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Abstract page

As the complexity of programs increase, so does the complexity of the mod-
els required to reason about them. Process calculi were introduced in the
early 1980s and have since then been used to model communication pro-
tocols of varying size and scope. Whereas modeling sophisticated protocols
in simple process algebras like CCS or the pi-calculus is doable, express-
ing the models required is often gruesome and error prone. To combat this,
more advanced process calculi were introduced, which significantly reduce
the complexity of the models. However, this simplicity comes at a price –
the theories of the calculi themselves instead become gruesome and er-
ror prone, and establishing their mathematical and logical properties has
turned out to be difficult. Many of the proposed calculi have later turned
out to be inconsistent.

The contribution of this thesis is twofold. Firstly we provide methodolo-
gies to formalise the meta-theory of process calculi in an interactive theo-
rem prover. These are used to formalise significant parts of the meta-theory
of CCS and the pi-calculus in the theorem prover Isabelle, using Nomi-
nal Logic to allow for a smooth treatment of the binders. Secondly we in-
troduce and formalise psi-calculi, a framework for process calculi incor-
porating several existing ones, including those we already formalised, and
which is significantly simpler and substantially more expressive. Our meth-
ods scale well as complexity of the calculi increases.

The formalised results include congruence results for both strong and
weak bisimilarities, in the case of the pi-calculus for both the early and the
late operational semantics. We also formalise the proof that the axioma-
tisation of strong late bisimilarity is sound and complete in the finite pi-
calculus. We believe psi-calculi to be one of the most expressive frameworks
for mobile process calculi, and our Isabelle formalisation to be the most ex-
tensive formalisation of process calculi ever done inside a theorem prover.
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1. Introduction

Adrian carefully replaced the small fluffy teddy bear above Hex’s keyboard.
Things immediately began to whirr. The ants started to trot again. The
mouse squeaked.

They’d tried this three times.
Ponder looked again at the single sentence Hex had written.
+++ Mine! Waaaah! +++
‘I don’t actually think,’ he said, gloomily, ‘that I want to tell the Archchan-

cellor that this machine stops working if we take its fluffy teddy bear away. I
just don’t think I want to live in that kind of world.’

‘Er,’ said Mad Drongo, ‘you could always, you know, sort of say it needs to
work with the FTB enabled . . . ?’

‘You think that’s better?’ said Ponder, reluctantly. It wasn’t as if it was even
a very realistic interpretation of a bear.

‘You mean, better than “fluffy teddy bear”?’
Ponder nodded. ‘It’s better,’ he said.

Terry Pratchett, Hogfather (1996)

How do we ensure that a computer program is correct? This question is
as old as computer science itself. To obtain an answer it must first be es-
tablished what it means for a program to be correct. We can agree that the
program should not crash – we want to avoid any blue screens of death, or
images of bombs with an accompanying restart button. But that is only part
of the story. Most computers are not the types found on desktops, but small
embedded devices that control the functions of cars, airplanes, trains, med-
ical equipment, or MP3 players. A valid requirement of the software in a car
is that in the case of a collision, the airbag is inflated within five hundredths
of a second, and not within five seconds; if a piece of medical equipment
is distributing medicine, the correct amount of the drug must be adminis-
tered, possibly over a period of time; as for the MP3 player, it should not
play those favourite songs at dangerously loud levels. Moreover, modern
computers require that several programs run simultaneously on the same
machine, and interact with each other in desired ways only, but when hun-
dreds or even thousands of programs are running at the same time, the
sheer number of possible interactions quickly becomes overwhelming. The
Internet also imposes requirements on software. For instance, any transac-
tions with an Internet bank is required to be secure – no one should be able
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to eavesdrop, learn any authentication codes, or empty the accounts. The
requirements that programs must be able to share resources with others
and withstand attacks from malicious users add a level of complexity not
present for programs running in isolation. This thesis focuses on how such
parallel systems can be modeled in simple intuitive ways, and how to prove
with absolute certainty that a program behaves the way it should. Consider
the following analogy:

We have been constructing bridges for thousands of years. In the begin-
ning they were small, just big enough to allow people to cross. As exper-
tise increased we learned how to build sturdier bridges that would support
more weight, such as that of carriages and horses, and today we are build-
ing huge technological marvels that transport thousands of cars and hun-
dreds of trains every day. We have been writing computer programs for a
bit over sixty years, and the lack of several thousands of years of experience
is apparent. When a bridge is built, there are extensive planning phases,
blueprints, and mathematical calculations to ensure that all parts of the
bridge will support the weight of whatever we are putting on it. When the
bridge is completed we are confident that it will not topple into the ocean
when the first train drives across. When a computer program is created, in
the worst case scenario, the programmer gets a sloppily written description
of what it is to do, the program is written in a rush since the deadline was
yesterday, and then fingers are crossed.

Often circumstances are better than this, but the fact is that we do not
know how to make blueprints for software of the complexity being written
today. A modern programmer is more of a craftsman and an artist than an
engineer – the correctness of a program is inferred from experience and
careful attention to detail, rather than from mathematical rigour. There is
a distinct gap between the programs being developed and the theories that
are designed to prove their correctness.

The purpose of this thesis is to reduce this gap. Process calculi is an area
of computer science designed to provide blueprints for concurrently run-
ning programs. The contribution is twofold. Firstly, we provide computer
verified proofs of theorems for existing process calculi; the proof strategies
are general enough to be used for calculi of varying complexity. Secondly,
we extend the state of the art by introducing a framework of calculi that
encompasses several existing ones, but which is substantially simpler and
more expressive.

1.1 Formal methods
Formal methods use mathematical models of programs and programming
languages and are created in such a way that many desired properties of
programs can be proven with absolute certainty. They are extensively used
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in industrial applications. Airbus uses the SCADE suite from Esterel tech-
nologies to generate software for their aircraft [24]; the Paris Metro line 14
shuttles Parisians every day without a driver, and it had its software veri-
fied using the B method [9]; NASA has a Laboratory for Reliable Software
(LaRS), which was created in 2003, and are actively researching means to
make the software used in the space program more reliable [4]. The focus
lies on proving that a program will avoid certain undesired behaviours, such
as using too much memory or consuming resources required by other pro-
grams.

Software in embedded systems is typically smaller and more tailored to
do one specific thing, and analysing it is therefore not as daunting as for
bigger computer systems. Moreover, there are often economic incentives
to ensure that the software in cars, medical equipment, or rockets actually
works. In 1999 NASA lost a $125 million Mars orbiter because the software
confused English imperial units of measurements with those of the metric
system [1], and in 1996 an Ariane 5 rocket and its cargo, worth a total of $375
million, exploded because of a software error [37]. More recently, in 2010
Toyota announced that they would recall approximately 400 000 of their
Prius hybrid cars due to a software glitch that causes poor performance of
the anti-lock breaks [2].

Clearly there is a lot of money to be made by ensuring that programs
function the way they should from the start. For several years, a research
group at NICTA laboured to prove a micro-kernel for an operating system
correct [50]; a mathematical model was written which detailed the exact de-
sired behaviour of the kernel, and the code was then proven to correspond
precisely to this model. The program is around 7500 lines of C code, and
the effort was roughly 40 man years. Techniques were developed along the
way to make these types of tasks simpler in the future, but the amount of
work required to prove full functional correctness of a system, i.e. ensuring
that the system conforms completely to its specification, remains gargan-
tuous. Still, this project proves a point – it is becoming increasingly realistic
to verify complete software systems.

One difficulty with software verification is that the programming lan-
guages that the computer understands are not the same as the mathemat-
ical languages suited for proofs. A common approach when proving a pro-
gram correct is to formulate a model of its algorithms, using some high level
language, and prove that model correct. One problem then is translating the
model to a programming language, as there is always the risk that this trans-
lation is incorrect. Moreover, simplifications are often made, for example by
ignoring the possibility of running out of memory. This is not necessarily a
bad thing. If a model is simple and easy to understand then it is easier to
prove that the program does what it is supposed to. It is important to en-
sure that the simplifications are safe – just because an algorithm is correct
if it is assumed to have infinite amounts of memory at its disposal, there is
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no a priori guarantee that it will work with the finite memory of a computer,
or in conjunction with other programs which might be running at the same
time.

Another problem with software verification is that even if a program has
been completely verified, and contains no mistakes, the language it is im-
plemented in can be incorrect. Usually there are extensive reference manu-
als that describe in detail what each command of the language does. These
are often written in English, which as any human language is subject to in-
terpretation. It is not uncommon that the same programming language is
interpreted differently by different computers.

An alternative to the reference manuals is to use a formal semantics for
the programming language. The semantics provides a mathematical de-
scription of each command of the language, and makes it possible to prove
general properties, such that a particular command always has a desired ef-
fect. Without a semantics, the correctness of programs cannot be proven – it
is not possible to mathematically prove correctness of something that can-
not be mathematically interpreted. Still, most modern programming lan-
guages, like C, Java, Erlang, or Scala, do not have a formal semantics, and
language designers do not have program verification in mind when design-
ing programming languages.

By reverse engineering a formal semantics, software written in these lan-
guages can still be verified. These semantics generally do not encompass
the full expressive power of the programming language but they are expres-
sive enough to prove correctness of simpler programs. The micro-kernel
mentioned above, which is written in C, is just one example.

In this thesis we will focus on the design of high level languages targeted
at parallel systems. We will provide semantics for these languages, discuss
what properties need to be proven and why. Moreover, we will ensure that
these proofs are correct with absolute certainty by having them checked by
a computer.

1.2 Parallel systems
Parallel systems are notoriously difficult to formalise. A sequential program
running in isolation has unique access to the resources of the machine it is
running on, and keeping track of the state of the system with each com-
mand is relatively straightforward; a parallel program must share its re-
sources with other programs running at the same time, making it more dif-
ficult to determine the state of the system at any given time, and hence also
the effect of each command.

The difficulty to check whether a program has the desired behaviour is
only one side of the coin; it is often difficult to write specifications for par-
allel systems for much the same reasons – the state space of a system with
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many parallel components is too large to account for in a program, and
it is very difficult, if not impossible, to get a good view of how a parallel
system will react at any point in time. A famous example is the Needham-
Schröder public key protocol [63] from 1978. This protocol is designed such
that two parties can communicate with each other using encrypted mes-
sages. A trusted server is used to set up the communication, and manages
the encryption keys of the parties. This protocol was proven to be insecure
by Denning and Sacco in 1981 [35] – a malicious third party could crack
the protocol and take the place of one of the original trusted parties, com-
promising the system. The Needham-Schröder protocol is not particularly
large, but it still took three years to find the bug and fix it.

One reason that the bug was not found sooner was that there were few
formalisms to reason about parallel programs. Dijkstra had created a vari-
ant of ALGOL60 with a parallel construct in the language [36], and Hoare
extended on these ideas with his theory of Communicating Sequential Pro-
cesses (CSP) [27].

1.3 Process calculi
In 1980, Milner introduced a new field of research which today is com-
monly referred to as process calculi, or process algebras, with his Calcu-
lus of Communicating Systems (CCS) [55]. Process calculi are a family of
related formalisms that provide high level descriptive languages to reason
about concurrent systems. They also introduce a concept of equality be-
tween processes, and provide algebraic laws to reason about these equali-
ties. One such equality is bisimilarity, and its intuitive definition is that two
processes P and Q are bisimilar, written P ∼Q, if for every action that any of
the processes can do, the other can do the same action, and the states they
end up in are still bisimilar. An example of an algebraic law is the compo-
sitionality law which states that if two processes are bisimilar, P ∼ Q, then
the processes resulting from putting another process in parallel with these
processes are also bisimilar, P | R ∼Q | R.

CCS was groundbreaking in that it introduced a formalism for comparing
programs based on how they communicate – which data is sent, which data
is received, and where do the programs go from there. It is a minimalistic
formalism with only a few basic operators – most notably processes may
run in parallel, and they can contain local information not available to any
other process. CCS will be described in detail in Part II of this thesis.

The pi-calculus was introduced by Milner, Parrow, and Walker in the late
1980s [58]. A pi-calculus process has the capability to create a local com-
munication channel, which only that process knows about, and which can
be sent to another process allowing for secure communication between the
two. The pi-calculus will be covered in detail in Part III.
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Process calculi to date have been used extensively to model communica-
tion protocols. Many protocols make use of cryptography to be able to send
information over an insecure medium where anyone can intercept mes-
sages, and be confident that only the intended recipient can decipher and
read the message. In 1999, Abadi and Gordon introduced the spi-calculus
[8], which included cryptographic primitives such as encryption and de-
cryption as primitive operators of the calculus.

The spi-calculus has been used to verify a number of security protocols.
Its algebraic properties are more complicated than previous calculi. For the
pi-calculus and CCS, equality on processes is inferred just by looking at how
the processes interact with the environment; a spi-calculus process must
also keep track of information available to each process, as the knowledge
of cryptographic keys admits decryption of messages. There is a multitude
of different equivalences for spi-calculus processes, each suited for slightly
different tasks [26].

Many process calculi are tailored to solve a specific problem. This is prob-
lematic as it invariably leads to duplication in proof effort – whenever a new
calculus is created, all of its proofs must be redone, and these are often very
similar to corresponding proofs in previous calculi. Moreover, as the com-
plexity of the calculi increases, so does the complexity of their proofs. There
is therefore a need for frameworks that encompass a wide range of applica-
tions and calculi.

The applied pi-calculus was introduced by Abadi and Fournet in 2001 [7].
It was novel in the sense that the user supplies what data processes can
use; some examples are linked list, binary trees, or encrypted or decrypted
messages. The user also supplies an equation system to reason about the
data. A typical equation could state that

dec(enc(M , k), k) = M

which means that a message M encrypted with a key k can be decrypted
with the same key. This generality allows the applied pi-calculus to model
the same cryptographic protocols as the spi-calculus, and it does this with
a leaner algebraic theory.

The applied pi-calculus is extensively used, with hundreds of papers cit-
ing it, but one of its semantics was discovered to be non-compositional in
2009 [17]. The fact that such a widely used calculus can still have a bug in it
after eight years hints at the difficulty of the proofs involved.

1.4 Theorem proving
Pen and paper proofs are often plagued by sweeping statements such as:
from Definition A we can clearly see that . . . , or the proof follows trivially by
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induction on x. These styles of proofs make use of the human intuition to
deduce what is clear or trivial, but care has to be taken to ensure that these
simplifications do not introduce any inconsistencies or flaws in the proof.

The main point of any mathematical proof is to form a convincing argu-
ment so that with a reasonable degree of certainty, the proof is correct, no
cases have been missed, and all appeals to intuition are safe. As the com-
plexity of the proofs increases, this becomes more and more time consum-
ing and increasingly error prone. Therefore, in order to ensure that a proof
actually is correct, it is desirable to have the proofs checked by a theorem
prover.

A theorem prover is a computer program, that given a proof in a lan-
guage the prover understands can check if the proof is correct. There are
many advantages of using theorem provers. Primarily they are used to en-
sure that all proofs actually are correct and no cases have been overlooked,
but that is only half the story. Once a theory has been proven correct in-
side a theorem prover, the user can make changes, and the ramifications
of these changes become instantly apparent. Consider doing the same to a
big pen-and-paper formalisation – it would be nearly impossible to foresee
all possible effects that a change has on different parts of the formalisation,
except by redoing all of the proofs. This process would be time consuming,
boring, and the risk of doing a mistake is far from negligible.

There exist several theorem provers: Coq [25], Isabelle [64], Agda [3], PVS
[66], Nuprl [31] and HOL [42], just to name a few. These theorem provers are
interactive. They have many automated tactics, and the user can provide
additional proof strategies. Many are also getting better and easier to use,
and so the concept of having fully machine checked proofs has recently be-
come far more realistic. As an indication of this, several major results have
been proven over the last few years, including the four and five colour the-
orems [14, 41], Kepler’s conjecture [65] and Gödel’s incompleteness theo-
rem [72]. Significant advances in applications related to software are sum-
marized in the POPLmark Challenge [11], a set of benchmarks intended
both for measuring progress and for stimulating discussion and collabo-
ration in mechanizing the meta-theory of programming languages. There
are, for example, results on analysis of typing in System F and light versions
of Java. The theorem prover Isabelle was recently used to verify software in
the Verisoft project [5]. Moreover, the verification of the operating system
micro-kernel discussed previously was verified using Isabelle.

A common criticism of theorem provers is that they are hard to use and
the amount of work required to formalise proofs significantly exceeds do-
ing them on paper. The reason for this is mainly that it is difficult to model
human intuition in a straightforward way – for a theorem prover, nothing
is clear or trivial, and a lot of time has to be spent proving the seemingly
obvious. However, the reason that intuitive truths are difficult to model can
be that they are actually not true. One famous such example is the Baren-
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dregt variable convention, which intuitively states that the names chosen
for arguments of functions are unimportant. It will be discussed in detail in
Section 3.1.1.

So whereas the argument that theorem provers are difficult to use and re-
quire a considerable amount of work has merit, the fact is that they provide
a robust way of ensuring that a formalisation is correct, and they provide
a flexible working environment where theories can be modified without
running the risk of introducing inconsistencies. Moreover, modern theo-
rem provers are becoming increasingly powerful and easy to use.

1.5 Contributions
The main contribution of this thesis is to formalise the meta-theory of dif-
ferent dialects of process calculi in a theorem prover. I have created exten-
sive formalisations of three major process calculi: CCS [57] by Milner, the
pi-calculus [58] by Milner, Parrow, and Walker, and the psi-calculi [17] by
myself, Johansson, Parrow, and Victor. These calculi vary greatly in com-
plexity, but the proof strategy used to formalise their meta-theories is the
same, and have scaled remarkably well as complexity increases.

Another main contribution is the psi-calculi framework, which was de-
veloped in our research group. I participated in the development at the
same time as I formalised all theories in Isabelle. In this way the framework
was formalised in parallel with its development. Psi-calculi represents the
current state of the art of process calculi. We believe it to be one of the most
expressive frameworks for concurrent systems currently available, and its
formalisation in Isabelle to be the most extensive formalisation of process
calculi ever done in a theorem prover.

Every proof in this thesis has been machine checked using the interactive
theorem prover Isabelle – all definitions have been encoded, and all lemmas
and theorems have been proven. The advantage of this is clear – we know
that our proofs are correct and that nothing has been overlooked. Isabelle
also provides support for typesetting the theories which have been proven.
All lemmas in this thesis are generated directly from the Isabelle sources,
significantly reducing the risk that the formulas presented contain errors.

1.6 Thesis outline
This thesis is composed of five parts. Part I serves as an introduction,
and provides the technical background required for the rest of the thesis.
A reader familiar with the subjects may want to skip some or all of the
chapters presented. Part II describes how Milner’s Calculus of Concurrent
Systems (CCS) [55] is formalised in Isabelle, and Part III does the same
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for the pi-calculus [58]. Part IV introduces and formalises psi-calculi – a
general framework which captures both CCS, the pi-calculus and many
others. Part V concludes the thesis.

1.6.1 Part I: Background
Chapter 2 introduces process calculi, their background, structure, and ap-
plications. A reader familiar with process calculi may still want to read Sec-
tions 2.4 and onwards, as they cover the proof strategies that are used for
the rest of the thesis.

Chapter 3 introduces the concept of alpha-equivalence, how it is used
in process calculi, and different attempts to provide a smooth treatment in
theorem provers.

Chapter 4 describes Nominal Logic [69], which provides the logical in-
frastructure upon which the rest of the thesis builds.

Chapter 5 describes the interactive theorem prover Isabelle, and covers
the required material for understanding the Isabelle proofs presented in
this thesis.

1.6.2 Part II: The Calculus of Communicating Systems
Chapter 6 introduces the semantics of CCS, some example derivations, and
how the semantics is modeled in Isabelle.

Chapter 7 defines strong bisimilarity – an equivalence relation that
equates processes having the same behaviour.

Chapter 8 defines structural congruence – an equivalence relation that
equates processes that are intuitively considered equal. One such example
is that processes differing only by the order of their parallel components are
equal. Moreover, we prove that all structurally congruent terms are bisimi-
lar.

In Chapter 9 we define weak bisimilarity, which is an equivalence rela-
tion similar to strong bisimilarity, but it abstracts away from the internal
actions of the processes. We also prove that all strongly bisimilar processes
are weakly bisimilar.

1.6.3 Part III: The pi-calculus
Chapter 12 introduces the pi-calculus, its history and impact.

There are two types of operational semantics for the pi-calculus – the
early semantics, and the late one. In Chapter 13 we describe the early oper-
ational semantics, and how it is implemented in Isabelle. All the following
chapters up to Chapter 17 use the early semantics.

In Chapter 14 we define strong bisimilarity for the early semantics of the
pi-calculus.
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In Chapter 15 we define weak bisimilarity.
In Chapter 16 we define weak congruence.
In Chapter 17 we define the late semantics of the pi-calculus, we also

define all the equivalences from the early semantics and prove the corre-
sponding results.

In Chapter 18 we define structural congruence for the pi-calculus, and
prove that all structurally congruent processes are also late bisimilar.

In Chapter 19 we prove that the axiomatisation of strong late bisimilarity
for the finite pi-calculus is sound and complete.

In Chapter 20 we prove that all late bisimilar processes are also early
bisimilar.

1.6.4 Part IV: Psi-calculi
In Chapter 22 we provide an in depth exposition of parametric process cal-
culi. We also introduce the psi-calculi framework including its strong bisim-
ulation equivalences.

In Chapter 23 we introduce the notion of binding sequences – a mecha-
nism for treating sequences of binders atomically, rather than working with
one binder at a time. The concept of binders in process calculi is defined in
Chapter 2.

In Chapter 24 we provide the Isabelle definitions for psi-calculi
processes, and cover how the parametricity of the framework is encoded in
Isabelle.

Chapter 25 covers the operational semantics of psi-calculi, as well as the
rules used to do induction over the transition system.

In Chapter 26 we describe a technique to derive general inversion rules
for calculi using binding sequences. Inversion rules are used for case anal-
ysis on transitions of the calculi.

In Chapter 27 we model strong bisimilarity in Isabelle.
Chapter 28 covers the structural congruence rules for psi-calculi, proves

that all bisimilar processes are also structurally congruent, and that bisim-
ilarity is a congruence.

Chapter 29 describes weak bisimilarity for psi-calculi. Weak bisimilarity
is considerably more complex than for other process calculi, and motivat-
ing examples are provided as to why this is the case. We also define a subset
of psi-calculi, where the logical environment satisfies weakening, i.e. that
nothing known by the environment can be made untrue by adding extra
information.

In Chapter 30 we formalise weak bisimilarity for arbitrary psi-calculi in
Isabelle.

In Chapter 31 we define weak congruence for psi-calculi and prove that
it is a congruence.
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In Chapter 32 we add logical weakening to the psi-calculi framework, de-
fine the simpler version of weak bisimilarity and prove that the two versions
coincide.

In Chapter 33 we discuss extensions to the psi-calculi framework, and
encode new operators by adding extra constraints to the framework.

In Chapter 34 we compare psi-calculi to other calculi, and provide the
counter-examples to why the semantics for the applied pi-calculus and CC-
pi are not compositional. We also discuss in detail our experiences from
formalising a framework parallel to the development of its theories.

1.6.5 Part V: Conclusions
The thesis is concluded with a discussion on what has been achieved and
learned through the formalisation efforts. We cover possible extensions to
Isabelle to make these types of formalisations easier. We come back to re-
lated work, what other process calculi have been formalised in theorem
provers, and which techniques were used. We also discuss possible future
work.

1.7 My publications
I have published eleven articles with different constellations of people, but
mostly with my supervisor and the rest of my research group. This thesis
builds on eight of these articles, where two are journal versions of confer-
ence articles.

1.7.1 Articles contributing to this thesis
1. Jesper Bengtson. Generic implementations of process calculi in Isabelle.

In The 16th Nordic Workshop on Programming Theory (NWPT’04), pages
74–78, 2004.

2. Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using
Nominal Logic. In Proceedings of the 10th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS),
volume 4423 of LNCS, pages 63–77, 2007.

3. Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using
nominal logic. Logical Methods in Computer Science, 5(2), 2008.
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Part I:

Background





2. Process calculi

Process calculi, introduced in the early 1980s, were pioneered by Milner
with the Calculus of Communicating Systems (CCS). The main contribution
of CCS is that it provides a clear and intuitive way to reason about parallel
systems in terms of their interactions with the environment.

This chapter introduces a simple process calculus which is used to cover
the basic concepts of process calculi, their terminology, and the proof
strategies that will be used throughout this thesis. This calculus is intended
only for explanatory purposes, and is not practically useful as a modeling
language – calculi which are suited for this purpose will be covered in
Parts II, III, and IV.

2.1 Syntax
Process calculi use names, which are an infinite number of atomic building
blocks, to build the data structures required by the calculus. There is also
a notion of actions that can be performed by the agents, which will hence-
forth be denoted as agents. This thesis will use the following notation.

• Names are denoted by a, b, c, . . .
• Agents are denoted by P , Q, R, . . .
• Actions are denoted by α, β, γ, . . . and represent the visible capabilities

of an agent.

In our simple process calculus, actions are defined as follows:

Definition 2.1 (Actions).

α
def= τ

∣∣ a

A τ-action represents an internal action of an agent, whereas an action
consisting of a name is visible to the environment.

Agents can now be defined in the following way:

Definition 2.2 (Agents).

P
def= α .P Prefix

P | Q Parallel

(νx)P Restriction

0 Nil
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The structural congruence ≡ is defined as the smallest congruence satisfy-
ing the following laws:
1. The abelian monoid laws for Parallel: commutativity P |Q ≡Q | P , asso-

ciativity (P |Q) | R ≡ P | (Q | R), and 0 as unit P | 0 ≡ P ; and the same laws
for Sum.

2. The scope extension laws

(νx)0 ≡ 0

(νx)(P | Q) ≡ P | (νx)Q if x ] P

(νx)α.P ≡ α.(νx)P if x ]α

(νx)(νy)P ≡ (νy)(νx)P

Figure 2.1: The definition of structural congruence.

The empty agent, denoted 0, represents a deadlocked agent i.e. an agent
with no actions. An agent P running in parallel with an agent Q is denoted
P | Q . An agent α.P can do the action α and then become P . An agent can
generate names local to that agent through a ν-operator, where the agent
(νx)P denotes an agent P with the name x local to it – intuitively, x may not
occur in any other agent.

The free names are the names in an agent except those restricted by
Restriction. The term x ] P, pronounced x fresh for P, means that x is not in
the free names of P. An exact definition of this operator, and a discussion
of its origins, will be given in Chapter 4.

2.2 Structural congruence
Structural congruence is an equivalence relation that relates agents which
are syntactically different, but intuitively considered equal. For instance, it
is reasonable to assume that the parallel operator is associative and com-
mutative and that restricting a name in an agent where that name does not
exist has no effect. The structural congruence rules can be found in figure
2.1.

2.3 Operational semantics

The notation P
α−→ P ′ is used to represent an agent P doing an actionα and

ending up in the state P ′. The agent P ′ is often referred to as anα-derivative
of P or just a derivative of P .
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P ≡ Q Q
α−→ Q ′ Q ′≡ P ′

P
α−→ P ′

STRUCT

α .P
α−→ P

ACTION

P
α−→ P ′

P | Q
α−→ P ′ | Q

PAR
P

α−→ P ′ Q
α−→ Q ′

P | Q
τ−→ P ′ | Q ′

SYNC

P
α−→ P ′ x ] α

(νx)P
α−→ (νx)P ′

SCOPE

Figure 2.2: An operational semantics for a simple process calculus.

The operational semantics is a collection of rules through which transi-
tions can be inferred, and can be found in Fig. 2.2. The STRUCT rule can be
used to rewrite an agent or its derivatives to structurally congruent counter-
parts. The ACTION rule allows an agent α .P to do an α-action and end up
in the state P . The PAR rule allows the agent P in P | Q to do an action while
Q does nothing. If Q does an action, a symmetric version of this rule can
be inferred through the use of STRUCT. The SYNC rule allows two agents P
and Q to synchronise provided they have the same action. The SCOPE rule
is designed to block actions containing names which are local to the agents.
An agent (νx)P can only do an action α if x does not occur free in α. Since
alpha is just a name or τ, this means that x 6= α.

2.4 Bisimilarity
Intuitively, two agents are said to be bisimilar if they can mimic each other
step by step. Traditionally, a bisimulation is a symmetric binary relation R

such that for all agents P and Q in R, if P can do an action, then Q can
mimic that action and their corresponding derivatives are in R. The largest
such bisimulation is denoted ∼ , i.e. a P being bisimilar to an agent Q is
written P ∼Q.

There is a multitude of different bisimulation relations for the different
kinds of process calculi in existence, ranging from the very simple to the
very complex. This section introduces the proof strategies that will be used
for the rest of this thesis. When designing process calculi it is important to
use a congruence – i.e. an equivalence relation preserved by all operators.
For an operator to preserve a bisimilarity, it must be the case that apply-
ing the operator to two bisimilar agents will not produce two agents which
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are not bisimilar. For instance, if the fact that P and Q are bisimilar implies
that also (νx)P and (νx)Q are bisimilar, then bisimilarity is preserved by
Restriction. The property that a bisimilarity is preserved by an operator is
called a preservation property.

Congruences have the advantage that they are preserved by all operators,
which ensures that any part of an agent can be replaced by a congruent one
without changing its behaviour. This allows specifications and implemen-
tations to be designed modularly – a specification for the entire system can
be created, but bisimilarity must only be proven for each subcomponent,
they can then be freely interchanged and the result is still guaranteed to be
bisimilar.

An important application area for process calculi is security protocols.
A specification will generally require that no private information is leaked
to the environment. If bisimilarity is preserved by the parallel operator, the
bisimilar agents will behave the same even in the presence of an arbitrary
attacker running in parallel.

Formally, an agent P can simulate an agent Q in a relation R, if for every
transition Q can do, P can mimic that transition and the derivatives are in
R. We use the terminology that a simulation preserves R if the derivatives
of all possible simulations are in R.

Definition 2.3 (Simulation). An agent P simulating an agent Q preserving
R is written P ,→R Q

P ,→R Q
def= ∀α Q ′. Q

α−→ Q ′−→ (∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R)

Bisimilarity can then very conveniently be defined coinductively, i.e. the
greatest fixed point derived from a monotonic function.

Definition 2.4 (Bisimilarity). Bisimilarity, denoted ∼ , is defined as the
greatest fixed point satisfying:

P ∼Q =⇒ P ,→∼ Q SIMULATION

∧ Q ∼ P SYMMETRY

Proving that two agents are bisimilar boils down to choosing a symmetric
candidate bisimulation relation X containing the two agents, and proving
that for all (P, Q) ∈ X , P ,→X Q.

2.5 Weak bisimilarity
Weak bisimilarity abstracts from the τ-actions. The idea is that two agents
are bisimilar if they can mimic each other’s visible actions, ignoring all in-
ternal computations.
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P ≡ Q Q
α==⇒Q ′ Q ′≡ P ′

P
α==⇒P ′

STRUCT

α .P
α==⇒P

ACTION

P
α==⇒P ′

P | Q
α==⇒P ′ | Q

PAR
P

α==⇒P ′ Q
α==⇒Q ′

P | Q
τ==⇒P ′ | Q ′

SYNC

P
α==⇒P ′ x ] α

(νx)P
α==⇒ (νx)P ′

SCOPE

Figure 2.3: A lifted weak operational semantics. All rules are derived from the strong
semantics found in Figure 2.2.

An agent P can do a τ-chain to P ′, written P =⇒ P ′ if P and P ′ are in the
reflexive transitive closure of τ-actions from P .

Definition 2.5 (τ-chain).

P =⇒ P ′ def= (P, P ′) ∈ {(P, P ′) : P
τ−→ P ′}∗

A weak transition, written P
α==⇒P ′ is defined as a strong transition with a

τ-chain appended before and after the action.

Definition 2.6 (Weak transition).

P
α==⇒P ′ def= ∃P ′′ P ′′′. P =⇒ P ′′∧ P ′′ α−→ P ′′′∧ P ′′′=⇒ P ′

Definition 2.7 (Weak simulation). An agent P weakly simulating an agent
Q preserving R is written P ;R Q

P ;R Q
def= ∀α Q ′. Q

α−→ Q ′−→ (∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R)

It is important to note that in weak simulations, a weak action mimics a
strong one.

Definition 2.8 (Weak bisimilarity). Weak bisimilarity, denoted ≈, is defined
as the greatest fixed point satisfying:

P ≈Q =⇒ P ;≈ Q SIMULATION

∧ Q ≈ P SYMMETRY

Proving properties of weak bisimilarity is more involved than proofs for
strong bisimilarity as the τ-chains must be taken into consideration. In or-
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der to abstract from this added complexity, we introduce the concept of
lifting. A strong semantic rule can be lifted, if all of its strong transitions can
be replaced by weak ones. The semantics in Figure 2.3 illustrate this.

If a semantic rule can be lifted, it can be used in the same way as its
strong counterpart, and the proof strategies which use strong semantic
rules can also use the weak ones. This significantly cuts down on the
amount of work required to formalise properties of weak bisimilarity, as
the proofs for strong bisimilarity can be reused, modulo changing which
semantic rules are used.

2.6 Structural congruence revisited
In this chapter we have introduced process calculi through a simple exam-
ple with a structural congruence rule in the semantics. In reality, this is not
always a good design decision. The arguments in favour are that the seman-
tics becomes leaner and easier to understand.

The main disadvantage is that whenever a proof involving the semantics
is done, it is not enough to consider the agents at hand, but all structurally
congruent agents must also be considered. This makes the proofs more dif-
ficult and mare cumbersome to work with. Consider as an example the fol-
lowing lemma.

Lemma 2.9. If P
α−→ P ′ and x ] P then x ] P ′.

Proof. By induction on the transition P
α−→ P ′

In the STRUCT case, an auxiliary lemma is needed to show that the struc-
tural congruence laws introduce no new fresh names.

Lemma 2.10. If P ≡ Q and x ] P then x ] Q.

Proof. By induction on the construction of P ≡ Q.
The problem arises in the case for symmetry of structural congruence

(P ≡ Q −→ Q ≡ P ). The induction hypothesis provides x ]Q, but the proof
requires that x ] P . The solution is to strengthen the induction hypothesis
to x ] P −→ x ]Q ∧x ]Q −→ x ] P .

