the data structures required by the calculus. There is also
a notion of actions that can be performed by the agents, which will hence-
forth be denoted as agents. This thesis will use the following notation.

e Names are denoted by a, b, c, ...

* Agents are denotedby P, Q, R, ...

* Actions are denoted by a, 8, v, ...and represent the visible capabilities

of an agent.

In our simple process calculus, actions are defined as follows:

Definition 2.1 (Actions).

def
a=T1T|a

A t-action represents an internal action of an agent, whereas an action
consisting of a name is visible to the environment.

Agents can now be defined in the following way:
Definition 2.2 (Agents).

PEa.p Prefix

P|Q Parallel
(vx)P Restriction
0 Nil

33

The structural congruence = is defined as the smallest congruence satisfy-

ing the following laws:

1. The abelian monoid laws for Parallel: commutativity P | Q = Q| P, asso-
ciativity (P | Q) |R=P | (Q| R), and 0 as unit P | 0 = P; and the same laws
for Sum.

2. The scope extension laws

(vx)0 = 0

vx)(P|1Q = P|wx)Q ifxgP
(vx)a.P = a.(vx)P ifxfa
vx)(vy)P = (vy)(vx)P

Figure 2.1: The definition of structural congruence.

The empty agent, denoted 0, represents a deadlocked agent i.e. an agent
with no actions. An agent P running in parallel with an agent Q is denoted
P| Q. An agent a.P can do the action a and then become P. An agent can
generate names local to that agent through a v-operator, where the agent
(vx)P denotes an agent P with the name x local to it — intuitively, x may not
occur in any other agent.

The free names are the names in an agent except those restricted by
Restriction. The term x f P, pronounced x fresh for P, means that x is not in
the free names of P. An exact definition of this operator, and a discussion
of its origins, will be given in Chapter 4.

2.2 Structural congruence

Structural congruence is an equivalence relation that relates agents which
are syntactically different, but intuitively considered equal. For instance, it
is reasonable to assume that the parallel operator is associative and com-
mutative and that restricting a name in an agent where that name does not
exist has no effect. The structural congruence rules can be found in figure
2.1.

2.3 Operational semantics

The notation P % P'is used to represent an agent P doing an action a and
ending up in the state P'. The agent P’ is often referred to as an a-derivative
of P or just a derivative of P.

34

P=Q Q—=Q Q=P

STRUCT — ACTION
P p a.PL P
p=p Pp=P Q=q
PAR SYNC
PIQ = P'IQ PIQ = P'IQ
P55 P xta
SCOPE

P % (voP'

Figure 2.2: An operational semantics for a simple process calculus.

The operational semantics is a collection of rules through which transi-
tions can be inferred, and can be found in Fig. 2.2. The STRUCT rule can be
used to rewrite an agent or its derivatives to structurally congruent counter-
parts. The ACTION rule allows an agent a. P to do an a-action and end up
in the state P. The PAR rule allows the agent P in P| Q to do an action while
Q does nothing. If Q does an action, a symmetric version of this rule can
be inferred through the use of STRUCT. The SyNC rule allows two agents P
and Q to synchronise provided they have the same action. The SCOPE rule
is designed to block actions containing names which are local to the agents.
An agent (vx)P can only do an action «a if x does not occur free in a. Since
alpha is just a name or 7, this means that x # a.

2.4 Bisimilarity

Intuitively, two agents are said to be bisimilar if they can mimic each other
step by step. Traditionally, a bisimulation is a symmetric binary relation %
such that for all agents P and Q in £, if P can do an action, then Q can
mimic that action and their corresponding derivatives are in %. The largest
such bisimulation is denoted ~, i.e. a P being bisimilar to an agent Q is
written P ~ Q.

There is a multitude of different bisimulation relations for the different
kinds of process calculi in existence, ranging from the very simple to the
very complex. This section introduces the proof strategies that will be used
for the rest of this thesis. When designing process calculi it is important to
use a congruence — i.e. an equivalence relation preserved by all operators.
For an operator to preserve a bisimilarity, it must be the case that apply-
ing the operator to two bisimilar agents will not produce two agents which

35

are not bisimilar. For instance, if the fact that P and Q are bisimilar implies
that also (vx)P and (vx)Q are bisimilar, then bisimilarity is preserved by
Restriction. The property that a bisimilarity is preserved by an operator is
called a preservation property.

Congruences have the advantage that they are preserved by all operators,
which ensures that any part of an agent can be replaced by a congruent one
without changing its behaviour. This allows specifications and implemen-
tations to be designed modularly - a specification for the entire system can
be created, but bisimilarity must only be proven for each subcomponent,
they can then be freely interchanged and the result is still guaranteed to be
bisimilar.

An important application area for process calculi is security protocols.
A specification will generally require that no private information is leaked
to the environment. If bisimilarity is preserved by the parallel operator, the
bisimilar agents will behave the same even in the presence of an arbitrary
attacker running in parallel.

Formally, an agent P can simulate an agent Q in a relation £, if for every
transition Q can do, P can mimic that transition and the derivatives are in
2. We use the terminology that a simulation preserves & if the derivatives
of all possible simulations are in R.

Definition 2.3 (Simulation). An agent P simulating an agent Q preserving

Z is written P —g Q
Pop0¥vaQ. Q% Q—@r.P-% P AP, QYeR)

Bisimilarity can then very conveniently be defined coinductively, i.e. the
greatest fixed point derived from a monotonic function.

Definition 2.4 (Bisimilarity). Bisimilarity, denoted ~, is defined as the
greatest fixed point satisfying:
P~Q=P —_. Q SIMULATION
AQ~P SYMMETRY

Proving that two agents are bisimilar boils down to choosing a symmetric
candidate bisimulation relation & containing the two agents, and proving
thatforall (P, Q e &, P — 4 Q.

2.5 Weak bisimilarity

Weak bisimilarity abstracts from the 7-actions. The idea is that two agents
are bisimilar if they can mimic each other’s visible actions, ignoring all in-
ternal computations.

36

P=Q Q=Q Q=P

STRUCT — ACTION
pZ p a.P=P
P=p P p Q0= Q'
a— PAR . SYNC
PIQ =P |Q PIQ =P |Q
PSP xfa
SCOPE

V)P = (vx)P'

Figure 2.3: Alifted weak operational semantics. All rules are derived from the strong
semantics found in Figure 2.2.

An agent P can do a 7-chain to P, written P => P’if P and P’ are in the
reflexive transitive closure of 7-actions from P.

Definition 2.5 (7-chain).
P=P' P PYe(p P): P = P}
A weak transition, written P => P’is defined as a strong transition with a

T-chain appended before and after the action.

Definition 2.6 (Weak transition).

a

PéP'd:efEIP” P p—s p'AP" & P AP — p!
Definition 2.7 (Weak simulation). An agent P weakly simulating an agent
Q preserving X is written P ~g Q

Pog Q¥vaQ. Q% Q'— @P.P2 P AP, Q) eR)

It is important to note that in weak simulations, a weak action mimics a
strong one.

Definition 2.8 (Weak bisimilarity). Weak bisimilarity, denoted =, is defined
as the greatest fixed point satisfying:

P=Q=P ~. Q SIMULATION
ANQ=P SYMMETRY

Proving properties of weak bisimilarity is more involved than proofs for
strong bisimilarity as the 7-chains must be taken into consideration. In or-

37

der to abstract from this added complexity, we introduce the concept of
lifting. A strong semantic rule can be lifted, if all of its strong transitions can
be replaced by weak ones. The semantics in Figure 2.3 illustrate this.

If a semantic rule can be lifted, it can be used in the same way as its
strong counterpart, and the proof strategies which use strong semantic
rules can also use the weak ones. This significantly cuts down on the
amount of work required to formalise properties of weak bisimilarity, as
the proofs for strong bisimilarity can be reused, modulo changing which
semantic rules are used.

2.6 Structural congruence revisited

In this chapter we have introduced process calculi through a simple exam-
ple with a structural congruence rule in the semantics. In reality, this is not
always a good design decision. The arguments in favour are that the seman-
tics becomes leaner and easier to understand.

The main disadvantage is that whenever a proof involving the semantics
is done, it is not enough to consider the agents at hand, but all structurally
congruent agents must also be considered. This makes the proofs more dif-
ficult and mare cumbersome to work with. Consider as an example the fol-
lowing lemma.

Lemma2.9. If P % P’ and x4 P then x4 P'.

Proof. By induction on the transition P % P’ O

In the STRUCT case, an auxiliary lemma is needed to show that the struc-
tural congruence laws introduce no new fresh names.

Lemma2.10. If P= Q and x{ P then x4 Q.

Proof. By induction on the construction of P= Q.

The problem arises in the case for symmetry of structural congruence
(P = Q — Q = P). The induction hypothesis provides x f Q, but the proof
requires that x § P. The solution is to strengthen the induction hypothesis
toxXP—xfQAXEQ— xt P. O

This proof is moderately easy but it is inconvenient to prove structural
congruence properties for every proof on the transition system. Moreover,
case analysis on a semantics with structural congruence is complicated. For
every transition, every structurally congruent agent which could trigger the

transition must be considered. For instance, the transition P| Q -, P/ can
be derived from eight cases — one each from the PAR and ComM rule, and
six from structural congruence - reflexivity, symmetry and transitivity, and

38

a

pZ p Q%L Q
o ACTION . PAR1 ~ PAR2
a.P % p PIQ L PQ PIQ — P|Q
pEp QLqQ PE P xta
SYNC SCOPE
PlQ = P'|Q (voP = (vx)P'

Figure 2.4: A STRUCT-free operational semantics for a simple process calculus.

the three abelian monoid laws. For more advanced calculi, this number is
even greater.

This problem becomes worse when using a theorem prover which will
require you to prove all steps, even if they are similar, when it cannot prove
them automatically. Figure 2.4 shows a STRUCT-free version of the opera-
tional semantics.

Even though the semantics does not contain structural congruence, it
must be possible to derive the structural congruence rules. More precisely,
any terms which are structurally congruent must also be bisimilar using se-
mantics without a STRUCT rule.

39

3. Alpha-equivalence

When defining process algebras or programming languages, the notion
of binders must be made precise. Depending on the calculus being
formalised, binders serve different functions. The most common notion
is for a binder to be a name which acts as a placeholder for terms, and
during execution, this placeholder can be instantiated and replaced by an
arbitrary term. For process algebras, it is also common to have binders
represent local names for an agent. Two agents which are syntactically
equal except for the bound names are called alpha-equivalent and
changing the bound names of an agent to other valid bound names is
called alpha-conversion.

In the process algebra described in Chapter 2, the only binder is the v-
operator, which conforms to the second use of binders mentioned above.
The operator creates a unique name which can only appear under the scope
of the binder. Which name is chosen is less important, although some re-
strictions do apply.

Consider the following three agents.

P=(wx)(x.2.0|x.2.0) Q=wy(y.z.01y.z.0)

R=wv2(z.2.0|z.2.0)

Here P and Q are alpha-equivalent as they only differ in that the
bound name x has been replaced by y. However, neither P nor Q are
alpha-equivalent to R, as the binder z will bind all occurrence of z in R,
whereas z occurs free in both P and Q. Restriction binds a name in an
agent, and this name may not occur anywhere else in the proof context; if
it does, it must be alpha-converted to a name which meets this constraint.
To be accurate, it is necessary to manually alpha-convert agents such
that these freshness constraints are guaranteed; in practice, proofs often
abstract away from the notions of alpha-equivalence altogether.

3.1 Manual proofs with pen and paper

When doing paper proofs, the idiosyncrasies of alpha-equivalence are usu-
ally glossed over. Generally, agents are assumed to be equal up to alpha-

41

equivalence, are implicitly assumed to not contain any bound names which
clash in an unwanted way.
In The pi-calculus [71] Sangiorgi and Walker write:

In any discussion, we assume that the bound names of any processes or ac-
tions under consideration are chosen to be different from the names free in
any other entities under consideration, such as processes, actions, substitu-
tions and sets of names.

Similar reasonings can be found in Parrow’s An introduction to the pi-
calculus [67].

... we will use the phrase “bn(a) is fresh” in a definition to mean that the
name in bn(a), if any, is different from any free name occurring in any of the
agents in the definition.

These and other papers make an implicit assumption that alpha-
equivalent agents can be freely exchanged in order to ensure any desired
freshness properties of the bound names. Intuitively it is difficult to object
to this style of reasoning. If two processes are considered equal, then surely
it must be possible to replace one for another without breaking the proofs?
As it turns out, this can lead to inconsistencies unless proper care is taken.

3.1.1 The Barendregt variable convention

In his book The lambda calculus: its syntax and semantics [13], Barendregt
introduces what is now commonly known as the Barendregt variable con-
vention.

Variable Convention: If M;, ..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound variables are chosen to
be different from the free variables.