This proof is moderately easy but it is inconvenient to prove structural
congruence properties for every proof on the transition system. Moreover,
case analysis on a semantics with structural congruence is complicated. For
every transition, every structurally congruent agent which could trigger the

transition must be considered. For instance, the transition P | Q
α−→ P ′, can

be derived from eight cases – one each from the PAR and COMM rule, and
six from structural congruence – reflexivity, symmetry and transitivity, and
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α .P
α−→ P

ACTION
P

α−→ P ′

P | Q
α−→ P ′ | Q

PAR1
Q

α−→ Q ′

P | Q
α−→ P | Q ′

PAR2

P
α−→ P ′ Q

α−→ Q ′

P | Q
τ−→ P ′ | Q ′

SYNC
P

α−→ P ′ x ] α

(νx)P
α−→ (νx)P ′

SCOPE

Figure 2.4: A STRUCT-free operational semantics for a simple process calculus.

the three abelian monoid laws. For more advanced calculi, this number is
even greater.

This problem becomes worse when using a theorem prover which will
require you to prove all steps, even if they are similar, when it cannot prove
them automatically. Figure 2.4 shows a STRUCT-free version of the opera-
tional semantics.

Even though the semantics does not contain structural congruence, it
must be possible to derive the structural congruence rules. More precisely,
any terms which are structurally congruent must also be bisimilar using se-
mantics without a STRUCT rule.
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3. Alpha-equivalence

When defining process algebras or programming languages, the notion
of binders must be made precise. Depending on the calculus being
formalised, binders serve different functions. The most common notion
is for a binder to be a name which acts as a placeholder for terms, and
during execution, this placeholder can be instantiated and replaced by an
arbitrary term. For process algebras, it is also common to have binders
represent local names for an agent. Two agents which are syntactically
equal except for the bound names are called alpha-equivalent and
changing the bound names of an agent to other valid bound names is
called alpha-conversion.

In the process algebra described in Chapter 2, the only binder is the ν-
operator, which conforms to the second use of binders mentioned above.
The operator creates a unique name which can only appear under the scope
of the binder. Which name is chosen is less important, although some re-
strictions do apply.

Consider the following three agents.

P = (νx)(x . z .0 | x . z .0 ) Q = (νy)(y . z .0 | y . z .0 )

R = (νz)(z . z .0 | z . z .0 )

Here P and Q are alpha-equivalent as they only differ in that the
bound name x has been replaced by y . However, neither P nor Q are
alpha-equivalent to R, as the binder z will bind all occurrence of z in R,
whereas z occurs free in both P and Q. Restriction binds a name in an
agent, and this name may not occur anywhere else in the proof context; if
it does, it must be alpha-converted to a name which meets this constraint.
To be accurate, it is necessary to manually alpha-convert agents such
that these freshness constraints are guaranteed; in practice, proofs often
abstract away from the notions of alpha-equivalence altogether.

3.1 Manual proofs with pen and paper
When doing paper proofs, the idiosyncrasies of alpha-equivalence are usu-
ally glossed over. Generally, agents are assumed to be equal up to alpha-
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equivalence, are implicitly assumed to not contain any bound names which
clash in an unwanted way.

In The pi-calculus [71] Sangiorgi and Walker write:

In any discussion, we assume that the bound names of any processes or ac-
tions under consideration are chosen to be different from the names free in
any other entities under consideration, such as processes, actions, substitu-
tions and sets of names.

Similar reasonings can be found in Parrow’s An introduction to the pi-
calculus [67].

... we will use the phrase “bn(α) is fresh” in a definition to mean that the
name in bn(α), if any, is different from any free name occurring in any of the
agents in the definition.

These and other papers make an implicit assumption that alpha-
equivalent agents can be freely exchanged in order to ensure any desired
freshness properties of the bound names. Intuitively it is difficult to object
to this style of reasoning. If two processes are considered equal, then surely
it must be possible to replace one for another without breaking the proofs?
As it turns out, this can lead to inconsistencies unless proper care is taken.

3.1.1 The Barendregt variable convention
In his book The lambda calculus: its syntax and semantics [13], Barendregt
introduces what is now commonly known as the Barendregt variable con-
vention.

Variable Convention: If M1, . . . , Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound variables are chosen to
be different from the free variables.

It is this convention that has been used in papers like the ones cited
above, but it turns out to be unsound in the general case. In [73] Urban
provides a variant of the λ-calculus to demonstrate that this can lead to in-
consistencies. By using the ideas from [73], and changing the SCOPE-rule of
the semantics in Figure 2.2, a demonstration in process algebras is:

P
α−→ P ′ y ] α

(νx)P
α−→ P ′

SCOPE
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This rule differs only from the original SCOPE rule in that the bound name
x is dropped from the derivative. Intuitively, the rule reveals the name which
is bound by the binder.

The proof of lemma 2.9 still holds, with the following modification to the
SCOPE-case.

Faulty lemma: If P
α−→ P ′ and y ] P then y ] P ′.

Proof. By induction on the transition P
α−→ P ′.

case SCOPE – y ] (νx)P and P
α−→ P ′:

Here the variable convention allows us to chose x such that x is not equal
to any other name in the proof context, more specifically x 6= y . Moreover,
since y ] (νx)P we get that term y ] P, and hence with the induction hypoth-
esis, y ] P ′.

This lemma does not hold. Since x ] (νx)y . x .0 and (νx)y . x .0 y−→ x .0,
the lemma will state that x ] x .0, which is clearly not true.

The problem arises since the lemma is dependent on the bound names
of the agents for its result, and by allowing the user to freely alpha-convert
the agents to fit the constraints of the proof, an inconsistency is introduced.

In [73], Urban et. al. propose a fix to this problem. By requiring that any
bound name in an inductive rule does not occur free in its conclusions,
and all bound names are mutually distinct, the Barendregt variable conven-
tion can be used freely when doing proofs with binders. The exact method
for this is made precise in [73], and formalised in the interactive theorem
prover Isabelle. Briefly put, in the inconsistent semantics defined above,
there exists a transition (νx)y . x .0 y−→ x .0, containing the bound name x
which occurs free after the reduction, making the transition system invalid
for use with the Barendregt variable convention.

3.2 Machine checked proofs
When formalising mathematics, all aspects of the proofs must be made pre-
cise. Computers are excellent at checking whether or not a proof is correct
or not, but having them create the proofs themselves is difficult. Hand wav-
ing techniques such as the Barendregt variable convention are hard to for-
malise, since the user must make precise exactly what it means for a name
to be sufficiently fresh. Several ways to have computers treat binders have
been proposed.
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3.2.1 de Bruijn indices
One of the oldest representations of terms with binders was introduced by
de Bruijn in [33]. The key idea is that all names are represented by natural
numbers, where a name has a number corresponding to the nesting level of
its binder. The agent (νx)(νy)x . y . z .0 would have the de Bruijn representa-
tion ν ν 2.1.3.0 where x is mapped to the number 2 and y to the number
1, as that is their nesting depth from their respective binder. The name z
is mapped to the number 3, but is free since it is greater than the binding
depth.

Things become more complicated if a name occurs at different
binding depths in different parts of an agent. For instance, the agent
(νx)x . ((νy)x .0) has the de Bruijn representation ν 1.ν 2.0, where the
number x is mapped to increases as another binder is traversed.

If the semantics of a calculus modifies the structure of the agents, the
values for binders must be recalculated, and doing this by hand is tedious.
Moreover, the representation is not easy to read for humans.

Still, de Bruijn indices have been extensively used in automatic tools
which reason about process calculi such as the Concurrency and Mobility
Workbenches [61, 77]. As an internal representation for a computer
program, de Bruijn indices work well, as creating the infrastructure which
calculates the name mappings is quite straight forward; all calculations
regarding binders is done in the background and the user does not have
to worry about recalculating the values of the binders. The programs can
also easily translate their internal representation of the agents to a more
human readable form.

There are also formalisations of process calculi where de Bruijn indices
are used. In [45], Hirschkoff proves a substantial part of the meta-theory
of the pi-calculus in the interactive theorem prover Coq. The work is ex-
tensive, but technical parts regarding agent representation make up for a
substantial part of the formalisation. Hirschkoff writes:

Technical work, however, still represents the biggest part of our implemen-
tation, mainly due to the managing of De Bruijn indexes: indeed, as stressed
above, the De Bruijn notation, while drastically simplifying work for bound
names, requires accuracy in dealing with free names. Of our 800 proved lem-
mas, about 600 are concerned with operators on free names; . . .

3.2.2 Higher order abstract syntax
When coding agents using higher order abstract syntax (HOAS), one treats
binders as functions from names to agents, i.e. of type name->agent. the
formalisations need to ensure that those are avoided.
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HOAS has been used to model the pi-calculus in both Coq [46], by Hon-
sell et. al., and in Isabelle by Röckl and Hirschkoff [70]. In [46] the late op-
erational semantics is encoded with late strong bisimilarity. The results in-
clude that the algebraic laws presented in [58] are sound where the non-
trivial proofs include preservation results for bisimulation and the results
for structural congruence. In [70], a special well-formedness predicate is
used to filter out the exotic agents.

Another problem is that since abstraction is handled by the meta-logic of
the theorem prover, reasoning about binders at the object level can become
problematic. In [46] we can read:

The main drawback in HOAS is the difficulty of dealing with meta-theoretic
issues concerning names in process contexts, i.e. agents of type
name->agent. As a consequence, some meta-theoretic properties
involving substitution and freshness of names inside proofs and processes,
cannot be proved inside the framework and instead have to be postulated.

Early attempts to encode the pi-calculus in the HOL theorem prover also
include [60, 54].

3.2.3 Nominal logic
Nominal logic, created by Pitts [69], allow for terms with binders to be de-
scribed and reasoned about in a very intuitive manner. Moreover, it is na-
tively supported by the Isabelle theorem prover which is why it is the for-
malism of choice for this thesis. Nominal logic is covered in detail in Chap-
ter 4.

Fraenkel Mostowski set theory (FM set theory) was one of the first serious
attempts to formalise nominal logic. It is standard ZF set theory but with an
extra freshness axiom added. In [38], Gabbay formalises a portion of the pi-
calculus in FM set theory. In this approach a N-quantifier (new quantifier)
is used to generate names which are fresh for the current context. Gabbay
also started work on incorporating a framework for FM set theory inside
Isabelle [39] with which formalisations such as ours could be made. Unfor-
tunately, this early version of nominal logic is incompatible with the axiom
of choice and has to be used in Isabelle/PURE – a bare boned set of the-
ories, since Isabelle/HOL contains the axiom of choice. The attempt was
later abandoned.
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4. Nominal logic

Nominal logic is a formalism designed to simplify the treatment of calculi
involving binders. It accomplishes this through a mathematical formalism
which allows reasoning about terms with binders up to alpha-equivalence,
thus removing the hand waving style proofs which are often practiced when
dealing with binders.

Nominal logic is a research area in its own right. This chapter will cover
the theoretical background needed to understand the concepts of this the-
sis. Later chapters will cover how these theories are incorporated and used
in Isabelle.

At the core of nominal logic is an atom sort which contains a countably
infinite set of entities which can be bound, and alpha-converted in the data.
A nominal formalisation can utilise several different atom types, denoted by
A , A ′, . . . , and their elements denoted by a, b, c, . . .. Moreover a notion of
atom swapping is introduced, which allows for renaming of atoms.

(a b) · c =


a if c = b

b if c = a

c otherwise

Sequences of swaps are called permutations, and are denoted by p, q, r . . ..

4.1 Nominal sets
A nominal set X consists of a set of elements and a swapping operator on
these elements. One of the main contributions of nominal logic is that it is
not necessary to know the structure or syntax of the elements of the nom-
inal set, but rather the behaviour of the swapping function. The following
axioms must be satisfied:

∀a ∈A . ∀x ∈X . (a a) · x = x

∀a, a′ ∈A . ∀x ∈X . (a a′) · (a a′) · x = x

∀a, a′ ∈A . ∀b, b′ ∈A ′. ∀x ∈X .

(a a′) · (b b′) · x = ((a a′) ·b, (a a′) ·b′) · (a a′) ·x
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Intuitively, the axioms dictate that (a a) must be the identity swapping,
that applying the same swapping twice does nothing and that applying a
swapping to another distributes the swapping over the arguments. This last
property is often referred to as equivariance and will be covered in detail
later.

For the rest of this chapter a member of a nominal set will be called a
term.

4.2 Support and freshness
A useful property of atom swapping is that it can be used to derive the free
atoms of a term. In nominal logic, this is called the support of a term. More
formally, the support of a term T can be defined as follows:

Definition 4.1 (Support). The support of a term T is denoted supp T.

supp T
def= {a : infinite {b : (a b) · T 6= T }}

Intuitively, support is defined as the atoms of an agent which changes the
agent when swapped. No knowledge of the structure of T is needed, other
than that it must satisfy the swapping axioms of nominal logic. Consider
the agent

P
def= (νx)a . (c .0 | x .0 )

which has the free names a and c. The following table describes how the
support of P is calculated:

a b c d

a (a a) · P = P (a b) · P 6= P (a c) · P 6= P (a d) · P 6= P

b (b a) · P 6= P (b b) · P = P (b c) · P 6= P (b d) · P = P

c (c a) · P 6= P (c b) · P 6= P (c c) · P = P (c d) · P 6= P . . .

d (d a) · P 6= P (d b) · P = P (d c) · P 6= P (d d) · P = P

e (e a) · P 6= P (e b) · P = P (e c) · P 6= P (e d) · P = P

f (f a) · P 6= P (f b) · P = P (f c) · P 6= P (f d) · P = P
...

We obtain that the support of P is {a, c}. As can be seen in the columns
for a and b, there are infinitely many atoms which when swapped for these
atoms will change P. The columns for b and d show that the only two atoms
which when swapped with either b or d change P are a and c, and hence
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neither b nor d is in the support for P. Any swapping of x will not have an
effect, as we are working up to alpha-equivalence.

Another key concept of nominal logic is that of freshness, denoted with
]. An atom is fresh for a term if it does not appear in its support. This op-
erator was informally described in Chapter 2, and now receives a formal
definition.

Definition 4.2 (Freshness). A name x fresh for a term T is denoted x ] T.

x ] T
def= x ∉ supp T

Note that both support and freshness are overloaded to be defined for all
atom sorts.

4.3 Binding construct
Nominal sets are equipped with a binding construct, [a].T, which binds the
atom a in the term T . This construct is often referred to as an atom abstrac-
tion. and it must satisfy the following axioms:

∀b, b′ ∈A . ∀a ∈A ′. ∀T ∈X . (b b′) · [a].T = [(b b′) ·a].(b b′) ·T

∀a, b ∈A . ∀T, T ′ ∈X . [a].T = [b].T ′ ⇐⇒
(a = b ∧T = T ′)∨ (b ] T ∧T ′ = (a b) ·T )

The first axiom dictates that name swappings must distribute over the
atom abstraction. The second axiom is at the core of how nominal logic
deals with alpha-equivalences. It provides a very intuitive way to alpha-
convert a term. Pick an arbitrary name b which does not occur in a term
being alpha-converted and then replace the original abstraction with b and
swap all of its occurrences in the term with b.

This method of alpha-conversion requires that all members of the nom-
inal sets have finite support, i.e. only a finite number of atoms. If this is not
the case, it would be impossible to pick a fresh name to alpha-convert into.
All members of all nominal sets in this thesis will have finite support.

4.4 Equivariance
Equivariance represents the ability for atom swappings to distribute over
an operation. For example, a function f is said to be equivariant if for all
arguments x̃, (a, b) · f (x̃) = f ((a, b) · x̃). Similar properties are necessary for
set membership, logical predicates and datatype constructors.
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The reason that this property is important is that in a proof a term must
be replaceable for alpha-equivalent ones. When a term is alpha-converted,
a swapping is applied under the scope of the binder. If a term under the
scope of this binder exists elsewhere in the proof context, i.e. without the
binder, then it must be possible to apply the same swapping to that term as
well – equivariance ensures that this is possible.

Equivariance properties are very easy to work with. Name swappings are
very well behaved in that they rarely change the meaning of what they are
being applied to, as opposed to renaming or substitution where it is not
always easy to see what effect their application will have on the proof envi-
ronment.
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5. Isabelle

Isabelle is a generic interactive theorem prover developed at the University
of Cambridge, and Technische Universität München. It provides the user
with a simple meta-logic and a means to map object logics to the meta-
logic. The appropriate object logic depends on what proofs needs to be
done, and a wide variety are available, including first order logic, Zermelo-
Fraenkel set theory, the logic of computable functions (LCF) and higher or-
der logic. The latter, Isabelle/HOL, is the most developed.

Isabelle/HOL allows the user to define inductive and coinductive pred-
icates and sets, inductively defined datatypes and well-founded recursive
functions. It also has a large infrastructure of proof libraries available for
use for formalisations. An extension to Isabelle/HOL provides support for
nominal logic [76], providing extensive infrastructure for reasoning about
formalisms with binders.

All proofs in this thesis have been made using Isabelle/HOL-Nominal.
The proofs are written in the human readable proof language Isar [79], and
do not require Isabelle expertise. This chapter will cover the Isabelle con-
cepts used in this thesis. For a more in-depth Isabelle tutorial, see [64] and
[79].

5.1 The Isabelle meta-logic
Isabelle’s meta-logic is a higher order logic with three connectives used to
encode standard logical inference rules. There is a universal quantifier (

∧
),

implication (=⇒) and equality (≡).
As an example, the PAR-rule from the process algebra described in Chap-

ter 2 is written in the Isabelle meta-logic as follows:

Inference rule meta-logic

P
α−→ P ′

P | Q
α−→ P ′ | Q

∧
Pα P ′Q. P

α−→ P ′=⇒ P | Q
α−→ P ′ | Q

Universal quantifiers at the top level can be implicitly assumed, and the
meta-logic formula above will be written as:
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P
α−→ P ′=⇒ P | Q

α−→ P ′ | Q

Rules with several assumptions are coded using a sequence of implica-
tions. The SYNC-rule for instance is coded like this:

P
α−→ P ′=⇒ Q

α−→ Q ′=⇒ P | Q
τ−→ P ′ | Q ′

For brevity, these types of rules use the following syntactic sugar:

[[P
α−→ P ′; Q

α−→ Q ′]] =⇒ P | Q
τ−→ P ′ | Q ′

Most commonly, lemmas will be written with a horizontal line separating
assumptions from conclusions throughout this thesis.

5.2 Writing proofs in Isabelle
Isabelle supports two styles for writing proofs. One lets the user provide a
list of proof altering commands, where each command changes the proof
state until the proof is resolved. This method has the advantage that it is rea-
sonably fast, and the user has constant feedback from Isabelle and can de-
duce what the next step of the proof should be. The downside is that the re-
sulting code is not easy to parse, as all it is is a sequence of commands, and
the internal proof state between the commands is not visible. Most com-
monly, this style of proof is called apply scripting, as apply is the name of
the Isabelle command which modifies the proof state.

The alternative is to write proofs using the Isar proof language, which
provides proofs which are significantly easier to read and maintain. Both
styles will be covered in this chapter.

When displaying proofs, we will use the following headers containing
the name of the lemma, the arguments and their types (T1::τ1, . . . ,Tm ::τm),
which assumptions the lemma has (A1, . . . , An) and which conclusion it
proves (C ).

lemma〈name〉 :
fixes T1 ::τ1 and T2 ::τ2 and . . . and Tm ::τm

assumes A1 and A2 and . . . and An

shows C

From the information in this header, Isabelle can deduce the following
proof goal. ∧

T1::τ1 T2::τ2 . . . Tm ::τm . [[A1; A2; . . . ; An]] =⇒ C
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This level of detail for the headers is not strictly necessary as Isabelle
can often infer the types of a proof – type annotations need only be given
when there is an ambiguity in the type inference, but for clarity, this style of
header will always be provided.

5.2.1 Apply scripts
Apply scripts are often referred to as backwards reasoning. They typically
start from the conclusion of a goal, apply an Isabelle command which trans-
forms the conclusion into something closer to the assumptions, and then
repeats the process until the goal is proven.

The following lemma states that the agent a .P can communicate with
the agent a .Q. Every step of the proof is shown, as well as Isabelle’s output
during the scripting. for the rest of this chapter, the type act is the type of
actions, defined in Definition 2.1, and the type toy is the agent datatype
defined in Definition 2.2.

lemma prefixComm:
fixes a :: act and P :: toy and Q :: toy

shows a .P | a .Q
τ−→ P | Q

The only applicable rule to prove the first subgoal is the COMM-rule.

apply(rule semantics.Comm)

Isabelle provides two subgoals that needs to be proven, one at a time.

1. a .P
α−→ P

2. a .Q
α−→ Q

The only applicable rule is the ACTION-rule.

apply(rule semantics.Action)

The first subgoal is discharged.

1. a .Q
a−→ Q

apply(rule semantics.Action)

The second subgoal is discharged, and Isabelle informs that there is nothing
left to prove.

No subgoals!

done

5.2.2 Inductive proofs
Isabelle supports induction on inductively defined sets and predicates. The
operational semantics of the different calculi presented in this thesis will
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

R
α−→ R ′

∧
α P.

Prop (α .P ) α P
ACT

∧
P α P ′ Q.

P
α−→ P ′ Prop P α P ′

Prop (P | Q ) α (P ′ | Q )
PAR1

∧
Q α Q ′ P.

Q
α−→ Q ′ Prop Q α Q ′

Prop (P | Q ) α (P | Q ′ )
PAR2

(
P

α−→ P ′ Prop P α P ′

Q
α−→ Q ′ Prop Q α q ′

)
Prop (P | Q ) τ (P ′ | Q ′ )

SYNC

∧
P α P ′ x.

P
α−→ P ′ Prop P α P ′ x ] α

Prop ((νx)P) α ((νx)P ′)
SCOPE


Prop R α R ′

Figure 5.1: An induction rule of the semantics defined in Figure 2.4. The rule does

induction on the transition R
α−→ R ′ to prove the predicate Prop. Each inductive

case shares the name of the semantic rule which it represents.
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be encoded as inductively defined predicates. As an example, the induction
rule for the semantics of the process algebra defined in chapter 2 can be
found in Figure 5.1.

This induction rule does induction over the transition Prop R α R ′ to
prove the logical proposition Prop, which takes two agents and an action as
argument. One inductive case is given for every rule of the semantics. The
occurrence of Prop in the assumptions of these cases denotes the induction
hypothesis.

When using this induction rule, any assumptions of the goal will be
present for each instance of the induction hypothesis as well – in order to
use the induction hypothesis, these assumptions must first be proven. The
following lemma demonstrates.

lemma freshDerivative:
fixes P :: toy and α :: act and P ′ :: toy and y :: name

assumes P
α−→ P ′ and y ] P

shows y ] P ′
using assms

Both assumptions are needed for the induction. The transition P
α−→ P ′

is what we are doing induction over, and y ] P is an extra assumption for
the induction. We begin by applying the induction rule using the following
Isabelle command:

apply(induct rule: semantics ′.induct)

One subgoal is created for every inductive case, note the occurrence of
the induction hypothesis y ] P =⇒ y ] P ′ in each case. The COMM-case
(case 4) has two instances of the induction hypothesis as two transitions
are present in the premise of the rule.

1.
∧
α P. y ] α .P =⇒ y ] P

2.
∧

P α P ′ Q. [[P
α−→ P ′; y ] P =⇒ y ] P ′; y ] P | Q ]] =⇒ y ] P ′ | Q

3.
∧

Q α Q ′ P. [[Q
α−→ Q ′; y ] Q =⇒ y ] Q ′; y ] P | Q ]] =⇒ y ] P | Q ′

4.
∧

P α P ′ Q Q ′.
[[P

α−→ P ′; y ] P =⇒ y ] P ′; Q
α−→ Q ′; y ] Q =⇒ y ] Q ′; y ] P | Q ]] =⇒ y ]

P ′ | Q ′

5.
∧

P α P ′ x. [[P
α−→ P ′; y ] P =⇒ y ] P ′; x ] α; y ] (νx)P]] =⇒ y ] (νx)P ′

apply(auto simp add: abs-fresh)

Isabelle manages to solve all of the subgoals automatically with a heuris-
tic called auto. Most Isabelle heuristics can be augmented with specific
rules. In this case, the rule abs-fresh takes care of possible cases for the as-
sumption y ] (νx)P in subgoal 5 – either y = x, or y 6= x and y ] P.

No subgoals!

done
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5.2.3 Inversion proofs
Proofs by case analysis are commonly referred to as inversion proofs. Given

a transition P
α−→ P ′, an inversion rule will look at what transitions are ac-

tually possible by looking at the structure of P. They differ from induction
rules in that they there is no induction hypothesis, even if an operator oc-
curs in the premise of an inference rule, and the question they answer is:

What set of inference rule could have made the transition P
α−→ P ′ possi-

ble?
In this thesis, the most common use of inversion rules will be in the con-

gruence proofs – that bisimulation is preserved by all operators of the cal-
culus.

The following lemma proves that simulation is preserved by the action
prefix.

lemma simActPres:
fixes P :: toy and Q :: toy and α :: act and R :: (toy × toy) set

assumes (P, Q) ∈ R

shows α .P ,→R α .Q

The first step is to unfold the definition of simulation

using assms
apply(auto simp add: simulation-def )

1.
∧
β R. [[(P, Q) ∈ R; α .Q

β−→ R]] =⇒ ∃P ′. α .P
β−→ P ′∧ (P ′, R) ∈ R

The next step is to do inversion over the transition α .Q
β−→ R and see

what possible transitions it can do.

apply(erule semantics ′.cases)

1.
∧
β R γ T .

[[(P, Q) ∈ R; α .Q = γ .T ; β = γ; R = T ]] =⇒ ∃P ′. α .P
β−→ P ′∧ (P ′, R)

∈ R

2.
∧
β R Q1 γ Q1

′ Q2.

[[(P, Q) ∈ R; α .Q = Q1 | Q2 ; β = γ; R = Q1
′ | Q2 ; Q1

γ−→ Q1
′]]

=⇒ ∃P ′. α .P
β−→ P ′∧ (P ′, R) ∈ R

3.
∧
β R Q2 γ Q2

′ Q1.

[[(P, Q) ∈ R; α .Q = Q1 | Q2 ; β = γ; R = Q1 | Q2
′ ; Q2

γ−→ Q2
′]]

=⇒ ∃P ′. α .P
β−→ P ′∧ (P ′, R) ∈ R

4.
∧
β R Q1 γ Q1

′ Q2 Q2
′.
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

R
β−→ R ′

∧
α P.

R = α .P β = α R ′= P

Prop
ACT

∧
P α P ′ Q.

R = P | Q β = α R ′= P ′ | Q P
α−→ P ′

Prop
PAR1

∧
Q α Q ′ P.

R = P | Q β = α R ′= P | Q ′ Q
α−→ Q ′

Prop
PAR2

P α P ′ Q Q ′.

(
R = P | Q β = τ R ′= P ′ | Q ′

P
α−→ P ′ Q

α−→ Q ′

)
Prop

SYNC

P α P ′ x.

(
R = (νx)P β = α R ′= (νx)P ′

P
α−→ P ′ x ] α

)
Prop

SCOPE


Prop

Figure 5.2: The inversion rule for the semantics of the process algebra described in

Figure 2.4. The rule does inversion on the transition R
α−→ R ′ to prove the predi-

cate Prop. Each inversion case introduces equality constraints for R,α, and R ′ such
that their structure matches the requirements of the semantic rules. As for the in-
duction rule, the inversion cases share the names of the semantic rules which they
represent.
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[[(P, Q) ∈ R; α .Q = Q1 | Q2 ; β = τ; R = Q1
′ | Q2

′ ; Q1
γ−→ Q1

′; Q2
γ−→

Q2
′]]

=⇒ ∃P ′. α .P
β−→ P ′∧ (P ′, R) ∈ R

5.
∧
β R T γ T ′ x.

[[(P, Q) ∈ R; α .Q = (νx)T ; β = γ; R = (νx)T ′; T
γ−→ T ′; x ] γ]]

=⇒ ∃P ′. α .P
β−→ P ′∧ (P ′, R) ∈ R

The inversion rule provides five cases, but only case number 1 is appli-
cable since the other cases have trivially false equality constraints in the
assumptions.

apply(auto simp add: toy.inject)

1. (P, Q) ∈ R =⇒ ∃P ′. α .P
α−→ P ′∧ (P ′, Q) ∈ R

The lemma toy.inject proves and disproves equality of agents, and it re-
moves four of the five cases, leaving the ACT-case which is provable from
the ACT-rule and the assumption that (P, Q) ∈ R

apply(blast intro: Action)

No subgoals!

done

This inversion rule works very well, as long as no terms in the case analy-
sis contain binders. Consider the SCOPE-case in the rule in Figure 5.2 if the
term R has the form (νy)Q. The equality constraint in the assumption will
then be (νy)Q = (νx)P, and the axioms of nominal logic will provide two
cases – one where x = y and one where x 6= y and Q = (x y) · P.

To do these alpha-equivalence cases in every proof will quickly boil down
to tediously detailed proofs which push name swappings back and forth,
and would not provide the abstraction level needed when doing proofs.
How Nominal Isabelle circumvents this problem will be described in sec-
tion 5.3.

5.2.4 Coinductive proofs
All bisimulations in this thesis are defined using coinductive definitions.
When proving that two agents are bisimilar, one needs to find a candidate
relation containing the two agents, and there must be no way that any two
members of this candidate set can fall out of the set by applying the rules
that form the coinductive definition. One coinduction rule for bisimulation
looks as follows:
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(P, Q) ∈ X

∧
P Q.

(P, Q) ∈ X

P ,→X Q
SIMULATION

∧
P Q.

(P, Q) ∈ X

(Q, P) ∈ X
SYMMETRY

P ∼ Q

In order to prove that P and Q are bisimilar, one must find a candidate
relation X such that X is symmetric, and that for all agents P and Q in X

there is no way for P to simulate Q such that the derivatives fall outside of
X .

Note that the SYMMETRY case can also be written as X ⊆ X −. This is
shorter, easier to read, but a bit inconvenient to work with in a theorem
prover – when applying the coinduction rule, the first thing that Isabelle
will do is to unfold the definition of ⊆ to become what is declared in the
SYMMETRY case. When writing rules for a theorem prover it is generally
good practice to write them in such a way that the theorem prover’s au-
tomatic heuristics cannot simplify the rule any further.

The following lemma illustrates, by proving that bisimulation is reflexive.

lemma bisimReflexive:
fixes P :: toy
shows P ∼ P

apply(coinduct rule: bisimCoinduct[where X=Id])

By setting X to the identity relation, we get the following three subgoals.

1. (P, P) ∈ Id
2.

∧
P Q. (P, Q) ∈ Id =⇒ P ,→I d Q

3.
∧

P Q. (P, Q) ∈ Id =⇒ (Q, P) ∈ Id

Case 1 and 3 follow trivially from the definition of the identity relation, and
case 2 follows from the definition of ,→.

apply(auto simp add: simulation-def )

No subgoals!

done

There are many variants of coinductive proofs, and sometimes more
powerful rules than the one presented above are necessary. These rules
will be presented throughout the thesis as they are needed.
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5.3 Nominal logic in Isabelle
Isabelle/HOL-Nominal is an extension of Isabelle/HOL, the most
developed logical theory in Isabelle. When writing proofs in HOL-Nominal,
often referred to as Nominal Isabelle, the user has access to all the logical
infrastructure present in HOL.

This section will describe how Nominal Isabelle is used to reason about
calculi with binders, and also provide the theoretical connection from
Chapter 4.

5.3.1 Atom swapping and permutations
Nominal Isabelle provides support for creating nominal datatypes. A nom-
inal datatype can be viewed as a nominal set, described in Section 4.1, and
Nominal Isabelle uses type classes to add the requirements of nominal sets
to the standard Isabelle datatypes. It is also possible to define new nominal
datatypes. At the core of the formalisation is the atom type. An atom type
contains a countably infinite number of atoms, which are used as building
blocks when building nominal datatypes, and which can be bound using a
binding construct.

For each atom type, a swapping function swap is defined which is defined
exactly as in nominal logic. A permutation is then defined as a list of pairs
of names – a permutation function is then created which recurses over the
list and applies the pairs as swappings one pair at a time. Since permuta-
tions are lists, we can use the standard library functions on lists to reason
about them. More specifically, the empty list [] is the empty permutation, a
swapping can be appended to a permutation using the #-operator, and two
permutations can be appended using the @-operator.

For all members c of an atom type A the following must hold:

[] · c = c

(a, b) # p · c = swap (a, b) (p · c)

swap (a, b) c = (if a = c then b else if b = c then a else c)

infinite A

These axioms dictate that the empty list must be the identity permuta-
tion, that permutations and name swappings operate in the desired way,
and that the number of atoms have to be countably infinite.

There is also notion of permutation equality.

Definition 5.1. Two permutations p and q are said to be equivalent if when
applied to any atom, have the same effect.

p ∼= q
def= ∀a. p · a = q · a
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A type is a permutation type if all of its members x meet the following
constraints.

[] · x = x

(p @ q) · x = p · q · x

p ∼= q =⇒ p · x = q · x

To check whether or not a type is a permutation type, a permutation
function is introduced, which typically distributes over all the components
of a type, until it reaches the atoms, and performs the permutations there.
Most of the commonly used Isabelle datatypes have been proven to be per-
mutation types. Isabelle’s support for function overloading makes this pro-
cess seamless.

The inverse of a permutation p− is obtained by reversing the permutation
list p.

Lemma 5.2. A permutation p is canceled by its inverse p−.

p · p− · x = x

p− · p · x = x

5.3.2 Support and freshness
With the permutations in place, support and freshness can be defined just
as they are for nominal logic.

Definition 5.3 (Support). The support of the term T is denoted supp T.

supp T
def= {a : infinite {b : (a b) · T 6= T }}

Note that every atom type will yield its own support function. Also, when
working with support in lemmas it is often necessary to provide proper type
annotation. Isabelle will not automatically be able to determine the atom
type of an expression such as supp x, unless it is made clear from another
part of the proof context.

Freshness is then defined in the standard way.

Definition 5.4 (Freshness). The name x fresh for the term T is denoted x ] T.

x ] T
def= x ∉ supp T
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5.3.3 Atom abstraction
In nominal logic, the existence of an atom abstraction function is axioma-
tised, in Isabelle an abstraction function is defined which given an atom
and a permutation type creates an atom abstraction.

The constructors nSome and nNone are constructors for a local option
datatype in Nominal Isabelle. as Nominal Isabelle needs to be able to dis-
tinguish these instances of the option type from the ones provided by the
user.

Definition 5.5 (Atom abstraction). A name a bound in the term T is denoted
[x].T

[a].T
def=

λb. if b = a then nSome T else if b ] T then nSome (a b) · T else nNone

From this definition, the axioms for nominal logic can be derived and
need not be postulated.

Lemma 5.6.

p · [a].x = [(p · a)].(p · x)

([a].x = [b].y) = (a = b ∧ x = y ∨ a 6= b ∧ x = (a b) · y ∧ a ] y)

5.3.4 Nominal datatypes
Isabelle/HOL has support for creating inductively defined datatypes. The
nominal package expands these datatypes to include types with binders.
A user must declare the atom types needed for the formalisation. Isabelle
will then automatically create swapping functions, and a host of lemmas
designed to reason about freshness, support, and permutations. Nominal
datatypes are defined in much the same way as regular datatypes in func-
tional programming languages. The binding occurrences of atom types are
enclosed by « and ».

nominal_datatype act= Action name

| Tau

nominal_datatype toy = ToyNil

| Action act toy

| Par toy toy

| Res "«name» toy"
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From this definition, Isabelle will automatically create rules to reason
about freshness and injectivity of the nominal datatype.

Lemma 5.7. The following equalities are proven automatically about fresh-
ness of the process algebra.

a ] 0 ⇔ True

a ] α .P ⇔ a ] α ∧ a ] P

a ] P | Q ⇔ a ] P ∧ a ] Q

a ] (νx)P ⇔ a ] [x].P

Note how the freshness for terms with binders simplify to their corre-
sponding atom abstraction.

Lemma 5.8. The following are the injectivity lemmas proven for the nominal
datatype.

α .P = β .Q ⇔ α = β ∧ P = Q

P | R = Q | S ⇔ P = Q ∧ R = S

(νx)P = (νy)Q ⇔ [x].P = [y].Q

Again, the terms with binders are simplified to their corresponding atom
abstractions. From there, any further proof regarding alpha-equivalence or
alpha-conversions can be done.

5.3.5 Induction rules
Isabelle automatically creates induction and inversion rules for inductively
defined datatypes, predicates and sets. It will do this for terms with binders
as well, but with the drawback that any new binders introduced by the
induction rule will not necessarily be sufficiently fresh according to the
Barendregt variable convention; a name will just be as fresh as the rule
dictates, and all possible proof contexts cannot be known beforehand.

Nominal Isabelle introduces the notion of avoiding contexts of atoms.
When applying an induction rule in Nominal Isabelle the user can provide
a finite set of atoms with which any newly occurring bound name may not
clash; we say that the bound names avoid this context. The automatically
generated induction rule for the process calculus defined in chapter 2 can
be found in Figure 5.3.

The avoiding context C denotes the names that freshly generated
bound names must not clash with; in this case the bound name x in the
SCOPE-rule. Without this style of rules, a multitude of tedious manual
alpha-conversions would have to be made in inductive proofs.

An example of an application of this rule can be found in the next section.
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

R
β−→ R ′

∧
α P C .

Prop C (α .P ) α P
ACT

∧
P α P ′ Q C .

P
α−→ P ′ ∧

C . Prop C P α P ′

Prop C (P | Q ) α (P ′ | Q )
PAR1

∧
Q α Q ′ P C .

Q
α−→ Q ′ ∧

C . Prop C Q α Q ′

Prop C (P | Q ) α (P | Q ′ )
PAR2

∧
P α P ′ Q Q ′ C .

(
P

α−→ P ′ ∧
C . Prop C P α P ′

Q
α−→ Q ′ ∧

C . Prop C Q α Q ′

)
Prop C (P | Q ) τ (P ′ | Q ′ )

SYNC

∧
P α P ′ x C .

(
P

α−→ P ′ ∧
C . Prop C P α P ′

x ] α x ] C

)
Prop C ((νx)P) α ((νx)P ′)

SCOPE


Prop C R β R ′

Figure 5.3: The nominal induction rule for the semantics described in Figure 2.4
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

R
β−→ R ′

∧
α P.

R = α .P β = α R ′= P

Prop
ACT

∧
P α P ′ Q.

R = P | Q β = α R ′= P ′ | Q P
α−→ P ′

Prop
PAR1

∧
Q α Q ′ P.

R = P | Q β = α R ′= P | Q ′ Q
α−→ Q ′

Prop
PAR2

P α P ′ Q Q ′.

(
R = P | Q β = τ R ′= P ′ | Q ′

P
α−→ P ′ Q

α−→ Q ′

)
Prop

SYNC

∧
P α P ′.

 (
x ] R x ] β x ] R ′)

R = (νx)P ∧ β = α ∧ R ′= (νx)P ′∧ P
α−→ P ′∧ x ] α


Prop

SCOPE


Prop

Figure 5.4: The nominal inversion rule for the semantics described in Figure 2.4

5.3.6 Inversion rules
As was shown in section 5.2.3, the regular inversion rules provided by
Isabelle do not handle binders very well, as the equality constraints with
binders lead to case explosions for the different alpha-variants. The
nominal datatype package has support for an alternative inversion rule
which handles binders more fluently. When inversion is done on a term
with a binder, this binder cannot be chosen to be sufficiently fresh. It has
already been fixed, and any freshness conditions must already have been
established. The power of nominal induction rules, such as the one in
Figure 5.3, is that any new bound name which is introduced can be chosen
in such a way that it is sufficiently fresh, but in an inversion on a transition
with binders, say (νx)P

α−→ P ′, the binder x is already present in the proof
context and must be manually alpha-converted if it is not sufficiently fresh.

The nominal inversion rule provided by Isabelle for our simple process
calculus can be found in Figure 5.4. The case of interest is the SCOPE-case.

65



The binder x is universally quantified by the entire rule, which requires it
to be instantiated by the user prior to invoking the inversion rule. A set of
freshness conditions are imposed on this binder – it may not clash with the
originating process, its action nor its derivative.

The following lemma proves that simulation is preserved by restriction.

lemma simResPres:
fixes P :: toy
and Q :: toy
and R :: (toy × toy) set
and x :: name

assumes P ,→R Q
and

∧
P Q x. (P, Q) ∈ R =⇒ ((νx)P, (νx)Q) ∈ R

shows (νx)P ,→R (νx)Q

The first step is to unfold the definition of simulation, but only in the con-
clusion of the goal

apply(simp add: simulation-def , auto)

1.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′) ∈ R

In order to use the inversion rule, sufficient freshness conditions of x must
be known. These are assumed for now, and will be proven later.

apply(subgoal-tac x ] α ∧ x ] Q ′)

1.
∧
α Q ′. [[(νx)Q

α−→ Q ′; x ] α ∧ x ] Q ′]] =⇒ ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′) ∈

R

2.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] α ∧ x ] Q ′

The inversion rule can now be used, with the binder set to x

apply(erule-tac semanticsCases[where x=x])

1.
∧
α Q ′β R.
[[x ] α ∧ x ] Q ′; (νx)Q = β .R; α = β; Q ′= R]]

=⇒ ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′) ∈ R

2.
∧
α Q ′ Q1 β Q1

′ Q2.

[[x ] α ∧ x ] Q ′; (νx)Q = Q1 | Q2 ; α = β; Q ′= Q1
′ | Q2 ; Q1

β−→ Q1
′]]

=⇒ ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′) ∈ R

3.
∧
α Q ′ Q2 β Q2

′ Q1.

[[x ] α ∧ x ] Q ′; (νx)Q = Q1 | Q2 ; α = β; Q ′= Q1 | Q2
′ ; Q2

β−→ Q2
′]]

=⇒ ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′) ∈ R

4.
∧
α Q ′ Q1 β Q1

′ Q2 Q2
′.
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[[x ] α ∧ x ] Q ′; (νx)Q = Q1 | Q2 ; α = τ; Q ′= Q1
′ | Q2

′ ; Q1
β−→ Q1

′; Q2
β−→ Q2

′]]
=⇒ ∃P ′. (νx)P

α−→ P ′∧ (P ′, Q ′) ∈ R

5.
∧
α Q ′ R β R ′.
[[x ] α ∧ x ] Q ′;
[[x ] (νx)Q; x ] α; x ] Q ′]]
=⇒ (νx)Q = (νx)R ∧ α = β ∧ Q ′= (νx)R ′∧ R

β−→ R ′∧ x ] β]]

=⇒ ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′) ∈ R

6.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] α ∧ x ] Q ′

The inversion rule provides five cases, where only the SCOPE-case is appli-
cable as the other ones have false equality constraints.

apply(auto simp add: abs-fresh alpha toy.inject)
thm toy.inject

1.
∧
β R ′. [[Q

β−→ R ′; x ] β]] =⇒ ∃P ′. (νx)P
β−→ P ′∧ (P ′, (νx)R ′) ∈ R

2.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] α

3.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] Q ′

The injectivity rules remove all but one case, and the two assumptions that
were previously postulated.

using assms
apply(simp add: simulation-def , blast intro: Res)

1.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] α

2.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] Q ′

By unfolding the definition of simulation in the assumptions, the case is
proven with the SCOPE-rule and the C1 assumption of the lemma. The re-
maining postulated freshness conditions are discharged using lemma 2.9.

apply(force dest: freshDerivative ′ simp add: abs-fresh)

1.
∧
α Q ′. (νx)Q

α−→ Q ′=⇒ x ] Q ′

apply(force dest: freshDerivative ′ simp add: abs-fresh)

No subgoals!

done

This proof concludes the coverage of the Isabelle apply scripts. They will
not be used any more in this thesis, but they provide an insight in the inner
workings of Isabelle and how the proofs are done. Their main advantage
is that writing small proofs using them takes very little time – the above
proofs took a few minutes to write – but they do not scale well. Isabelle has
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support for the structured proof language Isar, which will be covered in the
next section.

5.3.7 Equivariance properties
In order to create the tailor made induction and inversion rules for induc-
tively defined predicates, all predicates in their construction must be equiv-
ariant. The reason for this is that when alpha-conversions are done, atom
swappings appear under the scope of the binders, and it must be possible to
propagate these swappings through other parts of the definition where the
terms under the binder occur. Isabelle has automatic support for proving
equivariance of inductively defined predicates, but the user can also create
equivariance lemmas when needed. These will be stored in a separate class
of lemmas which Isabelle can use internally when needed.

5.4 Writing human readable proofs
Writing proofs with apply scripts has several drawbacks. First of all the
proofs are hard to read. A large proof can easily have several hundred lines
of code, the extreme ones even thousands, and figuring out the proof state
in the middle of the proof just by looking at a list of apply-commands is
nearly impossible. Secondly, apply scripts are not very robust. Isabelle is a
tool in constant development, and it is not uncommon for the automatic
heuristics to perform slightly differently between different releases. If
a heuristic in a newer version of Isabelle suddenly proves more than
previously, the proof state mid script will not be what was originally
anticipated, and the proof will fail. Finally, as the complexity of proofs
increase, so does their search space as more information is available. The
automatic heuristics in Isabelle will quickly grind to a halt exploring dead
ends in the proof tree.

To circumvent this problem, the proof language Isar was introduced,
which tackles all of these issues. Firstly, the proofs are more readable.
A well written Isar proof can be read and understood without running
Isabelle in the background. Secondly, it divides the proof into manageable
chunks. Even though every subgoal in an Isar proof can be proven using
apply scripts in the standard way, the idea is that all subgoals should be
proven by one line proofs making them far less likely to break in the version
changes. Finally, as the subgoals are much smaller than the complete
proof state, the automatic heuristics have a much more manageable task
to handle, making them more effective.

The rest of this section will redo most of the proofs in this chapter with
Isar. Even though these proofs are simple, and can be proved using one line
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by Isabelle, they demonstrate the readability of Isar. The following is an Isar
proof of the lemma prefixComm, found on page 53, and proves that a .P
and a .Q can synchronise.

lemma prefixCommIsar:
fixes a :: act and P :: toy and Q :: toy

shows a .P | a .Q
τ−→ P | Q

proof −
have a .P

a−→ P by(rule semantics.Action)

moreover have a .Q
a−→ Q by(rule semantics.Action)

ultimately show a .P | a .Q
τ−→ P | Q by(rule semantics.Comm)

qed

The keyword have tells Isabelle what to prove, and the by command how
to prove it. The by-command can be replaced by an apply script, but as
previously mentioned should be a one line proof or a very short apply
script.

The moreover keyword collects what was proven on the previous line and
when the command ultimately is found, all the collected propositions are
used as assumptions for the current proof.

Isar Code Meta-logic formula when proving D

have A by . . .

moreover . . .
...

have B by . . .

moreover . . .
...

have C by . . .

ultimately have/show D

by . . .

[[A; B; C]] =⇒ D

Note that other things can be proven between the moreover commands,
where the vertical dotted lines are, but they will not be added to the as-
sumption chain.

The keyword show tells Isabelle that the goal being proven now is the
actual main goal of the lemma. Isabelle will check that what is written ac-
tually corresponds to what Isabelle expects to be proving, and that no ille-
gal assumptions have been made along the way. Instead of writing out the
predicate to be proven, the keyword ?thesis can be used.
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5.4.1 Inductive proofs
When doing inductive proofs in Isar the user gets access to each inductive
case separately. As was seen earlier, Isabelle can do the following proof with
one line, but doing it without any automation nicely demonstrates most of
the Isar constructs that will be used throughout the thesis. The apply script
proof can be found on page 55.

lemma freshDerivativeIsar:
fixes P :: toy and α :: act and P ′ :: toy and y :: name

assumes P
α−→ P ′ and y ] P

shows y ] P ′
using assms
proof(nominal-induct avoiding: y rule: semantics ′.strong-inducts)

case(Action α P)
from 〈y ] α .P 〉 show y ] P by simp

next
case(Par1 P α P ′ Q)
from 〈y ] P | Q〉 have y ] P and y ] Q by auto
from 〈y ] P〉 have y ] P ′ by(rule Par1)
with 〈y ] Q〉 show y ] P ′ | Q by simp

next
case(Par2 Q α Q ′ P)
from 〈y ] P | Q〉 have y ] P and y ] Q by auto
from 〈y ] Q〉 have y ] Q ′ by(rule Par2)
with 〈y ] P〉 show y ] P | Q ′ by simp

next
case(Comm P α P ′ Q Q ′)
from 〈y ] P | Q〉 have y ] P and y ] Q by auto
from 〈y ] P〉 have y ] P ′ by(rule Comm)
moreover from 〈y ] Q〉 have y ] Q ′ by(rule Comm)
ultimately show y ] P ′ | Q ′ by simp

next
case(Res P α P ′ x y)
from 〈y ] (νx)P〉 〈x ] y〉 have y ] P

by(simp add: abs-fresh at-fresh[OF at-name-inst])
hence y ] P ′ by(rule Res)
thus y ] (νx)P ′ by(simp add: abs-fresh)

qed

A few new keywords were introduced in this example. First of all, when
applying the induction rule, Isabelle is told to avoid the name y. The result
of this can be found in the SCOPE-case where the predicate x ] y can be
found in the assumptions.

The hence and the thus keywords are variants of from and show respec-
tively, but they add the previously proved predicate to the assumptions of
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α .P
β−→ P ′ Prop α P

Prop β P ′ ACT



P | Q
α−→ R

∧
P ′.

P
α−→ P ′

Prop α (P ′ | Q )

∧
Q ′.

Q
α−→ Q ′

Prop α (P | Q ′ )

∧
α P ′ Q ′.

P
α−→ P ′ Q

α−→ Q ′

Prop τ (P ′ | Q ′ )


Prop α R

PAR

[
(νx)P

α−→ R
∧

P ′.
P

α−→ P ′ x ] α

Prop ((νx)P ′)

]
Prop R

SCOPE

Figure 5.5: Three inversion rules, one rule for every operator

the current subgoal. The with keyword works like hence except that it not
only adds the previously proved predicate, but also a list of predicates to the
assumptions of the current subgoal.

Finally, as in the previous proofs, the predicates to be proven are explic-
itly spelled out after a show or thus command. If the goal is long and com-
plex, the keyword ?case can be used instead, but when possible it will be
spelled out for clarity. In short, ?case is the main goal of the current induc-
tive case of an inductive proof, whereas ?thesis is the main goal of a regular
proof.

5.4.2 Inversion proofs
The inversion rules provided by Isabelle simplify case analysis of the transi-
tion systems significantly, but they do not lend themselves well to Isar style
proofs. When doing inductive proofs, Isabelle provides support for instanti-
ating the different cases, and giving shorthand notation to access subgoals
and assumptions. This only works if the induction rule is the only rule ap-
plied. If the user applies any of Isabelle’s automatic heuristics to the sub-
goals the shorthand notation, and the ability to retrieve the inductive cases
by name, are lost. The reason for this is that it is not possible to determine
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how the automatic heuristics will affect the subgoals in the general case;
cases may be split into several sub cases, be simplified, or be proven com-
pletely.

This style of proofs do work for inversion as well, but the structure of the
inversion rules requires the user to manually reason about the equality con-
straints provided for each case, giving unwieldy proofs. Isabelle’s automatic
heuristics can unify these constraints, but in doing so, the case instantia-
tions and shorthand notations are lost. Moreover, in the nominal case all
binders for every rule must be instantiated before the rule is applied, even
the ones which are not present in the transition being analysed.

The solution to this problem is to create specific inversion rules for the
transitions that are of interest. There is generally one rule per operator in
the calculus. The rules in Figure 5.5 are directly derived from the inversion
rule in Figure 5.4, all by one line proofs. By using these rules as induction
rules, the infrastructure for doing inductive proofs is made available for in-
version proofs as well.

The following is the Isar version of simActPres lemma, found on page 56,
and proves that simulation is preserved by the action prefix.

lemma isarSimActPres:
fixes P :: toy and Q :: toy and R :: (toy × toy) set and α :: act

assumes (P, Q) ∈ R

shows α .P ,→R α .Q
proof(auto simp add: simulation-def )

fix α ′ Q ′

assume α .Q
α ′−→ Q ′

thus ∃P ′. α .P
α ′−→ P ′∧ (P ′, Q ′) ∈ R

proof(induct rule: actionCases)
case cAction
have α .P

α−→ P by(rule Action)

thus ∃P ′. α .P
α−→ P ′∧ (P ′, Q) ∈ R using 〈(P, Q) ∈ R〉

by blast
qed

qed

At the end of this proof the using command is used to add the predicate
(P, Q) ∈ R to the assumptions of the subgoal. It works similarly to the with
keyword in that it adds a list of predicates to the assumptions of a goal.

In the following proof, the concept of a label is introduced. In previous
proofs, when list of predicates have been given as arguments to a goal, using
the using or with commands for example, this has been done inline with
the whole predicates written explicitly in the list. For short predicates this
adds to readability, but for larger ones it detracts from it, and it would also
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be difficult to write and maintain proofs if all large predicates were to be
retyped every time they were used. When a predicate is proved, it can be
preceded by an alphanumeric label and a colon. This label can then be used
later in the proof to represent the predicate in a compact way.

The following proof is an Isar version of the simResPres lemma, found on
page 66, which proves that simulation is preserved by restriction.

lemma isarSimResPres:
fixes P :: toy and Q :: toy and R :: (toy × toy) set and x :: name

assumes PSimQ: P ,→R Q
and A1:

∧
P Q x. (P, Q) ∈ R =⇒ ((νx)P, (νx)Q) ∈ R ′

shows (νx)P ,→R ′ (νx)Q
proof(auto simp add: simulation-def )

fix α Q ′′

assume (νx)Q
α−→ Q ′′

thus ∃P ′. (νx)P
α−→ P ′∧ (P ′, Q ′′) ∈ R ′

proof(induct rule: resCases)
case(cRes Q ′)
from PSimQ 〈Q

α−→ Q ′〉
obtain P ′ where PTrans: P

α−→ P ′ and (P ′, Q ′) ∈ R

by(auto simp add: simulation-def )

from PTrans 〈x ] α〉 have (νx)P
α−→ (νx)P ′ by(rule Res)

moreover from 〈(P ′, Q ′) ∈ R〉 have ((νx)P ′, (νx)Q ′) ∈ R ′ by(rule A1)

ultimately show ∃P ′. (νx)P
α−→ P ′∧ (P ′, (νx)Q ′) ∈ R ′

by blast
qed

qed

The preservation properties of simulation are usually the most involved
proofs when formalising process algebras, and they will be given much at-
tention in this thesis. Their general structure is the presented here.

5.4.3 Coinductive proofs
Before moving on to an actual coinductive proof we introduce the notion of
a block. A block can intuitively be thought of as an inline lemma. It is always
a good idea to factorise proofs in such a way so that lemmas can be used in
a variety of proof contexts. Nevertheless, it is sometimes desirable to create
inline lemmas when these lemmas are very specific to the proof at hand.

A proof block declares parameters, assumptions and conclusion of a log-
ical predicate in the following manner:
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Isar code meta-logic formula

{

fix a::τ1 b::τ2 c::τ3
...

assume A
...

assume B
...

have C by . . .

}

∧
a::τ1 b::τ2 c::τ3. [[A; B ]] =⇒ C

The fix keyword declares the names, and if necessary the types of the ar-
guments for the lemma. Every occurrence of the assume keyword adds a
premise to the block, and the final proved predicate of the block is its con-
clusion.

In the last section it was proved that bisimulation it reflexive. Proving that
it is also transitive is slightly more involved.

lemma bisimTransitive:
fixes P :: toy and Q :: toy and R :: toy
assumes P ∼ Q and Q ∼ R
shows P ∼ R

proof −
let ?X = ∼ ◦ ∼
— set the candidate relation to the relational composition of bisimulation

with itself
from assms have (P, R) ∈ ?X by auto
thus P ∼ R
proof(coinduct rule: bisimCoinduct)

case(cSim P R)
{

fix P Q R
assume P ∼ Q
hence P ,→∼ Q by(rule bisim.cases) auto
moreover assume Q ∼ R
hence Q ,→∼ R by(rule bisim.cases) auto
ultimately have P ,→?X R by(simp add: simulation-def ) blast

}
— This block provides the following sub-lemma:
—

∧
P Q R. [[P ∼Q;Q ∼ R]] =⇒ P ,→?X R

with 〈(P, R) ∈ ?X 〉 show P ,→?X R by auto
next
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case(cSym P R)
thus (R, P) ∈ ?X by(blast intro: bisim.cases)

qed
qed

5.5 Set comprehension
Set comprehension will be used extensively in this thesis, primarily to
define candidate relations for bisimulations. Sets are generally defined by
constraining values over a logical predicate. For instance, the set

{(x, y) : Prop x y}

represents the pair of all terms x and y such that the predicate Prop x y
holds. There are a few special cases. The set

{(x, y) : True}

represents all possible pairings of the terms x and y as the predicate gener-
ating the set is always true. This is not the same as the set

{(x, y)}

which is just the singleton set with the pair (x, y).
There are two cases where not all the arguments to the predicate are

present in the resulting set – either the extra arguments are already fixed
in the proof environment, or they are quantified within the set comprehen-
sion. The set

{(x, y) : Prop x y z}

represents the set of all pairs of x and y such that the predicate Prop x y z
holds for a term z which is already fixed in the proof environment. If z is
quantified within the set comprehension, this is done explicitly as

{(x, y) : ∀z. Prop x y z}

or

{(x, y) : ∃z. Prop x y z}.
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5.6 Concluding remarks
This chapter is a crash course in Isabelle to enable the reader to parse the
proofs provided in this thesis. It is not complete, but designed to give a
rough idea of how Isabelle operates. The proofs are legible even without
a deeper knowledge of Isabelle, and even though it may not always be clear
how Isabelle internally derives a proof, it should be clear what is being
proved, and which proof structure is used. Any Isabelle proof in this the-
sis is designed to be transferable to a pen-and-paper counterpart, with the
aid of the information provided in this chapter.
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Part II:

The calculus of communicating systems





6. The Calculus of Communicating
Systems

The Calculus of Communicating Systems (CCS) is one of the oldest process
calculus. It was designed around 1980 by Robin Milner and has been an
important stepping stone for later, more advanced process calculi.

A CCS agent communicates with its environment through the use of ac-
tions and coactions. Given an infinite set of action names N , the set of coac-
tions N is defined as {a. a ∈N }. We extend complementation to include all
actions, such that a = a. Additionally, we add a separate internal action, de-
noted by τ, which represents an internal action within an agent.

Labels in CCS are either actions, coactions or τ-actions.

Definition 6.1 (Actions).

α
def= τ

∣∣ a
∣∣ a

CCS processes are defined in the following way:

Definition 6.2 (Agents).

P
def= 0 Nil

α.P Prefix

P + Q Sum

P | Q Parallel

(νx)P Restriction

!P Replication

An agent which has no actions, often called the deadlocked or the empty
agent, is denoted 0. The agent α.P can do the action α and reach the state
P . Two agents P and Q running in parallel are represented by P | Q and
P +Q represents an agent that can do either P or Q nondeterministically. A
name x can be locally bound in an agent P through the use of Restriction,
written (νx)P . The agent !P represents an arbitrary number of instances of
the agent P running in parallel.
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α.P
α−→ P

ACTION
P

α−→ P ′

P + Q
α−→ P ′

SUM1
Q

α−→ Q ′

P + Q
α−→ Q ′

SUM2

P
α−→ P ′

P | Q
α−→ P ′ | Q

PAR1
Q

α−→ Q ′

P | Q
α−→ P | Q ′

PAR2

P
a−→ P ′ Q

a−→ Q ′ a 6= τ

P | Q
τ−→ P ′ | Q ′

COMM
P

α−→ P ′ x ] α

(νx)P
α−→ (νx)P ′

SCOPE

P | !P
α−→ P ′

!P
α−→ P ′

REPL

Figure 6.1: The operational semantics for CCS. A semantics without structural con-
gruence needs symmetric versions of the SUM and PAR rules. Note that the COMM-

rule does not require a symmetric version as a = a.

6.1 Operational semantics
The operational semantics of CCS follows the standard pattern, and the no-
tation P

α−→ P ′ denotes that the agent P can do the action α and reach the
state P ′. The complete semantics, without structural congruence, can be
found in Figure 6.1.

Two agents running in parallel can synchronise. Consider the following
two agents.

P = a.0 and Q = a.0

The agents P and Q have the transitions P
a−→ 0 and Q

a−→ 0
respectively. By putting these two agents in parallel P and Q can still do
their actions individually but they can also synchronise.

P
a−→ 0

P | Q
a−→ 0 | Q

PAR1
Q

a−→ 0

P | Q
a−→ P | 0

PAR2

P
a−→ 0 Q

a−→ 0

P | Q
τ−→ 0 | 0

COMM
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An environment can interact with the above agents over the action a. It is
often desirable to restrict access to the agents to ensure that they only in-
teract with each other and not with some other agent in the environment.
This is achieved by using Restriction.

P
a−→ 0 Q

a−→ 0

P | Q
τ−→ 0 | 0

COMM

(νa)(P | Q)
τ−→ (νa)(0 | 0)

SCOPE

By restricting the name a inside the agents P and Q the outside environ-
ment can no longer communicate with P or Q using a.

Sum is used to encode nondeterministic choice. The agent P +Q can be-
have either as P or Q yielding the following transitions:

P
a−→ 0

P + Q
a−→ 0

SUM1
Q

a−→ 0

P + Q
a−→ 0

SUM2

Replication spawns an arbitrary number copies of an agent and runs
them in parallel. The agent P + Q cannot by itself communicate as it
behaves either as P or Q but by spawning multiple copies they can
communicate. Replication produces an infinite number of possible
transitions, the following example illustrates one possible trace.

P
a−→ 0

P + Q
a−→ 0

SUM1

Q
a−→ 0

P + Q
a−→ 0

SUM2

(P + Q) | !(P + Q)
a−→ 0 | !(P + Q)

PAR1

!(P + Q)
a−→ 0 | !(P + Q)

REPL

(P + Q) | !(P + Q)
τ−→ 0 | (0 | !(P + Q))

COMM

!(P + Q)
τ−→ 0 | (0 | !(P + Q))

REPL

Note that to restrict a in this example, we have to put theν-binder outside
Replication, i.e. !(νx)(P + Q). In the agent (νx)!(P + Q) the name a is local to
each copy of P +Q making synchronisation between the copies impossible.

6.2 Nominal infrastructure
From a formalisation point of view, CCS is not much more difficult than
the example process calculi presented in chapter 2. There are a few more
constructors, and the notion of actions and coactions need to be modeled.
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

R
β−→ R ′

∧
α P C .

Prop C α.P α P
ACT

∧
P α P ′ Q C .

P
α−→ P ′ ∧

C . Prop C P α P ′

Prop C (P + Q) α P ′ SUM1

∧
Q α Q ′ P C .

Q
α−→ Q ′ ∧

C . Prop C Q α Q ′

Prop C (P + Q) α Q ′ SUM2

∧
P α P ′ Q C .

P
α−→ P ′ ∧

C . Prop C P α P ′

Prop C (P | Q) α (P ′ | Q)
PAR1

∧
Q α Q ′ P C .

Q
α−→ Q ′ ∧

C . Prop C Q α Q ′

Prop C (P | Q) α (P | Q ′)
PAR2

∧
P α P ′ Q Q ′ C .

(
P

α−→ P ′ ∧
C . Prop C P α P ′

Q
α−→ Q ′ ∧

C . Prop C Q α Q ′ α 6= τ

)
Prop C (P | Q) (τ) (P ′ | Q ′)

COMM

∧
P α P ′ x C .

(
P

α−→ P ′ ∧
C . Prop C P α P ′

x ] α x ] C

)
Prop C ((νx)P) α ((νx)P ′)

SCOPE

∧
P α P ′C .

P | !P
α−→ P ′ ∧

C . Prop C (P | !P) α P ′

Prop C !P α P ′ REPL


Prop C R β R ′

Figure 6.2: An induction rule of the semantics defined in Figure 6.1. Induction is

done on the transition R
β−→ R ′ to prove the predicate Prop. The freshness context

C represents the finite set of terms with which the bound names of the SCOPE-rule
may not clash. Each inductive case shares the name of the semantic rule which it
represents.
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CCS only has one type of atom, and that is names.

atom_decl name

Actions do not contain any binders, but are created as nominal datatypes
to automatically generate auxiliary lemmas regarding freshness, support
and equivariance.

nominal_datatype act = Action name

| CoAction name

| Tau

CCS agents contain binders through the ν-operator. This binding occur-
rence is declared when creating the nominal datatype.

nominal_datatype ccs = CCSNil

| Action act ccs

| Sum ccs ccs

| Par ccs ccs

| Res "«name» ccs"

| Bang ccs

From these definitions, Isabelle creates the following injectivity rules:

Lemma 6.3. Injectivity rules for actions and agents.

α.P = β.Q ⇔ α = β ∧ P = Q

P + R = Q + S ⇔ P = Q ∧ R = S

P | R = Q | S ⇔ P = Q ∧ R = S

(νx)P = (νy)Q ⇔ [x].P = [y].Q

!P = !Q ⇔ P = Q

The only special case is the one for determining equality of agents with
binders, where the atom abstraction defined in Chapters 4 and 5 is used.

This injectivity lemma can be used to prove the following
alpha-equivalence lemma.

Lemma 6.4. If y ] P then (νx)P = (νy)([(x, y)] · P).

Proof. Follows from Lemma 6.3 and the definition of atom abstraction.

This lemma enables alpha-conversion directly at the level of the agents,
rather than using the underlying nominal layer.
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6.3 Induction rules
The induction rule generated by Isabelle is displayed in Figure 6.2. Given

a transition P
α−→ P ′, the rule will prove a four place predicate of the form

Prop C P α P ′, where C is the context of names to be avoided by any freshly
introduced bound names. The only rule which includes bound names in
CCS is SCOPE.

The induction rule can then be used to prove the following lemma:

Lemma 6.5.
If P

α−→ P ′ and x ] P then x ] α.

If P
α−→ P ′ and x ] P then x ] P ′.

Proof. By induction on the transition P
α−→ P ′ using the induction rule

in Figure 6.2. Isabelle manages to prove all of the inductive cases using its
automatic heuristics.

6.4 Inversion rules
The inversion rule that Isabelle automatically generates can be found in
Figure 6.4. Given a transition R

β−→ R ′ and a proposition Prop to prove, the
inversion rule will generate one case for every semantic rule, with equiv-
alence constraints to unify R, β, and R ′ with the required agents for each
rule.

The SCOPE case behaves differently from the others as it has to reason
about the bound name x. This bound name is not instantiated by the inver-
sion case, as it is not universally quantified along with P , α and P ′, but by
the user before invoking the rule. The constraints set on x is that it is fresh
for R, β and R ′. In this case, the facts x ] R and x ] R ′ will be trivially true
since R = (νx)P and R ′ = (νx)P ′ for some P and P ′.

This rule handles well for apply scripts as Isabelle’s automatic tactics will
handle unification nicely. It does not work as well when working with Isar-
style proofs as the unifications will then either be done by hand, or by Is-
abelle with the tradeoff that much convenient proof infrastructure is lost in
the process.

From this rule it is straightforward to derive custom tailored inversion
rules for the different transition cases of interest. The derived inversion
rules can be found in figure 6.4. The proof for each rule is a one line proof
using the standard inversion rule, with the exception of the SCOPE case
which requires a proof that x ] α using Lemma 6.5.
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

R
β−→ R ′

∧
α P.

R = α.P β = α R ′= P

Prop
ACT

∧
P α P ′ Q.

R = P + Q β = α R ′= P ′ P
α−→ P ′

Prop
SUM1

∧
Q α Q ′ P.

R = P + Q β = α R ′= Q ′ Q
α−→ Q ′

Prop
SUM2

∧
P α P ′ Q.

R = P | Q β = α R ′= P ′ | Q P
α−→ P ′

Prop
PAR1

∧
Q α Q ′ P.