It is this convention that has been used in papers like the ones cited
above, but it turns out to be unsound in the general case. In [73] Urban
provides a variant of the A-calculus to demonstrate that this can lead to in-
consistencies. By using the ideas from [73], and changing the SCOPE-rule of
the semantics in Figure 2.2, a demonstration in process algebras is:

PL P yia
SCOPE

wvxpP L p

42

This rule differs only from the original SCOPE rule in that the bound name
xis dropped from the derivative. Intuitively, the rule reveals the name which
is bound by the binder.

The proof of lemma 2.9 still holds, with the following modification to the
SCOPE-case.

Faultylemma: If P % P’ and y4 P then y4 P'.

Proof. By induction on the transition P % P’.
case SCOPE—y 4 (vx)Pand P % P"

Here the variable convention allows us to chose x such that x is not equal
to any other name in the proof context, more specifically x # y. Moreover,
since y § (vx) P we get that term y § P, and hence with the induction hypoth-

esis, yff P'.
O

This lemma does not hold. Since x f (vx)y.x.0 and (vx)y.x.0 % x.0,
the lemma will state that x f} x.0, which is clearly not true.

The problem arises since the lemma is dependent on the bound names
of the agents for its result, and by allowing the user to freely alpha-convert
the agents to fit the constraints of the proof, an inconsistency is introduced.

In [73], Urban et. al. propose a fix to this problem. By requiring that any
bound name in an inductive rule does not occur free in its conclusions,
and all bound names are mutually distinct, the Barendregt variable conven-
tion can be used freely when doing proofs with binders. The exact method
for this is made precise in [73], and formalised in the interactive theorem
prover Isabelle. Briefly put, in the inconsistent semantics defined above,
there exists a transition (vx)y.x.0 - x.0, containing the bound name x
which occurs free after the reduction, making the transition system invalid
for use with the Barendregt variable convention.

3.2 Machine checked proofs

When formalising mathematics, all aspects of the proofs must be made pre-
cise. Computers are excellent at checking whether or not a proof is correct
or not, but having them create the proofs themselves is difficult. Hand wav-
ing techniques such as the Barendregt variable convention are hard to for-
malise, since the user must make precise exactly what it means for a name
to be sufficiently fresh. Several ways to have computers treat binders have
been proposed.

43

3.2.1 de Bruijn indices

One of the oldest representations of terms with binders was introduced by
de Bruijn in [33]. The key idea is that all names are represented by natural
numbers, where a name has a number corresponding to the nesting level of
its binder. The agent (vx)(vy)x.y.z.0 would have the de Bruijn representa-
tion v v 2.1.3.0 where x is mapped to the number 2 and y to the number
1, as that is their nesting depth from their respective binder. The name z
is mapped to the number 3, but is free since it is greater than the binding
depth.

Things become more complicated if a name occurs at different
binding depths in different parts of an agent. For instance, the agent
(vx)x.((vy)x.0) has the de Bruijn representation v 1.v 2.0, where the
number x is mapped to increases as another binder is traversed.

If the semantics of a calculus modifies the structure of the agents, the
values for binders must be recalculated, and doing this by hand is tedious.
Moreover, the representation is not easy to read for humans.

Still, de Bruijn indices have been extensively used in automatic tools
which reason about process calculi such as the Concurrency and Mobility
Workbenches [61, 77]. As an internal representation for a computer
program, de Bruijn indices work well, as creating the infrastructure which
calculates the name mappings is quite straight forward; all calculations
regarding binders is done in the background and the user does not have
to worry about recalculating the values of the binders. The programs can
also easily translate their internal representation of the agents to a more
human readable form.

There are also formalisations of process calculi where de Bruijn indices
are used. In [45], Hirschkoff proves a substantial part of the meta-theory
of the pi-calculus in the interactive theorem prover Coq. The work is ex-
tensive, but technical parts regarding agent representation make up for a
substantial part of the formalisation. Hirschkoff writes:

Technical work, however, still represents the biggest part of our implemen-
tation, mainly due to the managing of De Bruijn indexes: indeed, as stressed
above, the De Bruijn notation, while drastically simplifying work for bound
names, requires accuracy in dealing with free names. Of our 800 proved lem-
mas, about 600 are concerned with operators on free names; ...

3.2.2 Higher order abstract syntax

When coding agents using higher order abstract syntax (HOAS), one treats
binders as functions from names to agents, i.e. of type name->agent. the
formalisations need to ensure that those are avoided.

44

HOAS has been used to model the pi-calculus in both Coq [46], by Hon-
sell et. al., and in Isabelle by Rockl and Hirschkoff [70]. In [46] the late op-
erational semantics is encoded with late strong bisimilarity. The results in-
clude that the algebraic laws presented in [58] are sound where the non-
trivial proofs include preservation results for bisimulation and the results
for structural congruence. In [70], a special well-formedness predicate is
used to filter out the exotic agents.

Another problem is that since abstraction is handled by the meta-logic of
the theorem prover, reasoning about binders at the object level can become
problematic. In [46] we can read:

The main drawback in HOAS is the difficulty of dealing with meta-theoretic
issues concerning names in process contexts, i.e. agents of type
name->agent. As a consequence, some meta-theoretic properties
involving substitution and freshness of names inside proofs and processes,
cannot be proved inside the framework and instead have to be postulated.

Early attempts to encode the pi-calculus in the HOL theorem prover also
include [60, 54].

3.2.3 Nominal logic

Nominal logic, created by Pitts [69], allow for terms with binders to be de-
scribed and reasoned about in a very intuitive manner. Moreover, it is na-
tively supported by the Isabelle theorem prover which is why it is the for-
malism of choice for this thesis. Nominal logic is covered in detail in Chap-
ter 4.

Fraenkel Mostowski set theory (FM set theory) was one of the first serious
attempts to formalise nominal logic. It is standard ZF set theory but with an
extra freshness axiom added. In [38], Gabbay formalises a portion of the pi-
calculus in FM set theory. In this approach a N-quantifier (new quantifier)
is used to generate names which are fresh for the current context. Gabbay
also started work on incorporating a framework for FM set theory inside
Isabelle [39] with which formalisations such as ours could be made. Unfor-
tunately, this early version of nominal logic is incompatible with the axiom
of choice and has to be used in Isabelle/PURE - a bare boned set of the-
ories, since Isabelle/HOL contains the axiom of choice. The attempt was
later abandoned.

45

4. Nominal logic

Nominal logic is a formalism designed to simplify the treatment of calculi
involving binders. It accomplishes this through a mathematical formalism
which allows reasoning about terms with binders up to alpha-equivalence,
thus removing the hand waving style proofs which are often practiced when
dealing with binders.

Nominal logic is a research area in its own right. This chapter will cover
the theoretical background needed to understand the concepts of this the-
sis. Later chapters will cover how these theories are incorporated and used
in Isabelle.

At the core of nominal logic is an atom sort which contains a countably
infinite set of entities which can be bound, and alpha-converted in the data.
Anominal formalisation can utilise several different atom types, denoted by
o, ', ..., and their elements denoted by a, b, c,.... Moreover a notion of
atom swapping is introduced, which allows for renaming of atoms.

a ifc=>b
(ab)-c=1 b ifc=a
¢ otherwise

Sequences of swaps are called permutations, and are denoted by p, g, r....

4.1 Nominal sets

A nominal set & consists of a set of elements and a swapping operator on
these elements. One of the main contributions of nominal logic is that it is
not necessary to know the structure or syntax of the elements of the nom-
inal set, but rather the behaviour of the swapping function. The following
axioms must be satisfied:

Vaced . VxeX.(aa)-x=x

Va, ded . VNxeX.(aa) (ad) x=x

Va, a € /. Vb, b et . VxeX.
(ad)-(bb)-x=aa) b, (ad)-b)-(ad) x

47

Intuitively, the axioms dictate that (a a) must be the identity swapping,
that applying the same swapping twice does nothing and that applying a
swapping to another distributes the swapping over the arguments. This last
property is often referred to as equivariance and will be covered in detail

later.
For the rest of this chapter a member of a nominal set will be called a

term.

4.2 Support and freshness

A useful property of atom swapping is that it can be used to derive the free
atoms of a term. In nominal logic, this is called the support of a term. More
formally, the support of a term T can be defined as follows:

Definition 4.1 (Support). The support of a term T is denoted supp T.

supp Td:ef{a: infinite{b: (ab)- T # T}}

Intuitively, support is defined as the atoms of an agent which changes the
agent when swapped. No knowledge of the structure of T is needed, other
than that it must satisfy the swapping axioms of nominal logic. Consider
the agent

Pd:ef (vx)a.(c.0]x.0)

which has the free names a and c. The following table describes how the
support of Pis calculated:

a b c d
(aa)-P=P (ab)-P#P (ac)-P#P (ad)-
(ba)-P#P (bb)-P=P (bo)-P#P (bd)-
(ca)-P#P (cb)-P#P (co-P=P (cd-
(da)-P#P (db)-P=P (dc)-P#P (dd)-
(ea)-P#P (eb)-P=P (ec):P#P (ed)-
(fa)-P#£P (fb)-P=P (fo)-P#P (fd)-

RN

o2 - R v R
S
A I VR c I VI

~ ® QL o T 9

We obtain that the support of P is {a, c}. As can be seen in the columns
for a and b, there are infinitely many atoms which when swapped for these
atoms will change P. The columns for b and d show that the only two atoms
which when swapped with either b or d change P are a and ¢, and hence

48

neither b nor d is in the support for P. Any swapping of x will not have an
effect, as we are working up to alpha-equivalence.

Another key concept of nominal logic is that of freshness, denoted with
f. An atom is fresh for a term if it does not appear in its support. This op-
erator was informally described in Chapter 2, and now receives a formal
definition.

Definition 4.2 (Freshness). A name x fresh for a term T is denoted x T.
x4 Td:efxez supp T

Note that both support and freshness are overloaded to be defined for all
atom sorts.

4.3 Binding construct

Nominal sets are equipped with a binding construct, [a].T, which binds the
atom a in the term T. This construct is often referred to as an atom abstrac-
tion. and it must satisfy the following axioms:

Vb, bed Vaed' . NTeX.bb) - al.T=[bb) -al.bb)-T
Va, be 4. VT, T'€e X . [a].T =[b].T
(a=bAT= T')V(b]i TAT =(ab)-T)

The first axiom dictates that name swappings must distribute over the
atom abstraction. The second axiom is at the core of how nominal logic
deals with alpha-equivalences. It provides a very intuitive way to alpha-
convert a term. Pick an arbitrary name b which does not occur in a term
being alpha-converted and then replace the original abstraction with b and
swap all of its occurrences in the term with b.

This method of alpha-conversion requires that all members of the nom-
inal sets have finite support, i.e. only a finite number of atoms. If this is not
the case, it would be impossible to pick a fresh name to alpha-convert into.
All members of all nominal sets in this thesis will have finite support.

4.4 Equivariance

Equivariance represents the ability for atom swappings to distribute over
an operation. For example, a function f is said to be equivariant if for all
arguments %, (a, b)- f(%) = f((a, b)- X). Similar properties are necessary for
set membership, logical predicates and datatype constructors.

49

The reason that this property is important is that in a proof a term must
be replaceable for alpha-equivalent ones. When a term is alpha-converted,
a swapping is applied under the scope of the binder. If a term under the
scope of this binder exists elsewhere in the proof context, i.e. without the
binder, then it must be possible to apply the same swapping to that term as
well — equivariance ensures that this is possible.

Equivariance properties are very easy to work with. Name swappings are
very well behaved in that they rarely change the meaning of what they are
being applied to, as opposed to renaming or substitution where it is not
always easy to see what effect their application will have on the proof envi-
ronment.

50

5. Isabelle

Isabelle is a generic interactive theorem prover developed at the University
of Cambridge, and Technische Universitdt Miinchen. It provides the user
with a simple meta-logic and a means to map object logics to the meta-
logic. The appropriate object logic depends on what proofs needs to be
done, and a wide variety are available, including first order logic, Zermelo-
Fraenkel set theory, the logic of computable functions (LCF) and higher or-
der logic. The latter, Isabelle/HOL, is the most developed.

Isabelle/HOL allows the user to define inductive and coinductive pred-
icates and sets, inductively defined datatypes and well-founded recursive
functions. It also has a large infrastructure of proof libraries available for
use for formalisations. An extension to Isabelle/HOL provides support for
nominal logic [76], providing extensive infrastructure for reasoning about
formalisms with binders.

All proofs in this thesis have been made using Isabelle/HOL-Nominal.
The proofs are written in the human readable proof language Isar [79], and
do not require Isabelle expertise. This chapter will cover the Isabelle con-
cepts used in this thesis. For a more in-depth Isabelle tutorial, see [64] and
[79].

5.1 The Isabelle meta-logic

Isabelle’s meta-logic is a higher order logic with three connectives used to
encode standard logical inference rules. There is a universal quantifier (/),
implication (=) and equality (=).

As an example, the PAR-rule from the process algebra described in Chap-
ter 2 is written in the Isabelle meta-logic as follows:

Inference rule meta-logic
Pl

a

P — a a
APaP'QPL P=PQ -5 P|IQ

PlQ = P'|Q

Universal quantifiers at the top level can be implicitly assumed, and the
meta-logic formula above will be written as:

51

P= P=PQ = PIQ

Rules with several assumptions are coded using a sequence of implica-
tions. The Sync-rule for instance is coded like this:

PLP=Q%L Q=PIQ L PIQ
For brevity, these types of rules use the following syntactic sugar:
[P P5Q - Q1="PIQ = P'|(Q

Most commonly, lemmas will be written with a horizontal line separating
assumptions from conclusions throughout this thesis.

5.2 Writing proofs in Isabelle

Isabelle supports two styles for writing proofs. One lets the user provide a
list of proof altering commands, where each command changes the proof
state until the proofis resolved. This method has the advantage that itis rea-
sonably fast, and the user has constant feedback from Isabelle and can de-
duce what the next step of the proof should be. The downside is that the re-
sulting code is not easy to parse, as all it is is a sequence of commands, and
the internal proof state between the commands is not visible. Most com-
monly, this style of proof is called apply scripting, as apply is the name of
the Isabelle command which modifies the proof state.

The alternative is to write proofs using the Isar proof language, which
provides proofs which are significantly easier to read and maintain. Both
styles will be covered in this chapter.

When displaying proofs, we will use the following headers containing

the name of the lemma, the arguments and their types (T1::71, ..., T Tm),
which assumptions the lemma has (4, ..., A;) and which conclusion it
proves (C).

lemma (name) :

fixes T ::t1and Ts 1o and ...and T}, T,
assumes A; and A, and ... and A,
shows C

From the information in this header, Isabelle can deduce the following
proof goal.

ATt Touto .. Tt [Ar; Ags...; Agl = C

52

This level of detail for the headers is not strictly necessary as Isabelle
can often infer the types of a proof — type annotations need only be given
when there is an ambiguity in the type inference, but for clarity, this style of
header will always be provided.

5.2.1 Apply scripts

Apply scripts are often referred to as backwards reasoning. They typically
start from the conclusion of a goal, apply an Isabelle command which trans-
forms the conclusion into something closer to the assumptions, and then
repeats the process until the goal is proven.

The following lemma states that the agent a.P can communicate with
the agent a. Q. Every step of the proof is shown, as well as Isabelle’s output
during the scripting. for the rest of this chapter, the type act is the type of
actions, defined in Definition 2.1, and the type foy is the agent datatype
defined in Definition 2.2.

lemma prefixComm:
fixes a:: actand P:: toy and Q:: toy

showsa.P|a.Q — P|Q
The only applicable rule to prove the first subgoal is the CoMM-rule.
apply(rule semantics. Comm)
Isabelle provides two subgoals that needs to be proven, one at a time.
l.a.p = P
2.a.Q % Q
The only applicable rule is the AcTION-rule.
apply(rule semantics.Action)
The first subgoal is discharged.
lL.a.Q % Q
apply(rule semantics.Action)

The second subgoal is discharged, and Isabelle informs that there is nothing
left to prove.

No subgoals!

done

5.2.2 Inductive proofs

Isabelle supports induction on inductively defined sets and predicates. The
operational semantics of the different calculi presented in this thesis will

53

(R % R

AN\aP. —————— Acr

' Prop (a.P) a P

. P" PropPaP

P =
AN\PaP Q. PAR1

Prop (P| Q) a (P'| Q)

o p !
N\Qa Q'P. Q Q roch,r Q PAR2
Prop (P| Q) a (P| Q")

a

P— P PropPaP'
Q= Q" PropQagq

Prop (P|Q) 7 (P'| Q")

, P= P PropPaP xfa
/\Pa P'x. - SCOPE
Prop (vx)P) a ((vx)P)]

PropRa R’

Figure 5.1: An induction rule of the semantics defined in Figure 2.4. The rule does

induction on the transition R - R'to prove the predicate Prop. Each inductive
case shares the name of the semantic rule which it represents.

54

be encoded as inductively defined predicates. As an example, the induction
rule for the semantics of the process algebra defined in chapter 2 can be
found in Figure 5.1.

This induction rule does induction over the transition Prop R a R’ to
prove the logical proposition Prop, which takes two agents and an action as
argument. One inductive case is given for every rule of the semantics. The
occurrence of Propin the assumptions of these cases denotes the induction
hypothesis.

When using this induction rule, any assumptions of the goal will be
present for each instance of the induction hypothesis as well — in order to
use the induction hypothesis, these assumptions must first be proven. The
following lemma demonstrates.

lemma freshDerivative:
fixes P:: toyand « :: act and P':: toy and y :: name
assumes P - P’'and y 4 P

shows y P’
using assms

Both assumptions are needed for the induction. The transition P - P’
is what we are doing induction over, and y # P is an extra assumption for
the induction. We begin by applying the induction rule using the following
Isabelle command:

apply(induct rule: semantics'.induct)

One subgoal is created for every inductive case, note the occurrence of
the induction hypothesis y f P = y # P’ in each case. The COMM-case
(case 4) has two instances of the induction hypothesis as two transitions
are present in the premise of the rule.

IL.NaP.yfa.P=yfP
2. \NPaP' Q[P = PiytP=yt Pyt PIQl=>yiP'IQ
3.AQaQ'P.[Q = Q5ytQ=y Q' ¥t PIQI =y} P|Q
4. ANPaP'QQ.
o [P PiytP=ytP;Q % Q571 Q=y1 Q5 yt PIQ] = yt
5\PaP'x.[P-L PiyiP=yti Pixta;yt (vi)P] = yt (vx)P’
apply(auto simp add: abs-fresh)

Isabelle manages to solve all of the subgoals automatically with a heuris-
tic called auto. Most Isabelle heuristics can be augmented with specific
rules. In this case, the rule abs-fresh takes care of possible cases for the as-
sumption y § (vx)Pin subgoal 5 — either y = x, or y # xand y {} P.

No subgoals!

done

55

5.2.3 Inversion proofs
Proofs by case analysis are commonly referred to as inversion proofs. Given

a transition P - P/, an inversion rule will look at what transitions are ac-
tually possible by looking at the structure of P. They differ from induction
rules in that they there is no induction hypothesis, even if an operator oc-
curs in the premise of an inference rule, and the question they answer is:

What set of inference rule could have made the transition P -~ P’ possi-
ble?

In this thesis, the most common use of inversion rules will be in the con-
gruence proofs — that bisimulation is preserved by all operators of the cal-
culus.

The following lemma proves that simulation is preserved by the action
prefix.

lemma simActPres:
fixes P:: toyand Q:: foy and « :: act and £ :: (toy x toy) set

assumes (P, Q) € #Z

showsa.P —45 a.Q
The first step is to unfold the definition of simulation

using assms
apply(auto simp add: simulation-def)

LABRIP, Qe®a.Q L RI=3P.a.P L PAP Re®

The next step is to do inversion over the transition a.Q L. Rand see

what possible transitions it can do.

apply(erule semantics’.cases)

LLABRyT.

[(P,QeRaQ=y.T;B=y;R=T] = 3P.a.P L P'A (PR
ER

22.ABRQi1Y Q1 Q.
[(PQeZaQ=QlQ;f=y;R=Q'1Q;Qq L QI
—3P.a.P L PAP ReR

3ABRQy Q' Q.
[P,QeRa.Q=QlQ;p=rR=Q1Q;Q L QI
—3P.a.P L PAP Rez

4NANBRQIY Q1" Q Q.

56

R L. R
R=a.P =a R=P
N\a P. ACT
Prop
R=P| =a R'=P| pLp
A\PaP Q. Q § < PAR1
Prop
R=P| =a R'=PIQ = qQ
N\Qa Q'P. Q h Q Q PAR2
Prop
R=P|IQ pB=1 R=PQ
P& p Q%
PaP QQ. SYNC
Prop
R=(wxP f=a R = (wx)P'
P55 P xta
PaP x. SCOPE
Prop
Prop

Figure 5.2: The inversion rule for the semantics of the process algebra described in

Figure 2.4. The rule does inversion on the transition R - R’to prove the predi-
cate Prop. Each inversion case introduces equality constraints for R, @, and R’ such
that their structure matches the requirements of the semantic rules. As for the in-
duction rule, the inversion cases share the names of the semantic rules which they

represent.

57

[(P,QeRaQ=Qq|Q;B=1;R=Q'1Q";Q L Q5Q L
Q"1
—3P.a.P L PAP Re%
5NBRTy T x.

[, Q)E@;a.Q:(vx)T;ﬁ:y;R:(vx)T’;Tl» T x4yl
—3P.a.P L PAP ReR

The inversion rule provides five cases, but only case number 1 is appli-
cable since the other cases have trivially false equality constraints in the
assumptions.

apply(auto simp add: toy.inject)
1.P,Qe# =3P . a.P % PAP,QecR

The lemma toy.inject proves and disproves equality of agents, and it re-
moves four of the five cases, leaving the ACT-case which is provable from
the AcT-rule and the assumption that (P, Q) € Z

apply(blast intro: Action)
No subgoals!
done

This inversion rule works very well, as long as no terms in the case analy-
sis contain binders. Consider the SCOPE-case in the rule in Figure 5.2 if the
term R has the form (vy) Q. The equality constraint in the assumption will
then be (vy)Q = (vx)P, and the axioms of nominal logic will provide two
cases —one where x = y and one where x # yand Q= (xy) - P.

To do these alpha-equivalence cases in every proof will quickly boil down
to tediously detailed proofs which push name swappings back and forth,
and would not provide the abstraction level needed when doing proofs.
How Nominal Isabelle circumvents this problem will be described in sec-
tion 5.3.

5.2.4 Coinductive proofs

All bisimulations in this thesis are defined using coinductive definitions.
When proving that two agents are bisimilar, one needs to find a candidate
relation containing the two agents, and there must be no way that any two
members of this candidate set can fall out of the set by applying the rules
that form the coinductive definition. One coinduction rule for bisimulation
looks as follows:

58

(P,QeXx

AP Q. w SIMULATION
P =g Q
AP Q. w SYMMETRY
QPex
P~Q

In order to prove that P and Q are bisimilar, one must find a candidate
relation & such that & is symmetric, and that for all agents P and Q in &
there is no way for P to simulate Q such that the derivatives fall outside of
Z.

Note that the SYMMETRY case can also be written as & < Z . This is
shorter, easier to read, but a bit inconvenient to work with in a theorem
prover — when applying the coinduction rule, the first thing that Isabelle
will do is to unfold the definition of < to become what is declared in the
SYMMETRY case. When writing rules for a theorem prover it is generally
good practice to write them in such a way that the theorem prover’s au-
tomatic heuristics cannot simplify the rule any further.

The following lemma illustrates, by proving that bisimulation is reflexive.

lemma bisimReflexive:
fixes P:: toy
shows P ~ P
apply(coinduct rule: bisimCoinduct[where X=1d])

By setting & to the identity relation, we get the following three subgoals.

1.(P,P)eld
2ANPQ.(P,Qeld= P —14 Q
3.A\PQ.(P,Q€ld=> (Q P eld

Case 1 and 3 follow trivially from the definition of the identity relation, and
case 2 follows from the definition of —.

apply(auto simp add: simulation-def)
No subgoals!
done

There are many variants of coinductive proofs, and sometimes more
powerful rules than the one presented above are necessary. These rules
will be presented throughout the thesis as they are needed.

59

5.3 Nominal logic in Isabelle

Isabelle/HOL-Nominal is an extension of Isabelle/HOL, the most
developed logical theory in Isabelle. When writing proofs in HOL-Nominal,
often referred to as Nominal Isabelle, the user has access to all the logical
infrastructure present in HOL.

This section will describe how Nominal Isabelle is used to reason about
calculi with binders, and also provide the theoretical connection from
Chapter 4.

5.3.1 Atom swapping and permutations

Nominal Isabelle provides support for creating nominal datatypes. A nom-
inal datatype can be viewed as a nominal set, described in Section 4.1, and
Nominal Isabelle uses type classes to add the requirements of nominal sets
to the standard Isabelle datatypes. It is also possible to define new nominal
datatypes. At the core of the formalisation is the atom type. An atom type
contains a countably infinite number of atoms, which are used as building
blocks when building nominal datatypes, and which can be bound using a
binding construct.

For each atom type, a swapping function swapis defined which is defined
exactly as in nominal logic. A permutation is then defined as a list of pairs
of names — a permutation function is then created which recurses over the
list and applies the pairs as swappings one pair at a time. Since permuta-
tions are lists, we can use the standard library functions on lists to reason
about them. More specifically, the empty list [] is the empty permutation, a
swapping can be appended to a permutation using the #-operator, and two
permutations can be appended using the @-operator.

For all members c of an atom type &« the following must hold:

l-c=c

(a, b)#p-c=swap(a b) (p- o)

swap (a, b) c = (ifa= cthen b else if b = c then a else c)
infinite o

These axioms dictate that the empty list must be the identity permuta-
tion, that permutations and name swappings operate in the desired way,
and that the number of atoms have to be countably infinite.

There is also notion of permutation equality.