R = P | Q β = α R ′= P | Q ′ Q
α−→ Q ′

Prop
PAR2

P α P ′ Q Q ′.

(
R = P | Q β = τ R ′= P ′ | Q ′

P
α−→ P ′ Q

α−→ Q ′ α 6= τ

)
Prop

COMM

∧
P α P ′.

 (
x ] R x ] β x ] R ′)

R = (νx)P ∧ β = α ∧ R ′= (νx)P ′∧ P
α−→ P ′∧ x ] α


Prop

SCOPE

∧
P α P ′.

R = !P β = α R ′= P ′ P | !P
α−→ P ′

Prop
REPL


Prop

Figure 6.3: An inversion rule of the semantics defined in Figure 6.1. Inversion is

done on the transition R
β−→ R ′ to prove the predicate Prop. The bound name x in

the SCOPE-case is quantified for the entire lemma, and must be proven to be fresh
for R, β, and R ′ in order to use the inversion rule. Each inductive case shares the
name of the semantic rule which it represents.
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α.P
β−→ P ′ Prop α P

Prop β P ′ ACTION

[
P + Q

α−→ R
∧

P ′.
P

α−→ P ′

Prop P ′
∧

Q ′.
Q

α−→ Q ′

Prop Q ′

]
Prop R

SUM



P | Q
α−→ R

∧
P ′.

P
α−→ P ′

Prop α (P ′ | Q)

∧
Q ′.

Q
α−→ Q ′

Prop α (P | Q ′)

∧
P ′ Q ′ a.

P
a−→ P ′ Q

a−→ Q ′ a 6= τ α = τ

Prop (τ) (P ′ | Q ′)


Prop α R

PAR

[
(νx)P

α−→ P ′ ∧
P ′.

P
α−→ P ′ x ] α

Prop ((νx)P ′)

]
Prop P ′ SCOPE

Figure 6.4: Inversion rules for the operational semantics
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

!P
β−→ R

∧
α P ′C .

P
α−→ P ′

Prop C (P | !P) α (P ′ | !P)
PAR1

∧
α P ′C .

!P
α−→ P ′ ∧

C . Prop C !P α P ′

Prop C (P | !P) α (P | P ′)
PAR2

∧
α P ′ P ′′ C .

(
P

α−→ P ′ !P
α−→ P ′′∧

C . Prop C !P α P ′′ α 6= τ

)
Prop C (P | !P) (τ) (P ′ | P ′′)

COMM

∧
α P ′C .

P | !P
α−→ P ′ ∧

C . Prop C (P | !P) α P ′

Prop C !P α P ′ REPL


Prop C !P β R

Figure 6.5: Custom induction rule for Replication. Induction is done on the transi-

tion !P
α−→ P ′ to prove the predicate Prop. The rule has one case for Replication,

and one case for every semantic rule for Parallel.

6.5 Induction on replicated agents
Replication is the only operator which appears in the premise of its infer-
ence rule. Therefore, even though it would be possible to generate an inver-
sion rule for it, that rule would not be very useful. An inversion on the tran-

sition !P
α−→ P ′ would yield that this transition was derived from P | !P

α−→
P ′, where inversion on this transitions provides three cases, one for PAR1,
PAR2 and COMM respectively. The cases for PAR2 and COMM have the tran-

sition !P
α−→ P ′ in their derivations, causing a circularity.

Proofs involving Replication typically are by induction on the length of
the inference chain, rather than structural inversion of the transitions. A
custom made induction rule for Replication can be found in Figure 6.5.
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7. Strong bisimilarity

Bisimilarity for CCS is defined in the same manner as in Section 2.4. Two
agents P and Q are bisimilar if for every actionα that P can do, Q can mimic
that action and their resulting derivatives are bisimilar, and vice versa. A
general strategy to determine whether or not two agents are bisimilar is to
find a relation which contains the two agents, and for every action that one
of the agent can do, the other agent must be able to mimic that action and
the derivatives should be in that relation.

7.1 Definitions
Strong simulation for CCS is defined in the standard way. An agent P sim-
ulates an agent Q preserving the relation R, written P ,→R Q, if for every
action P can do, Q can do the same action, and their derivatives are in R.
More formally, we have the following definition:

Definition 7.1 (Simulation). An agent P simulating an agent Q preserving
R is denoted P ,→R Q.

P ,→R Q
def= ∀a Q ′. Q

a−→ Q ′−→ (∃P ′. P
a−→ P ′∧ (P ′, Q ′) ∈ R)

We want to coinductively define bisimilarity as the largest symmetric re-
lation ∼ s.t. whenever P ∼ Q it holds that P ,→∼ Q. In order to coinduc-
tively define a relation, the function that generates it needs to be mono-
tonic. More precisely, the following lemma is needed.

Lemma 7.2. If P ,→R Q and R ⊆ R ′ then P ,→R ′ Q.

Proof. Follows from Definition 7.1.

We can now define bisimilarity.

Definition 7.3 (Bisimilarity). Bisimilarity, denoted ∼, is defined coinduc-
tively as the largest relation satisfying:

P ∼ Q =⇒ P ,→∼ Q SIMULATION

∧ Q ∼ P SYMMETRY
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7.1.1 Primitive inference rules
From the definitions of simulation and bisimilarity we can derive the fol-
lowing introduction and elimination rules.

Lemma 7.4. Introduction and elimination rules for simulation

∧
α Q ′.

Q
α−→ Q ′

∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R

P ,→R Q
,→-I

P ,→R Q Q
α−→ Q ′

∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R

,→-E

Proof. Follows immediately from Definition 7.1.

Lemma 7.5. Introduction and elimination rules for bisimilarity.

P ,→∼ Q Q ∼ P

P ∼ Q
∼-I

P ∼ Q

P ,→∼ Q
∼-E1

P ∼ Q

P ,→∼ Q
∼-E2

Lemma 7.6. Coinduction rule for bisimilarity.

(P, Q) ∈ X

∧
R S.

(R, S) ∈ X

R ,→X ∪ ∼ S
SIMULATION

∧
R S.

(R, S) ∈ X

(S, R) ∈ X
SYMMETRY

P ∼ Q

Proof. Derived from the coinduction rule that Isabelle provides from Defi-
nition 7.3.

This lemma will be implicitly used in coinductive proofs. To prove that
two agents are bisimilar, a symmetric candidate relation X must be chosen
which contains the two agents and where all member pairs of X are simu-
lations preserving X ∪ ∼. The following coinduction rule can be derived:

Simulations are parametrised on an arbitrary relation R. Each operator
in CCS is provided with a set of constraints such that the operator preserves
R. This set should be kept as small as possible as each constraint will have
to be proven when we establish preservation properties of bisimilarity. This
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section covers all proofs that are needed to show that a relation is preserved
by all operators.

In the cases where a simulation occurs both in the premise of a lemma
and its conclusions, such as the proof for transitivity (Lemma 7.8 bellow) or
preservation of Parallel (Lemma 7.17 bellow), the simulation relation used
in premise and conclusion are not the same. The reason for this will be
made clearer from the bisimilarity proofs, but suffice to say this makes the
lemmas more general.

7.2 Bisimulation is an equivalence relation
We first establish lemmas for reflexivity and transitivity. In order for a simu-
lation relation to be reflexive, it has to at least contain the identity relation.

Lemma 7.7. If Id ⊆ R then P ,→R P .

Proof. Follows immediately from Definition 7.1. Since the simulating rela-
tion contains the identity relation, any derivative of P will be in it.

Lemma 7.8. If P ,→R Q and Q ,→R ′ R and R ◦ R ′⊆ R ′′ then P ,→R ′ ′ R.

Proof. Follows from Definition 7.1. The derivatives of P and Q are in R and
the derivatives of Q and R are in R′. The assumption R ◦ R ′ ⊆ R ′′ then
ensures that the derivatives of P and R are in R′′.

Lemma 7.9. Bisimulation is an equivalence relation

Proof. Reflexivity: By coinduction with X set to the identity relation.
Lemma 7.7 discharges the simulation case.

Symmetry: Follows immediately from ∼-E2.

Transitivity: By coinduction with X set to ∼ ◦ ∼. Lemma 7.8 dis-
charges the simulation case.

7.3 Preservation properties
Bisimilarity is a congruence, i.e. it is preserved by all operators.
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7.3.1 Prefix
The only requirement of the candidate relation needed here is that the
agents under the prefix are in the relation.

Lemma 7.10. If (P, Q) ∈ R then α.P ,→R α.Q.

Proof. Follows from Definition 7.1 and the fact that a.P and a.Q can each
only do an a-action (Figure 6.4 ACTION) and (P, Q) ∈ R.

Lemma 7.11. If P ∼ Q then α.P ∼α.Q.

Proof. By coinduction with X set to {(a.P, a.Q) | P ∼ Q} and Lemma 7.10.

7.3.2 Sum
In order for simulation to be preserved by Sum, the candidate relation must
include the identity relation for the case where R does an action.

Lemma 7.12. If P ,→R Q and R ⊆ R ′ and Id ⊆ R ′ then
P + R ,→R ′ Q + R.

Proof. Follows from Definition 7.1, the SUM inversion rule in Figure 6.4, and
the SUM1 and SUM2 rules from Figure 6.1.

Lemma 7.13. If P ∼ Q then P + R ∼ Q + R.

Proof. By coinduction with X set to {(P +R, Q +R) | P ∼ Q}, Lemma 7.12
and the fact that ∼ is reflexive.

7.3.3 Restriction
In order to prove that simulation is preserved by Restriction, the same must
hold for the candidate relation.

Lemma 7.14.

P ,→R Q
∧

R S y.
(R, S) ∈ R

((νy)R, (νy)S) ∈ R ′

(νx)P ,→R ′ (νx)Q

Proof. Follows from Definition 7.1, the SCOPE inversion rule in Figure 6.4,
and the SCOPE-rule from Figure 6.1.

Lemma 7.15. If P ∼ Q then (νx)P ∼ (νx)Q.

92



Proof. By coinduction with X set to {((νx)P, (νx)Q) | P ∼ Q} and
Lemma 7.14.

7.3.4 Parallel
In order to prove that bisimilarity is preserved by Parallel we will start by
proving a more general lemma for composing simulations with Parallel.

Lemma 7.16.

P ,→R Q (P, Q) ∈ R

R ,→R ′ T (R, T) ∈ R ′∧
P ′ Q ′ R ′ T ′.

(P ′, Q ′) ∈ R (R ′, T ′) ∈ R ′

(P ′ | R ′, Q ′ | T ′) ∈ R ′′

P | R ,→R ′ ′ Q | T

Proof. The Isabelle proof of this lemma can be found in Figure 7.1.

This lemma states that if P simulates Q preserving R, and R simulates T
preserving R ′, then P | R simulates Q | T preserving R ′′ as long as long as
any pair in R composed by Parallel with pairs in R ′ are in R ′′.

This lemma is more general than strictly necessary to prove that bisim-
ilarity is preserved by Parallel. However, it will be useful when we prove
that bisimilarity is preserved by Replication. The lemma needed for parallel
preservation is easily derivable.

Lemma 7.17.

P ,→R Q (P, Q) ∈ R
∧

S T U .
(S, T) ∈ R

(S | U , T | U) ∈ R ′

P | R ,→R ′ Q | R

Proof. Follows from Lemma 7.16 by setting its relations R ′′ to R ′ and R ′ to
the identity relation.

We can now prove that bisimilarity is preserved by the Parallel.

Lemma 7.18. If P ∼ Q then P | R ∼ Q | R.

Proof. The Isabelle proof of this lemma can be found in Figure 7.2.
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lemma parPres:
fixes P :: ccs and Q :: ccs
and R :: (ccs × ccs) set and R ′ :: (ccs × ccs) set and R ′′ :: (ccs × ccs) set

assumes P ,→R Q and (P, Q) ∈ R

and R ,→R ′ T and (R, T) ∈ R ′
and C1:

∧
P ′ Q ′ R ′ T ′. [[(P ′, Q ′) ∈ R; (R ′, T ′) ∈ R ′]] =⇒

(P ′ | R ′, Q ′ | T ′) ∈ R ′′

shows P | R ,→R ′ ′ Q | T
proof(induct rule: simI) — Apply introduction rule ,→-I

case(Sim α U)

from 〈Q | T
α−→ U〉

show ?case
proof(induct rule: parCases) — Apply PAR inversion rule from Figure 6.4

PAR1 case
Given that Q

α−→ Q ′ prove that there exists an S such that

P | R
α−→ S and (S, Q ′ | T) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ,→R Q 〉 〈Q

α−→ Q ′〉 obtain P ′ where P
α−→ P ′ and (P ′, Q ′) ∈ R

by(rule simE)

from 〈P 7−→α ≺ P ′〉 have P | R
α−→ P ′ | R by(rule Par1)

moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′
by(rule C1)

ultimately show ∃S. P | R
α−→ S ∧ (S, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

α−→ T ′ prove that there exists an S such that

P | R
α−→ S and (S, Q | T ′) ∈ R ′′.

case(cPar2 T ′)
from 〈R ,→R ′ T 〉 〈T

α−→ T ′〉

obtain R ′ where R
α−→ R ′ and (R ′, T ′) ∈ R ′

by(rule simE)

from 〈R
α−→ R ′〉 have P | R

α−→ P | R ′ by(rule Par2)
moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P | R ′, Q | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α−→ S ∧ (S, Q | T ′) ∈ R ′′ by blast
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next
COMM case
Given that Q

a−→ Q ′ and T
a−→ T ′ prove that there exists

an S such that P | R
τ−→ S and (S, Q ′ | T ′) ∈ R ′′.

case(cComm Q ′ T ′ a)

from 〈P ,→R Q 〉 〈Q
a−→ Q ′〉

obtain P ′ where P
a−→ P ′ and (P ′, Q ′) ∈ R by(rule simE)

from 〈R ,→R ′ T 〉 〈T
a−→ T ′〉

obtain R ′ where R
a−→ R ′ and (R ′, T ′) ∈ R ′ by(rule simE)

from 〈P
a−→ P ′〉 〈R

a−→ R ′〉 〈a 6= τ〉 have P | R
τ−→ P ′ | R ′

by(rule Comm)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have (P ′ | R ′, Q ′ | T ′) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
τ−→ S ∧ (S, Q ′ | T ′) ∈ R ′′ by blast

qed
qed

Figure 7.1: The Isar proof for that simulation is preserved by Parallel. Note that both
the introduction rule simI and the inversion rule parCases are used as induction
rules.
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lemma bisimParPres:
fixes P :: ccs and Q :: ccs and R :: ccs
assumes P ∼ Q
shows P | R ∼ Q | R

proof −
let ?X = {(S, T) | P Q R S T. P ∼ Q ∧ S = P | R ∧ T = Q | R}
from 〈P ∼ Q〉 have (P | R, Q | R) ∈ ?X by auto
thus P | R ∼ Q | R
proof(coinduct rule: bisimCoinduct) — Apply coinduction using Lema 7.6

SIMULATION case
Given that (S, T ) ∈ ?X , prove that S ,→?X ∪ ∼ T .

case(cSim S T)
{

fix P Q R
assume P ∼ Q
moreover hence P ,→∼ Q by(rule bisimE)
moreover have

∧
P Q R. P ∼ Q =⇒ (P | R, Q | R) ∈ ?X by auto

ultimately have P | R ,→?X Q | R
by(rule-tac simParPres)

hence P | R ,→?X ∪ ∼ Q | R
by(rule-tac monotonic) auto

}

This block proves that for all P, Q, and R, if P ∼ Q then
P | R ,→?X ∪ ∼ Q | R.

thus S ,→?X ∪ ∼ T using 〈(S, T) ∈ ?X〉 by auto
next

SYMMETRY case
Given that (S, T ) ∈ ?X , prove that (T, S) ∈ ?X .

case(cSym S T)
from 〈(S, T) ∈ ?X〉 show (T, S) ∈ ?X

by(auto dest: strongBisim.symmetric)
qed

qed

Figure 7.2: The Isabelle proof that strong bisumlation is preserved by the Parallel.
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7.3.5 Replication
Proving that bisimilarity is preserved by the Replication is more involved
than the preservation proofs covered so far. The difficulty is to choose the
right candidate relation. The approach is to inductively define a candidate
relation, and prove that it is a bisimulation. As Replication spawns an ar-
bitrary number of agents running in parallel, any candidate relation must
support the constraints required to prove that bisimilarity is preserved by
Parallel, as well as being preserved by Replication.

Definition 7.19 (bangRel). The bangRel relation is parametrised with a re-
lation R.

If (P, Q) ∈ R then (!P, !Q) ∈ bangRel R.
If (R, T) ∈ R and (P, Q) ∈ bangRel R then (R | P, T | Q) ∈ bangRel R.

The predicate bangRel takes a relation R as an argument, and returns a
relation which is closed by Replication and by Parallel. Moreover, the agents
appearing on the right hand side of the |-operator, are members of bangRel
R; the intuition is that as with Replication, the bangRel predicate can be
unfolded, adding new parallel agents an arbitrary number of times.

The next step is to prove what is required of a relation R for a simulation
to preserve bangRel R.

Lemma 7.20. Simulation is preserved by Replication.

(P, Q) ∈ R
∧

R S.
(R, S) ∈ R

R ,→R S

!P ,→bang Rel R !Q

Proof. By induction using the induction rule for Replication from Figure 6.5

on the transitions that !Q
α−→ Q ′.

Lemma 7.21. If P ∼ Q then !P ∼ !Q.

Proof. By coinduction with X set to bangRel ∼. The candidate relation is
symmetric since ∼ is symmetric. The simulation cases are resolved by
Lemma 7.20 for the !-case, and Lemma 7.16 for the | -case.

7.4 Bisimilarity is a congruence
We now have the lemmas we need to prove that bisimilarity is a congruence.

Theorem 7.1. Strong bisimilarity is a congruence.
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Proof. That strong bisimulation is an equivalence relation follows from
Lemma 7.9, and that it is preserved by all operators follows from lemmas
7.11, 7.13, 7.15, 7.18, and 7.21.
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8. Structural congruence

In this chapter, we will prove that all structurally congruent agents are also
bisimilar. The laws of structural congruence for CCS can be found in Fig-
ure 8.1.

8.1 Abelian monoid laws for parallel
All of these proofs are one line proofs, modulo choosing the coinductive
relations for the bisimulation proofs.

8.1.1 Parallel is commutative
The agents P | Q, and Q | P, are structurally equal. As such, only one simu-
lation lemma is required. However, in order for them to simulate each other,
the candidate relation containing the derivatives must include all parallel
commutative pairs of agents.

Lemma 8.1. ∧
R T . (R | T , T | R) ∈ R

P | Q ,→R Q | P

Proof. By the definition of ,→ and case analysis using the PAR rule from
Fig. 6.4. The cases are then discharged using the PAR1, PAR2 and COMM

rules from the operational semantics.

From this lemma, the bisimulation follows.

Lemma 8.2. P | Q ∼ Q | P

Proof. By coinduction with X set to

{(P | Q, Q | P) : True},

and Lemma 8.1.
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The structural congruence ≡ is defined as the smallest congruence satisfy-
ing the following laws:
1. The abelian monoid laws for Parallel: commutativity P |Q ≡Q | P , asso-

ciativity (P | Q) | R ≡ P | (Q | R), and Nil as unit P | 0 ≡ P ; and the same
laws for Sum.

2. The unfolding law !P ≡ P | !P
3. The scope extension laws

(νx)0 ≡ 0

(νx)(P | Q) ≡ P | (νx)Q if x ] P

(νx)(P +Q) ≡ P + (νx)Q if x ] P

(νx)α.P ≡ α.(νx)P if x ]α

(νx)(νy)P ≡ (νy)(νx)P

Figure 8.1: The definition of structural congruence.

8.1.2 Parallel is associative
These two simulation lemmas require that their candidate relation contain
all pairs of parallel left associative, and right associative agents respectively.

Lemma 8.3. ∧
S T U . ((S | T) | U , S | (T | U)) ∈ R

(P | Q) | R ,→R P | (Q | R)∧
S T U . (S | (T | U), (S | T) | U) ∈ R

P | (Q | R) ,→R (P | Q) | R

Proof. By the definition of ,→ and case analysis on the possible transitions,
using the PAR inversion rule from Fig. 6.4. The individual cases are then
discharged using the PAR1, PAR2 and COMM rules from the operational se-
mantics.

When proving the bisimulation lemma, the candidate relation is chosen
so that it is symmetric and meets the individual requirements of the simu-
lation lemmas in Lemma 8.3.

Lemma 8.4. (P | Q) | R ∼ P | (Q | R)

Proof. By coinduction with X set to

{((P | Q) | R, P | (Q | R)) : True} ∪
{(P | (Q | R), (P | Q) | R) : True},
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and Lemma 8.3.

8.1.3 Parallel has Nil as unit
Lemma 8.5. ∧

Q. (Q | 0, Q) ∈ R

P | 0 ,→R P

∧
Q. (Q, Q | 0) ∈ R

P ,→R P | 0

Proof. By the definition of ,→, case analysis using the PAR from Fig. 6.4 and
the PAR1 rule from the operational semantics.

Lemma 8.6. P | 0 ∼ P

Proof. By coinduction with X set to

{(P | 0, P) : True} ∪ {(P, P | 0) : True},

and Lemma 8.5.

8.2 Abelian monoid laws for Sum
The abelian monoid laws for sum are significantly easier to prove than their
counterparts for Parallel. The main reason for this is that whenever an agent
does a choice, the rest of the agent is discarded leaving only the derivative
of the chosen agent.

8.2.1 Sum is commutative
As for the corresponding proof for the Parallel, only one simulation lemma
is needed to prove that Sum is commutative. However, the only requirement
on the candidate relation is that it is reflexive. The reason for this is that
whichever agent in P + Q does an action, only its derivative will remain,
and Q + P can mimic with the same action.

Lemma 8.7.
Id ⊆ R

P + Q ,→R Q + P

Proof. By the definition of ,→, case analysis using the SUM rule from Fig. 6.4
and the SUM1 and SUM2 rules from the operational semantics.
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The candidate relation for the bisimulation proof is a symmetric binary
set which contains only the original agents. The coinduction rule will re-
quire the derivatives to be in either this set, or that they are bisimilar. Since
bisimulation is reflexive, it meets the only constraint that the simulation
lemma imposes.

Lemma 8.8. P + Q ∼ Q + P

Proof. By coinduction with X set to

{(P + Q, Q + P), (Q + P, P + Q)},

reflexivity of bisimilarity, and Lemma 8.7.

8.2.2 Sum is associative
As for the corresponding proof for Parallel, two simulation lemmas are re-
quired. However, for the same reasons as for the commutative case for sum,
the only requirement needed on the candidate relation is that it is reflexive.

Lemma 8.9.

Id ⊆ R

(P + Q) + R ,→R P + (Q + R)

Id ⊆ R

P + (Q + R) ,→R (P + Q) + R

Proof. By the definition of ,→, case analysis using the SUM inversion rule
from Fig. 6.4 and the SUM1 and SUM2 rules from the operational semantics.

The bisimulation proof is then proven in a similar manner as Lemma 8.8.

Lemma 8.10. (P + Q) + R ∼ P + (Q + R)

Proof. By coinduction with X set to

{((P + Q) + R, P + (Q + R)), (P + (Q + R), (P + Q) + R)},

reflexivity of bisimilarity, and Lemma 8.9.

8.2.3 Sum has Nil as unit
Lemma 8.11.

Id ⊆ R

P + 0 ,→R P

Id ⊆ R

P ,→R P + 0
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Proof. By the definition of ,→, case analysis using the SUM from Fig. 6.4 and
the SUM1 rule from the operational semantics.

Lemma 8.12. P + 0 ∼ P

Proof. By coinduction with X set to

{(P + 0, P), (P, P + 0)},

reflexivity of bisimilarity, and Lemma 8.5.

8.3 Scope extension laws
Lemma 8.13.

(νx)0 ,→R 0 0 ,→R (νx)0

Proof. Follows from the definition of ,→. Since neither (νx)0 nor 0 has any
transitions no constraints need to be set on R.

Lemma 8.14. (νx)0 ∼ 0

Proof. By coinduction with X set to

{((νx)0, 0), (0, (νx)0)},

and Lemma 8.13.

8.3.1 Scope extension for parallel
Lemma 8.15.

x ] P
∧

y R T .
y ] R

((νy)(R | T), R | (νy)T) ∈ R

(νx)(P | Q) ,→R P | (νx)Q

x ] P
∧

y R T .
y ] R

(R | (νy)T , (νy)(R | T)) ∈ R

P | (νx)Q ,→R (νx)(P | Q)

Proof. Follows from the definition of ,→, The SCOPE and PAR inversion rules
from Figure 6.4, Lemma 6.5 and the SCOPE PAR and COMM rules from the
operational semantics.
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Lemma 8.16. If x ] P then (νx)(P | Q) ∼ P | (νx)Q.

Proof. By coinduction with X set to

{((νx)(P | Q), P | (νx)Q) : x ] P} ∪ {(P | (νx)Q, (νx)(P | Q)) : x ] P}

and Lemma 8.15.

Using this lemma we can derive another very useful rule which states that
binding a name in an agent where it does not occur does nothing.

Lemma 8.17. If x ] P then (νx)P ∼ P.

Proof. The proof is derivable from the structural congruence rules proven
so far. The numbers of the lemmas used are displayed for every rewrite step.

(νx)P
8.6, 7.9∼ (νx)P | 0 8.2∼ 0 | (νx)P

8.16, 7.9∼ (νx)(0 | P)
7.15, 8.2∼ (νx)(P | 0) 8.16∼ P | (νx)0 8.2∼ (νx)0 | P

7.18, 8.14∼ 0 | P 8.2∼ P | 0 8.6∼ P

8.3.2 Scope extension for sum
Lemma 8.18.

x ] P
∧

y R.
y ] R

((νy)R, R) ∈ R
Id ⊆ R

(νx)(P + Q) ,→R P + (νx)Q

x ] P
∧

y R.
y ] R

(R, (νy)R) ∈ R
Id ⊆ R

P + (νx)Q ,→R (νx)(P + Q)

Proof. Follows from the definition of ,→, The SCOPE and SUM inversion
rules from Figure 6.4 and the SCOPE and SUM rules from the operational
semantics.

Lemma 8.19. If x ] P then (νx)(P + Q) ∼ P + (νx)Q.

Proof. By coinduction with X set to

{((νx)(P + Q), P + (νx)Q), (P + (νx)Q, (νx)(P + Q))},

reflexivity and symmetry of bisimilarity, and lemmas 8.17 and 8.18.
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8.3.3 Scope extension of prefixes
Lemma 8.20.

x ] α Id ⊆ R

(νx)α.P ,→R α.(νx)P

x ] α Id ⊆ R

α.(νx)P ,→R (νx)α.P

Proof. Follows from the definition of ,→, the ACTION and SCOPE inversion
rules from Figure 6.4 and the ACTION and SCOPE rules from the operational
semantics.

Lemma 8.21. If x ] α then (νx)α.P ∼α.(νx)P.

Proof. By coinduction with X set to

{((νx)α.P, α.(νx)P), (α.(νx)P, (νx)α.P)},

reflexivity of bisimilarity, and Lemma 8.20.

8.3.4 Restriction is commutative
Lemma 8.22. ∧

Q. ((νx)(νy)Q, (νy)(νx)Q) ∈ R

(νx)(νy)P ,→R (νy)(νx)P

Proof. Follows from the definition of ,→, the SCOPE inversion rule from Fig-
ure 6.4, and the SCOPE rule from the operational semantics.

Lemma 8.23. (νx)(νy)P ∼ (νy)(νx)P

Proof. By coinduction with X set to

{((νx)(νy)P, (νy)(νx)P) : True}

and Lemma 8.22.

8.4 The unfolding law
Lemma 8.24.

Id ⊆ R

P | !P ,→R !P

Id ⊆ R

!P ,→R P | !P

Proof. Follows from the definition of ,→, the REPL and PAR rules from Fig-
ure 6.4 and the REPL an PAR rules from the operational semantics.
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Lemma 8.25. !P ∼ P | !P

Proof. By coinduction with X set to

{(!P, P | !P), (P | !P, !P)}.

The goal follows immediately from Lemma 8.24 and reflexivity of bisimilar-
ity.

8.5 Bisimilarity includes structural congruence
The main structural congruence theorem follows from the combined lem-
mas in this section.

Theorem 8.1. If P ≡ Q then P ∼ Q.

Proof.

Abelian monoid laws for the Parallel: Lemmas 8.2, 8.4, and 8.6.
Abelian monoid laws for the Sum: Lemmas 8.8, 8.10, and 8.12.
Scope extension laws: Lemmas 8.14, 8.16, 8.19, 8.21, and 8.23.
Unfolding law: Lemma 8.25.
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9. Weak Bisimilarity

The two main weak equivalences in CCS are weak bisimilarity and weak
congruence, where weak congruence, as the name suggests, is a congru-
ence. The difference between the two is in simulating τ-actions - in weak
bisimilarity, an agent can mimic a τ-action by doing nothing whereas for
weak congruence, at least one τ-action must be taken to mimic the original
one. Other than that, they behave the same in that an action is mimicked
by a corresponding action preceded and followed by a τ-chain.

In this chapter we will define weak bisimilarity, prove that it is an equiva-
lence relation and preserved by all operators except Sum. In the next chap-
ter we will define weak congruence, and prove that it is a congruence.

9.1 τ-chains
We define τ-chains in the standard way as the reflexive transitive closure of
τ-actions.

Definition 9.1 (τ-chain).

P =⇒ P ′ def= (P, P ′) ∈ {(P, P ′) : P
τ−→ P ′}∗

9.1.1 Core lemmas
Isabelle provides its own induction rules for sets generated by transitive clo-
sure. To simplify proofs on τ-chains a corresponding induction rule is de-
rived.

Lemma 9.2.

P =⇒ R Prop P
∧

P ′ P ′′.
P =⇒ P ′ P ′ τ−→ P ′′ Prop P ′

Prop P ′′

Prop R

Proof. Follows from the definition of =⇒ and Isabelle’s induction rule for
reflexive transitive closure.
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P =⇒ P ′ P 6= P ′

P + Q =⇒ P ′ SUM1
Q =⇒ Q ′ Q 6= Q ′

P + Q =⇒ Q ′ SUM2

P =⇒ P ′

P | Q =⇒ P ′ | Q
PAR1

Q =⇒ Q ′

P | Q =⇒ P | Q ′ PAR2

P =⇒ P ′

(νx)P =⇒ (νx)P ′ SCOPE
P | !P =⇒ P ′ P ′ 6= P | !P

!P =⇒ P ′ REPL

Figure 9.1: Lifting semantics for τ-chains.

Lemma 9.3.

If P =⇒ P ′ and P ′ τ−→ P ′′ then P =⇒ P ′′.

If P ′ τ−→ P ′′ and P =⇒ P ′ then P =⇒ P ′′.

Proof. Follows from the definition of =⇒.

Lemma 9.4. If P =⇒ P ′ and P ′=⇒ P ′′ then P =⇒ P ′′.

Proof. By induction on P ′=⇒ P ′′.

9.1.2 Lifting τ-chains
As described in Section 2.5 it is convenient to lift the operational semantics
to the weak level. A stepping stone for this is to derive rules for how τ-chains
behave for the different operators. The rules in Figure 9.1 have been derived
from the operational semantics.

These rules are only applicable to the cases where τ-chains appear both
in the assumptions and in the conclusions of the rules. It is therefore not
possible to lift all operational rules. The ACTION-rule cannot be lifted as ac-
tions can be other than τ. The COMM-rule cannot be lifted as non τ-actions
by necessity appear in the assumptions of the rule.

The SUM and REPL-rules are a bit more delicate. They cannot be lifted
since a τ-chain can be empty. In the SUM1-rule the agent P actually has
to perform at least one action for a τ-chain to be available. The SUM-rules
in Figure 9.1 therefore only holds if the τ-chain in the assumption is
nonempty. The same restriction is required for the REPL-rule.
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α.P
α̂==⇒P

ACTION
P

α̂==⇒P ′

P | Q
α̂==⇒P ′ | Q

PAR1
Q

α̂==⇒Q ′

P | Q
α̂==⇒P | Q ′

PAR2

P
α̂==⇒P ′ Q

α̂==⇒Q ′ α 6= τ

P | Q
τ̂==⇒P ′ | Q ′

COMM
P

α̂==⇒P ′ x ] α

(νx)P
α̂==⇒ (νx)P ′

SCOPE

Figure 9.2: Lifted semantics for weak transitions.

9.2 Weak semantics
Two agents P and Q are weakly bisimilar if for every action P can do, Q can
mimic that action but is allowed to do an arbitrary number of τ-actions
before and afterwards, and conversely for Q and P. Moreover, a τ-action
can be mimicked by doing nothing.

A weak τ-respecting transition is defined in the same manner as in Sec-
tion 2.5 – an action is preceded and proceeded by a τ-chain.

Definition 9.5 (Weak τ-respecting transitions).

P
α==⇒P ′ def= ∃P ′′ P ′′′. P =⇒ P ′′∧ P ′′ α−→ P ′′′∧ P ′′′=⇒ P ′

A strong transition implies a weak τ-respecting one.

Lemma 9.6. If P
α−→ P ′ then P

α==⇒P ′.

Proof. Follows from Definition 9.5 by instantiating the τ-chains with empty
chains.

Another type of weak transition, denoted P
α̂==⇒ P ′, which may be empty

if α = τ defined as follows:

Definition 9.7 (Weak transition).

P
α̂==⇒P ′ def= P

α==⇒P ′∨ α = τ ∧ P = P ′

Strong transitions also imply this type of transition.

Lemma 9.8. If P
α−→ P ′ then P

α̂==⇒P ′.

Proof. Follows from Definition 9.7 and Lemma 9.6.
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α.P
α==⇒P

ACTION
P

α==⇒P ′

P + Q
α==⇒P ′

SUM1
Q

α==⇒Q ′

P + Q
α==⇒Q ′

SUM2

P
α==⇒P ′

P | Q
α==⇒P ′ | Q

PAR1
Q

α==⇒Q ′

P | Q
α==⇒P | Q ′

PAR2

P
α==⇒P ′ Q

α==⇒Q ′ α 6= τ

P | Q
τ==⇒P ′ | Q ′

COMM
P

α==⇒P ′ x ] α

(νx)P
α==⇒ (νx)P ′

SCOPE

P | !P
α==⇒P ′

!P
α==⇒P ′

REPL

Figure 9.3: Lifted semantics for weak transitions.