Definition 5.1. Two permutations p and q are said to be equivalent if when
applied to any atom, have the same effect.

pE quEfVa'p.a: q-a

60

A type is a permutation type if all of its members x meet the following
constraints.

l-x=x
(p@q)x:pqx
pEq=p-x=q-Xx

To check whether or not a type is a permutation type, a permutation
function is introduced, which typically distributes over all the components
of a type, until it reaches the atoms, and performs the permutations there.
Most of the commonly used Isabelle datatypes have been proven to be per-
mutation types. Isabelle’s support for function overloading makes this pro-
cess seamless.

The inverse of a permutation p~ is obtained by reversing the permutation
list p.

Lemma 5.2. A permutation p is canceled by its inverse p~.

p-px=x
ppx=x

5.3.2 Support and freshness

With the permutations in place, support and freshness can be defined just
as they are for nominal logic.

Definition 5.3 (Support). The support of the term T is denoted supp T.

supp Td:ef{a: infinite{b: (ab)- T # T}}

Note that every atom type will yield its own support function. Also, when
working with support in lemmas it is often necessary to provide proper type
annotation. Isabelle will not automatically be able to determine the atom
type of an expression such as supp x, unless it is made clear from another
part of the proof context.

Freshness is then defined in the standard way.

Definition 5.4 (Freshness). The name x fresh for the term T is denoted x T.

xf ngfxez supp T

61

5.3.3 Atom abstraction

In nominal logic, the existence of an atom abstraction function is axioma-
tised, in Isabelle an abstraction function is defined which given an atom
and a permutation type creates an atom abstraction.

The constructors nSome and niNone are constructors for a local option
datatype in Nominal Isabelle. as Nominal Isabelle needs to be able to dis-
tinguish these instances of the option type from the ones provided by the
user.

Definition 5.5 (Atom abstraction). A name a bound in the term T is denoted
[x].T

la). T
Ab. if b= a then nSome T else if bt T then nSome (a b) - T else nNone

From this definition, the axioms for nominal logic can be derived and
need not be postulated.

Lemma 5.6.

p-lal.x=[(p-al.(p-x)
(lal.x=[bl.y)=(a=bAax=yva#ZbAax=(ab)-ynaly)

5.3.4 Nominal datatypes

Isabelle/HOL has support for creating inductively defined datatypes. The
nominal package expands these datatypes to include types with binders.
A user must declare the atom types needed for the formalisation. Isabelle
will then automatically create swapping functions, and a host of lemmas
designed to reason about freshness, support, and permutations. Nominal
datatypes are defined in much the same way as regular datatypes in func-
tional programming languages. The binding occurrences of atom types are
enclosed by «and ».

nominal_datatype act = Action name
| Tau

nominal_datatype toy = ToyNil
| Action act toy
| Par toy toy
| Res "«name» toy"

62

From this definition, Isabelle will automatically create rules to reason
about freshness and injectivity of the nominal datatype.

Lemma 5.7. The following equalities are proven automatically about fresh-
ness of the process algebra.

a0 < True
ata.P o aftanafP
afPlQ < afPAnafQ
a (vx)P < atlx].P

Note how the freshness for terms with binders simplify to their corre-
sponding atom abstraction.

Lemma 5.8. The following are the injectivity lemmas proven for the nominal
datatype.
a.P=p.Q © a=pAP=Q
PIR=Q|S & P=QAR=S
(vx)P=(wvyQ < [x].P=[y.0Q

Again, the terms with binders are simplified to their corresponding atom
abstractions. From there, any further proof regarding alpha-equivalence or
alpha-conversions can be done.

5.3.5 Induction rules

Isabelle automatically creates induction and inversion rules for inductively
defined datatypes, predicates and sets. It will do this for terms with binders
as well, but with the drawback that any new binders introduced by the
induction rule will not necessarily be sufficiently fresh according to the
Barendregt variable convention; a name will just be as fresh as the rule
dictates, and all possible proof contexts cannot be known beforehand.

Nominal Isabelle introduces the notion of avoiding contexts of atoms.
When applying an induction rule in Nominal Isabelle the user can provide
a finite set of atoms with which any newly occurring bound name may not
clash; we say that the bound names avoid this context. The automatically
generated induction rule for the process calculus defined in chapter 2 can
be found in Figure 5.3.

The avoiding context ¢ denotes the names that freshly generated
bound names must not clash with; in this case the bound name x in the
Scopg-rule. Without this style of rules, a multitude of tedious manual
alpha-conversions would have to be made in inductive proofs.

An example of an application of this rule can be found in the next section.

63

(R £, R

Na Pé6. ACT
Prop6 (a.P) a P

a

p—= P N€.Prop€PaP

Prop ¢ (P| Q) a (P'| Q)

Q= Q N6 PropéQaqQ
Prop€ (P|Q) a (P| Q")

AQa Q' P%.

a

P—>

a

Q —

ANPaP QQ €.

N\PaP' Q%. PAR1

P N€¥.Prop€PaP
Q" N€.Prop€Qaq

PARr2

SYNC

Prop6 (P|Q) 7 (P'| Q")

p= P N6 PropéPaP
xta Xt €

N\PaP xé6. -
| Prop € (vx)P) a ((vx)P)

SCOPE

Prop6€ RB R'

Figure 5.3: The nominal induction rule for the semantics described in Figure 2.4

64

(R L R
R=a.P =a R'=P
N\a P. AcCT
Prop
R=P| =a R'=P| p= P
N\PaP Q. Q § < PAR1
Prop
R="P| =a R'=P|Q = qQ
N\Qa Q'P. Q P Q Q PAR2
Prop
R=P|Q =1t R=PQ
p&p QL Q
PaP QQ. SYNC
Prop
(xtR xtp xR
, \R=(PAB=anR'=woP' AP P'Axfa
N\PaP SCOPE
| Prop
Prop

Figure 5.4: The nominal inversion rule for the semantics described in Figure 2.4

5.3.6 Inversion rules

As was shown in section 5.2.3, the regular inversion rules provided by
Isabelle do not handle binders very well, as the equality constraints with
binders lead to case explosions for the different alpha-variants. The
nominal datatype package has support for an alternative inversion rule
which handles binders more fluently. When inversion is done on a term
with a binder, this binder cannot be chosen to be sufficiently fresh. It has
already been fixed, and any freshness conditions must already have been
established. The power of nominal induction rules, such as the one in
Figure 5.3, is that any new bound name which is introduced can be chosen
in such a way that it is sufficiently fresh, but in an inversion on a transition
with binders, say (vx)P = P’, the binder x is already present in the proof
context and must be manually alpha-converted if it is not sufficiently fresh.

The nominal inversion rule provided by Isabelle for our simple process
calculus can be found in Figure 5.4. The case of interest is the SCOPE-case.

65

The binder x is universally quantified by the entire rule, which requires it
to be instantiated by the user prior to invoking the inversion rule. A set of
freshness conditions are imposed on this binder — it may not clash with the
originating process, its action nor its derivative.

The following lemma proves that simulation is preserved by restriction.

lemma simResPres:
fixes P:: toy
and Q: toy
and 2 : (toy x toy) set
and x: name

assumes P —g5 Q
and APQx.(P,QeZ—= (vx)P, vx)Q) € %

shows (V)P —g (vx)Q

The first step is to unfold the definition of simulation, but only in the con-
clusion of the goal

apply(simp add: simulation-def, auto)
ILAaQ.vyQ 5 Q=3P . vyP 5 P'A(P,QNeR
In order to use the inversion rule, sufficient freshness conditions of x must
be known. These are assumed for now, and will be proven later.
apply(subgoal-tac xf a A xf Q)
ILAa Q. [(v0Q 5 QsxtanxtQ)=3P.vi)P -5 P'A(P,Q)e

R
2N Q. (viQ - Q' = xtanxtQ

The inversion rule can now be used, with the binder set to x

apply(erule-tac semanticsCasesiwhere x=x])

IL.ANa Q' BR
[xtaAnxtQ;(v)Q=pB.R,a=p8;Q =R]
=3P, . (viP % P'A(P,QheR

2.Na Q' Q1B Q' Q.
[xtaAxf Qs (v)Q=Q|Q;a=6Q =Q'Q;Q L.
—= 3P . (viP 5 P'A(P,Q)eR

3NaQ QB Q' Q.
[xfaAnxt Qs (vQ=Q11Q;a=6Q =Q1Q";Q L.
=3P (viP L P'A (P, QYeR

4NaQ Q1 pQ"Q Q"

66

[xtaAxf Qi (v0Q=Qi 1 Q;a=71Q=Q'1QQa £ Q'
B '
— Q1
=3P . (vi)P % P'A(P, Qe
5NaQRBR.
[xfanxtQ)
[xt (v0)Q xta;xt Q'
= (v0Q=WORAa=BAQ =WOR AR L R AxtBI
=3P . (vi)P % P'A(P,QYeZR
6.Na Q. (vx)Q =5 Q' = xtanxtQ
The inversion rule provides five cases, where only the SCOPE-case is appli-
cable as the other ones have false equality constraints.

apply(auto simp add: abs-fresh alpha toy.inject)
thm toy.inject
LABR.IQ L R:xt 1= 3P. (voP L P'A (P, vORY e R
2N Q. (vQ % Q= xta
3N Q. v0Q = Q'= x4 Q’
The injectivity rules remove all but one case, and the two assumptions that
were previously postulated.
using assms
apply(simp add: simulation-def, blast intro: Res)
LAaQ.(viQ = Q = xta
2N Q. (v)Q - Q= xtQ’
By unfolding the definition of simulation in the assumptions, the case is

proven with the SCoPE-rule and the CI assumption of the lemma. The re-
maining postulated freshness conditions are discharged using lemma 2.9.

apply(force dest: freshDerivative' simp add: abs-fresh)

LAaQ.(v0Q = Q'= x4 Q'

apply(force dest: freshDerivative' simp add: abs-fresh)
No subgoals!

done

This proof concludes the coverage of the Isabelle apply scripts. They will
not be used any more in this thesis, but they provide an insight in the inner
workings of Isabelle and how the proofs are done. Their main advantage
is that writing small proofs using them takes very little time — the above
proofs took a few minutes to write — but they do not scale well. Isabelle has

67

support for the structured proof language Isar, which will be covered in the
next section.

5.3.7 Equivariance properties

In order to create the tailor made induction and inversion rules for induc-
tively defined predicates, all predicates in their construction must be equiv-
ariant. The reason for this is that when alpha-conversions are done, atom
swappings appear under the scope of the binders, and it must be possible to
propagate these swappings through other parts of the definition where the
terms under the binder occur. Isabelle has automatic support for proving
equivariance of inductively defined predicates, but the user can also create
equivariance lemmas when needed. These will be stored in a separate class
of lemmas which Isabelle can use internally when needed.

5.4 Writing human readable proofs

Writing proofs with apply scripts has several drawbacks. First of all the
proofs are hard to read. A large proof can easily have several hundred lines
of code, the extreme ones even thousands, and figuring out the proof state
in the middle of the proof just by looking at a list of apply-commands is
nearly impossible. Secondly, apply scripts are not very robust. Isabelle is a
tool in constant development, and it is not uncommon for the automatic
heuristics to perform slightly differently between different releases. If
a heuristic in a newer version of Isabelle suddenly proves more than
previously, the proof state mid script will not be what was originally
anticipated, and the proof will fail. Finally, as the complexity of proofs
increase, so does their search space as more information is available. The
automatic heuristics in Isabelle will quickly grind to a halt exploring dead
ends in the proof tree.

To circumvent this problem, the proof language Isar was introduced,
which tackles all of these issues. Firstly, the proofs are more readable.
A well written Isar proof can be read and understood without running
Isabelle in the background. Secondly, it divides the proof into manageable
chunks. Even though every subgoal in an Isar proof can be proven using
apply scripts in the standard way, the idea is that all subgoals should be
proven by one line proofs making them far less likely to break in the version
changes. Finally, as the subgoals are much smaller than the complete
proof state, the automatic heuristics have a much more manageable task
to handle, making them more effective.

The rest of this section will redo most of the proofs in this chapter with
Isar. Even though these proofs are simple, and can be proved using one line

68

by Isabelle, they demonstrate the readability of Isar. The following is an Isar
proof of the lemma prefixComm, found on page 53, and proves that a.P
and a.Q can synchronise.

lemma prefixCommIsar:
fixes a:: actand P : toy and Q :: toy

shows a.P|a.Q — P|Q
proof —

have a.P % Pby(rule semantics.Action)
moreover have a.(Q 2, Qby(rule semantics.Action)

ultimately show a.P | a.Q L p| Qby(rule semantics.Comm)
qed

The keyword have tells Isabelle what to prove, and the by command how
to prove it. The by-command can be replaced by an apply script, but as
previously mentioned should be a one line proof or a very short apply
script.

The moreover keyword collects what was proven on the previous line and
when the command ultimately is found, all the collected propositions are
used as assumptions for the current proof.

Isar Code Meta-logic formula when proving D
have Aby ...

moreover ...

have Bby ...
moreover ... [A; B; Cl = D

have Cby...

ultimately have/show D
by...

Note that other things can be proven between the moreover commands,
where the vertical dotted lines are, but they will not be added to the as-
sumption chain.

The keyword show tells Isabelle that the goal being proven now is the
actual main goal of the lemma. Isabelle will check that what is written ac-
tually corresponds to what Isabelle expects to be proving, and that no ille-
gal assumptions have been made along the way. Instead of writing out the
predicate to be proven, the keyword ?thesis can be used.

69

5.4.1 Inductive proofs

When doing inductive proofs in Isar the user gets access to each inductive
case separately. As was seen earlier, Isabelle can do the following proof with
one line, but doing it without any automation nicely demonstrates most of
the Isar constructs that will be used throughout the thesis. The apply script
proof can be found on page 55.

lemma freshDerivativelsar:
fixes P:: toyand « :: act and P':: toy and y :: name
assumes P - P’'and y 4 P
shows y P’
using assms
proof(nominal-induct avoiding: y rule: semantics’.strong-inducts)
case(Action a P)
from (/f . P) show y f Pby simp
next
case(Parl Pa P' Q)
from (/4 P| Q have yf Pand y § Q by auto
from (y § P have yt P'by(rule Parl)
with (v Q show y P'| Qby simp
next
case(Par2Qa Q' P)
from (/f P| Q have yf Pand y § Q by auto
from (v Q have y# Q' by(rule Par2)
with /# P show y # P| Q' by simp
next
case(Comm P a P' Q Q)
from <y f P| Q@ have y Pand y § Qby auto
from vt P have y ff P' by(rule Comm)
moreover from y# Q have y {f Q' by(rule Comm)
ultimately show y # P'| Q' by simp
next
case(ResPa P'xy)
from (/ff (vx) P <xf y have yf P
by(simp add: abs-fresh at-fresh|OF at-name-inst])
hence y { P'by(rule Res)
thus y # (vx) P’ by(simp add: abs-fresh)
qed

A few new keywords were introduced in this example. First of all, when
applying the induction rule, Isabelle is told to avoid the name y. The result
of this can be found in the SCOPE-case where the predicate x f y can be
found in the assumptions.

The hence and the thus keywords are variants of from and show respec-
tively, but they add the previously proved predicate to the assumptions of

70

a.P L. P PropaP

- ACT
Prop B P
[PlQ & R
a a
AP’ _P=P AQ' _Q=Q
" Propa (P'| Q) " Propa (P| Q")
a a
/\OLP,Q,P_’P/ Q_’Ql
Propt (P'| Q")
- — PAR
Propa R
pL p xta
v9)P -~ R AP. ,ﬁ
Prop ((vx)P))
SCOPE

Prop R

Figure 5.5: Three inversion rules, one rule for every operator

the current subgoal. The with keyword works like hence except that it not
only adds the previously proved predicate, but also a list of predicates to the
assumptions of the current subgoal.

Finally, as in the previous proofs, the predicates to be proven are explic-
itly spelled out after a show or thus command. If the goal is long and com-
plex, the keyword ?case can be used instead, but when possible it will be
spelled out for clarity. In short, ?case is the main goal of the current induc-
tive case of an inductive proof, whereas ?thesis is the main goal of a regular
proof.

5.4.2 Inversion proofs

The inversion rules provided by Isabelle simplify case analysis of the transi-
tion systems significantly, but they do not lend themselves well to Isar style
proofs. When doing inductive proofs, Isabelle provides support for instanti-
ating the different cases, and giving shorthand notation to access subgoals
and assumptions. This only works if the induction rule is the only rule ap-
plied. If the user applies any of Isabelle’s automatic heuristics to the sub-
goals the shorthand notation, and the ability to retrieve the inductive cases
by name, are lost. The reason for this is that it is not possible to determine

71

how the automatic heuristics will affect the subgoals in the general case;
cases may be split into several sub cases, be simplified, or be proven com-
pletely.

This style of proofs do work for inversion as well, but the structure of the
inversion rules requires the user to manually reason about the equality con-
straints provided for each case, giving unwieldy proofs. Isabelle’s automatic
heuristics can unify these constraints, but in doing so, the case instantia-
tions and shorthand notations are lost. Moreover, in the nominal case all
binders for every rule must be instantiated before the rule is applied, even
the ones which are not present in the transition being analysed.

The solution to this problem is to create specific inversion rules for the
transitions that are of interest. There is generally one rule per operator in
the calculus. The rules in Figure 5.5 are directly derived from the inversion
rule in Figure 5.4, all by one line proofs. By using these rules as induction
rules, the infrastructure for doing inductive proofs is made available for in-
version proofs as well.

The following is the Isar version of simActPres lemma, found on page 56,
and proves that simulation is preserved by the action prefix.

lemma isarSimActPres:
fixes P:: toy and Q:: toy and Z :: (toy x toy) setand «a :: act

assumes (P, Q) € #Z

showsa.P —g5 a.Q
proof(auto simp add: simulation-def)
fixa' Q'
assume a¢.Q — Q'
thus3P. a.P 5 P'A (P, Qe R
proof(induct rule: actionCases)
case cAction
have a.P % Pby(rule Action)

thus3P. a.P % P'A (P!, Q) € Z using (P, Q) € B
by blast
qed
qed

At the end of this proof the using command is used to add the predicate
(P, Q) € Z to the assumptions of the subgoal. It works similarly to the with
keyword in that it adds a list of predicates to the assumptions of a goal.

In the following proof, the concept of a label is introduced. In previous
proofs, when list of predicates have been given as arguments to a goal, using
the using or with commands for example, this has been done inline with
the whole predicates written explicitly in the list. For short predicates this
adds to readability, but for larger ones it detracts from it, and it would also

72

be difficult to write and maintain proofs if all large predicates were to be
retyped every time they were used. When a predicate is proved, it can be
preceded by an alphanumeric label and a colon. This label can then be used
later in the proof to represent the predicate in a compact way.

The following proofis an Isar version of the simResPreslemma, found on
page 66, which proves that simulation is preserved by restriction.

lemma isarSimResPres:
fixes P:: toy and Q:: toy and £ :: (toy x toy) setand x :: name

assumes PSimQ: P —g4 Q
and AL APQx.(P,Q€e€Z = (vX)P,(vx)Q) € %'

shows (VX)P — g/ (vx)Q
proof(auto simp add: simulation-def)
ﬁX a Ql/
assume (vx)Q — Q"
thus 3P (vy)P =% P'A (P, Q") e %'
proof(induct rule: resCases)
case(cRes Q)

from PSimQ«Q % Q)
obtain P’ where PTrans: P - P'and (P, Q") € #
by(auto simp add: simulation-def)

from PTrans «x § @ have (vx)P % (vx) P’ by(rule Res)
moreover from (P, Q") € 2 have ((vx) P, (vx) Q") € Z'by(rule Al)

ultimately show 3 P, (vx)P L PAP, (v0Q) e R’
by blast
qed
qed

The preservation properties of simulation are usually the most involved
proofs when formalising process algebras, and they will be given much at-
tention in this thesis. Their general structure is the presented here.

5.4.3 Coinductive proofs

Before moving on to an actual coinductive proof we introduce the notion of
a block. A block can intuitively be thought of as an inline lemma. It is always
a good idea to factorise proofs in such a way so that lemmas can be used in
a variety of proof contexts. Nevertheless, it is sometimes desirable to create
inline lemmas when these lemmas are very specific to the proof at hand.

A proof block declares parameters, assumptions and conclusion of a log-
ical predicate in the following manner:

73

Isar code meta-logic formula

fix a::t) bty ciiT3

assume A
Aa::tq bito ciit3. [A; Bl = C

assume B

have Chy ...
}

The fix keyword declares the names, and if necessary the types of the ar-
guments for the lemma. Every occurrence of the assume keyword adds a
premise to the block, and the final proved predicate of the block is its con-
clusion.

In the last section it was proved that bisimulation it reflexive. Proving that
it is also transitive is slightly more involved.

lemma bisimTransitive:
fixes P:: toy and Q:: toy and R :: toy
assumes P~ Qand Q ~ R

shows P~ R
proof —
let 2X = ~o0~

— set the candidate relation to the relational composition of bisimulation
with itself
from assms have (P, R) € ?2Xby auto
thus P~ R
proof(coinduct rule: bisimCoinduct)
case(cSim P R)
{
fix PQR
assume P~ Q
hence P — . Q by(rule bisim.cases) auto
moreover assume Q ~ R
hence Q — . R by(rule bisim.cases) auto
ultimately have P —;x R by(simp add: simulation-def) blast
}
— This block provides the following sub-lemma:
— APQR.[P~QQ~R]=P —x R
with (P, R) € 2X) show P —:x R by auto
next

74

case(cSym P R)
thus (R, P) € ?2Xby(blast intro: bisim.cases)
qed
qed

5.5 Set comprehension

Set comprehension will be used extensively in this thesis, primarily to
define candidate relations for bisimulations. Sets are generally defined by
constraining values over a logical predicate. For instance, the set

{(x, y) : Prop x y}

represents the pair of all terms x and y such that the predicate Prop x y
holds. There are a few special cases. The set

{(x,y) : True}

represents all possible pairings of the terms x and y as the predicate gener-
ating the set is always true. This is not the same as the set

{(x, y)}
which is just the singleton set with the pair (x, y).
There are two cases where not all the arguments to the predicate are
present in the resulting set — either the extra arguments are already fixed

in the proof environment, or they are quantified within the set comprehen-
sion. The set

{(x,y): Propxyz}
represents the set of all pairs of x and y such that the predicate Prop x y z
holds for a term z which is already fixed in the proof environment. If z is
quantified within the set comprehension, this is done explicitly as
{(x,y):Vz.Propxyz}

or

{(x,y):3z. Propxyz}.

75

5.6 Concluding remarks

This chapter is a crash course in Isabelle to enable the reader to parse the
proofs provided in this thesis. It is not complete, but designed to give a
rough idea of how Isabelle operates. The proofs are legible even without
a deeper knowledge of Isabelle, and even though it may not always be clear
how Isabelle internally derives a proof, it should be clear what is being
proved, and which proof structure is used. Any Isabelle proof in this the-
sis is designed to be transferable to a pen-and-paper counterpart, with the
aid of the information provided in this chapter.

76

Part II:

The calculus of communicating systems

6. The Calculus of Communicating
Systems

The Calculus of Communicating Systems (CCS) is one of the oldest process
calculus. It was designed around 1980 by Robin Milner and has been an
important stepping stone for later, more advanced process calculi.

A CCS agent communicates with its environment through the use of ac-
tions and coactions. Given an infinite set of action names ./, the set of coac-
tions ./ is defined as {@. a € #'}. We extend complementation to include all
actions, such that a = a. Additionally, we add a separate internal action, de-
noted by 7, which represents an internal action within an agent.

Labels in CCS are either actions, coactions or T-actions.

Definition 6.1 (Actions).

def _
a=1lala

CCS processes are defined in the following way:

Definition 6.2 (Agents).

P%o Nil
a.P Prefix
P+Q Sum

P|Q Parallel
(vx)P Restriction
P Replication

An agent which has no actions, often called the deadlocked or the empty
agent, is denoted 0. The agent a.P can do the action a and reach the state
P. Two agents P and Q running in parallel are represented by P | Q and
P + Q represents an agent that can do either P or Q nondeterministically. A
name x can be locally bound in an agent P through the use of Restriction,
written (vx)P. The agent | P represents an arbitrary number of instances of
the agent P running in parallel.

79

p- p Q%L ¢
ACTION — Suwml —— Sum2
aP % p P+Q %L p P+Q 5% Q

p=p = Q'
PAR1 < < PAR2

PIQ-=PI|Q PIQ-5P|Q

a

P —

P QL Q a#t PL P xia
CoMM SCOPE
PlQ—-P|Q (vx)P = (vx)P'

PlpL p
7REPL

p = p

Figure 6.1: The operational semantics for CCS. A semantics without structural con-
gruence needs symmetric versions of the SUM and PAR rules. Note that the CoMM-
rule does not require a symmetric version as a = a.

6.1 Operational semantics

The operational semantics of CCS follows the standard pattern, and the no-
tation P = P’ denotes that the agent P can do the action « and reach the
state P’. The complete semantics, without structural congruence, can be
found in Figure 6.1.

Two agents running in parallel can synchronise. Consider the following
two agents.

P=a0 and Q=a.0

The agents P and Q have the transitions P £ 0and Q 40
respectively. By putting these two agents in parallel P and Q can still do
their actions individually but they can also synchronise.

P*Xo Qi()
—— PAR1 —— X PAR2
a a
PIQ—0]Q PIQ— P|O

P%Lo Q%o
CoMM

PIQ-50]0

80

An environment can interact with the above agents over the action a. It is
often desirable to restrict access to the agents to ensure that they only in-
teract with each other and not with some other agent in the environment.
This is achieved by using Restriction.