9.2.1 Lifted semantics
In order to reuse the proof strategies developed for the proofs in Chap-
ter 7, we lift the operational semantics from Figure 6.1, as described in Sec-
tion 2.5, to include both types of weak transitions.

Lifting the semantic rules where the derivatives maintain the structure
of the originating agent, like PAR1 or SCOPE, is reasonably straightforward.
The transition in the assumption of the rule can be split into its compo-
nents, and the corresponding rules from Figure 9.1 and the operational se-
mantics can be used for the τ-chains and the transition respectively. This
works for both types of weak transitions.

A bit more work is required when lifting the semantics of the rules where
the structure is not maintained, such as SUM1 or REPL. Since the structure
changes the first time a transition is made, the proof needs to handle the
cases when the transition is done by the preceding τ-chain or, in the case
the τ-chain is empty, by the action itself. Since these rules require at least

one transition to be liftable, the transitions cannot have the form P
α̂==⇒ P ′,

as it can be empty when α = τ.
The lifted semantics for the two types of weak transitions can can be

found in figures 9.2 and 9.3.
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9.3 Weak Bisimilarity
Simulation is defined in a similar way to its strong counterpart.

Definition 9.9 (Weak simulation).

P ;̂R Q
def= ∀a Q ′. Q

a−→ Q ′−→ (∃P ′. P
â==⇒P ′∧ (P ′, Q ′) ∈ R)

In order to coinductively define weak bisimilarity we must prove that
weak simulation is monotonic.

Lemma 9.10. If P ;̂R Q and R ⊆ R ′ then P ;̂R ′ Q.

Proof. Follows directly for the definition of ;̂.

Definition 9.11 (Weak bisimilarity). Weak bisimilarity, denoted
.≈, is defined

coinductively as the largest relation satisfying:

P
.≈ Q =⇒ P ;̂ .≈ Q SIMULATION

∧ Q
.≈ P SYMMETRY

9.3.1 Primitive inference rules
From the definitions of weak simulation and bisimilarity the following in-
troduction and elimination rules are derivable.

Lemma 9.12. Introduction and elimination rules for weak simulation.

∧
α Q ′.

Q
α−→ Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

P ;̂R Q
;̂-I

P ;̂R Q Q
α−→ Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

;̂-E

Lemma 9.13. Introduction and elimination rules for weak bisimilarity.

P ;̂ .≈ Q Q
.≈ P

P
.≈ Q

.≈-I
P

.≈ Q

P ;̂ .≈ Q

.≈-E1
P

.≈ Q

Q
.≈ P

.≈-E2

The coinduction rule for weak congruence is derived similarly to strong
bisimulation.
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Lemma 9.14.

(P, Q) ∈ X

∧
R S.

(R, S) ∈ X

R ;̂X ∪ .≈ S
SIMULATION

∧
R S.

(R, S) ∈ X

(S, R) ∈ X
SYMMETRY

P
.≈ Q

Proof. Follows from the coinductive rule provided by Isabelle.

9.3.2 Weak bisimilarity includes strong bisimilarity
All strongly bisimilar agents are also weakly bisimilar. To prove this, we first
require an auxiliary lemma for simulation.

Lemma 9.15. If P ,→R Q then P ;̂R Q.

Proof. Follows from the definitions of ,→ and ;̂ and Lemma 9.8 which
proves that all strong transitions imply a corresponding weak one.

Lemma 9.16. If P ∼ Q then P
.≈ Q.

Proof. By coinduction using Lemma 9.14 with X set to ∼. The candidate re-
lation X is symmetric as bisimulation is symmetric. Moreover, since P ∼ Q
we have by ∼-E1 that P ,→∼ Q, and hence P ;̂∼ Q by Lemma 9.15, and
finally that P ;̂∼ ∪ .≈ Q since ;̂ is monotonic.

9.3.3 Structural congruence
Structurally congruent agents are weakly bisimilar since strongly bisimilar
agents are also weakly bisimilar.

Theorem 9.1. If P ≡ Q then P
.≈ Q.

Proof. Follows immediately from Theorem 8.1 and Lemma 9.16.

112



9.4 Weak bisimulation is an equivalence relation
The requirements of the candidate relations in order for weak simulation
to be proved reflexive and transitive are the same as for regular simulation.
However, the proof for transitivity is more involved. We first establish that
weak simulation is reflexive.

Lemma 9.17. If Id ⊆ R then P ;̂R P.

Proof. Follows from the definition of ;̂.

The proof that weak bisimilarity is transitive is more involved than its
strong counterpart. Consider the case where P is weakly bisimilar to Q, and
Q is weakly bisimilar to R. When P does an action, Q does a corresponding
weak action, and it is this action that R must mimic, not a strong one.

The first lemma which needs to be proven is how to mimic a τ-chain.

Lemma 9.18.

Q =⇒ Q ′ (P, Q) ∈ R
∧

R S.
(R, S) ∈ R

R ;̂R S

∃P ′. P =⇒ P ′∧ (P ′, Q ′) ∈ R

Proof. By induction on Q =⇒ Q ′. In the base case where Q = Q ′, P ′ is set
to P finishing the case since P =⇒ P and (P, Q) ∈ R. The inductive step

provides a τ-chain Q =⇒ Q ′′ and a transition Q ′′ τ−→ Q ′. The induction
hypothesis gives a P ′′ such that P =⇒ P ′′ and (P ′′, Q ′′) ∈ R. From (P ′′, Q ′′) ∈
R it follows from the assumptions that P ′′ ;̂R Q ′′and hence by Q ′′ τ−→ Q ′

and Lemma 9.12 that there exists an agent P ′ s.t. P ′′ τ==⇒ P ′ and (P ′, Q ′) ∈ R.

The proof is concluded by appending P =⇒ P ′′ to P ′′ τ==⇒P ′and instantiating
the existential quantifier to P ′.

This lemma states that if P weakly simulates Q and Q can do a τ-chain
then P can do a corresponding τ-chain and the derivatives will still be in the
relation. The assumption that states that all members of R are also simula-
tions allow simulations to be derived after parsing the τ-chains.

A similar lemma needs to be proven for weak transitions.

Lemma 9.19.

(P, Q) ∈ R Q
α̂==⇒Q ′ ∧

R S.
(R, S) ∈ R

R ;̂R S

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R
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Proof. By case analysis on Q
α̂==⇒Q ′.

Staying case (Q = Q ′ and α = τ): Instantiate the existential quantifier to P,
and solve the goal with the assumption (P, Q) ∈ R.

Moving case (Q
α==⇒Q ′):

From the definition of Q
α==⇒ Q ′, we obtain a Q ′′ and a Q ′′′ s.t. Q =⇒ Q ′′′,

Q ′′′ α−→ Q ′′ and Q ′′ =⇒ Q ′. From Q =⇒ Q ′′′ and the assumptions, we use
Lemma 9.18 to obtain a P ′′′ s.t. P =⇒ P ′′′and (P ′′′, Q ′′′) ∈R. From (P ′′′, Q ′′′)
∈ R and the assumptions we get that P ′′′ ;R Q ′′′, and with "Q ′′′ α−→ Q ′′

we obtain a P ′′ s.t. P ′′′ α̂==⇒ P ′′ and (P ′′, Q ′′) ∈ R, using Lemma 9.12. From
(P ′′, Q ′′) ∈ R, Q ′′ =⇒ Q ′ and the assumptions we obtain a P ′ s.t. P ′′ =⇒ P ′
and (P ′, Q ′) ∈ R, again using Lemma 9.18. Finally, we append P =⇒ P ′′′,
P ′′′ α̂==⇒ P ′′ and P ′′=⇒ P ′ to P

α̂==⇒ P ′ and solve the goal by instantiating the
existential quantifier to P ′.

It is now possible to prove what is required of the candidate relation for
simulation to be transitive.

Lemma 9.20.

(P, Q) ∈ R Q ;̂R ′ R R ◦ R ′⊆ R ′′ ∧
S T .

(S, T) ∈ R

S ;̂R T

P ;̂R ′ ′ R

Proof. Follows from the definition of ;̂ and Lemma 9.19 to simulate the
weak transitions.

Proving that bisimulation is an equivalence relation is now straightfor-
ward.

Lemma 9.21. Weak bisimualtion is an equivalence relation.

Proof. Reflexivity: By coinduction with X set to the identity relation, and
Lemma 9.17.

Symmetry: Follows immediately from
.≈-E2.

Transitivity: Follows by coinduction and setting X to
.≈ ◦ .≈, and

Lemma 9.20.
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9.5 Preservation properties
Weak bisimilarity is not preserved by Sum. The following counterexample
is taken from [55].

Consider the following three agents:

P
def= a.0 Q

def= τ.a.0 R
def= b.0

Agents P and Q are weakly bisimilar. If P does an a-action, Q can mimic
by doing a τ and then an a-action. Similarly, if Q does a τ-action, P can
mimic by doing nothing. However, it is not the case that P + R is weakly
bisimilar to Q + R. If Q + R does a τ-action ending up in a.0, the only choice
that P + R has to mimic that action is to do nothing, but the derivatives a.0
and P + R are not bisimilar.

The fact that the semantics is lifted allows us to reason about weak tran-
sitions in a similar way that we reason about strong ones. As a result, the
lemmas in this section follow the ones in Section 7.1.1 almost completely,
with the only difference being which lemmas are being used.

9.5.1 Prefix
Lemma 9.22. If (P, Q) ∈ R then α.P ;̂R α.Q.

Proof. Follows from the definition of ;̂ and the fact that a.P and a.Q can
each only do an a-action (Figure 6.4 ACTION) and (P, Q) ∈ R.

Lemma 9.23. If P
.≈ Q then α.P

.≈ α.Q.

Proof. By coinduction with X set to {(a.P, a.Q) | P ∼ Q} and Lemma 9.22.

9.5.2 Restriction
Lemma 9.24.

P ;̂R Q
∧

R S y.
(R, S) ∈ R

((νy)R, (νy)S) ∈ R ′

(νx)P ;̂R ′ (νx)Q

Proof. Follows from the definition of ;̂, the SCOPE inversion rule in Fig-
ure 6.4, and the SCOPE-rule from the lifted semantics.

Lemma 9.25. If P
.≈ Q then (νx)P

.≈ (νx)Q.
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Proof. By coinduction with X set to {((νx)P, (νx)Q) : P
.≈ Q} and

Lemma 9.24.

9.5.3 Parallel
As with strong bisimilarity, we prove a general simulation lemma, which will
be used in the proof that weak bisimilarity is preserved by replication.

Lemma 9.26.

P ;̂R Q (P, Q) ∈ R

R ;̂R ′ T (R, T) ∈ R ′∧
P ′ Q ′ R ′ T ′.

(P ′, Q ′) ∈ R (R ′, T ′) ∈ R ′

(P ′ | R ′, Q ′ | T ′) ∈ R ′′

P | R ;̂R ′ ′ Q | T

Proof. The Isabelle proof of this lemma can be found in Figure 9.4.

The following lemma is then easily derivable.

Lemma 9.27.

P ;̂R Q (P, Q) ∈ R
∧

S T U .
(S, T) ∈ R

(S | U , T | U) ∈ R ′

P | R ;̂R ′ Q | R

Proof. Follows immediately from Lemma 9.26 and setting R ′′ to R ′ and R ′
to the identity relation.

9.6 Bisimulation up-to techniques
As the complexity of the proofs for bisimilarity increase, so does the com-
plexity of their candidate relations. The relations we have seen so far have
been relatively simple, generally of the form that they contain the pair that
is to be proven bisimilar, and a few standard requisites such as reflexivity,
or that the relation is compositional.

In the coinduction rule for weak bisimilarity, Lemma 9.14, the derivatives
of any agents in the candidate relation must either be in the candidate re-
lation, or bisimilar. Bisimulation up-to techniques allow for a more gen-
eral treatment of the derivative agents – they must be equivalent to agents
either in the candidate relation or agents which are bisimilar. The equiv-
alence, here denoted

.=, differs for each proof, but in the general case any
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derivatives of the members of a candidate relation X must be in the rela-
tion

.= ◦(X∪ .≈)◦ .=.
It is generally desirable for the equivalence relation to be as large as pos-

sible – the more general the relation, the less specific the requirements of
the candidate relation. However, bisimulation up-to techniques are not ap-
plicable for all equivalence classes. In the original printing of Milner’s book
Communication and Concurrency [55], Milner proposed

Y = .≈ ◦ (X ∪ .≈) ◦ .≈,

i.e. bisimulation up to weak bisimilarity. However, this technique equates
agents which should not be bisimilar. The following counterexample was
discovered by Sjödin and Jonsson. Consider the agents τ.P and 0, where P
is any agent not bisimilar to 0. Clearly these agents are not weakly bisimilar,
but they are bisimilar up to weak bisimilarity. Set the candidate relation X

to {(τ.P, 0), (0, τ.P)}. The only possible transition is τ.P
τ−→ P, which 0 can

mimic by doing nothing, and the derivatives P and 0 are in Y ; the agents P
and τ.P are weakly bisimilar, hence P can be rewritten to τ.P using the up
to techniques, and τ.P and 0 are in X .

Bisimulation up to techniques which are available are bisimulation up to
structural congruence, and strong bisimilarity. Moreover, a variant of bisim-
ulation up to weak bisimilarity is attainable.

Lemma 9.28.

(P, Q) ∈ Y
∧

R S.
(R, S) ∈ Y

R ;̂ .≈ ◦ (Y ∪ .≈ ) ◦ ∼ S

∧
R S.

(R, S) ∈ Y

(S, R) ∈ Y

P
.≈ Q

Proof. By coinduction with X set to
.≈ ◦ (Y ∪ .≈) ◦ .≈.

This coinductive lemma requires the derivatives to be in the relation
.≈ ◦

(Y ∪ .≈) ◦ ∼, and therefore the counterexample above does not hold – even
though τ.P is weakly bisimilar to P, they are not strongly bisimilar, and the
rewriting technique used in the counter-example does not work.

With these techniques in place, we can prove that weak bisimilarity is
preserved by replication.

Lemma 9.29. If P
.≈ Q then P | R

.≈ Q | R.

Proof. The Isabelle proof for this lemma can be found in Figure 9.5.

The remaining operator which bisimilarity is preserved by is Parallel. In
order to prove this we need to use bisimulation up-to techniques.
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lemma weakSimParPres:
fixes P :: ccs and Q :: ccs and R :: ccs and T :: ccs
and R :: (ccs × ccs) set and R ′ :: (ccs × ccs) set and R ′′ :: (ccs × ccs) set

assumes P ;̂R Q and (P, Q) ∈ R

and R ;̂R ′ T and (R, T) ∈ R ′
and C1:

∧
P ′ Q ′ R ′ T ′. [[(P ′, Q ′) ∈ R; (R ′, T ′) ∈ R ′]] =⇒

(P ′ | R ′, Q ′ | T ′) ∈ R ′′

shows P | R ;̂R ′ ′ Q | T
proof(induct rule: weakSimI) — Apply introduction rule ;̂-I

case(Sim α U)

from 〈Q | T
α−→ U〉

show ?case
proof(induct rule: parCases) — Apply PAR inversion rule from Figure 6.4

PAR1 case
Given that Q

α−→ Q ′ prove that there exists an S such that

P | R
α̂==⇒ S and (S, Q ′ | T) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ;̂R Q〉 〈Q

α−→ Q ′〉 obtain P ′ where P
α̂==⇒P ′ and (P ′, Q ′) ∈ R

by(rule weakSimE)

from 〈P
α̂==⇒P ′〉 have P | R

α̂==⇒P ′ | R by(rule weakPar1)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α̂==⇒ S ∧ (S, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

α−→ T ′ prove that there exists an S such that

P | R
α̂==⇒ S and (S, Q | T ′) ∈ R ′′.

case(cPar2 T ′)
from 〈R ;̂R ′ T〉 〈T

α−→ T ′〉 obtain R ′ where R
α̂==⇒R ′ and (R ′, T ′) ∈ R ′

by(rule weakSimE)

from 〈R
α̂==⇒R ′〉 have P | R

α̂==⇒P | R ′ by(rule weakPar2)
moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have (P | R ′, Q | T ′) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
α̂==⇒ S ∧ (S, Q | T ′) ∈ R ′′ by blast
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next
COMM case
Given that Q

a−→ Q ′ and T
a−→ T ′ prove that there exists

an S such that P | R
τ−→ S and (S, Q ′ | T ′) ∈ R ′′.

case(cComm Q ′ T ′α)

from 〈P ;̂R Q〉 〈Q
α−→ Q ′〉 obtain P ′ where P

α̂==⇒P ′ and (P ′, Q ′) ∈ R

by(rule weakSimE)

from 〈R ;̂R ′ T〉 〈T
α−→ T ′〉 obtain R ′ where R

α̂==⇒R ′ and (R ′, T ′) ∈ R ′
by(rule weakSimE)

from 〈P
α̂==⇒P ′〉 〈R

α̂==⇒R ′〉 〈α 6= τ〉 have P | R
τ==⇒P ′ | R ′

by(auto intro: weakCongSync simp add: weakTrans-def)

hence P | R
τ̂==⇒P ′ | R ′ by(simp add: weakTrans-def)

moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have (P ′ | R ′, Q ′ | T ′) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, Q ′ | T ′) ∈ R ′′ by blast

qed
qed

Figure 9.4: The Isabelle proof that simulation is preserved by the Parallel. It is very
similar to the corresponding proof for strong simulation, found in Figure 7.2, but
the lifted semantic rules are used instead of their regular semantic counterparts.
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lemma weakBisimParPres:
fixes P :: ccs and Q :: ccs and R :: ccs
assumes P ≈ Q
shows P | R ≈ Q | R

proof −
let ?X = {(P | R, Q | R) | P Q R. P ≈ Q}
from assms have (P | R, Q | R) ∈ ?X by auto
thus P | R ≈ Q | R
proof(coinduct rule: weakBisimCoinduct)

case(cSim S T)
{

fix P Q R
assume P ≈ Q
moreover hence P ;̂ .≈ Q

by(rule weakBisimulationE)
moreover have

∧
P Q R. P ≈ Q =⇒ (P | R, Q | R) ∈ ?X by auto

ultimately have P | R ;̂?X Q | R
by(rule-tac weakSimPres.parPres)

hence P | R ;̂?X ∪ .≈ Q | R
by(rule-tac weakSimMonotonic) auto

}
thus S ;̂?X ∪ .≈ T using 〈(S, T) ∈ ?X〉 by auto

next
case(cSym PR QR)
from 〈(PR, QR) ∈ ?X〉 show (QR, PR) ∈ ?X

by(blast dest: weakBisimulation.symmetric)
qed

qed

Figure 9.5: The proof that weak bisimulation is preserved by Parallel.
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9.6.1 Replication
The preservation properties for replication are a bit more complicated
than for its strong counterparts. The reason for this is that the simulating
agent has the possibility of doing nothing when mimicking a τ-action. As
the lifted semantics rule in Figure 9.3 dictates, the REPL rule may only be
used if an action is actually performed. This puts special constraints on
the candidate relations for bisimulation, which is demonstrated by the
simulation lemmas.

Lemma 9.30.

(P, Q) ∈ R bangRel R ⊆ R ′ ∧
R S.

(R, S) ∈ R

R ;̂R S

∧
R S T U .

(R, S) ∈ R (T , U) ∈ R ′

(R | T , S | U) ∈ R ′
∧

R S.
(R | !R, S) ∈ R ′

(!R, S) ∈ R ′

!P ;̂R ′ !Q

Proof. Similar to the corresponding proof for strong simulation,
Lemma 7.20. However, in the replication case the REPL rule from Figure 9.3
can only be used when the mimicking agent mimics at least one τ-action;
if it does nothing, the last assumption from the lemma is used to ensure
that the derivatives remain in R ′.

Lemma 9.31. If P
.≈ Q then !P

.≈ !Q.

Proof. Follows the same pattern as the corresponding lemma for strong
bisimilarity, Lemma 7.21, but by coinduction up to weak bisimilarity with Y

set to bangRel
.≈. The simulation case is discharged by Lemma 9.30, where

its final requisite is proven by the fact that !P
.≈ P | !P, by Theorem 9.1.

With this lemma in place, we can prove that the main preservation theo-
rem for weak bisimilarity.

Theorem 9.2. Weak bisimulation is preserved by all operators except the
Sum.

Proof. Follows from lemmas 9.23, 9.25, 9.29, and 9.31.
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10. Weak congruence

As shown in the previous chapter, weak bisimilarity is not a congruence
since it is not preserved by Sum. Let us recapitulate the counter-example:

P
def= a.0 Q

def= τ.a.0 R
def= b.0

The problem is that even though P and Q are bisimilar, if Q + R does a
τ-action, the only option P + R has is to do nothing, and the derivatives are
not bisimilar. An alternative bisimulation is one where a simulating agent
is required to do at least the action the simulated agent did, even if this was
a τ-action. This change is enough to obtain a coungruence. Moreover, only
the initial step is required to mimic a τ-action, and the derivatives need only
be weakly bisimilar. In this scenario, P and Q are not bisimilar as P cannot
mimic the τ-action done by Q.

This bisimulation relation is called weak congruence and will be formally
defined in the next sections.

10.1 Definitions
Simulation for weak congruence, which we will call τ-simulation, is defined
in the same manner as for weak bisimilarity (Definition 9.9), with the excep-
tion that a an action must be mimicked by at least that action, and any num-
ber of internal actions. As mentioned previously, the derivatives of weak
congruence need only be weakly bisimilar and not weakly congruent. This
distinction is not visible in the definition of simulation, but will become
apparent when weak congruence is defined. Nevertheless, some changes
in the simulation proofs are needed to handle this discrepancy.

Definition 10.1 (τ-simulation). An agent P which τ-simulates an agent Q
preserving R is written P ;R Q.

P ;R Q
def= ∀a Q ′. Q

a−→ Q ′−→ (∃P ′. P
a==⇒P ′∧ (P ′, Q ′) ∈ R)

All bisimulations up until now have been defined using coinductive
definitions. This has made sense since all derivatives of the simulated
agents have been required to remain in the same relation as they start in.
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For weak congruence this is not the case – the derivatives are required to
be weakly bisimilar, and not weakly congruent. As a result, the definition
for weak congruence is not coinductive – it is just a conjunction of two
τ-simulations.

Definition 10.2 (Weak congruence).

P ≈ Q
def= P ; .≈ Q ∧ Q ; .≈ P

10.1.1 Primitive inference rules
Introduction and elimination rules for τ-simulation and weak congruence
are derived in the standard way.

Lemma 10.3. Introduction and elimination rules for τ-simulation

∧
α Q ′.

Q
α−→ Q ′

∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R

P ;R Q
;-I

P ;R Q Q
α−→ Q ′

∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R

;-E

Proof. Follows immediately from Definition 10.1.

Lemma 10.4. Introduction and elimination rules for weak congruence.

P ; .≈ Q Q ; .≈ P

P ≈ Q
≈-I

P ≈ Q

P ; .≈ Q
≈-E

Proof. Follows immediately from Definition 10.2.

The coinductive rules for bisimilarity are defined such that it is only re-
quired to prove the simulations one way, as long as the candidate relation
is symmetric. By only using the definition of weak congruence, we would
have to prove the τ-simulations both ways for all of our proofs. The follow-
ing lemma lets us adopt the proof strategy that we use for bisimilarites for
weak congruence as well.
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Lemma 10.5. Symmetric introduction rule for weak congruence.

Prop P Q
∧

P Q.
Prop P Q

Prop Q P

∧
P Q.

Prop P Q

F P ; .≈ F Q

F P ≈ F Q

Proof. Follows immediately from the definition of ≈
This rule has one predicate Prop and one function F. The predicate Prop

takes two agents as arguments and represents an assumption required to
prove the weak congruence. It must be symmetric, since weak congruence
is symmetric, and any two agents P and Q that validate Prop must also form
a τ-simulation. Moreover, the function F maps one agent to another, allow-
ing the proof goal to depend on the arguments of Prop. A lemma which uses
this introduction rule is one which proves that all strongly bisimilar agents
are also weakly congruent, Lemma 10.7 below.

10.1.2 Weak congruence includes strong bisimilarity
In the same manner as was done for weak bisimilarity, we can translate
strong simulations to τ-simulations.

Lemma 10.6. If P ,→R Q then P ;R Q.

Proof. Follows from the definitions of ,→ and ; and Lemma 9.6 which con-
verts a strong transition to a weak one.

Lemma 10.7. If P ∼ Q then P ≈ Q.

Proof. We use the introduction rule, Lemma 10.5, and instantiate Prop to
λP Q. P ∼Q and F to the identity function. Since strong bisimilarity is sym-
metric (Lemma 7.9), the symmetry case is discharged leaving the simula-
tion case. For any P and Q s.t. P ∼ Q we have that P ,→∼ Q, by the definition
of ∼. Since ,→ is monotonic (Lemma 7.2) and ∼ ⊆ .≈ (Lemma 9.16), we have
that P ,→ .≈ Q, and hence P ; .≈ Q, by Lemma 10.6.

10.1.3 Weak bisimularity includes weak congruence
Lemma 10.8. If P ≈ Q then P

.≈ Q.

Proof. By coinduction, using Lemma 9.14, and setting the candidate rela-
tion X to {(P, Q) : P ≈ Q}. The set X is trivially symmetric. For every pair
(P, Q) ∈ X we get that P ≈ Q and thus P ; .≈ Q, from the definition of ≈. By
monotonicity of ;, the proof is concluded by proving that P ;X ∪ .≈ Q.
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10.1.4 Structural congruence
The main structural congruence theorem for weak bisimilarity and weak
congruence can now be proven.

Theorem 10.1.
If P ≡ Q then P

.≈ Q.
If P ≡ Q then P ≈ Q.

Proof. Follows immediately from Theorem 8.1 and lemmas 9.16 and 10.7.

10.2 Weak congruence is an equivalence relation
The reflexivity proof for τ-simulations has the same structure as its coun-
terpart for weak bisimulation.

Lemma 10.9. If Id ⊆ R then P ;R P.

Proof. Follows from Lemma 10.3. Any transitions P
α−→ P ′ can, by Lemma

9.6, be mimicked by P
α==⇒P ′, and (P ′, P ′) ∈ R.

The proof strategy for proving transitivity of τ-simulations differs slightly
from its counterpart for weak simulations (Lemma 9.20). The reason is the
different requirements for the derivatives in the two bisimulation relations.
For weak bisimilarity, the derivatives need to be weakly bisimilar.

When proving that weak congruence is transitive we reuse lemmas from
the corresponding proof from weak bisimilarity. This is possible as the
derivatives of weakly congruent agents are weakly bisimilar.

Lemma 10.10.

P ;R Q Q
α==⇒Q ′ ∧

R S.
(R, S) ∈ R

R ;̂R S

∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R

Proof. By unfolding Q
α==⇒ Q ′ we obtain a Q ′′ and a Q ′′′ s.t. Q =⇒ Q ′′′, Q ′′′

α−→ Q ′′, and Q ′′=⇒ Q ′. The proof is a proof by cases on Q =⇒ Q ′′′.
case (Q = Q ′′′): The transition Q ′′′ α−→ Q ′′ is simulated using Lemma 10.3,
and the trailing τ-chain by Lemma 9.18.

case (Q 6= Q ′′′): Since Q 6= Q ′′′ there exists a Q ′′′′ s.t. Q
τ−→ Q ′′′′and "Q ′′′′=⇒

Q ′′′. The transition Q
τ−→ Q ′′′′ can then be simulated using Lemma 10.3,

and the remaining τ-chains and transitions by Lemmas 9.12 and 9.18. The

126



important observation is that even if α = τ, and the simulating agents for
weak bisimilarity has the option of doing nothing, at least one τ-action has
been forced by the initial simulation.

The proof that simulation for weak congruence is transitive can now be
completed.

Lemma 10.11. The simulation for weak congruence is transitive.

P ;R Q Q ;R ′ R R ◦ R ′⊆ R ′′ ∧
S T .

(S, T) ∈ R

S ;̂R T

P ;R ′ ′ R

Proof. Follows from the definition of ; and Lemma 10.10 to simulate the
weak actions.

We can now prove that weak congruence is an equivalence relation.

Lemma 10.12.

Proof. Reflexivity: Follows from the definition of ≈, reflexivity of weak
bisimilarity (Lemma 9.21), and Lemma 10.9.

Symmetry: Follows immediately from the definition of ≈.

Transitivity: The symmetric introduction rule (Lemma 10.5) is in-
stantiated with Prop set to λP R. ∃Q. P ≈ Q ∧ Q ≈ R and F set
to the identity function.
Symetry case: Follows immediately from the fact that weak
congruence is symmetric.
Simulation case: From Prop P R we obtain a Q s.t. P ≈ Q and Q
≈ R, and hence P ; .≈ Q and Q ; .≈ R. Moreover, since weak
bisimulation is transitive (Lemma 9.21), we have that

.≈ ◦ .≈ ⊆
.≈, and hence by Lemma 9.20 that P ; .≈ R.

10.3 Preservation properties
The next step is to prove that weak congruence actually is a congruence.
All congruence lemmas have a typical form – if two agents are weakly con-
gruent, then two other agents containing the original ones must be weakly
congruent as well. The following adaptation to the symmetric introduction
rule (Lemma 10.5) will be useful.
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Lemma 10.13. A version of Lemma 10.5 where Prop is weak congruence.

P ≈ Q
∧

P Q.
P ≈ Q

F P ; .≈ F Q

F P ≈ F Q

Proof. Follows immediately from Lemma 10.5 with Prop set to ≈, and the
fact that weak congruence is symmetric.

10.3.1 Prefix
Lemma 10.14. If (P, Q) ∈ R then α.P ;R α.Q.

Proof. Follows from the definition of ; and the fact that a.P and a.Q can
each only do an a-action (Figure 6.4 ACTION) and (P, Q) ∈ R.

Lemma 10.15. If P ≈ Q then α.P ≈ α.Q.

Proof. Follows from Lemma 10.13, with F set to Action α. Since P ≈ Q, we
know that P ; .≈ Q, by ≈-I, and that P

.≈ Q, by Lemma 10.8. The simulation
can then be proven using Lemma 10.14.

10.3.2 Sum
Lemma 10.16.

P ;R Q R ⊆ R ′ Id ⊆ R ′

P + R ;R ′ Q + R

Proof. Follows from the definition of ;, the SUM inversion rule in
Figure 6.4, and the SUM1 and SUM2 rules from the lifted semantics. In
the case where R does an action, Lemma 9.6 is used to convert the strong
action to a weak one.

Lemma 10.17. If P ≈ Q then P + R ≈ Q + R.

Proof. Follows from Lemma 10.13, with F set to λP. P + R. Since P ≈ Q,
we know that P ; .≈ Q, by ≈-I. The simulation can then be proven using
Lemma 10.16, and the fact that weak bisimulation is reflexive (Lemma 9.21).
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lemma parPres:
fixes P :: ccs and Q :: ccs and R :: ccs
assumes P ∼= Q
shows P | R ∼= Q | R

using assms
proof(induct rule: weakCongISym2)

case(cSim P Q)
from 〈P ∼= Q〉 have P ; .≈ Q

by(rule weakCongruenceE) — Lemma ≈-E1
moreover from 〈P ∼= Q〉 have P ≈ Q

by(rule weakCongruenceWeakBisimulation) — Lemma 10.8
ultimately show P | R ; .≈ Q | R

using weakBisimulationPres.parPres — Lemma 9.29
by(rule weakCongSimPres.parPres) — Lemma 10.18

qed

Figure 10.1: The proof that weak congruence is preserved by Parallel.

10.3.3 Parallel
Lemma 10.18.

P ;R Q (P, Q) ∈ R
∧

S T U .
(S, T) ∈ R

(S | U , T | U) ∈ R ′

P | R ;R ′ Q | R

Proof. The Isabelle proof of this lemma is similar to the one found in Fig-
ure 7.1.

Lemma 10.19. If P ≈ Q then P | R ≈ Q | R.

Proof. The Isabelle proof of this lemma can be found in Figure 10.1.

10.3.4 Restriction
Lemma 10.20.

P ;R Q
∧

R S y.
(R, S) ∈ R

((νy)R, (νy)S) ∈ R ′

(νx)P ;R ′ (νx)Q

Proof. Follows from the definition of ;, the SCOPE inversion rule in Fig-
ure 6.4, and the SCOPE from the lifted semantics.
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Lemma 10.21. If P ≈ Q then (νx)P ≈ (νx)Q.

Proof. Follows from Lemma 10.13, with F set to ν x. Since P ≈ Q, we know
that P ; .≈ Q, by ≈-I. The simulation can then be proven using Lemma
10.20, and the fact that weak bisimilarity is preserved by restriction (Lemma
9.25).

10.3.5 Replication
The proof that weak congruence is preserved by replication is simpler than
its counterpart for weak bisimilarity.

Lemma 10.22.

(P, Q) ∈ R
∧

R S.
(R, S) ∈ R

R ;R ′ S
R ⊆ R ′

!P ;bang Rel R ′ !Q

Proof. Follows the same structure as its counterpart for strong bisimilarity,
Lemma 7.20, but with the lifted semantics from Figure 9.3.

Before proving that weak congruence is preserved by replication, we
need the following auxiliary lemma.

Lemma 10.23. bangRel
.≈ ⊆ .≈

Proof. By induction on bangRel
.≈.

Parallel case: We have that R
.≈ T, and from the induction hypothesis that

P
.≈ Q, and we must prove that R | P

.≈ T | Q, which follows from the
preservation properties of weak bisimilarity, and the structural con-
gruence laws.

Replication case: From P
.≈ Q we have to prove that !P

.≈ !Q which follows
directly from Lemma 9.31.

We also need to prove that weak congruence simulation is monotonic.

Lemma 10.24. If P ;R Q and R ⊆ R ′ then P ;R ′ Q.

Proof. Follows immediately from the definition of ;.

Lemma 10.25. If P ≈ Q then !P ≈ !Q.