P20 0%o
CoMM

PIQ->0]0

SCOPE
va)(P| Q — (va)(0 | 0)

By restricting the name a inside the agents P and Q the outside environ-
ment can no longer communicate with P or Q using a.
Sum is used to encode nondeterministic choice. The agent P + Q can be-
have either as P or Q yielding the following transitions:
PpLo Q%o
— Suml ——— Sum2
P+Q-% 0 P+Q-% 0

Replication spawns an arbitrary number copies of an agent and runs
them in parallel. The agent P + Q cannot by itself communicate as it
behaves either as P or Q but by spawning multiple copies they can
communicate. Replication produces an infinite number of possible
transitions, the following example illustrates one possible trace.

Q%o
— Sum2
P+Q%o
— PAR1
P-Lo P+Q 'P+Q S 0|!(P+Q
— Suml — REPL
P+Q %0 (P+Q L 0P+ Q
CoMM
(P+Q [!(P+Q — 0] (0]!(P+Q)
REPL

(P+Q — 0] (0] !(P+Q)

Note that to restrict a in this example, we have to put the v-binder outside
Replication, i.e. !(vx)(P+ Q). In the agent (vx)!(P + Q) the name ais local to
each copy of P+ Q making synchronisation between the copies impossible.

6.2 Nominal infrastructure

From a formalisation point of view, CCS is not much more difficult than
the example process calculi presented in chapter 2. There are a few more
constructors, and the notion of actions and coactions need to be modeled.

81

(R £, R

N\aP€.——— Act
Prop€ a.Pa P

a

— P N\€.Prop€PaP
Prop€ P+ Q aP'

P
N\PaP Q€. Sum1

Q- Q N\€.Pop€QaqQ

Sum2
Prop€ (P+ Q) a Q'

AQa Q' P%.

a
APa P Q%. p— P N6 Prop€PaP PARL
Prop€ (P| Qa(P'| Q

Q- Q N\€.Pop€QaqQ

y PAR2
Prop€¢ (P| Q a(P| Q)

N\Qa Q'P%.

P> P N6 PropéPaP)
2 €. Prop€ Qa Q'
APaP 00 Q Q A rop Q/aQ, a#T Con
Prop<€ (P| Q) (1) (P'| Q)

a

p—= P N€.Prop€PaP
xfa xXi €

Prop € (vx)P) a ((vx)P)

SCOPE

N\PaP x¢6.

PP = P N\€.Prop€ (P|'P)aP

N\PaP'€. REPL

Prop€'Pa P’

Figure 6.2: An induction rule of the semantics defined in Figure 6.1. Induction is

done on the transition R < R’to prove the predicate Prop. The freshness context
% represents the finite set of terms with which the bound names of the SCOPE-rule
may not clash. Each inductive case shares the name of the semantic rule which it

Prop6€ RB R'

B

represents.

82

CCS only has one type of atom, and that is names.
atom_decl name

Actions do not contain any binders, but are created as nominal datatypes
to automatically generate auxiliary lemmas regarding freshness, support
and equivariance.

nominal_datatype act = Action name
| CoAction name

| Tau

CCS agents contain binders through the v-operator. This binding occur-
rence is declared when creating the nominal datatype.

nominal_datatype ccs = CCSNil
| Action act ccs
| Sum ccs ccs
| Par ccs ccs
| Res "«name» ccs"
| Bang ccs

From these definitions, Isabelle creates the following injectivity rules:

Lemma 6.3. Injectivity rules for actions and agents.

aP=Q & a=pAP=Q

P+R=Q+S & P=QAR=S

PIR=Q|S & P=QAR=S

(vx)P=(vy)Q < [xI.P=[y.0Q
IP=1Q & P=Q

The only special case is the one for determining equality of agents with
binders, where the atom abstraction defined in Chapters 4 and 5 is used.

This injectivity lemma can be used to prove the following
alpha-equivalence lemma.

Lemma6.4. If y§ P then (vx)P = (vy)([(x,)] - P).
Proof. Follows from Lemma 6.3 and the definition of atom abstraction. O

This lemma enables alpha-conversion directly at the level of the agents,
rather than using the underlying nominal layer.

83

6.3 Induction rules

The induction rule generated by Isabelle is displayed in Figure 6.2. Given

a transition P = P’, the rule will prove a four place predicate of the form
Prop € P a P', where % is the context of names to be avoided by any freshly
introduced bound names. The only rule which includes bound names in
CCS is SCOPE.

The induction rule can then be used to prove the following lemma:

Lemma 6.5.
IfP % P and x4 P then xt a.

IfP % P and x4 P then xt P'.

Proof. By induction on the transition P -~ P’ using the induction rule
in Figure 6.2. Isabelle manages to prove all of the inductive cases using its
automatic heuristics. O

6.4 Inversion rules

The inversion rule that Isabelle automatically generates can be found in
Figure 6.4. Given a transition R £, R'anda proposition Prop to prove, the
inversion rule will generate one case for every semantic rule, with equiv-
alence constraints to unify R, §, and R’ with the required agents for each
rule.

The ScoOPE case behaves differently from the others as it has to reason
about the bound name x. This bound name is not instantiated by the inver-
sion case, as it is not universally quantified along with P, a and P’, but by
the user before invoking the rule. The constraints set on x is that it is fresh
for R, and R'. In this case, the facts x# R and x# R’ will be trivially true
since R = (vx)P and R’ = (vx)P’ for some P and P’.

This rule handles well for apply scripts as Isabelle’s automatic tactics will
handle unification nicely. It does not work as well when working with Isar-
style proofs as the unifications will then either be done by hand, or by Is-
abelle with the tradeoff that much convenient proof infrastructure is lost in
the process.

From this rule it is straightforward to derive custom tailored inversion
rules for the different transition cases of interest. The derived inversion
rules can be found in figure 6.4. The proof for each rule is a one line proof
using the standard inversion rule, with the exception of the SCOPE case
which requires a proof that x § a using Lemma 6.5.

84

R=a.P =a R=P
Na P. AcT
Prop
R=P+ =a R=p p%Pp
a 5 UM
PaP' Q Q5 > SuMl1
rop
R=P+ =a R' =0 2,0
A\Qa Q'P. QP > Q Q Sum2
rop
R=P| =a R'=P] p=p
APaP Q. Q_F Q PAR1
Prop
R=P| =a R=P|Q = Q'
AQa Q'P. ¢ 5 > < < < PAR?2
rop
R=P|Q p=t1 R'=P'|Q
o\ PSP Q5 Q a#t
PaP QQ. 5 CoOMM
rop

(xt R x4 B x4 R
R=Wwx)PAB=aAR =(wvx)P'AP L Prxta

APaP. > SCOPE
rop
,R=P p=a R'=P" P|IP5P
APaP. REPL
| Prop
Prop

Figure 6.3: An inversion rule of the semantics defined in Figure 6.1. Inversion is

done on the transition R 2~ R'to prove the predicate Prop. The bound name x in

the ScoPE-case is quantified for the entire lemma, and must be proven to be fresh

for R, B, and R’ in order to use the inversion rule. Each inductive case shares the
name of the semantic rule which it represents.

85

ap b p

Propa P
- ACTION
Propp P
PP = Q'
P+Q-~R AP.—— AQ. e=q ?
Prop P Prop Q
Sum
Prop R
(P10 % R
pLp = qQ
NP ———— AQ. e 9 7
Propa (P’ | Q) Propa (P| Q)
p-L p 4.0 a#t a=1
AP Q' a. < < —
_ Prop (1) (P'| Q)]
PAR
Propa R
PSP xta
vx)P = P AP ,H
Prop ((vx)P))
- SCOPE
Prop P

Figure 6.4: Inversion rules for the operational semantics

86

[ip £, R

a

p= p

. ; PAR1
Prop6 (P|!'P)a (P |!P)

Na P'€

. =P N\6.Prop€'!PaP
Na P'6. - PAR2
Prop6 (P|'P)a (P| P)

pEp 1pLp
- 12}
NaP P's. /\€. Prop€ 'Pa P att Con
Prop€ (P | 'P) (1) (P’ | P'

, PP P N\€.Prop€(P|'P)aP
N\a P'é6. - REPL
| Prop€'Pa P |

Prop€'PBR

Figure 6.5: Custom induction rule for Replication. Induction is done on the transi-

tion !P - P’ to prove the predicate Prop. The rule has one case for Replication,
and one case for every semantic rule for Parallel.

6.5 Induction on replicated agents

Replication is the only operator which appears in the premise of its infer-
ence rule. Therefore, even though it would be possible to generate an inver-
sion rule for it, that rule would not be very useful. An inversion on the tran-

sition !P % P’would yield that this transition was derived from P | |P <%
P, where inversion on this transitions provides three cases, one for PAR1,
PAR2 and CoMM respectively. The cases for PAR2 and CoMM have the tran-
sition P % P’in their derivations, causing a circularity.

Proofs involving Replication typically are by induction on the length of
the inference chain, rather than structural inversion of the transitions. A
custom made induction rule for Replication can be found in Figure 6.5.

87

7. Strong bisimilarity

Bisimilarity for CCS is defined in the same manner as in Section 2.4. Two
agents P and Qare bisimilar if for every action a that P can do, Q can mimic
that action and their resulting derivatives are bisimilar, and vice versa. A
general strategy to determine whether or not two agents are bisimilar is to
find a relation which contains the two agents, and for every action that one
of the agent can do, the other agent must be able to mimic that action and
the derivatives should be in that relation.

7.1 Definitions

Strong simulation for CCS is defined in the standard way. An agent P sim-
ulates an agent Q preserving the relation £, written P — 4 Q, if for every
action P can do, Q can do the same action, and their derivatives are in Z%.
More formally, we have the following definition:

Definition 7.1 (Simulation). An agent P simulating an agent Q preserving
R isdenoted P — g Q.

Po20%vaQ. Q% Q'— @P.P-% PAP, QYeR)

We want to coinductively define bisimilarity as the largest symmetric re-
lation ~ s.t. whenever P ~ Q it holds that P —_. Q. In order to coinduc-
tively define a relation, the function that generates it needs to be mono-
tonic. More precisely, the following lemma is needed.

Lemma7.2. IfP —4 Q and B < R' then P — 4 Q.
Proof. Follows from Definition 7.1. O
We can now define bisimilarity.

Definition 7.3 (Bisimilarity). Bisimilarity, denoted ~, is defined coinduc-
tively as the largest relation satisfying:

P~Q=P—_.Q SIMULATION
AQ~P SYMMETRY

89

7.1.1 Primitive inference rules

From the definitions of simulation and bisimilarity we can derive the fol-
lowing introduction and elimination rules.

Lemma 7.4. Introduction and elimination rules for simulation
Q=<
3P.P-L P'AP, Qe
P—gzQ

Ne Q'

(SN,

a

P—%Q Q—Q
Ir.PL PAP, Qe

—-E

Proof. Follows immediately from Definition 7.1. O

Lemma 7.5. Introduction and elimination rules for bisimilarity.

P —_ ~P P~ P~
< < ~-1 —Q ~-E1 —Q ~-E2
P~Q P—_Q P—_Q

Lemma 7.6. Coinduction rule for bisimilarity.

P,QeX
(RSeX
ARS. ———— SIMULATION
R ;’g}f U~
(RS eX
ARS. —— SYMMETRY
SSRexX
P~Q

Proof. Derived from the coinduction rule that Isabelle provides from Defi-
nition 7.3. O

This lemma will be implicitly used in coinductive proofs. To prove that
two agents are bisimilar, a symmetric candidate relation & must be chosen
which contains the two agents and where all member pairs of & are simu-
lations preserving & U ~. The following coinduction rule can be derived:

Simulations are parametrised on an arbitrary relation 2. Each operator
in CCS is provided with a set of constraints such that the operator preserves
Z. This set should be kept as small as possible as each constraint will have
to be proven when we establish preservation properties of bisimilarity. This

90

section covers all proofs that are needed to show that a relation is preserved
by all operators.

In the cases where a simulation occurs both in the premise of a lemma
and its conclusions, such as the proof for transitivity (Lemma 7.8 bellow) or
preservation of Parallel (Lemma 7.17 bellow), the simulation relation used
in premise and conclusion are not the same. The reason for this will be
made clearer from the bisimilarity proofs, but suffice to say this makes the
lemmas more general.

7.2 Bisimulation is an equivalence relation

We first establish lemmas for reflexivity and transitivity. In order for a simu-
lation relation to be reflexive, it has to at least contain the identity relation.

Lemma?7.7. If Id< % then P —g4 P.

Proof. Follows immediately from Definition 7.1. Since the simulating rela-
tion contains the identity relation, any derivative of P will be in it. O

Lemma?7.8. IfP —4 Q and Q —4 R and o R'< R then P — 4 R.

Proof. Follows from Definition 7.1. The derivatives of P and Q are in % and
the derivatives of Q and R are in %’. The assumption Z o Z' < Z' then
ensures that the derivatives of P and R are in %" O

Lemma 7.9. Bisimulation is an equivalence relation

Proof. Reflexivity: By coinduction with & set to the identity relation.
Lemma 7.7 discharges the simulation case.