Proof. The proof uses the symmetric introduction rule ≈-I2. From P ≈ Q,
the definition of ;, and Lemma 10.8 we have that !P ;bang Rel

.≈ !Q by
Lemma 10.22. We can then prove that !P ; .≈ !Q with Lemmas 10.24 and
10.23.
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10.4 Weak congruence is a congruence
It is now possible to prove the congruence theorem.

Theorem 10.2. Weak congruence is a congruence

Proof. That weak congruence is an equivalence relation follows from
Lemma 10.12, and that it is preserved by all operators follows from lemmas
10.15, 10.17, 10.19, and 10.21.
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11. Conclusions

This part of the thesis demonstrates how to formalise a substantial part of
the meta theory of CCS in Isabelle. We encode the semantics, using nominal
logic to reason about the binding constructs (Chapter 6), we define strong
bisimilarity and prove that it is a congruence (Chapter 7), and we define
the structural congruence laws and prove that all bisimilar agents are also
structurally congruent (Chapter 8). Moreover, we define weak bisimilarity
and prove that it is preserved by all operators except Sum (Chapter 9), and
we define weak congruence and prove that it is a congruence (Chapter 10).
We also prove that weak congruence includes weak bisimilarity which in-
cludes strong bisimilarity.

The time it took to write the original formalisation was approximately six
months, with no prior Isabelle knowledge. At that time Nominal Isabelle
did not exist, and no proofs required that agents are treated up to alpha-
equivalence. For this thesis the formalisation was adapted to include sup-
port for replication, and use nominal logic. This took about one day.

A description of the different parts of the formalisation and their size can
be found in Figure 11.1. The part for agents include the nominal datatype
for CCS-agents, and supporting lemmas for actions and coactions. The part
for the semantics include the induction and inversion rules required for the
rest of the formalisation. The part for strong bisimilarity includes the defi-
nitions for strong simulation and bisimilarity, as well as the congruence re-
sults. The part for structural congruence includes the definitions of struc-
tural congruence, and the proof that all strongly bisimilar agents are also
structurally congruent. The formalisation for weak congruence and weak
bisimilarity are very interdependent.

11.1 Reusing results
In order to reuse strategies for strong bisimilarity to weak bisimilarity and
weak congruence we lifted the strong semantics to weak counterparts – one
for weak bisimilarity, and one for weak congruence. After this the proofs
map to their strong counterparts almost completely. A valid question is if
it is not easier to create a bisimilarity framework which given a semantics
proves the congruence results for the resulting bisimulation relations. Af-
ter all, the semantics in Figure 6.1 and Figure 9.3 are identical modulo the
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Part Lines of code

Agents 46

Semantics 230

Strong bisimilarity 517

Structural congruence 470

Weak bisimilarity 1044

Weak Congruence 748

Total 3055

Figure 11.1: The size of the different parts of the Isabelle formalisation of the CCS
meta-theory.

transition arrows used. If a general framework were available, it would be
possible to instantiate it with a semantics and be done – no proof dupli-
cation would be necessary. The answer is that yes, this is possible, but it is
questionable if its worth the effort.

The main problem with a general framework is that weak bisimilarities
rarely map as neatly onto their stronger counterparts as weak congruence
does. There are usually some discrepancies or special cases as a result of
ignoring the internal actions that have to be taken into consideration, and
a uniform framework would have a hard time catching these. There are also
cases where it is not possible to lift the semantics. The only non liftable
rules for CCS are the SUM rules for weak transitions. But even if the rule is
not liftable, it is possible to derive simulation lemmas.

Lemma 11.1. Weak simulations preserved by Sum.

P ;̂R Q R ⊆ R ′ Id ⊆ R ′ ∧
S T U .

(S, T) ∈ R

(S + U , T) ∈ R ′

P + R ;̂R ′ Q + R

Weak bisimilarity is not preserved by Sum, yet this lemma proves that a
weak simulation is preserved by Sum if for all P, Q and R, if P and Q are in
R, then P + R, and Q must be in R ′. Intuitively, this requirement is needed
when Q does a τ-action to a Q ′ and P mimics by doing nothing – hence the
derivatives P and Q ′ are in R. The only way for P + R to mimic the action
of Q + R is to do nothing, but then the derivatives P + R and Q ′ must be
in R ′. The corresponding part of the bisimilarity proof fails. A reasonable
candidate relation would be X = {(P + R, Q + R) : P

.≈ Q}, with R set to
.≈ and R ′ set to X in the simulation lemma. To prove the requisites of the
simulation lemma, we would need a lemma which states that P + R

.≈ P,
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which is clearly not true. There is of course no guarantee that just because
this strategy fails, the lemma is false – for that we have the counter example
from Section 9.5.

In short, creating a general framework for process calculi which proves
congruences is not trivial, and even though there is a bit of cut and pasting
of proofs in this formalisation, the question is how much is actually gained
by making a general framework if it can only be used for a few congruences.
As the complexity of the calculi increase, so does the complexity of their
proofs. In the next two parts where pi- and psi-calculi are described there
will be examples of weak bisimilarites which differ significantly from their
strong counterparts. The techniques used in this CCS formalisation are ap-
plicable and provide useful infrastructure for reasoning about weak equiv-
alences.
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Part III:

The pi-calculus





12. Introduction

In the pi-calculus, designed by Milner, Parrow, and Walker in 1992 [58],
agents send communication channels to each other – channels which can
later be used for further communication effectively changing the topology
of the network.

Prefixes in the pi-calculus are either input, output or τ-actions.

Definition 12.1 (Actions).

α
def= a(x) Input

ab Output

τ Tau

The τ-prefix denotes the standard internal action; the prefix a(x) is an
input prefix, where the agent a(x).P can receive a name along a, and the
name x is a place-holder for the name received, and binding into P; finally,
the prefix ab is an output prefix which sends the b over a.

Pi-calculus agents are defined in the following way:

Definition 12.2 (Agents).

P
def= 0 Nil

α.P (Input,Output,Tau)

[a=b]P Match

[a 6=b]P Mismatch

P + Q Sum

P | Q Parallel

(νx)P Restriction

!P Replication

The syntactic differences to CCS are the prefixes, and the match and mis-
match operators. Intuitively, the agent [a=b]P behaves as P if a and b are
equal, and the agent [a 6=b]P behaves like P if they are not.

In the pi-calculus names can both represent data being sent between
agents, and communication channels which the agents can use. For in-
stance in the system
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ab.P | a(x).xc.Q

the agent ab.P can send the name b along a. The agent a(x).xc.Q can then
receive b, also along a, and then output c along b. The transitions

ab.P | a(x).xc.Q
τ−→ P | bc.Q{b/x }

bc−→ P | Q{b/x }

describe this derivation, where the agent Q{b/x } represents the agent Q with
all occurrences of x replaced by b.

As in CCS, it is possible to restrict channels such that they are local only
to that agent. This is achieved through Restriction. For instance, restricting
the name a in the system above would ensure that only the two parallel
agents can use it for communication. The transitions

(νa)(ab.P | a(x).xc.Q )
τ−→ (νa)(P | bc.Q{b/x } )

bc−→ (νa)(P | Q{b/x } )

describe this derivation. Even though restricted channels cannot be used
by agents outside the scope of Restriction, restricted names can be sent out
of their scopes, which then grow to include the receiver. In the system

(νb)ab.P | a(x).Q

the name b is restricted in the agent (νb)ab.P By outputting b along a,
through the transition

(νb)ab.P | a(x).Q
τ−→ (νb)(P | Q{b/x } )

the scope of the ν-binder changes, and the name b is bound in both P and
Q. Note that all occurrences of x in Q have been replaced by b.

12.1 Part outline
This part of the thesis will formalise a substantial amount of the meta the-
ory for the pi-calculus. There are two styles of semantics – early and late
operational semantics, and we will prove results for both. In the next chap-
ter we will introduce the Isabelle formalisation of pi-calculus agents, as well
as the early operational semantics and its induction and inversion rules.
In Chapter 14 we will define strong bisimilarity, which contrary to CCS is
not a congruence. We also define strong equivalence which is a congru-
ence. In Chapter 15 we define weak bisimilarity. As for CCS weak bisimi-
larity for the pi-calculus is not a congruence – it is not preserved by Sum

140



for the same reasons. In Chapter 16 we define weak congruence in a simi-
lar way as is done for CCS, and prove that it is a congruence. In Chapter 17
we define the late operational semantics, we define the same bisimulation
relations that were defined for the early semantics and prove the same re-
sults. In Chapter 18 we define structural congruence and prove that all late
bisimilar agents are also structurally congruent. In Chapter 19 we define
an axiomatisation of strong late bisimilarity of the finite pi-calculus (with-
out Replication) and prove that it is sound and complete. In Chapter 20 we
prove that all late bisimilar agents are also early bisimilar, allowing us to
prove that all early bisimilar agents are also structurally congruent. Chap-
ter 21 concludes.
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13. Formalising the pi-calculus

As for CCS, pi-calculus agents utilise a single atom type name for its binding
constructs. The nominal datatype for pi-calculus agents differs from that of
CCS mainly in that the input prefix contains a binder.

Isabelle code Syntax

nominal_datatype pi =
PiNil 0

Output name name pi ab.P

Input name "«name»pi" a(x).P

Match name name pi [a=b]P

Mismatch name name pi [a 6=b]P

Sum pi pi P + Q

Par pi pi P | Q

Res "«name»pi" (νx)P

Bang pi !P

From this definition, Isabelle automatically derives the standard injec-
tivity rules. As for CCS, agents with binders are equated using the binding
construct when determining equality.

Lemma 13.1. Injectivity rules for pi-calculus agents.

ab.P = cd.Q ⇔ a = c ∧ b = d ∧ P = Q

τ.P = τ.Q ⇔ P = Q

a(x).P = b(y).Q ⇔ a = b ∧ [x].P = [y].Q

[a=b]P = [c=d ]Q ⇔ a = c ∧ b = d ∧ P = Q

[a 6=b]P = [c 6=d ]Q ⇔ a = c ∧ b = d ∧ P = Q

P + Q = R + S ⇔ P = R ∧ Q = S

P | Q = R | S ⇔ P = R ∧ Q = S

(νx)P = (νy)Q ⇔ [x].P = [y].Q

!P = !Q ⇔ P = Q

Lemma 13.2.
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If y ] P then a(x).P = a(y).(x y) · P.

If y ] P then (νx)P = (νy)(x y) · P.

Proof. Follows immediately from Lemmas 13.1 and 5.6.

13.1 Substitution
In the pi-calculus, agents communicate by sending names. When an agent
a(x).P receives a name b all instances of x in P will be replaced by x. In
Isabelle, this is modeled by creating two substitution functions – one for
names, and one for agents. In both cases, the term T{a/x } will denote a name
or an agent T with all instances of x replaced by a.

The first function defines substitution on names.

Definition 13.3 (Name substitution).

a{c/b}
def= if a = b then c else a

Substitutions for agents is a function substituting names for names mak-
ing sure that any binders do not clash with any of the names being substi-
tuted.

Definition 13.4 (Substitution). An agent P with all non binding occurrences
of c replaced by d is denoted P{d/c }.

0{d/c } = 0
(τ.P){d/c } = τ.P{d/c }

ab.P{d/c } = a{d/c }b{d/c }.P{d/c }
If x 6= a and x 6= c and x 6= d then a(x).P{d/c } = a{d/c }(x).P{d/c }.
([a=b]P){d/c } = [a{d/c }=b{d/c }]P{d/c }
([a 6=b]P){d/c } = [a{d/c }6=b{d/c }]P{d/c }
(P + Q ){d/c } = P{d/c } + Q{d/c }
(P | Q ){d/c } = P{d/c } | Q{d/c }
If x 6= c and x 6= d then ((νx)P){d/c } = (νx)P{d/c }.
(!P){d/c } = !P{d/c }

The side conditions for the Input case are stronger than what is required
for the substitution to avoid the binder. They require that the name a is dis-
joint from x in the agent a(x).P even though a is outside the scope of x. The
reason for this has to do with how Isabelle handles inductive functions for
nominal datatypes, where the binders are assumed to be as fresh as possi-
ble for the automatic heuristics. There are two ways to get around this. The
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first is to not use the heuristics provided by Isabelle. The second is to de-
rive an alternate simplification rule for the Input case where x and a can
potentially be the same. We chose the latter option.

Lemma 13.5. If x 6= b and x 6= c then a(x).P{c/b} = a{c/b}(x).P{c/b}.

Proof. By picking a suitably fresh name y such that y ] (a, b, c, P , P {b/c }),
alpha-converting x for y and the Input case from Definition 13.4.

13.1.1 Lemmas for substitution
In order to reason efficiently about substitution in the following proofs, a
few auxiliary lemmas need to be created. The first lemma that needs to be
proven for any nominal function is equivariance.

Lemma 13.6. p · a{c/b} = (p · a){p · c/p · b}

p · P{b/a} = (p · P){p · b/p · a}

Proof. Substitution for names follows immediately from Definition 13.3.
The proof that substitution on agents is equivariant follows from induction
on P avoiding a and b, and Definition 13.4.

The next step is to prove the freshness lemmas needed for the rest of the
formalisation.

Lemma 13.7. If a ] P and a 6= c then a ] P {c/b}.
If a 6= b then a ] P {b/a}.
If a ] P then P{b/a} = P.

Proof. The exact proof strategy for the different sub-lemmas varies, but
they are all proven by nominal induction over P avoiding a, b and c.

Substituting a name for a name which does not already exists in an agent
is equivalent to a permutation.

Lemma 13.8. If b ] P then (a b) · P = P{b/a}.

Proof. By induction on P avoiding a and b.

13.2 Early operational semantics

Transitions in the pi-calculus have the form P
α−→ P ′, where P is an agent,α

is an action and P ′ is theα-derivative of P . At a first glance, this looks identi-
cal to the way transitions are defined in CCS. In the pi-calculus the actionα
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x 6= a x 6= u

a(x).P
au−−→ P{u/x }

INPUT

ab.P
ab−−→ P

OUTPUT

τ.P
τ−→ P

TAU

P 7−→ V

[b=b]P 7−→ V
MATCH

P 7−→ V a 6= b

[a 6=b]P 7−→ V
MISMATCH

P 7−→ V

P + Q 7−→ V
SUM1

Q 7−→ V

P + Q 7−→ V
SUM2

P
ab−−→ P ′ a 6= b

(νb)P
a(νb)−−−−→ P ′

OPEN

P
α−→ P ′ y ] α

(νy)P
α−→ (νy)P ′

SCOPEF

P
a(νx)−−−−→ P ′ y 6= a y 6= x x ] P x 6= a

(νy)P
a(νx)−−−−→ (νy)P ′

SCOPEB

P
α−→ P ′

P | Q
α−→ P ′ | Q

PAR1F

P
a(νx)−−−−→ P ′ x ] P x ] Q x 6= a

P | Q
a(νx)−−−−→ P ′ | Q

PAR1B
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Q
α−→ Q ′

P | Q
α−→ P | Q ′

PAR2F

Q
a(νx)−−−−→ Q ′ x ] P x ] Q x 6= a

P | Q
a(νx)−−−−→ P | Q ′

PAR2B

P
ab−−→ P ′ Q

ab−−→ Q ′

P | Q
τ−→ P ′ | Q ′

COMM1
P

ab−−→ P ′ Q
ab−−→ Q ′

P | Q
τ−→ P ′ | Q ′

COMM2

P
ax−−→ P ′ Q

a(νx)−−−−→ Q ′ x ] P x ] Q x 6= a

P | Q
τ−→ (νx)(P ′ | Q ′ )

CLOSE1

P
a(νx)−−−−→ P ′ Q

ax−−→ Q ′ x ] P x ] Q x 6= a

P | Q
τ−→ (νx)(P ′ | Q ′ )

CLOSE2

P | !P 7−→ V

!P 7−→ V
BANG

Figure 13.1: The inductive definition of the operational semantics for the pi-
calculus. Every bound name is declared to be fresh for everything outside its scope
to allow Isabelle to automatically generate induction and inversion rules.

147



may bind a name, in the case of a bound output, and the scope of this bind-
ing extends into P ′. This observation is made already in the original presen-
tation of the pi-calculus [58] where lemmas concerning variants of transi-
tions are spelled out. In his tutorial on the polyadic pi-calculus [56] Mil-
ner uses "commitments" rather than labeled transitions. A transition here
corresponds to a pair consisting of an agent and a commitment where the
latter may have binders and contains both the action and derivative agent.
Thus, there is a discrepancy between a more traditional syntax for transi-
tions (looking like 3-tuples) and the intended semantics (that action and
derivative in reality is one construct with names that can be bound in both).
In many presentations of the pi-calculus this issue is glossed over, and if
alpha-conversions are not defined rigorously the three-element syntax for
transitions works fine. But here it poses a problem — it would require that
the rules for changing the bound variables are explicitly stated, and the oth-
erwise smooth treatment ofα-variants provided by the nominal framework
would be lost. Moreover no appeals can be made to the Barendregt variable
convention. In Section 3.1.1 we showed an example for when the Baren-
dregt variable convention is inconsistent. This example corresponds to the
OPEN rule, and a three-element syntax for transitions will be unsound for
the same reasons. Therefore, the formalisations in this thesis follows [56],
with a slight change of notation to avoid confusion of prefixes and com-
mitments, and defines a residual-datatype which contains both action and
derivative. A binder in the action has the whole residual as scope, mean-
ing that it also binds into the derivative. A similar technique was used by
Gabbay when formalising the pi-calculus in FM set theory [38].

Definition 13.9 (Residuals). The residual datatype

nominal_datatype freeRes =
InputR name name

| OutputR name name

| Tau

nominal_datatype residual =
BoundOutputR name «name»pi

| FreeR freeRes pi

Both these datatypes in the definition above are nominal datatypes,
even though only the residual-datatype contains binders. The reason for
this is that the nominal package provides equivariance and freshness
lemmas only for nominal datatypes. A user is either required to do these by
hand, or declare all datatypes as nominal datatypes.

The downside to this approach is that much of the infrastructure for reg-
ular datatypes is unavailable for nominal ones, most notably case distinc-
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tion. Since a nominal datatype has infinitely many alpha-equivalent terms,
case analysis is not trivial. The nominal package provides case-rules for
inductively defined predicates, see Figure 6.4 for an example, but not for
nominal datatypes. For nominal datatypes without binders, this restriction
is reasonably mild since deriving case-rules for them is unproblematic.

As functions over nominal datatypes cannot depend on bound names.
This poses a problem since traditionally, some of the operational rules have
conditions on the bound names. An example of this is the PAR-rule, which

in the standard operational semantics states that the transition P | Q
α−→

P ′ | Q can occur only if P
α−→ P ′ and bn(α)∩ fn(Q) = ;. A function such

as bn does not exist in nominal logic and thus cannot be created using the
nominal datatype package. An easy solution is to split the operational rules
which have these types of conditions into two rules — one for the transi-
tions with bound names, and one for the ones without. Doing this creates
extra proof obligations, but most proofs have to consider bound and free
transitions separately anyway. In effect the complexity remains the same.

Definition 13.10 (Operational semantics).
1. A transition is written as P 7−→ V where P is an agent and V is a residual.

2. P
a(νx)−−−−→ P ′ denotes a bound output transition with the bound name x

in the action. The residual by itself is written a(νy) ≺ P ′

3. P
α−→ P ′ denotes a transition without bound names. Note that α is of

type freeRes. The residual by itself is written α ≺ P ′.

As mentioned in Chapter 5, Isabelle provides good support for automat-
ically creating induction rules for inductively defined predicates contain-
ing nominal terms provided the bound names are sufficiently fresh. When
defining the semantics, we therefore make sure that the bound names are
fresh for everything outside of their scope. This has the extra advantage that
the induction rule is more versatile, as all of these conditions will be avail-
able when doing induction on the inference of transitions. The disadvan-
tage is that to apply the introduction rules of the predicate, these freshness
conditions must be known – what is won at induction, is lost at introduc-
tion. Later in this section a solution for this will be discussed.

The operational semantics is defined by the introduction rules in Fig-
ure 13.1. It contains the split rules for PAR and RES and all bound names
are fresh for everything outside their scope, more specifically fresh for ev-
erything outside their scope.

Isabelle automatically derives an equivarience lemma for the operational
semantics.

Lemma 13.11. If P 7−→ V then (p · P) 7−→ (p · V ).

Proof. By induction on P 7−→ V
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13.3 Nominal induction rules
In order to mimic the Barendregt variable convention, any rule with bound
names in the assumptions must ensure that these bound names are suf-
ficiently fresh. This is achieved by instantiating the induction rules with a
freshness context C for which all bound names are fresh. Isabelle will auto-
matically create a nominal induction rule with this property, found in Fig-
ure 13.2. The rule is quite large, and in induction over transitions of the form
P 7−→ V there are a total of 19 inductive cases.

• One for Input, Output, and Tau respectively.
• One for Match and Mismatch respectively.
• Two for Sum.
• Eight for Parallel – the PARF, PARB, COMM and CLOSE-rules and their

symetric counterparts.
• Three for Restriction – one for OPEN, one for RESF and one for RESB
• One for Replication.

The induction rule looks like a general induction rule apart from the ex-
tra argument to the predicate to be proven. That extra argument C is the
freshness conditions for the bound names.

As long as the complexity of the proofs is manageable, a big induction
rule does not make the formalisation more difficult as Isabelle will manage
large portions of the proofs automatically. Later in this thesis this induction
rule will be used more extensively, but for now its main use will be to prove
some straightforward lemmas.

The freshness conditions are actually stronger than strictly necessary.
Not all of them are needed to derive the transitions since many of them
can be inferred.

Lemma 13.12.

If P
ab−−→ P ′ and c ] P then c 6= a.

If P
ab−−→ P ′ and c ] P then c 6= b.

If P
ab−−→ P ′ and c ] P then c ] P ′.

If P
ab−−→ P ′ and c ] P then c 6= a.

If P
a(νx)−−−−→ P ′ and c ] P then c 6= a.

If P
au−−→ P ′ and c ] P and c 6= u then c ] P ′.

If P
a(νx)−−−−→ P ′ and c ] P and c 6= x then c ] P ′.

If P
τ−→ P ′ and c ] P then c ] P ′.

Proof. All cases are proven by induction on their corresponding transitions.
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This lemma states that if a name is fresh for an agent and the bound
names of its action, then it is also fresh for the action and any derivative
of that action.

It is now possible to derive weaker introduction rules. The resulting
semantics can be found in Figure 13.3. The rules are derived by
starting with as few freshness conditions for the binders as possible
and alpha-converting the binders to be as fresh as required by the old
introduction rules.

Other useful lemmas relate the support of the agents in a transition. If
an agent does an output action, no new names can be introduced in the
derivative.

Lemma 13.13. If P
ab−−→ P ′ then supp P ′⊆ supp P.

Proof. By induction on P
ab−−→ P ′

Bound output actions open a binder, and a derivative can potentially
contain the bound names of an action.

Lemma 13.14. If P
a(νx)−−−−→ P ′ and x ] P then supp P ′− {x} ⊆ supp P.

Proof. By induction on P
a(νx)−−−−→ P ′. In the OPEN-case the name x can ap-

pear in the derivative.

As an input action receives a new name, any name received can poten-
tially be in the derivative.

Lemma 13.15. If P
ax−−→ P ′ then supp P ′− {x} ⊆ supp P.

Proof. By induction on P
ax−−→ P ′. In the INPUT-case the name x can be

received and substituted into the derivative.

Lemma 13.16. If P
τ−→ P ′ then supp P ′⊆ supp P.

Proof. By induction on P
τ−→ P ′. The relevant cases are the COMM and

CLOSE cases, where lemmas 13.14 and 13.15 are used do determine the
support of the derivatives of the communicating agents. In the COMM

cases, the input name is already in the support of the agent outputting the
same name. In the CLOSE cases, the bound output name is restricted in the
derivative, and hence not a member of the support.
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R 7−→ W

∧
P C .

Prop C (τ.P) (τ ≺ P)
TAU

∧
x a u P C .

x 6= a x 6= u x ] C

Prop C a(x).P (au ≺ P{u/x })
INPUT

∧
a b P C .

Prop C ab.P (ab ≺ P)
OUTPUT

∧
P V b C .

P 7−→ V
∧

C . Prop C P V

Prop C ([b=b]P) V
MATCH

∧
P V a b C .

P 7−→ V
∧

C . Prop C P V a 6= b

Prop C ([a 6=b]P) V
MISMATCH

∧
P a b P ′ C .

(
P

ab−−→ P ′ Prop C P (ab ≺ P ′)
a 6= b b ] C

)
Prop C ((νb)P) (a(νb) ≺ P ′)

OPEN

∧
P V Q C .

P 7−→ V
∧

C . Prop C P V

Prop C (P + Q ) V
SUM1

∧
Q V P C .

Q 7−→ V
∧

C . Prop C Q V

Prop C (P + Q ) V
SUM2

∧
P a x P ′ Q C .

(
P

a(νx)−−−−→ P ′ ∧
C . Prop C P (a(νx) ≺ P ′)

x ] P x ] Q x 6= a x ] C

)
Prop C (P | Q ) (a(νx) ≺ P ′ | Q )

PAR1B

∧
P α P ′ Q C .

P
α−→ P ′ ∧

C . Prop C P (α ≺ P ′)
Prop C (P | Q ) (α ≺ P ′ | Q )

PAR1F

∧
Q a x Q ′ P C .

(
Q

a(νx)−−−−→ Q ′ ∧
C . Prop C Q (a(νx) ≺ Q ′)

x ] P x ] Q x 6= a x ] C

)
Prop C (P | Q ) (a(νx) ≺ P | Q ′ )

PAR2B
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∧
Q α Q ′ P C .

Q
α−→ Q ′ ∧

C . Prop C Q (α ≺ Q ′)
Prop C (P | Q ) (α ≺ P | Q ′ )

PAR2F

∧
P a b P ′ Q Q ′ C .

(
P

ab−−→ P ′ ∧
C . Prop C P (ab ≺ P ′)

Q
ab−−→ Q ′ ∧

C . Prop C Q (ab ≺ Q ′)

)
Prop C (P | Q ) (τ ≺ P ′ | Q ′ )

COMM1

∧
P a b P ′ Q Q ′ C .

(
P

ab−−→ P ′ ∧
C . Prop C P (ab ≺ P ′)

Q
ab−−→ Q ′ ∧

C . Prop C Q (ab ≺ Q ′)

)
Prop C (P | Q ) (τ ≺ P ′ | Q ′ )

COMM2

∧
P a x P ′ Q Q ′ C .

P
ax−−→ P ′ ∧

C . Prop C P (ax ≺ P ′)
Q

a(νx)−−−−→ Q ′ ∧
C . Prop C Q (a(νx) ≺ Q ′)

x ] P x ] Q x 6= a x ] C


Prop C (P | Q ) (τ ≺ (νx)(P ′ | Q ′ ))

CLOSE1

∧
P a x P ′ Q Q ′ C .

P
a(νx)−−−−→ P ′ ∧

C . Prop C P (a(νx) ≺ P ′)
Q

ax−−→ Q ′ ∧
C . Prop C Q (ax ≺ Q ′)

x ] P x ] Q x 6= a x ] C


Prop C (P | Q ) (τ ≺ (νx)(P ′ | Q ′ ))

CLOSE2

∧
P a y P ′ x C .

P
a(νy)−−−−→ P ′ ∧

C . Prop C P (a(νy) ≺ P ′)
x 6= a x 6= y x ] C

y ] P y 6= a y ] C


Prop C ((νx)P) (a(νy) ≺ (νx)P ′)

SCOPEB

∧
P α y P ′ x C .

(
P

α−→ P ′ ∧
C . Prop C P (α ≺ P ′)

x ] α x ] C

)
Prop C ((νx)P) (α ≺ (νx)P ′)

SCOPEF

∧
P V C .

P | !P 7−→ V
∧

C . Prop C (P | !P ) V

Prop C (!P) V
REPL

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍË
Prop C R W

Figure 13.2: Nominal inductive rule for doing induction over a transition of the
form R 7−→ W. The 19 cases are named after their corresponding semantic rule,
and any newly introduced bound name will avoid the freshness context C .
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a(x).P
au−−→ P{u/x } INPUT

ab.P
ab−−→ P

OUTPUT

τ.P
τ−→ P

TAU

P 7−→ V

[b=b]P 7−→ V
MATCH

P 7−→ V a 6= b

[a 6=b]P 7−→ V
MISMATCH

P 7−→ V

P + Q 7−→ V
SUM1

Q 7−→ V

P + Q 7−→ V
SUM2

P
α−→ P ′

P | Q
α−→ P ′ | Q

PAR1F
P

a(νx)−−−−→ P ′ x ] Q

P | Q
a(νx)−−−−→ P ′ | Q

PAR1B

Q
α−→ Q ′

P | Q
α−→ P | Q ′

PAR2F
Q

a(νx)−−−−→ Q ′ x ] P

P | Q
a(νx)−−−−→ P | Q ′

PAR2B

P
ab−−→ P ′ Q

ab−−→ Q ′

P | Q
τ−→ P ′ | Q ′

COMM1
P

ab−−→ P ′ Q
ab−−→ Q ′

P | Q
τ−→ P ′ | Q ′

COMM2

P
ax−−→ P ′ Q

a(νx)−−−−→ Q ′ x ] P

P | Q
τ−→ (νx)(P ′ | Q ′ )

CLOSE1

P
a(νx)−−−−→ P ′ Q

ax−−→ Q ′ x ] Q

P | Q
τ−→ (νx)(P ′ | Q ′ )

CLOSE2

P
ab−−→ P ′ a 6= b

(νb)P
a(νb)−−−−→ P ′

OPEN

P
α−→ P ′ y ] α

(νy)P
α−→ (νy)P ′

SCOPEF
P

a(νx)−−−−→ P ′ y 6= a y 6= x

(νy)P
a(νx)−−−−→ (νy)P ′

SCOPEB

P | !P 7−→ V

!P 7−→ V
REPL

Figure 13.3: The derived operational semantics rule for the pi-calculus. These rules
have been derived from the ones in Figure 13.1, and the freshness conditions for
each rule have been trimmed using Lemma 13.12 to include only the ones which
are strictly necessary.
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13.4 Inversion rules
Isabelle derives a custom inversion rule for nominal datatypes in the same
manner as described in Chapter 5. This rule turns out to be very cumber-
some to work with in practice, but it is very useful for deriving more appli-
cable tailor made inversion rules.

13.4.1 Nominal inversion
The automatically generated inversion rule for the operational semantics
can be found in Figure 13.4. It works in the same way as the inversion rule
for CCS (Figure 6.4) in that the bound names in the different cases of the
rule are free for the whole inversion rule. The intuition is that the user
chooses which bound names are to be used, and as long as these bound
names are sufficiently fresh, inversion can be applied. The number of
bound names for the pi-calculus is quite large. Whereas CCS had one for
the SCOPE-case, the pi-calculus has nine bound names distributed among
the different cases.

This rule is cumbersome to work with. Whenever inversion is applied to
a transition, all bound names must be instantiated, even the ones which
do not match the inversion pattern, and are simplified away. The reason is
that the rule is designed in such a way that the freshness conditions must be
satisfied. Another problem, which holds for Isabelle’s inversion rules in gen-
eral, is that unification of equivalent terms is not performed in the predicate
which is to be proven. This results in a proof state with lots of equivalence
assumptions on terms. These can be discharged by applying a suitable au-
tomated heuristic in Isabelle, but in so doing, the Isar shorthand commands
for cases, assumptions, and goal state are lost. Briefly put, Isabelle inversion
rules work well for apply-scripts, but not for structured proofs.

The inversion rule is still useful to infer inversion rules for the individual
cases.

13.4.2 Ensuring freshness of new bound names

Inversion on a transition can introduce new bound names which are not
part of the transition being inverted. Consider inverting the transition

P
τ−→ P ′. The six applicable cases are the PAR, COMM and CLOSE-rules, and

their symmetric versions, but the COMM and CLOSE rules introduce the
new bound names x, and x and y respectively which do not occur in the
original transition. Just as with induction, it must be possible to instantiate
these names with names which are sufficiently fresh, depending on the
current proof state.
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R 7−→ W

∧
P.

R = τ.P W = τ ≺ P

Prop
TAU

∧
a b P.

(
R = ab.P
W = ab ≺ P

)
Prop

OUTPUT

∧
a u P.

(
x1 ] R x1 ] W

R = a(x1).P ∧ W = au ≺ P{u/x1 } ∧ x1 6= a ∧ x1 6= u

)
Prop

INPUT

∧
P V b.

R = [b=b]P W = V P 7−→ V

Prop
MATCH

∧
P V Q.

R = P + Q
W = V
P 7−→ V


Prop

SUM1
∧

P V Q.

R = P + Q
W = V
Q 7−→ V


Prop

SUM1

∧
P a P ′ Q.

 x2 ] R x2 ] W

R = P | Q ∧ W = a(νx2) ≺ P ′ | Q ∧ P
a(νx2)−−−−→ P ′∧

x2 ] P ∧ x2 ] Q ∧ x2 6= a


Prop

PAR1B

∧
P α P ′ Q.

R = P | Q W = α ≺ P ′ | Q P
α−→ P ′

Prop
PAR1F

∧
P a P ′ Q.

 x3 ] R x3 ] W

R = P | Q ∧ W = a(νx3) ≺ P | Q ′ ∧ Q
a(νx3)−−−−→ Q ′∧

x3 ] P ∧ x3 ] Q ∧ x3 6= a


Prop

PAR2B

∧
Q α Q ′ P.

R = P | Q W = α ≺ P | Q ′ Q
α−→ Q ′

Prop
PAR2F

∧
P a b P ′ Q Q ′.

(
R = P | Q W = τ ≺ P ′ | Q ′

P
ab−−→ P ′ Q

ab−−→ Q ′

)
Prop

COMM1
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∧
P a b P ′ Q Q ′.