Symmetry: Follows immediately from ~-E2.
Transitivity: By coinduction with & set to ~ o ~. Lemma 7.8 dis-

charges the simulation case.
O

7.3 Preservation properties

Bisimilarity is a congruence, i.e. it is preserved by all operators.

91

7.3.1 Prefix

The only requirement of the candidate relation needed here is that the
agents under the prefix are in the relation.

Lemma 7.10. If (P, Q) € # then a.P —g a.Q.

Proof. Follows from Definition 7.1 and the fact that a.P and a.Q can each
only do an a-action (Figure 6.4 ACTION) and (P, Q) € Z. O

Lemma?7.11. If P~ Q then a.P~ a.Q.

Proof. By coinduction with & set to {(a.P, a.Q) | P ~ Q} and Lemma 7.10.
O

7.3.2 Sum

In order for simulation to be preserved by Sum, the candidate relation must
include the identity relation for the case where R does an action.

Lemma 7.12. If P — Q and R < X' and ld < R' then
P+R —g Q+R.

Proof. Follows from Definition 7.1, the SUM inversion rule in Figure 6.4, and
the Sum1 and Sum2 rules from Figure 6.1. O

Lemma?7.13. If P~ Q then P+ R~ Q+ R.

Proof. By coinduction with & set to {(P+ R, Q+R) | P ~ Q}, Lemma 7.12
and the fact that ~ is reflexive. O

7.3.3 Restriction

In order to prove that simulation is preserved by Restriction, the same must
hold for the candidate relation.

Lemma 7.14.
RSe%

Y onR vpS e &’
(vX)P — 4 (vx)Q

P—%0Q ARS

Proof. Follows from Definition 7.1, the SCOPE inversion rule in Figure 6.4,
and the ScOPE-rule from Figure 6.1. O

Lemma 7.15. If P~ Q then (vx)P~ (vx)Q.

92

Proof. By coinduction with & set to {((vx)B (vx)Q) | P ~ Q} and
Lemma 7.14. O

7.3.4 Parallel

In order to prove that bisimilarity is preserved by Parallel we will start by
proving a more general lemma for composing simulations with Parallel.

Lemma 7.16.
P—z2Q (PQeR
R—g T (RTeR'
AP'QR'T' (P, Qe (R T)eR'
" @' |RQ | Them"

PIR—g i QI|T

Proof. The Isabelle proof of this lemma can be found in Figure 7.1. O

This lemma states that if P simulates Q preserving %, and R simulates T
preserving 2/, then P | Rsimulates Q | T preserving Z" as long as long as
any pair in Z composed by Parallel with pairs in #'are in 2.

This lemma is more general than strictly necessary to prove that bisim-
ilarity is preserved by Parallel. However, it will be useful when we prove
that bisimilarity is preserved by Replication. The lemma needed for parallel
preservation is easily derivable.

Lemma 7.17.

S, Tex
"SIUTIDeR'
PIR—g4 QI|R

P—%Q (P,Qez NA\STU

Proof. Follows from Lemma 7.16 by setting its relations 2''to 2’ and %' to
the identity relation. O

We can now prove that bisimilarity is preserved by the Parallel.
Lemma?7.18. If P~Q then P| R~Q | R.

Proof. The Isabelle proof of this lemma can be found in Figure 7.2. O

93

lemma parPres:
fixes P :: ccsand Q :: ccs
and Z :: (ccs x ccs) setand 22 :: (ccs x ccs) setand 2 :: (ccs x ccs) set

assumes P —5 Qand (P,Q) € #

and R —g4 Tand R, T)e R’

and CLLAP'Q'R'T. [P, QYe%; R, The 2| =
(P/ | R,, Q/ | TI) €<%/l

showsP |R =5 Q| T
proof(induct rule: siml) — Apply introduction rule —-1
case(Sim a U)
from«Q | T)
show ?case
proof(induct rule: parCases) — Apply PAR inversion rule from Figure 6.4

PAR1 case
Given that Q % Q' prove that there exists an S such that

PIRS Sand(S,Q | e %"
case(cParl Q)
from P —5 Q «Q - Q) obtain P'where P -~ P’and (P/, Q") € #
by(rule simE)
from P —a <P’ have P | R % P’ | R by(rule Parl)
moreover from (P, Qe & (R, T) e Z have (P’ | R,Q' | T) e "
by(rule C1)
ultimately show 3S.P | R = S A (S,Q’ | T) € Z" by blast
next
PAR2 case
Given that T = T' prove that there exists an S such that
PR Sand(S, Q| TheR'".
case(cPar2 T/
from (R — g DT % T
obtain R’whereR - R’and R, T) € %'
by(rule simE)
from R - R’haveP | R - P | R'by(rule Par2)
moreover from (P, Q) € # (R, T e Z" have (P | R, Q | Th e Z"
by(rule C1)
ultimately show 3S. P | R L SAG, Q| THe R'' by blast

94

next
COMM case B
Given that Q % Q'and T % T' prove that there exists

anSsuchthatP| R — Sand (S, Q' | T e ®#".

case(cComm Q'T'a)
from P —5 Q Q % Q)
obtain P’ where P % P’and (P, Q') € Z by(rule simE)
from (R — 4 T)<T R
obtain R’ where R -~ R’and (R, T € %' by(rule simE)
from P % PYR % R)@# »haveP | R —— P’ | R’

by(rule Comm)

moreover from (P’, Q") € & (R, T € &
have (P’ | R, Q' | T') € 2" by(rule C1)
ultimately show 3S.P | R - SA (S, Q' | T") € 2" by blast
qed
qed
Figure 7.1: The Isar proof for that simulation is preserved by Parallel. Note that both

the introduction rule siml and the inversion rule parCases are used as induction
rules.

95

lemma bisimParPres:
fixesP::ccsand Q: ccsand R : ccs
assumes P ~ Q
showsP | R~Q | R
proof —
let2X={(S,T)IPQRST.P~QAS=P|RAT=Q | R}
from P ~ Q) have (P | R, Q | R) € X by auto
thusP |R~Q | R
proof(coinduct rule: bisimCoinduct) — Apply coinduction using Lema 7.6

SIMULATION case
Given that (S, T) € ?X, provethatS —xy ~ T.

case(cSim S T)
{
fixPQR
assume P ~ Q
moreover hence P — . Q by(rule bisimE)
moreover have APQR.P~Q = (P | R, Q | R) € ZX by auto
ultimately have P | R —;x Q | R
by(rule-tac simParPres)
hence P | R —xy~ Q| R
by(rule-tac monotonic) auto

}

This block proves that for all P, Q, and R, if P~ Q then
P|R —xy~ QIR

thus S —:x -~ T using (S, T) € ?X) by auto
next
SYMMETRY case
Given that (S, T) € X, prove that (T, S) € 2X.
case(cSym S T)
from (S, T) € ?X show (T, S) € 2X
by(auto dest: strongBisim.symmetric)
qed
qed
Figure 7.2: The Isabelle proof that strong bisumlation is preserved by the Parallel.

96

7.3.5 Replication

Proving that bisimilarity is preserved by the Replication is more involved
than the preservation proofs covered so far. The difficulty is to choose the
right candidate relation. The approach is to inductively define a candidate
relation, and prove that it is a bisimulation. As Replication spawns an ar-
bitrary number of agents running in parallel, any candidate relation must
support the constraints required to prove that bisimilarity is preserved by
Parallel, as well as being preserved by Replication.

Definition 7.19 (bangRel). The bangRel relation is parametrised with a re-
lation Z.

If (P, Q) € % then (IP,!Q) € bangRel %.
If RRT)eR and (P, Q) € bangRel # then (R| P, T| Q) € bangRel .

The predicate bangRel takes a relation &% as an argument, and returns a
relation which is closed by Replication and by Parallel. Moreover, the agents
appearing on the right hand side of the |-operator, are members of bangRel
Z; the intuition is that as with Replication, the bangRel predicate can be
unfolded, adding new parallel agents an arbitrary number of times.

The next step is to prove what is required of a relation % for a simulation
to preserve bangRel %.

Lemma 7.20. Simulation is preserved by Replication.
RS eZx

P, R RS, ——
(P,Q e A\ Reps

P “—bangRel # 'Q

Proof. Byinduction using the induction rule for Replication from Figure 6.5

on the transitions that !Q % Q. O
Lemma 7.21. If P~ Q then |P~ Q.

Proof. By coinduction with X set to bangRel ~. The candidate relation is
symmetric since ~ is symmetric. The simulation cases are resolved by
Lemma 7.20 for the !-case, and Lemma 7.16 for the | -case. O

7.4 Bisimilarity is a congruence

We now have the lemmas we need to prove that bisimilarity is a congruence.

Theorem 7.1. Strong bisimilarity is a congruence.

97

Proof. That strong bisimulation is an equivalence relation follows from
Lemma 7.9, and that it is preserved by all operators follows from lemmas
7.11,7.13,7.15,7.18, and 7.21. O

98

8. Structural congruence

In this chapter, we will prove that all structurally congruent agents are also
bisimilar. The laws of structural congruence for CCS can be found in Fig-
ure 8.1.

8.1 Abelian monoid laws for parallel

All of these proofs are one line proofs, modulo choosing the coinductive
relations for the bisimulation proofs.

8.1.1 Parallel is commutative

The agents P | Q, and Q | P, are structurally equal. As such, only one simu-
lation lemma is required. However, in order for them to simulate each other,
the candidate relation containing the derivatives must include all parallel
commutative pairs of agents.

Lemma 8.1.

NRT.(R|T,T|Re®
PIQ—=zQIlP

Proof. By the definition of — and case analysis using the PAR rule from
Fig. 6.4. The cases are then discharged using the PAR1, PAR2 and CoMM
rules from the operational semantics. O

From this lemma, the bisimulation follows.
Lemma8.2. P| Q~Q| P

Proof. By coinduction with & set to
{(P1Q QI P :True,

and Lemma 8.1. O

99

The structural congruence = is defined as the smallest congruence satisfy-

ing the following laws:

1. The abelian monoid laws for Parallel: commutativity P | Q = Q| P, asso-
ciativity (P | Q) | R= P | (Q | R), and Nil as unit P | 0 = P; and the same
laws for Sum.

2. The unfoldinglaw!P = P |!P

3. The scope extension laws

vx)0 = 0
V)P Q) = P|(wx)Q ifxtP
vx)(P+Q) = P+(vx)Q ifxgP
(vx)a.P = a.(vx)P ifxfa
(vx)(vy)P = (vy)(vx)P

Figure 8.1: The definition of structural congruence.

8.1.2 Parallel is associative
These two simulation lemmas require that their candidate relation contain
all pairs of parallel left associative, and right associative agents respectively.

Lemma 8.3.
ASTU.(SIDIUSI(TIU)eR
PlQAQIR—x%P| QIR

NSTU.SI(TIU),(SIT)|VeR
PIQIR) =z P|QIR

Proof. By the definition of — and case analysis on the possible transitions,
using the PAR inversion rule from Fig. 6.4. The individual cases are then
discharged using the PAR1, PAR2 and COMM rules from the operational se-
mantics. O

When proving the bisimulation lemma, the candidate relation is chosen
so that it is symmetric and meets the individual requirements of the simu-
lation lemmas in Lemma 8.3.

Lemma8.4. (P| Q) | R~P| (Q| R

Proof. By coinduction with & set to
{((P1QIRPIQIR): Truetu
{PIQIR,P|QIR:True,

100

and Lemma 8.3. O

8.1.3 Parallel has Nil as unit

Lemma 8.5.

NQ(Q10,QeZ AQ.(Q Q|0 e®
P|0—gP P—4P|O

Proof. By the definition of —, case analysis using the PAR from Fig. 6.4 and
the PAR1 rule from the operational semantics. O

Lemma8.6. P| 0~P

Proof. By coinduction with & set to
{(P|0O,P): Truet U {(P, P | 0) : True},

and Lemma 8.5. O

8.2 Abelian monoid laws for Sum

The abelian monoid laws for sum are significantly easier to prove than their
counterparts for Parallel. The main reason for this is that whenever an agent
does a choice, the rest of the agent is discarded leaving only the derivative
of the chosen agent.

8.2.1 Sum is commutative

As for the corresponding proof for the Parallel, only one simulation lemma
isneeded to prove that Sum is commutative. However, the only requirement
on the candidate relation is that it is reflexive. The reason for this is that
whichever agent in P + Q does an action, only its derivative will remain,
and Q + P can mimic with the same action.

Lemma 8.7.
ld< %

P+Q—5Q+P

Proof. By the definition of —, case analysis using the SuM rule from Fig. 6.4
and the SUM1 and SUM2 rules from the operational semantics. O

101

The candidate relation for the bisimulation proof is a symmetric binary
set which contains only the original agents. The coinduction rule will re-
quire the derivatives to be in either this set, or that they are bisimilar. Since
bisimulation is reflexive, it meets the only constraint that the simulation
lemma imposes.

Lemma8.8. P+ Q~Q+ P

Proof. By coinduction with & set to
{(P+Q Q+P),(Q+P P+ Q}

reflexivity of bisimilarity, and Lemma 8.7. O

8.2.2 Sum is associative

As for the corresponding proof for Parallel, two simulation lemmas are re-
quired. However, for the same reasons as for the commutative case for sum,
the only requirement needed on the candidate relation is that it is reflexive.

Lemma 8.9.
ldc % ldc %

P+Q)+R—g P+ (Q+R P+(Q+R) —g (P+Q)+R

Proof. By the definition of —, case analysis using the SUM inversion rule
from Fig. 6.4 and the SUM1 and SUM2 rules from the operational semantics.
O

The bisimulation proofis then proven in a similar manner as Lemma 8.8.
Lemma8.10. (P+ Q)+ R~P+(Q+ R
Proof. By coinduction with & set to

{(P+Q+RP+(Q+R),P+(Q+R,P+Q+RY

reflexivity of bisimilarity, and Lemma 8.9. O

8.2.3 Sum has Nil as unit

Lemma 8.11.

ld< % A< %
P+0—g P Py P+0

102

Proof. By the definition of —, case analysis using the SUM from Fig. 6.4 and
the Sum1 rule from the operational semantics. O

Lemma8.12. P+ 0~P

Proof. By coinduction with & set to
{(P+0,P),(P,P+0),

reflexivity of bisimilarity, and Lemma 8.5. O

8.3 Scope extension laws

Lemma 8.13.

vx)0 —4 0 0 —g (vx)0

Proof. Follows from the definition of —. Since neither (vx)0 nor 0 has any
transitions no constraints need to be set on %. O

Lemma 8.14. (vx)0~0

Proof. By coinduction with & set to
((vx)0, 0), (0, (vx)0)},

and Lemma 8.13. O

8.3.1 Scope extension for parallel
Lemma 8.15.
R
xtP AyRT. Vi
(VvIRID,RI v e%
(vx)(P 1 Q) —z P | (vv)Q

R
xfP AyRT. v
(RIwpT, vRI 1) eX

Pl (vx)Q —z% (vx)(P | Q)

Proof. Follows from the definition of —, The SCOPE and PAR inversion rules
from Figure 6.4, Lemma 6.5 and the SCOPE PAR and COMM rules from the
operational semantics. O

103

Lemma8.16. If x P then (vx)(P| Q ~P| (vx)Q.

Proof. By coinduction with & set to
{(va)P| Q,P| (vx)Q :x§ PLU{(P| (vx)Q, (vx)(P| Q) :x}{ P}

and Lemma 8.15. O

Using this lemma we can derive another very useful rule which states that
binding a name in an agent where it does not occur does nothing.

Lemma 8.17. If x4 P then (vx)P~ P.

Proof. The proof is derivable from the structural congruence rules proven
so far. The numbers of the lemmas used are displayed for every rewrite step.

8.6, 7.9 8.2 8.16, 7.9

(vx)P (vx)P| 0 ~ 0] (vx)P (vx)(0 | P)
1282 el o) 35 prwxne %2 wwo|P
7.18’,~8.14 0 | P 83 P| 0 8;6 P
O
8.3.2 Scope extension for sum
Lemma 8.18.
R
xtP NyR __MIR ld< %
(V)RR EZ%
vx)(P+ Q) —g P+ (vx)Q
R
xfP AyR __JER lds %

(R, v))R e R
P+ (vx)Q —4 (vx)(P+ Q)

Proof. Follows from the definition of —, The SCOPE and SuMm inversion
rules from Figure 6.4 and the SCOPE and SUM rules from the operational
semantics. O

Lemma8.19. If x# P then (vx)(P+ Q) ~ P+ (vx)Q.

Proof. By coinduction with & set to
{(vx)(P+ Q), P+ (vx)Q), (P+ (vX)Q, (vx)(P+ Q)},

reflexivity and symmetry of bisimilarity, and lemmas 8.17 and 8.18. O

104

8.3.3 Scope extension of prefixes
Lemma 8.20.
xfa ld< % xfa Id<s %

vx)a.P —g a.(vx)P a.(vx)P —4 (vx)a.P

Proof. Follows from the definition of —, the ACTION and SCOPE inversion
rules from Figure 6.4 and the ACTION and SCOPE rules from the operational
semantics. O

Lemma 8.21. If x{ a then (vx)a.P~ a.(vx)P.

Proof. By coinduction with & set to
{(vx)a.P, a.(vx)P), (a.(vx)P, (vx)a.P)},

reflexivity of bisimilarity, and Lemma 8.20. O

8.3.4 Restriction is commutative

Lemma 8.22.
AQ. (v)(vy)Q, (v (vx)Q) € #
vx)(vy)P —g (vy)(vx)P

Proof. Follows from the definition of —, the SCOPE inversion rule from Fig-
ure 6.4, and the SCOPE rule from the operational semantics. O

Lemma 8.23. (vx)(vy)P~ (vy)(vx)P
Proof. By coinduction with & set to

{((vx)(vy)P, (vy)(vx)P) : True}

and Lemma 8.22. O

8.4 The unfolding law

Lemma 8.24.
ld<s % Id=s %

P|!P—g!P P —g P |!P

Proof. Follows from the definition of —, the REPL and PAR rules from Fig-
ure 6.4 and the REPL an PAR rules from the operational semantics. O

105

Lemma 8.25. |P~P | |P
Proof. By coinduction with & set to
{(P, P|'P), (P|!P,'P)}.

The goal follows immediately from Lemma 8.24 and reflexivity of bisimilar-

ity. 0

8.5 Bisimilarity includes structural congruence

The main structural congruence theorem follows from the combined lem-
mas in this section.

Theorem 8.1. If P = Q then P~ Q.
Proof.

Abelian monoid laws for the Parallel: Lemmas 8.2, 8.4, and 8.6.
Abelian monoid laws for the Sum: Lemmas 8.8, 8.10, and 8.12.
Scope extension laws: Lemmas 8.14, 8.16, 8.19, 8.21, and 8.23.
Unfolding law: Lemma 8.25.

106

9. Weak Bisimilarity

The two main weak equivalences in CCS are weak bisimilarity and weak
congruence, where weak congruence, as the name suggests, is a congru-
ence. The difference between the two is in simulating 7-actions - in weak
bisimilarity, an agent can mimic a 7-action by doing nothing whereas for
weak congruence, at least one 7-action must be taken to mimic the original
one. Other than that, they behave the same in that an action is mimicked
by a corresponding action preceded and followed by a 7-chain.

In this chapter we will define weak bisimilarity, prove that it is an equiva-
lence relation and preserved by all operators except Sum. In the next chap-
ter we will define weak congruence, and prove that it is a congruence.

9.1 7-chains
We define 7-chains in the standard way as the reflexive transitive closure of
T-actions.

Definition 9.1 (7-chain).

Pr=pP' % p pyecip P): P P}

9.1.1 Corelemmas

Isabelle provides its own induction rules for sets generated by transitive clo-
sure. To simplify proofs on 7-chains a corresponding induction rule is de-
rived.

Lemma 9.2.

T

p=pP P = P' PropP
. Prop P"

Proof. Follows from the definition of = and Isabelle’s induction rule for
reflexive transitive closure. O

107

P=P P#P Q=Q Q#Q
— Suml ; Sum2
P+Q=P P+Q=0Q
P=P = Q'
— panl S
PIQ=P|Q PIQ=P|Q
P—= P’ P|lP=P P'£P|P
. SCOPE ; REPL
(vx)P= (vx)P \P— P
Figure 9.1: Lifting semantics for 7-chains.

Lemma 9.3.
IfP= P and P' = P" then P= P'"
IfP' % P" and P= P’ then P= P"".
Proof. Follows from the definition of —=. O

Lemma9.4. If P=— P’ and P'= P'" then P—= P’

Proof. By induction on P'= P"’, O

9.1.2 Lifting T-chains

As described in Section 2.5 it is convenient to lift the operational semantics
to the weak level. A stepping stone for this is to derive rules for how 7-chains
behave for the different operators. The rules in Figure 9.1 have been derived
from the operational semantics.

These rules are only applicable to the cases where 7-chains appear both
in the assumptions and in the conclusions of the rules. It is therefore not
possible to lift all operational rules. The ACTION-rule cannot be lifted as ac-
tions can be other than 7. The CoMM-rule cannot be lifted as non 7-actions
by necessity appear in the assumptions of the rule.

The SuM and REPL-rules are a bit more delicate. They cannot be lifted
since a 7-chain can be empty. In the SuM1-rule the agent P actually has
to perform at least one action for a 7-chain to be available. The SuM-rules
in Figure 9.1 therefore only holds if the 7-chain in the assumption is
nonempty. The same restriction is required for the REPL-rule.

108

P& p 0% o

—— ACTION — Parl — — — PAR2
aP%p PIQSP|Q PIQ=P|Q
PLp QL Q a#t PEL P xia
— CoMM — SCOPE
PIQ=P|Q (vx)P = (vx)P'

Figure 9.2: Lifted semantics for weak transitions.

9.2 Weak semantics

Two agents P and Q are weakly bisimilar if for every action P can do, Q can
mimic that action but is allowed to do an arbitrary number of 7-actions
before and afterwards, and conversely for Q and P. Moreover, a T-action
can be mimicked by doing nothing.

A weak 7-respecting transition is defined in the same manner as in Sec-
tion 2.5 — an action is preceded and proceeded by a 7-chain.

Definition 9.5 (Weak t-respecting transitions).

a

P:> /dﬁf a

P £ HPNP”/ P:> PI//\ P// N PI/IA PI/I:> P/
A strong transition implies a weak 7-respecting one.

Lemma9.6. If P % P’ then P== P/

Proof. Follows from Definition 9.5 by instantiating the 7-chains with empty
chains. O

Another type of weak transition, denoted P LN P’, which may be empty
if @ = 7 defined as follows:

Definition 9.7 (Weak transition).

a / d_ef

P=PEP=SPva=tAP=P
Strong transitions also imply this type of transition.

Lemma9.8. If P % P’ then P p

Proof. Follows from Definition 9.7 and Lemma 9.6. O

109

p=p' 0= Q'
ACTION — SuMml — Sum2
a.P2p P+Q%p P+Q=qQ
Ny Q=% Q'
—— PARI —— PAR2
PIQ=P'|Q PIQ=PI|Q
PEP Q0ZQ a#r PLP xia
CoMM SCOPE
PIQ=P|Q (vx)P = (vx)P'
Pl PP
— REPL
1p= p
Figure 9.3: Lifted semantics for weak transitions.

9.2.1 Lifted semantics

In order to reuse the proof strategies developed for the proofs in Chap-
ter 7, we lift the operational semantics from Figure 6.1, as described in Sec-
tion 2.5, to include both types of weak transitions.

Lifting the semantic rules where the derivatives maintain the structure
of the originating agent, like PAR1 or SCOPE, is reasonably straightforward.
The transition in the assumption of the rule can be split into its compo-
nents, and the corresponding rules from Figure 9.1 and the operational se-
mantics can be used for the 7-chains and the transition respectively. This
works for both types of weak transitions.

A bit more work is required when lifting the semantics of the rules where
the structure is not maintained, such as Sum1 or REPL. Since the structure
changes the first time a transition is made, the proof needs to handle the
cases when the transition is done by the preceding 7-chain or, in the case
the 7-chain is empty, by the action itself. Since these rules require at least

one transition to be liftable, the transitions cannot have the form P = p’
as it can be empty when a = 1.

The lifted semantics for the two types of weak transitions can can be
found in figures 9.2 and 9.3.

110

9.3 Weak Bisimilarity

Simulation is defined in a similar way to its strong counterpart.

Definition 9.9 (Weak simulation).

def

PTs Q¥vaQ. 0 % Q'— @P.PL P AP, Q) eR)

In order to coinductively define weak bisimilarity we must prove that
weak simulation is monotonic.

Lemma9.10. If P54 Q and Z < R’ then PS4 Q.

Proof. Follows directly for the definition of 5. O

Definition 9.11 (Weak bisimilarity). Weak bisimilarity, denoted =, is defined
coinductively as the largest relation satisfying:

P~Q=P~5. Q SIMULATION
AQ=P SYMMETRY

9.3.1 Primitive inference rules

From the definitions of weak simulation and bisimilarity the following in-
troduction and elimination rules are derivable.

Lemma 9.12. Introduction and elimination rules for weak simulation.
Q=q
AP PEL P AP, Q) eR
(a4
PS4 Q

Ne Q'

PS%Q Q=Q
— S-E
AP PSP AP, QYeZR

Lemma 9.13. Introduction and elimination rules for weak bisimilarity.

PS5, =P, Pz . P
:Q Q=P | Q . Q

- — = — ~-E2
P=Q P, Q Q=P

The coinduction rule for weak congruence is derived similarly to strong
bisimulation.

111

Lemma 9.14.

P,QeX
(RS eX
ARS. ——— SIMULATION
R~g 2
ReX
ARS. — SYMMETRY
SReX
P=Q
Proof. Follows from the coinductive rule provided by Isabelle. O

9.3.2 Weak bisimilarity includes strong bisimilarity

All strongly bisimilar agents are also weakly bisimilar. To prove