(
R = P | Q W = τ ≺ P ′ | Q ′

P
ab−−→ P ′ Q

ab−−→ Q ′

)
Prop

COMM2

∧
P a P ′ Q Q ′.

 x4 ] R x4 ] W

R = P | Q ∧ W = τ ≺ (νx4)(P ′ | Q ′ ) ∧ x4 6= a ∧
P

ax4−−→ P ′∧ Q
a(νx4)−−−−→ Q ′∧ x4 ] P ∧ x4 ] Q


Prop

CLOSE1

∧
P a P ′ Q Q ′.

 x5 ] R x5 ] W

R = P | Q ∧ W = τ ≺ (νx5)(P ′ | Q ′ ) ∧ x5 6= a ∧
P

a(νx5)−−−−→ P ′∧ Q
ax5−−→ Q ′∧ x5 ] P ∧ x5 ] Q


Prop

CLOSE2

∧
P a P ′.

 x6 ] R x6 ] W

R = (νx6)P ∧ W = a(νx6) ≺ P ′∧ P
ax6−−→ P ′∧ a 6= x6


Prop

OPEN

∧
P a P ′.

x7 6= y1 x7 ] R x7 ] W y1 ] R y1 ] W

R = (νy1)P ∧ W = a(νx7) ≺ (νy1)P ′∧ P
a(νx7)−−−−→ P ′∧

y1 6= a ∧ y1 6= x7 ∧ x7 ] P ∧ x7 6= a


Prop

SCOPEB

∧
P α P ′.

 x8 ] R x8 ] W

R = (νx8)P ∧ W = α ≺ (νx8)P ′∧ P
α−→ P ′∧ x8 ] α


Prop

SCOPEF

∧
P V .

R = !P W = V P | !P 7−→ V

Prop
REPL

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍË
Prop

Figure 13.4: The automatically generated inversion rule for the operational seman-
tics. The inversion is done on transitions of the form R 7−→ W. Note that the bound
names x1 . . . x8 and y1 are not quantified by their respective case, but globally for
the whole inversion rule. Before applying the rule these bound names must be in-
stantiated and made sufficiently fresh to satisfy the freshness conditions for their
corresponding case.
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τ.P
α−→ P ′ Prop (τ) P

Prop α P ′ TAU
ab.P

α−→ P ′ Prop (ab) P

Prop α P ′ OUTPUT

a(x).P
α−→ P ′ ∧

u. Prop au (P{u/x })

Prop α P ′ INPUT

[
[a=b]P 7−→ V

P 7−→ V

F a a

]
F a b

MATCH

[
[a 6=b]P 7−→ V

P 7−→ V a 6= b

F a b

]
F a b

MISMATCH

[
(νx)P

α−→ Q x ] α
∧

P ′.
P

α−→ P ′

F ((νx)P ′)

]
F Q

SCOPEF


(νy)P

a(νx)−−−−→ Q x 6= y

∧
P ′.

P
ay−−→ P ′ a 6= y

F ((x y) · P ′)
∧

P ′.
P

a(νx)−−−−→ P ′ y 6= a

F ((νy)P ′)


F Q

SCOPEB

[
!P 7−→ V

P | !P 7−→ V

Prop

]
Prop

REPL
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

P | Q
α−→ R

∧
P ′.

P
α−→ P ′

F α (P ′ | Q )

∧
Q ′.

Q
α−→ Q ′

F α (P | Q ′ )

∧
P ′ Q ′ a b.

P
ab−−→ P ′ Q

ab−−→ Q ′

F (τ) (P ′ | Q ′ )

∧
P ′ Q ′ a b.

P
ab−−→ P ′ Q

ab−−→ Q ′

F (τ) (P ′ | Q ′ )

∧
P ′ Q ′ a x.

P
ax−−→ P ′ Q

a(νx)−−−−→ Q ′ x ] P x ] C

F (τ) ((νx)(P ′ | Q ′ ))

∧
P ′ Q ′ a x.

P
a(νx)−−−−→ P ′ Q

ax−−→ Q ′ x ] Q x ] C

F (τ) ((νx)(P ′ | Q ′ ))


F α R

PARF


P | Q

a(νx)−−−−→ R

∧
P ′.

P
a(νx)−−−−→ P ′ x ] Q

F (P ′ | Q )

∧
Q ′.

Q
a(νx)−−−−→ Q ′ x ] P

F (P | Q ′ )


F R

PARB

Figure 13.5: The derived inversion rules for the pi-calculus, one rule for each oper-
ator.
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This is achieved by picking arbitrary names which are sufficiently fresh
to discharge the freshness conditions of the applicable case-rules, but also
fresh for any supplied freshness context.

13.4.3 Rules with multiple binders
In the pi-calculus there is an extra case which needs to be considered
about inversion on transitions which contain multiple bound names, such

as (νx)P
a(νy)−−−−→ P ′. This transition could have been derived either from

the SCOPEB, or the OPEN-rule. The SCOPEB-rule requires that x and y are
disjoint, whereas the OPEN-rule requires that they are equal, but things are
not that simple. Even if x and y are disjoint, the transition could still have
been derived by the OPEN-rule as shown by the following inference.

(νx)P
ab−−→ (x y) · P ′ x 6= a

(νx)P
a(νx)−−−−→ (x y) · P ′

OPEN

x ] P ′

(νx)P
a(νy)−−−−→ P ′

ALPHA-EQUIVALENCE

In this inference, the OPEN-rule is applied and the residual is then alpha-
converted. This is still a valid transition as all terms are equal up to alpha-
equivalence. This gives the somewhat unintuitive result that given a transi-

tion inferred by OPEN, (νx)P
a(νy)−−−−→ P ′, x and y are not necessarily equal.

When creating a general inversion rule this poses a slight problem. Even
though the intuitive view of the OPEN-rule is that the bound names are the
same, the inversion rule must cover the cases where the names are disjoint.
The solution is to always require all bound names to be disjoint. The nomi-
nal package provides infrastructure for ensuring that bound names are suf-
ficiently fresh, and in particular they are fresh for any other bound name
in consideration. The downside is that by requiring the bound names to be
disjoint in the OPEN-rule, the alpha-converting permutation must explicitly
be stated in the case-rule, as the above inference demonstrates.

13.5 Induction on replicated agents
Replication is the only operator which appears in the premise of its
inference rule. Even though it would be possible to generate an inversion
rule for it, that rule would not be very useful – most lemmas involving
Replication require induction rather than inversion, as discussed in
Section 6.5; we must hence create a special induction rule for Replication.
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

!P 7−→ V

∧
a x P ′C .

P
a(νx)−−−−→ P ′ x ] P x ] C

Prop C (P | !P ) (a(νx) ≺ P ′ | !P )
PAR1B

∧
α P ′C .

P
α−→ P ′

Prop C (P | !P ) (α ≺ P ′ | !P )
PAR1F

∧
a x P ′ C

(
!P

a(νx)−−−−→ P ′ x ] P x ] C∧
C . Prop C (!P) (a(νx) ≺ P ′)

)
Prop C (P | !P ) (τ ≺ P ′ | P ′′ )

PAR2B

∧
α P ′C .

!P
α−→ P ′ ∧

C . Prop C (!P) (α ≺ P ′)
Prop C (P | !P ) (α ≺ P | P ′ )

PAR2F

∧
a b P ′ P ′′ C

(
!P

ab−−→ P ′ !P
ab−−→ P ′′∧

C . Prop C (!P) (ab ≺ P ′′)

)
Prop C (P | !P ) (τ ≺ P ′ | P ′′ )

COMM1

∧
a b P ′ P ′′ C

(
!P

ab−−→ P ′ !P
ab−−→ P ′′∧

C . Prop C (!P) (ab ≺ P ′′)

)
Prop C (P | !P ) (τ ≺ P ′ | P ′′ )

COMM2

∧
a x P ′ P ′′ C

(
!P

ax−−→ P ′ !P
a(νx)−−−−→ P ′′ x ] P x ] C∧

C . Prop C (!P) (a(νx) ≺ P ′′)

)
Prop C (P | !P ) (τ ≺ (νx)(P ′ | P ′′ ))

CLOSE1

∧
a x P ′ P ′′ C

(
!P

a(νx)−−−−→ P ′ !P
ax−−→ P ′′ x ] P x ] C∧

C . Prop C (!P) (ax ≺ P ′′)

)
Prop C (P | !P ) (τ ≺ (νx)(P ′ | P ′′ ))

CLOSE2

∧
W C .

P | !P 7−→ W
∧

C . Prop C (P | !P ) W

Prop C (!P) W
REPL


Prop C (!P) V

Figure 13.6: Custom induction rule for Replication. Induction is done on the tran-
sition !P 7−→ V to prove the predicate Prop. The rule has one case for replication,
and one case for every semantic rule for Parallel.
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14. Strong bisimilarity

When defining bisimilarity between two agents in the pi-calculus, extra
care has to be taken with respect to bound names in actions. Consider the
following agents:

P = a(u).(νb)bx.0

Q = a(x).0

The agents P and Q should be bisimilar since they both can do only one
input-action along a channel a and then nothing more. But since x occurs
free in P , P cannot be alpha-converted into a(x).(νb)bx.0, which means P
cannot mimic any action from Q. However, since agents have finite sup-
port, there exists a name w which is fresh in both P and Q and after alpha-
converting both agents, they can mimic each other’s actions. Hence, we
only consider actions whose bound names are fresh for both P and Q.

This chapter will follow the same outline as Chapter 7. We will define
strong bisimilarity for the pi-calculus, and prove that it is an equivalence
relation. We also want an equivalence which is a congruence, but it turns
out that a standard version of bisimilarity, as the one in Chapter 7, is not a
congruence for the pi-calculus. The reason is that the communicating ca-
pabilities of pi-calculus agents allows interaction in such a way that two
agents are equal for one set of inputs, but not for others. A counter-example
is presented in [67]. Consider the following two agents, assuming that a 6=
b.

P = a(x).0 | bc.0 Q = a(x).bc.0 + bc.a(x).0

At a first glance, these agents appear to be equal – since a 6= b, the agents
themselves cannot communicate. Hence, whichever action P chooses to
do, Q can follow by choosing the appropriate sub-agent, and vice versa.
However, in the presence of substitutions, these agents are not equal. If
both agents have all occurrences of b substituted for a, P can perform a
τ-action, as the parallel sub-agents have the same subject, whereas Q can-
not. In order for an equivalence to be preserved by Input, it must also be
closed under substitutions – if two agents are to be considered equal, they
must be equal for all possible inputs they can receive.

We will define strong bisimilarity in the standard way, prove that it is
an equivalence relation and that it is preserved by all operators except by
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Input. We will then close that relation under substitutions, to get a congru-
ence.

14.1 Definitions
The coinductive definition of strong bisimilarity is done in exactly the same
way as for CCS, making many of the bisimilarity proofs similar. However,
the definition for simulation differs, and the scope migrating capabilities
of the pi-calculus make the lemmas which reason about simulation more
involved than for CCS.

The operational semantics for the pi-calculus defined in Figure 13.1 re-
quires that some semantic rules are split into two cases – one where binders
occur on the label, and one where they do not. When defining simulation,
the same must be done, and two corresponding simulation cases are de-
fined. an agent P is said to simulate an agent Q preserving the relation R if
for every action Q can do, P can mimic that action and the derivatives are
in R.

Definition 14.1 (Simulation). An agent P simulating an agent Q preserving
R is denoted P ,→R Q

P ,→R Q
def=

(∀a y Q ′. Q
a(νy)−−−−→ Q ′−→ y ] P −→ (∃P ′. P

a(νy)−−−−→ P ′∧ (P ′, Q ′) ∈ R)) ∧
(∀α Q ′. Q

α−→ Q ′−→ (∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R))

Before defining bisimilarity through coinduction, a monotonicity lemma
for simulation is required.

Lemma 14.2. If P ,→R P ′ and R ⊆ R ′ then P ,→R ′ P ′.

Proof. Follows from the definition of ,→. The assumption R ⊆ R ′ ensures
that any derivatives of P and Q in R also are in R ′.

Definition 14.3 (Bisimilarity). Bisimilarity, denoted .∼, is defined coinduc-
tively as the greatest fixpoint satisfying:

P .∼ Q =⇒ P ,→ .∼ Q SIMULATION

∧ Q .∼ P SYMMETRY
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14.1.1 Primitive inference rules
It is often necessary to ensure that the bound name in the actions is fresh for
some freshness context C supplied by the user. Otherwise, there will often
be a massive case analysis on whether or not bound names of actions occur
free in any other terms in the proof. In a similar way as for induction and
inversion, this tedium is bypassed by deriving a better introduction rule for
simulation.

Lemma 14.4. Introduction rule for simulation

eqvt R∧
a y Q ′.

Q
a(νy)−−−−→ Q ′ y ] P y ] Q y ] C

∃P ′. P
a(νy)−−−−→ P ′∧ (P ′, Q ′) ∈ R∧

α Q ′.
Q

α−→ Q ′

∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R

P ,→R Q
,→-I

Proof. Follows from the definition of ,→. The bound names in the actions of
the transitions are alpha-converted to avoid P, Q, a and C and the fact that
R is equivariant allows the alpha-converting permutations to be applied to
the derivatives in R.

This introduction rule is used extensively in the upcoming proofs. It
ensures that whenever bound names appear in the proof context, these
bound names do not clash with other names and give rise to manual
alpha-conversions. As a result, alpha-conversions are reduced to the
instances where they would be required in a careful manual proof.

Note that the extra requirement that the simulation relation is equivari-
ant is needed. The reason is that if the relation is not closed under permuta-
tions, the agents cannot be alpha-converted, as the derivatives would then
fall outside the relation. As it turns out, all relations of interest turn out to
be equivariant and the proofs of this trivial.

The elimination rules for simulation are derived in the standard way.

Lemma 14.5. Elimination rules for simulation.

P ,→R Q Q
a(νx)−−−−→ Q ′ x ] P

∃P ′. P
a(νx)−−−−→ P ′∧ (P ′, Q ′) ∈ R

,→-E1

P ,→R Q Q
α−→ Q ′

∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R

,→-E2
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Proof. Follows from the definition of ,→.

Corresponding introduction and elimination rules for bisimilarity follow
immediately from its definition.

Lemma 14.6.

P ,→ .∼ Q Q .∼ P

P .∼ Q
.∼-I

P .∼ Q

P ,→ .∼ Q
.∼-E1

P .∼ Q

Q .∼ P
.∼-E2

Proof. Follows from Definition 14.3.

To prove that two agents are bisimilar, a symmetric candidate relation X

is chosen containing the agents where all agent pairs simulate each other
preserving X ∪ .∼.

Lemma 14.7. Coinduction rule for bisimilarity.

(P, Q) ∈ X

∧
R S.

(R, S) ∈ X

R ,→X ∪ .∼ S
SIMULATION

∧
R S.

(R, S) ∈ X

(S, R) ∈ X
SYMMETRY

P .∼ Q

Proof. Follows from the coinduction rule that Isabelle provides from Defi-
nition 14.3

For the rest of this chapter, whenever a proof is done by coinduction, this
will be the coinduction principle used.

14.1.2 Equivariance properties
The introduction rule for simulation has the that the relations under con-
sideration are equivariant. Such relations will often derived from bisimilar-
ity. Therefore, it is important that bisimilarity is equivariant. The first step
is to prove this property for simulation.

Lemma 14.8.

If P ,→R Q and R ⊆ R ′ and eqvt R ′ then p · P ,→R ′ p · Q.
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Proof. Follows from the definition of ,→. The fact that the transition system
is equivariant (Lemma 13.11) makes it possible to cancel the permutation
p by applying its inverse and perform the simulation. The proof can then
be finished by applying the permutation p to the transition to cancel the
inverse, and the assumption eqvt R ′ ensures that the derivatives are still in
R ′.

With the equivariance lemma for simulation in place, it is possible to
prove that bisimilarity is equivariant.

Lemma 14.9. If P .∼ Q then (p · P) .∼ (p · Q) .

Proof. The proof is done in two steps. Since Lemma 14.8 requires the sim-
ulating relation in the conclusion to be equivariant, coinduction cannot be
used directly.

The first step is done by coinduction setting X to {(p · P, p · Q) : P .∼ Q
}, and Lemma 14.8 is used to prove that P simulates Q with the simulation
relation X , which is trivially equivariant. The second step proves that P
simulates Q with the simulating relation X ∪ bisim using the monotonicity
lemma 14.2.

14.2 Bisimulation is an equivalence relation
Simulations are parametrised on an arbitrary relation R. As for CCS every
simulation lemma is augmented with constraints for that relation such that
the lemma is provable.

Bisimilarity is symmetric by definition, but reflexivity and transitivity
must be proven. These lemmas correspond closely to the corresponding
proofs for CCS, but in the transitivity case, care must be taken so that
any bound names on the labels of the transitions do not clash with the
intermediate agent.

Lemma 14.10. If Id ⊆ R then P ,→R P.

Proof. Follows from the definition of ,→ and the fact that Id ⊆ R.

Lemma 14.11. If P ,→R Q and Q ,→R ′ R and eqvt R ′′ and R ◦ R ′⊆ R ′′
then P ,→R ′′ R.

Proof. The case where R does a bound output is the complicated one. We
use ,→-I to ensure that any bound names of the action are fresh for P and

Q. We hence have to prove that for all a, x and R ′ such that R
a(νx)−−−−→ R ′ there

exists an S such that P
a(νx)−−−−→ S and (S, R ′) ∈ R ′′.
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• From Q ,→R ′ R, R
a(νx)−−−−→ R ′, and x ] Q we obtain a Q ′ such that

Q
a(νx)−−−−→ Q ′ and (Q ′, R ′) ∈ R ′.

• From P ,→R Q, Q
a(νx)−−−−→ Q ′, and x ] P we obtain a P ′ such that

P
a(νx)−−−−→ P ′ and (P ′, Q ′) ∈ R.

• From R ◦ R ′⊆ R ′′, (P ′, Q ′) ∈ R’ and (Q ′, R ′) ∈ R ′ we have that (P ′, R ′) ∈
R ′′

• We can then prove the goal by setting S to P ′.
The case where the action contains no bound names follow the same pat-
tern.

Lemma 14.12. Bisimulation is an equivalence relation

Proof. Reflexivity: P .∼ P

Follows by coinduction and setting X to Id and Lemma 14.10.

Symmetry: If P .∼ Q then Q .∼ P .

Follows immediately from the definition of .∼.

Transitivity: If P .∼ Q and Q .∼ R then P .∼ R .

Follows by coinduction and setting X to .∼ ◦ .∼, Lemma 14.11
and the fact that bisimilarity is equivariant.

We now proceed to prove that bisimilarity is preserved by all operators
except Input.

14.3 Preservation properties
The preservation lemmas are similar to those for CCS, with some excep-
tions. Most notably, as bound names can be communicated between the
agents with the OPEN and CLOSE-rules, any rule involving Parallel must take
into account that the scope of the binders can change.

14.3.1 Output and Tau
The proofs that bisimilarity is preserved Output and Tau are straightfor-
ward.

Lemma 14.13. If (P, Q) ∈ R then τ.P ,→R τ.Q.

Proof. Follows from the definition of ,→, the fact that τ.P and τ.Q can each
only do a τ-action and (P, Q) ∈ R.
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Lemma 14.14. If P .∼ Q then τ.P .∼ τ.Q .

Proof. Follows by coinduction and setting X to {(τ.P, τ.Q), (τ.Q, τ.P)}, and
Lemma 14.13.

Lemma 14.15. If (P, Q) ∈ R then ab.P ,→R ab.Q.

Proof. Follows from the definition of ,→, the fact that ab.P and ab.Q can
each only do an output-action and (P, Q) ∈ R.

Lemma 14.16. If P .∼ Q then ab.P .∼ ab.Q .

Proof. Follows by coinduction, setting X to {(ab.P, ab.Q), (ab.Q, ab.P)},
and Lemma 14.15.

14.3.2 Match and Mismatch
Lemma 14.17. If P ,→R Q and R ⊆ R ′ then [a=b]P ,→R ′ [a=b]Q.

Proof. Follows from the definition of ,→, the MATCH inversion rule from
Figure 13.4.2 and the MATCH-rule from the operational semantics. The in-
version rule ensures that a= b and hence the agents can do exactly the same
transitions.

Lemma 14.18. If P .∼ Q then [a=b]P .∼ [a=b]Q .

Proof. Follows by coinduction and setting X to {([a=b]P, [a=b]Q), ([a=
b]Q, [a=b]P)}, and Lemma 14.17.

Lemma 14.19. If P ,→R Q and R ⊆ R ′ then [a 6=b]P ,→R ′ [a 6=b]Q.

Proof. Follows from the definition of ,→, the MISMATCH inversion rule from
Figure 13.4.2 and the MISMATCH-rule from the operational semantics. The
inversion rule ensures that a 6= b and therefore, the agents can do exactly
the same transitions.

Lemma 14.20. If P .∼ Q then [a 6=b]P .∼ [a 6=b]Q .

Proof. Follows by coinduction and setting X to {([a 6=b]P, [a 6=b]Q), ([a 6=
b]Q, [a 6=b]P)}, and Lemma 14.19.
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14.3.3 Sum
Lemma 14.21.

If P ,→R Q and Id ⊆ R ′ and R ⊆ R ′ then P + R ,→R ′ Q + R .

Proof. Follows from the definition of ,→, the SUM inversion rule from Fig-
ure 13.4.2 and the SUM1 and SUM2-rule from the operational semantics. In
the case where R does a transition, the assumption Id ⊆R ′ is used to ensure
that the derivatives remain in R ′.

Lemma 14.22. If P .∼ Q then P + R .∼ Q + R .

Proof. Follows by coinduction and setting X to {(P + R , Q + R ), (Q + R , P
+ R )}, and Lemma 14.21.

14.3.4 Restriction
Lemma 14.23.

P ,→R Q∧
R S y.

(R, S) ∈ R

((νy)R, (νy)S) ∈ R ′ R ⊆ R ′ eqvt R eqvt R ′

(νx)P ,→R ′ (νx)Q

Proof. Follows from the definition of ,→, the SCOPE inversion rule and the
OPEN, SCOPEF and SCOPEB-rules from the operational semantics. The as-
sumption

∧
R S y. (R, S)∈R =⇒ ((νy)R, (νy)S)∈R ′ is used in the OPEN-case,

as the restricted names are dropped from the derivatives.

Lemma 14.24. If P .∼ Q then (νx)P .∼ (νx)Q .

Proof. Follows by coinduction and setting X to {((νx)P, (νx)Q) : P .∼ Q },
and Lemma 14.23.

14.3.5 Parallel
The scope migrating capabilities of the pi-calculus make the proofs for
Parallel more involved than their CCS counterparts. The first step is to
prove what is required for simulation to be preserved by Parallel. We will
start by proving a more general lemma, in which two simulations are
composed.
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Lemma 14.25.

P ,→R Q (P, Q) ∈ R

R ,→R ′ S (R, S) ∈ R ′∧
P ′ Q ′ R ′ S ′.

(P ′, Q ′) ∈ R (R ′, S ′) ∈ R ′

(P ′ | R ′ , Q ′ | S ′ ) ∈ R ′′

P | R ,→R ′′ Q | S

Proof. Follows from the ,→-I introduction rule, the PARF and PARB inver-
sion rule and the PAR, COMM and CLOSE-rules from the operational se-
mantics. The requirement that R ′′ is closed under restriction is used in the
CLOSE-cases to allow for scope migration. The Isabelle proof can be found
in Figure 14.1.

This lemma is more general than strictly necessary to prove that
bisimilarity is preserved by Parallel. It will also be useful when we prove
that bisimilarity is preserved by Replication. The lemma needed for
parallel preservation is easily derivable.

Lemma 14.26.

P ,→R Q (P, Q) ∈ R∧
S T U .

(S, T) ∈ R

(S | U , T | U ) ∈ R ′
∧

S T x.
(S, T) ∈ R ′

((νx)S, (νx)T) ∈ R ′

P | R ,→R ′ Q | R

Proof. Follows from Lemma 14.25 by setting its relations R ′′ to R ′ and R ′
to the identity relation.

Before moving on to the bisimilarity part of this proof, we need to intro-
duce the concept of a binding sequence.

The binders that have been discussed thus far have all been single
binders in the sense that they are declared and bound one at a time. This
turns out to be enough for most cases, but in bisimilarity proofs on parallel
agents it becomes necessary to reason about sequences of binders. The
reason for this is that the scope of binders can change using the OPEN and
CLOSE-rules.

A binding sequence is a finite, possibly empty, list of restrictions.

Definition 14.27 (Binding sequences). A sequence of names ỹ binding into
an agent P is denoted (νỹ)P.

(ν[])P = P (ν(x·ỹ))P = (νx)(νỹ)P
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Figure 14.1: Isabelle proof that simulation is preserved by Parallel.
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lemma parCompose:
fixes P :: pi and Q :: pi and R :: pi and T :: pi
and R :: (pi × pi) set and R ′ :: (pi × pi) set and R ′′ :: (pi × pi) set
assumes P ,→R Q and R ,→R ′ T and (P, Q) ∈ R and (R, T) ∈ R ′
and Par:

∧
P ′ Q ′ R ′ T ′. [[(P ′, Q ′) ∈ R; (R ′, T ′) ∈ R ′]] =⇒ (P ′ | R ′, Q ′ | T ′) ∈ R ′′

and Res:
∧

P ′ Q ′ x. (P ′, Q ′) ∈ R ′′=⇒ ((νx)P ′, (νx)Q ′) ∈ R ′′
shows P | R ,→R ′′ Q | T

proof(induct rule: simCases) — Apply introduction rule ,→-I
case(Bound a x U)
from 〈x ] (P | R)〉 have x ] P and x ] R by simp+
from 〈Q | T

a(νx)−−−−→ U〉 show ∃S. P | R
a(νx)−−−−→ S ∧ (S, U) ∈ R ′′

proof(induct rule: parCasesB) — Apply PARB inversion rule from
Figure 13.4.2

PAR1 case
Given that Q

a(νx)−−−−→ Q ′ prove that there exists an S such that

P | R
a(νx)−−−−→ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ,→R Q〉 〈Q

a(νx)−−−−→ Q ′〉 〈x ] P〉 obtain P ′

where PTrans: P
a(νx)−−−−→ P ′ and P ′RQ ′: (P ′, Q ′) ∈ R by(blast dest: elim)

from PTrans 〈x ] R〉 have P | R
a(νx)−−−−→ P ′ | R by(rule Par1B)

moreover from P ′RQ ′ 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′ by(rule Par)

ultimately show ∃PR ′. P | R
a (νx)−−−−→ PR ′∧ (PR ′, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

a(νx)−−−−→ T ′ prove that there exists an S such that

P | R
a(νx)−−−−→ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
from 〈R ,→R ′ T〉 〈T

a(νx)−−−−→ T ′〉 〈x ] R〉 obtain R ′

where RTrans: R
a(νx)−−−−→ R ′ and R ′R ′T ′: (R ′, T ′) ∈ R ′ by(blast dest: elim)

from RTrans 〈x ] P〉 have P | R
a(νx)−−−−→ P | R ′ by(rule Par2B)

moreover from 〈(P, Q) ∈ R〉 R ′R ′T ′ have (P | R ′, Q | T ′) ∈ R ′′ by(rule Par)

ultimately show ∃PR ′. P | R
a (νx)−−−−→ PR ′∧ (PR ′, Q | T ′) ∈ R ′′ by blast

qed
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next
case(Free α QT ′)
from 〈Q | T

α−→ QT ′〉 show ∃PR ′. P | R
α−→ PR ′∧ (PR ′, QT ′) ∈ R ′′

proof(induct rule: parCasesF[where C=(P, R)]) — PARF inversion rule

PAR1 case
Given that Q

α−→ Q ′ prove that there exists an S such that

P | R
α−→ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ,→R Q〉 〈Q

α−→ Q ′〉 obtain P ′

where PTrans: P
α−→ P ′ and PR: (P ′, Q ′) ∈ R by(blast dest: elim)

from PTrans have P | R
α−→ P ′ | R by(rule Par1F)

moreover from PR 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′ by(rule Par)

ultimately show ∃PR ′. P | R
α−→ PR ′∧ (PR ′, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

α−→ T ′ prove that there exists an S such that

P | R
α−→ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
from 〈R ,→R ′ T〉 〈T

α−→ T ′〉 obtain R ′

where RTrans: R
α−→ R ′ and RR: (R ′, T ′) ∈ R ′ by(blast dest: elim)

from RTrans have P | R
α−→ P | R ′ by(rule earlySemantics.Par2F)

moreover from 〈(P, Q) ∈ R〉 RR have (P | R ′, Q | T ′) ∈ R ′′ by(rule Par)

ultimately show ∃PR ′. P | R
α−→ PR ′∧ (PR ′, Q | T ′) ∈ R ′′ by blast

next
COMM1 case
Given that Q

ab−−→ Q ′ and T
a [b]−−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, Q ′ | T ′ ) ∈ R ′′.

case(cComm1 Q ′ T ′ a b)

from 〈P ,→R Q〉 〈Q
ab−−→ Q ′〉 obtain P ′

where PTrans: P
ab−−→ P ′ and P ′RQ ′: (P ′, Q ′) ∈ R by(blast dest: elim)

from 〈R ,→R ′ T〉 〈T
ab−−→ T ′〉 obtain R ′

where RTrans: R
ab−−→ R ′ and RRT ′: (R ′, T ′) ∈ R ′ by(blast dest: elim)

from PTrans RTrans have P | R
τ−→ P ′ | R ′ by(rule Comm1)

moreover from P ′RQ ′ RRT ′ have (P ′ | R ′, Q ′ | T ′) ∈ R ′′ by(rule Par)

ultimately show ∃PR ′. P | R
τ−→ PR ′∧ (PR ′, Q ′ | T ′) ∈ R ′′ by blast
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next
COMM2 case
Given that Q

a [b]−−−→ Q ′ and T
ab−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, Q ′ | T ′ ) ∈ R ′′.

case(cComm2 Q ′ T ′ a b)

from 〈P ,→R Q〉 〈Q
ab−−→ Q ′〉 obtain P ′

where PTrans: P
ab−−→ P ′ and P ′RQ ′: (P ′, Q ′) ∈ R by(blast dest: elim)

from 〈R ,→R ′ T〉 〈T
ab−−→ T ′〉 obtain R ′

where RTrans: R
ab−−→ R ′ and R ′R ′T ′: (R ′, T ′) ∈ R ′ by(blast dest: elim)

from PTrans RTrans have P | R
τ−→ P ′ | R ′ by(rule Comm2)

moreover from P ′RQ ′ R ′R ′T ′ have (P ′ | R ′, Q ′ | T ′) ∈ R ′′ by(rule Par)
ultimately show ?case by blast

next
CLOSE1 case
Given that Q

ax−−→ Q ′ and T
a(νx)−−−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, (νx)(Q ′ | T ′ )) ∈ R ′′.

case(cClose1 Q ′ T ′ a x) from 〈x ] (P, R)〉 have x ] P and x ] R by simp+
from 〈P ,→R Q〉 〈Q

ax−−→ Q ′〉 obtain P ′

where PTrans: P
ax−−→ P ′ and P ′RQ ′: (P ′, Q ′) ∈ R by(blast dest: elim)

from 〈R ,→R ′ T〉 〈T
a (νx)−−−−→ T ′〉 〈x ] R〉 obtain R ′

where RTrans: R
a (νx)−−−−→ R ′ and R ′R ′T ′: (R ′, T ′) ∈ R ′

by(blast dest: elim)

from PTrans RTrans 〈x ] P〉 have P | R
τ−→ (νx)(P ′ | R ′) by(rule Close1)

moreover from P ′RQ ′ R ′R ′T ′ have ((νx)(P ′ | R ′), (νx)(Q ′ | T ′)) ∈ R ′′
by(blast intro: Par Res)

ultimately show ?case by blast
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next
CLOSE2 case
Given that Q

a(νx)−−−−→ Q ′ and T
ax−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, (νx)(Q ′ | T ′ )) ∈ R ′′.

case(cClose2 Q ′ T ′ a x) from 〈x ] (P, R)〉 have x ] P and x ] R by simp+
from 〈P ,→R Q〉 〈Q

a (νx)−−−−→ Q ′〉 〈x ] P〉 obtain P ′

where PTrans: P
a (νx)−−−−→ P ′ and P ′RQ ′: (P ′, Q ′) ∈ R by(blast dest: elim)

from 〈R ,→R ′ T〉 〈T
ax−−→ T ′〉 obtain R ′

where RTrans: R
ax−−→ R ′ and R ′R ′T ′: (R ′, T ′) ∈ R ′

by(blast dest: elim)

from PTrans RTrans 〈x ] R〉 have P | R
τ−→ (νx)(P ′ | R ′) by(rule Close2)

moreover from P ′RQ ′ R ′R ′T ′ have ((νx)(P ′ | R ′), (νx)(Q ′ | T ′)) ∈ R ′′
by(blast intro: Par Res)

ultimately show ?case by blast
qed

qed

Binding sequences recursively bind the names of a sequence to an agent.
A lemma which will be used extensively in the upcoming proofs is the

following, which states what is required for a simulation to be closed under
a binding sequence.

Lemma 14.28.

eqvt R
∧

R S x.
(R, S) ∈ R

((νx)R, (νx)S) ∈ R
P ,→R Q

(νỹ)P ,→R (νỹ)Q

Proof. By induction on ỹ .

Base case (ỹ =[]): Follows immediately from the assumption P ,→R Q.

Inductive step (ỹ = xx̃): From the induction hypothesis we get
that (νx̃)P ,→R (νx̃)Q, and hence by Lemma 14.23 that
(νx)(νx̃)P ,→R (νx)(νx̃)Q

The intuition behind the lemma is quite simple. If a simulation relation
R is preserved by the Restriction and P simulates Q preserving R, then
since R is preserved by restriction and thus (νx)P simulates (νx)Q preserv-
ing R for an arbitrary name x, then by induction (νx)P must simulate (νx)Q
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preserving R where x̃ is an arbitrary chain of restricted names. The fact that
the proof is an inductive proof requires the candidate relation R to be the
same in the assumptions and the conclusion. This is a general lemma which
is used repeatedly when proving bisimilarites involving Parallel.

This section has touched briefly on the notion of binding sequences, and
what is needed for this formalisation of the pi-calculus. Most notably, any
reasoning about alpha-equivalence of agents with binding sequences has
been omitted. Binding sequences is a research area in its own right and will
be covered extensively in Part IV where they form an integral part of the
calculi being formalised.

We can now prove that bisimilarity is preserved by Parallel.

Lemma 14.29. If P .∼ Q then P | R .∼ Q | R .

Proof. Follows by coinduction and setting X to {((νx)(P | R ), (νx)(Q | R )) :
P .∼ Q }, and Lemmas 14.26 and 14.28.

14.3.6 Replication
As for CCS, in order to prove that bisimilarity is preserved by the
Replication, we inductively define a candidate relation which is preserved
by the Replication. The scope migrating capabilities of the pi-calculus
require that any candidate relation involving Parallel is preserved by
restriction as well.

Definition 14.30 (bangRel). The bangRel relation is parametrised with a re-
lation R.

If (P, Q) ∈ R then (!P, !Q) ∈ bangRel R.
If (R, T) ∈ R and (P, Q) ∈ bangRel R then (R | P , T | Q ) ∈ bangRel R.
If (P, Q) ∈ bangRel R then ((νa)P, (νa)Q) ∈ bangRel R.

The predicate bangRel takes a relation as an argument, and returns a re-
lation which is closed by Replication, Parallel, and Restriction. Moreover,
the agents appearing on the right hand side of the |-operator are members
of bangRel R; the intuition is that as with Replication the bangRel predicate
can be unfolded, adding new parallel agents an arbitrary number of times.

The next step is to prove what is required of a relation R for a simulation
to preserve bangRel R.

Lemma 14.31. Simulation is preserved by Replication.

(P, Q) ∈ R
∧

R S.
(R, S) ∈ R

R ,→R S
eqvt R

!P ,→bang Rel R !Q
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Proof. By induction using the induction rule for the Replication from Fig-
ure 13.6 on the transitions that !Q 7−→ U.

Lemma 14.32. If P .∼ Q then !P .∼ !Q .

Proof. By coinduction with X set to bangRel .∼. The candidate relation is
symmetric since .∼ is symmetric. The simulation cases are resolved by
Lemma 14.31 for the !-case, Lemma 14.25 for the | -case, and Lemma 14.23
for the ν-case.

With these lemmas in place, we can prove that bisimilarity is preserved
by all operators except Input.

Theorem 14.1. Bisimilarity is preserved by all operators, except Input.

Proof. Follows from lemmas 14.16, 14.14, 14.18, 14.20, 14.22, 14.29, 14.24,
and 14.32.

14.4 Strong equivalence
Strong bisimilarity is not preserved by Input, since the environment can
change the behaviour of an agent by sending names to it. The intuition is
that to have a congruence, two equal agents must behave the same regard-
less of any names received from the environment. To achieve this, bisimilar-
ity is closed under all possible substitutions, and a congruence is obtained.
The first step to formalise this is to introduce the notion of sequential sub-
stitutions.

14.4.1 Sequential substitution
Sequential substitutions are sequences of single substitutions.

Definition 14.33 (Sequential substitution). Sequential substitution is de-
noted aσ for names, and Pσ for agents.

a[] = a

a(x·σ) = a{snd x/f st x }σ

P[] = P

P(x·σ) = P{snd x/f st x }σ

Note that sequential substitution will continue substitution until σ
is empty. It is therefore possible for a name to be substituted several
times with one sequential substitution. This differentiates it from parallel
substitution, where substitution is aborted when the first match was
found. The reason for using sequential substitution and not parallel is
that it is easier to define, the proofs of its behaviour are simpler, and it is
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enough for this formalisation. Parallel substitution will be discussed in
detail in Part IV.

To allow sequential substitution to function similarly as single substitu-
tions, the laws from the substitution function are derived for sequential
substitutions.

Lemma 14.34. Sequential substitution distributes over the agents.

0σ = 0

(τ.P)σ = τ.Pσ

If x ] σ then a(x).Pσ = aσ(x).Pσ.

ab.Pσ = aσbσ.Pσ

(P + Q )σ = Pσ + Qσ

(P | Q )σ = Pσ | Qσ

If x ] σ then ((νx)P)σ = (νx)Pσ.

(!P)σ = !Pσ

Proof. By induction over σ.

Finally, sequential substitution is equivariant.

Lemma 14.35. p · Pσ = (p · P)(p · σ)

Proof. By induction over σ.

14.4.2 Closure under substitution
A relation is closed under substitutions if the result of applying any sequen-
tial substitution to any pair in the relation is also in that relation.

Definition 14.36 (substClosed). Closing a relation R under substitutions is
denoted Rs .

Rs def= {(P, Q) : ∀σ. (Pσ, Qσ) ∈ R}

Closing a relation under substitution preserves equivariance.

Lemma 14.37. If eqvt R then eqvt Rs .

Proof. By the definition of eqvt we must prove that for all P and Q, if (P, Q)
∈ Rs then (p · P, p · Q) ∈ Rs . By Definition 14.36 we must prove that for all
σ, ((p · P)σ, (p · Q)σ) ∈ R.
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• Since (P, Q) ∈ Rs we have that (P(p− · σ), P(p− · σ)) ∈ R by Defini-
tion 14.36.

• Hence (p · P(p− · σ), p · P(p− · σ)) ∈R since R is equivariant, and hence
((p · P)σ, (p · Q)σ) ∈ R by equivariance.

Lemma 14.38. Rs ⊆ R

Proof. Follows immediately since the empty substitution is a substitution.

14.4.3 Strong equivalence
By closing bisimilarity under substitutions a congruence is obtained. The
notation ∼ will be used for .∼s , called strong equivalence. That strong equiv-
alence is a subset of strong bisimilarity follows trivially.

Lemma 14.39. If P ∼ Q then P .∼ Q .

Proof. Follows from Lemma 14.38.

Most proofs for the preservation properties of strong equivalence fol-
low from their corresponding proofs for strong bisimilarity, and the defini-
tion for closure under substitutions. The exceptions are agents containing
binders. As Lemma 14.34 shows, in order for a sequential substitution to be
pushed into a term with a binder, that binder must not occur free in the
substitution. Since substitution closure require that all possible substitu-
tions must be taken into account, a name clash will invariably occur and a
manual alpha-conversion has to be done. This is a typical example of where
omitting alpha-conversions in a pen-and-paper proof can be dangerous.

The remaining result, that strong equivalence is preserved by Input, is
not entirely straightforward. The first step is to prove an auxiliary lemma
which states that two agents a(x).P and a(x).Q are bisimilar if P and Q are
bisimilar for all possible substitutions. As with all bisimilarity proofs, we
first prove a simulation lemma.

Lemma 14.40.
If ∀y. (P{y/x }, Q{y/x }) ∈ R and eqvt R then a(x).P ,→R a(x).Q.

Proof. Follows from the definition of ,→ and the fact that a(x).P and a(x).Q
can each only do an input-action. The assumption ∀y. (P{y/x }, Q{y/x }) ∈ R

ensures that whatever input name the agents receive along a, the deriva-
tives will still be in R.

The corresponding lemma for bisimilarity is:
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Lemma 14.41. If ∀y. P{y/x } .∼ Q{y/x } then a(x).P .∼ a(x).Q .

Proof. Follows from coinduction with X set to {(a(x).P, a(x).Q) : ∀y. P{y/x }
.∼ Q{y/x } } and Lemma 14.40.

We can now prove that strong equality is preserved by Input.

Lemma 14.42. If P ∼ Q then a(x).P ∼ a(x).Q.

Proof. We must prove that a(x).Pσ .∼ a(x).Qσ for all σ. We alpha-convert x
to y such that y does not clash withσ, and pushσ past the binder. Since P ∼
Q, we know that Pσ{z/y } .∼ Qσ{z/y } for all z, and hence the lemma is proven
from Lemma 14.41. The Isabelle proof can be found in Figure 14.2.

To prove that strong equivalence is a congruence we must prove that it is
an equivalence relation preserved by all operators.

Lemma 14.43. Strong equivalence is an equivalence relation.

Proof. Follows immediately from Lemma 14.12 and Definition 14.36.

Lemma 14.44. Strong equivalence is closed under all operators.

Proof. All cases, except the one for Input, follow directly from their coun-
terparts for bisimilarity.

Preserved by Output: If P ∼ Q then ab.P ∼ ab.Q.

Follows from lemmas 14.16, 14.34 and Definition 14.36.

Preserved by Tau: If P ∼ Q then τ.P ∼ τ.Q.

Follows from lemmas 14.14, 14.34 and Definition 14.36.

Preserved by Input: If P ∼ Q then a(x).P ∼ a(x).Q.

The full Isabelle proof is presented in Figure 14.2.

Preserved by Match: If P ∼ Q then [a=b]P ∼ [a=b]Q.

Follows from lemmas 14.18, 14.34 and Definition 14.36.

Preserved by Mismatch: If P ∼ Q then [a 6=b]P ∼ [a 6=b]Q.

Follows from lemmas 14.20, 14.34 and Definition 14.36.

Preserved by Sum: If P ∼ Q then P + R ∼ Q + R .

Follows from lemmas 14.22, 14.34 and Definition 14.36.

Preserved by Parallel: If P ∼ Q then P | R ∼ Q | R .

Follows from lemmas 14.29, 14.34 and Definition 14.36.
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Preserved by Restriction: If P ∼ Q then (νx)P ∼ (νx)Q.

Follows from lemmas 14.24, 14.34 and Definition 14.36.
Alpha-conversion of the binder x is done to not clash with the
substitutions.

Preserved by Replication: If P ∼ Q then !P ∼ !Q.

Follows from lemmas 14.32, 14.34 and Definition 14.36.

The main congruence theorem can now be proven.

Theorem 14.2. Stronge equivalence is a congruence

Proof. Follows immediately from lemmas 14.43 and 14.44.
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lemma eqInputPres:
fixes P :: pi and Q :: pi and a :: name and x :: name
assumes P ∼ Q
shows a(x).P ∼ a(x).Q

proof(auto simp add: substClosed-def)
fix σ :: (name × name) list
{

fix P Q a x σ
assume P ∼ Q
then have ∀y. P(σ@[(x, y)]) .∼ Q(σ@[(x, y)])

by(unfold substClosed-def) blast
hence ∀y. (Pσ){y/x } .∼ (Qσ){y/x } by simp
hence aσ(x).(Pσ) .∼ aσ(x).(Qσ) by(rule bisimInputPres)
moreover assume x ] σ
ultimately have (a(x).P)σ .∼ (a(x).Q)σ by simp

}
note Goal = this

obtain y::name where y ] P and y ] Q and y ] σ
by(generate-fresh name) auto

from 〈P ∼ Q〉 have ([(x, y)] · P) ∼ ([(x, y)] · Q) by(rule eqvts)
hence (a(y).([(x, y)] · P))σ .∼ (a(y).([(x, y)] · Q))σ

using 〈y ] σ〉 by(rule Goal)
moreover from 〈y ] P〉 〈y ] Q〉

have a(x).P = a(y).([(x, y)] · P) and a(x).Q = a(y).([(x, y)] · Q)
by(simp add: alphaInput)+

ultimately show (a(x).P)σ .∼ (a(x).Q)σ by simp
qed

Figure 14.2: The proof that strong equivalence is preserved by Input.
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15. Weak bisimilarity

The definition of weak bisimilarity follows that of CCS very closely. The lay-
out of this chapter will follow that of its CCS counterpart, Chapter 9. We
will first define τ-chains as the reflexive transitive closure of τ-actions. We
will then define two types of transitions – one which is contains at least the
action on the label, and another which can do nothing if the label is a τ.
The early operational semantics defined in Figure 13.3 will then be lifted as
much as possible to include both types of weak transitions.

15.1 τ-chains
We define τ-chains in the standard way, as the reflexive transitive closure of
τ-actions.

Definition 15.1 (τ-chains).

P =⇒ P ′ def= (P, P ′) ∈ {(P, P ′) : P 7−→ τ ≺ P ′}∗

Lemma 15.2. Rule for induction over the length of a τ-chain.

P =⇒ P ′ Prop P
∧

P ′′ P ′′′.
P =⇒ P ′′ P ′′ τ−→ P ′′′ Prop P ′′

Prop P ′′′

Prop P ′

Proof. Follows directly from Isabelle’s induction rule for reflexive transitive
closures.

This induction lemma can be used to prove that τ-chains are equivariant.

Lemma 15.3. If P =⇒ P ′ then (p · P) =⇒ (p · P ′).

Proof. By induction on the length of P =⇒ P ′
Base case (P = P ′) Follows immediately since (p · P) =⇒ (p · P).

Inductive step From the induction hypothesis we get that (p · P) =⇒ (p ·
P ′). Moreover, since P ′ τ−→ P ′′, we have that p · P ′ τ−→ p · P ′′, by
Lemma 13.11, and hence (p · P) =⇒ (p · P ′′).
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P =⇒ P ′ P 6= P ′

[b=b]P =⇒ P ′ MATCH
P =⇒ P ′ a 6= b P 6= P ′

[a 6=b]P =⇒ P ′ MISMATCH

P =⇒ P ′ P 6= P ′

P + Q =⇒ P ′ SUM1F
Q =⇒ Q ′ Q 6= Q ′

P + Q =⇒ Q ′ SUM2F

P =⇒ P ′

P | Q =⇒ P ′ | Q
PAR1F

Q =⇒ Q ′

P | Q =⇒ P | Q ′ PAR1F

P =⇒ P ′

(νa)P =⇒ (νa)P ′ RESF

Figure 15.1: The lifted operational semantics rules for τ-chains. Note that the
MATCH, MISMATCH, and the SUM rules require that the τ-chain does at least one
τ-action. The COMM and CLOSE rules are not included as they have non τ-actions
in their premises.

We also need to be able to infer freshness conditions of the derivative of
τ-chains.

Lemma 15.4. If P =⇒ P ′ and x ] P then x ] P ′.

Proof. By induction on the length of P =⇒ P ′.
Base case (P = P ′) Follows from the assumption that. x ] P .

Inductive step From the induction hypothesis we get that x ] P ′, and

hence, since P ′ τ−→ P ′′, we have that x ] P ′′ using Lemma 13.12.

Finally, the semantic rules from Figure 13.3 need to be lifted to support
τ-chains. Rules whose derivatives are not of the same syntactic structure
as the original agent, such as the SUM or the MATCH rules, need an extra
premise that at least one action is performed. A full list of the lifted rules can
be found in Figure 15.1. Note that these rules are inferred from the original
semantics.

15.2 Weak Semantics
The semantics for the pi-calculus has two types of transitions – with binders
on the label, and without. We extend the notation used for the strong se-
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mantics and write, P
a (νx)====⇒ P ′ for a weak bound output action, and P

α==⇒ P ′
for transitions with no binders.

Definition 15.5 (Weak τ-respecting transitions).

P
a (νx)====⇒ P ′ def= ∃P ′′′ P ′′. P =⇒ P ′′′∧ P ′′′ a(νx)−−−−→ P ′′∧ P ′′=⇒ P ′

P
α==⇒P ′ def= ∃P ′′′ P ′′. P =⇒ P ′′′∧ P ′′′ α−→ P ′′∧ P ′′=⇒ P ′

A weak τ-respecting transitions is a transition with a preceding and suc-
ceeding τ-chain.

Note that even though the transition P
a (νx)====⇒ P ′ appears to contain a

binder into P ′, in reality it does not. The binder occurs inside the defini-
tion, where x binds into P ′′. The agent P ′′ then does a τ-chain to P ′, which
x does not bind into, unless P ′′= P ′. Formally, one can still reason about x
as a binder. Consider the following lemma:

Lemma 15.6. If P =⇒ P ′ then supp P ′⊆ supp P.

Proof. By induction on P =⇒ P ′, and Lemma 13.16.

This lemma proves that there is no way that any new names can be in-
troduced by a τ-chain; the name x can be communicated within the agent,
but if so it occurs free in an output-prefix in P. We will call the binder x of a

transition P
a (νx)====⇒P ′a virtual binder since it is not a binder by definition; we

create lemmas so that we can reason about virtual binders as if they were a
real one.

The following lemma alpha-converts weak bound output transitions.

Lemma 15.7. If P
a (νx)====⇒ P ′ and y ] P then P

a (νy)====⇒ (x y) · P ′.

Proof. The proof is initially done by case analysis whether or not x = y. If so,
the permutation cancels out, and the proof is done. We now prove the case
where x 6= y.

From P
a (νx)====⇒ P ′, and Definition 15.5, we obtain a P ′′′ and a P ′′ such that

P =⇒ P ′′′, P ′′′ a(νx)−−−−→ P ′′, and P ′′=⇒ P ′. The proof is then structured as fol-
lows:

• From P =⇒ P ′′′, and y ] P , we have that y ] P ′′′, by Lemma 15.4.

• From P ′′′ a(νx)−−−−→ P ′′, y ] P ′′′, and x 6= y, we have that y ] P ′′, by
Lemma 13.12.

• From P ′′′ a(νx)−−−−→ P ′′ and y ] P ′′ we can alpha-convert the transition to

P ′′′ a(νy)−−−−→ (x y) · P ′′.
• From P ′′=⇒ P ′ we have that (x y) · P ′′=⇒ (x y) · P ′, using Lemma 15.3.
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τ.P
τ==⇒P TAU a(x).P

au==⇒ P{u/x } INPUT ab.P
ab==⇒ P OUTPUT

P
b (νx)====⇒ P ′

[a=a]P
b (νx)====⇒ P ′

MATCHB
P

α==⇒P ′

[a=a]P
α==⇒P ′

MATCHF

P
c (νx)====⇒ P ′ a 6= b

[a 6=b]P
c (νx)====⇒ P ′

MISMATCHF
P

α==⇒P ′ a 6= b

[a 6=b]P
α==⇒P ′

MISMATCHB

P
a (νx)====⇒ P ′

P + Q
a (νx)====⇒ P ′

SUM1B
P

α==⇒P ′

P + Q
α==⇒P ′

SUM1F

Q
a (νx)====⇒ Q ′

P + Q
a (νx)====⇒ Q ′

SUM2B
Q

α==⇒Q ′

P + Q
α==⇒Q ′

SUM2F

P
α==⇒P ′

P | Q
α==⇒P ′ | Q

PAR1F
P

a (νx)====⇒ P ′ x ] Q

P | Q
a (νx)====⇒ P ′ | Q

PAR1B

Q
α==⇒Q ′

P | Q
α==⇒P | Q ′

PAR2F
Q

a (νx)====⇒ Q ′ x ] P

P | Q
a (νx)====⇒ P | Q ′

PAR2B
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P
ab==⇒ P ′ Q

ab==⇒ Q ′

P | Q
τ==⇒P ′ | Q ′

COMM1
P

ab==⇒ P ′ Q
ab==⇒ Q ′

P | Q
τ==⇒P ′ | Q ′

COMM2

P
ax==⇒ P ′ Q

a (νx)====⇒ Q ′ x ] P

P | Q
τ==⇒ (νx)(P ′ | Q ′ )

CLOSE1

P
a (νx)====⇒ P ′ Q

ax==⇒ Q ′ x ] Q

P | Q
τ==⇒ (νx)(P ′ | Q ′ )

CLOSE2
P

ab==⇒ P ′ a 6= b

(νb)P
a (νb)====⇒ P ′

OPEN

P
α==⇒P ′ x ] α

(νx)P
α==⇒ (νx)P ′

RESF
P

a (νx)====⇒ P ′ y 6= a y 6= x

(νy)P
a (νx)====⇒ (νy)P ′

RESB

P | !P
a (νx)====⇒ P ′

!P
a (νx)====⇒ P ′

REPLB
P | !P

α==⇒P ′

!P
α==⇒P ′

REPLF

Figure 15.2: The lifted weak early operational semantics for the pi-calculus. Note
that in addition to the PAR and the RES-rules, the SUM and the REPL rules need to
be duplicated for bound and free transitions respectively.
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• Finally, from P =⇒ P ′′′, P ′′′ a(νy)−−−−→ (x y) · P ′′, and (x y) · P ′′ =⇒ (x y) · P ′,
we have that P

a (νy)====⇒ (x y) · P ′, by Definition 15.5.

The main difference from this lemma and the general alpha-converting
lemmas is that the fresh name is required to be fresh for the originating
agent, and not for the derivative. As the proof above demonstrates,
the freshness conditions are propagated through the chain until the
alpha-conversion is done on the internal single transition. With this slight
discrepancy, the virtual binders of weak τ-respecting transitions can be
alpha-converted in a manner similar to their strong counterparts.

15.2.1 Lifting the semantics
Lifting the semantics to the weak level is relatively straightforward, with one
observation – weak τ-respecting transitions are by definition split into two
kinds, one for free and one for bound transitions, and thus all rules which
reason about arbitrary transitions must be duplicated. This differs from the
strong semantics in Figure 13.2 which only splits the rules that explicitly
needs to reason about the binding structure of a transition, such as the
PAR and the SCOPE rules. Hence the weak semantics must in addition have
duplicated rules for the SUM and REPL cases. The lifted semantics can be
found in Figure 15.2.

In order to define weak bisimilarity, an agent must have the option of

doing nothing when mimicking a τ-action. The weaker transition P
α̂==⇒ P ′

is defined in the standard way.

Definition 15.8 (Weak transition).

P
α̂==⇒P ′ def= P

α==⇒P ′∨ α = τ ∧ P = P ′

A transition P
α̂==⇒P ′ either does a weak transition P

α==⇒P ′ or, if α = τ, the
agent P can do nothing and hence P = P ′.

These transitions will be used when defining weak bisimilarity. We can
derive lifted rules also for this kind of transition. The relevant cases are the
ones where a τ-chain is empty, see Figure 15.3, the other cases have already
lifted by the semantics defined in Figure 15.2.

15.3 Weak bisimilarity
Formally, weak bisimilarity is defined in a similar way to the previous bisim-
ularities in this thesis.
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P
α̂==⇒P ′

P | Q
α̂==⇒P ′ | Q

PAR1F
Q

α̂==⇒Q ′

P | Q
α̂==⇒P | Q ′

PAR2F

P
α̂==⇒P ′ x ] α

(νx)P
α̂==⇒ (νx)P ′

RESF

Figure 15.3: The lifted semantics for weak transitions with possibly empty τ-chains.

The proof strategies for the rest of this chapter follow that of strong bisim-
ilarity very closely, as the lifted semantics allow us to reuse most of its proof
heuristics.

Weak simulation is defined in the same way as its strong counterpart,
with the exception that the mimicking action can do an arbitrary number
of τ-actions prior to and after the visible action. In case the visible action
is a τ-action, the mimicking agent has the option of doing nothing. After
both transitions are made, the derivatives must be in a provided candidate
relation.

Definition 15.9 (Weak simulation). An agent P weakly simulating an agent
Q preserving R is denoted P ;̂R Q.

P ;̂R Q
def=

(∀a x Q ′. Q
a(νx)−−−−→ Q ′∧ x ] P −→ (∃P ′. P

a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R)) ∧
(∀α Q ′. Q

α−→ Q ′−→ (∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R))

In order to coinductively define weak bisimilarity, the generating
function must be monotonic – in this case, weak simulation. The following
lemma proves this.

Lemma 15.10. If P ;̂R P ′ and R ⊆ R ′ then P ;̂R ′ P ′.

Proof. Follows directly from the definition of ;̂.

Weak bisimilarity can then be defined coinductively in the standard way.

Definition 15.11 (Weak bisimilarity). Weak bisimilarity, denoted
.≈, is de-

fined coinductively as the greatest fixpoint satisfying:

P
.≈ Q =⇒ P ;̂ .≈ Q SIMULATION

∧ Q
.≈ P SYMMETRY
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15.3.1 Primitive inference rules
As for strong simulation, weak simulation is divided into two cases – one
where a bound output action, containing a binder, is mimicked, and one
where free actions are mimicked. Moreover, a special introduction rule en-
sures that any bound name occurring in the bound output action is fresh
for an arbitrary context C .

Lemma 15.12.

eqvt R∧
a x Q ′.

Q
a(νx)−−−−→ Q ′ x ] P x ] Q x 6= a x ] C

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R∧

α Q ′.
Q

α−→ Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

P ;̂R Q
;̂-I

Proof. Follows from the definition of ;̂. The bound names of the actions
are alpha-converted to avoid P, Q, a, and the freshness context C .

The corresponding elimination rules follow immediately from the defi-
nition.

Lemma 15.13. Elimination rules for weak simulation

P ;̂R Q Q
a(νx)−−−−→ Q ′ x ] P

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R

;̂-E1

P ;̂R Q Q
α−→ Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

;̂-E2

Proof. Follows from the definition of ;̂.

Lemma 15.14. Introduction and elimination rules for weak bisimilarity.

P ;̂ .≈ Q Q
.≈ P

P
.≈ Q

.≈-I
P

.≈ Q

P ;̂ .≈ Q

.≈-E1
P

.≈ Q

Q
.≈ P

.≈-E2

Proof. Follows from the definition of
.≈.

Lemma 15.15. Coinduction rule for weak bisimilarity.
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(P, Q) ∈ X

∧
R S.

(R, S) ∈ X

R ;̂X ∪ .≈ S
SIMULATION

∧
R S.

(R, S) ∈ X

(S, R) ∈ X
SYMMETRY

P
.≈ Q

Proof. Follows from the coinduction rule that Isabelle derives from Defini-
tion 15.11.

15.3.2 Equivariance
To prove that weak bisimilarity is equivariant we have to prove the corre-
sponding result for τ-chains, weak transitions, and weak simulation.

Lemma 15.16. τ-chains are equivariant.

If P =⇒ P ′ then (p · P) =⇒ (p · P ′).

Proof. By induction on P =⇒ P ′ and Lemma 13.11.

Lemma 15.17. Weak transitions are equivariant

If P
α̂==⇒P ′ then p · P

�p · α===⇒ p · P ′.

Proof. Follows from Definitions 15.8 and 15.5, and Lemmas 15.16 and
13.11.

Lemma 15.18. Weak simulation is equivariant.

If P ;̂R Q and R ⊆ R ′ and eqvt R ′ then p · P ;̂R ′ p · Q.

Proof. Similar to Lemma 14.8 but uses Lemma 15.17 to infer equivariance
of the mimicking transitions.

Lemma 15.19. Weak bisimilarity is equivariant.

If P
.≈ Q then p · P

.≈ p · Q.

Proof. Similar to Lemma 14.9 but uses Lemma 15.18 to infer equivariance
of the weak simulations.
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15.3.3 Weak bisimilarity includes strong bisimilarity
Lemma 15.20.

If P
a(νx)−−−−→ P ′ then P

a (νx)====⇒ P ′.

If P
α−→ P ′ then P

α̂==⇒P ′.

Proof. Follows from Definitions 15.5 and 15.8 by using empty τ-chains.

Lemma 15.21. If P ,→R Q then P ;̂R Q.

Follows from Definitions 14.1, 15.9, and Lemma 15.20.

Lemma 15.22. If P .∼ Q then P
.≈ Q.

Proof. By coinduction with X set to .∼. The candidate relation is symmet-
ric since X is symmetric, and the simulation case follows directly from
Lemma 15.21.

15.4 Weak bisimulation is an equivalence relation
The proofs required for simulation are reflexivity and transitivity, in order to
prove that weak bisimulation is an equivalence relation. That weak bisimi-
larity is symmetric follows from its definition.

Lemma 15.23. If Id ⊆ R then P ;̂R P.

Proof. Follows immediately from the definition of ;̂.

The proof that a weak simulation is transitive follows the corresponding
proof for CCS very closely. We must prove that the simulating agent can
mimic a weak action, and not just a strong one. The following lemma shows
how τ-chains are mimicked.

Lemma 15.24.

Q =⇒ Q ′ (P, Q) ∈ R
∧

R S.
(R, S) ∈ R

R ;̂R S

∃P ′. P =⇒ P ′∧ (P ′, Q ′) ∈ R

Proof. Proved in the same way as Lemma 9.18.

The next step is to prove how weak transitions are mimicked. As weak
simulation is split into two cases, one for a bound output, and one for free
actions, the following lemma is split into two cases.
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Lemma 15.25.∧
R S.

(R, S) ∈ R

R ;̂R S
eqvt R (P, Q) ∈ R Q

a (νx)====⇒ Q ′ x ] P

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R

∧
R S.

(R, S) ∈ R

R ;̂R S
eqvt R (P, Q) ∈ R Q

α̂==⇒Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

Proof. The second case, where a free transition is mimicked, is proved in
the same way as Lemma 9.19, but for the first case the extra requirement
that x ] P must be handled.

From the definition of Q
a (νx)====⇒ Q ′, we obtain a Q ′′ and a Q ′′′ s.t. Q =⇒

Q ′′′, Q ′′′ a(νx)−−−−→ Q ′′ and Q ′′=⇒ Q ′. From Q =⇒ Q ′′′ and the assumptions, we
use Lemma 15.24 to obtain a P ′′′ s.t. P =⇒ P ′′′ and (P ′′′, Q ′′′) ∈ R. From P
=⇒ P ′′′, and x ] P , we get that x ] P ′′′, using Lemma 15.4. From (P ′′′, Q ′′′)
∈ R and the assumptions we get that P ′′′ ;̂R Q ′′′, and with Q ′′′ a(νx)−−−−→ Q ′′

and x ] P ′′′we obtain a P ′′ s.t. P ′′′ a (νx)====⇒ P ′′and (P ′′, Q ′′) ∈R, using Lemma
15.13. From (P ′′, Q ′′) ∈ R, Q ′′=⇒ Q ′ and the assumptions we obtain a P ′ s.t.
P ′′ =⇒ P ′ and (P ′, Q ′) ∈ R, again using Lemma 15.24. Finally, we append

P =⇒ P ′′′, P ′′′ a (νx)====⇒ P ′′ and P ′′ =⇒ P ′ to P
a (νx)====⇒ P ′ and solve the goal by

instantiating the existential quantifier to P ′.

The transitivity result for weak simulations is:

Lemma 15.26.

Q ;̂R ′ R eqvt R

eqvt R ′′ R ◦ R ′⊆ R ′′ ∧
S T .

(S, T) ∈ R

S ;̂R T
(P, Q) ∈ R

P ;̂R ′ ′ R

Proof. Follows from the definition of ;̂ and Lemma 15.25 to simulate the
weak transitions.

We can now prove that weak bisimulation is an equivalence relation.

Lemma 15.27. Weak bisimulation is an equivalence relation

Proof.

Reflexivity: P
.≈ P

Follows by coinduction and setting X to Id and Lemma 15.23.
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Symmetry: If P
.≈ Q then Q

.≈ P.

Follows immediately from the definition of
.≈

Transitivity: If P
.≈ Q and Q

.≈ R then P
.≈ R.

Follows by coinduction and setting X to
.≈ ◦ .≈, Lemma 15.26 equiv-

ariance of weak bisimilarity.

We move on to the remaining preservation properties for weak simula-
tion.

15.5 Preservation properties
Weak bisimilarity is preserved by all operators except Input and Sum.

15.5.1 Output and Tau
The proofs that bisimilarity is preserved by Output and Tau follow their
counterparts for strong bisimilarity very closely – in particular, the requi-
sites on the simulation relations are identical.

Lemma 15.28.
(P, Q) ∈ R

ab.P ;̂R ab.Q

Proof. The only action that ab.P can perform is an output action, which
ab.Q can mimic with a weak action using the OUTPUT-rule from the lifted
semantics in Figure 15.2. The derivatives P and Q are in R by the assump-
tion.

Lemma 15.29. If P
.≈ Q then ab.P

.≈ ab.Q.

Proof. Follows by coinduction and setting X to

{(ab.P, ab.Q), (ab.Q, ab.P)},

and Lemma 15.28.

Lemma 15.30. .

(P, Q) ∈ R

τ.P ;̂R τ.Q
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Proof. The only action that τ.P can perform is an output action, which τ.Q
can mimic with a weak action using the TAU-rule from the lifted semantics
in Figure 15.2. The derivatives P and Q are in R by the assumption.

Lemma 15.31. If P
.≈ Q then τ.P

.≈ τ.Q.

Proof. Follows by coinduction and setting X to

{(τ.P, τ.Q), (τ.Q, τ.P)},

and Lemma 15.30.

15.5.2 Match and Mismatch
The preservation properties for the Match and Mismatch are a bit more
complicated than for their strong counterparts. The reason for this is that
the simulating agent has the possibility of doing nothing when mimicking a
τ-action. As the lifted semantics rule in Figure 15.2 dictate, the MATCH and
MISMATCH rules may only be used if an action is actually performed. This
puts special constraints on the candidate relations for bisimulation, which
is demonstrated by the simulation lemmas.

Lemma 15.32.

P ;̂R Q R ⊆ R ′ ∧
R S c.

(R, S) ∈ R

([c=c]R, S) ∈ R

[a=b]P ;̂R ′ [a=b]Q

Proof. The relevant case is where [a=b]Q does a free action, in which case
the only possible antecedent, according to the MATCH inversion rule in Fig-

ure 13.4.2, is if a = b and Q
α−→ Q ′. Since P ;̂R Q, we obtain a P ′ such that

P
α̂==⇒ P ′ and (P ′, Q ′) ∈ R. The proof is then done by case analysis on P

α̂==⇒
P ′.

P
α==⇒P ′: Since a = b we have by the MATCHF-rule in Figure 15.2, that [a=

b]P
α==⇒ P ′. Finally, from (P ′, Q ′) ∈ R and R ⊆ R ′, we have that (P ′, Q ′) ∈

R ′
P = P ′ and α = τ: Since the agent P does nothing, the only option avail-

able to [a=b]P is to do the same. Therefore, the agents [a=b]P and Q ′
must be in R. This follows from the assumptions since (P ′, Q ′) ∈ R and
P = P ′.
In the case where the agent does a bound output, the proof follows the

structure of the first case.

Lemma 15.33. If P
.≈ Q then [a=b]P

.≈ [a=b]Q.
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Proof. Follows by coinduction and setting X to

{([a=b]P, [a=b]Q), ([a=b]Q, [a=b]P)},

and Lemma 15.32. The requirement of the candidate relation when the
mimicking agent does nothing requires a structural congruence law,
namely that [a=a]P

.≈ P, which will be proved in Chapter 20.

The proof that weak simulation is preserved by Mismatch follows the
same structure.

Lemma 15.34.

P ;̂R Q R ⊆ R ′ ∧
R S c d.

(R, S) ∈ R c 6= d

([c 6=d ]R, S) ∈ R

[a 6=b]P ;̂R ′ [a 6=b]Q

Proof. The proof strategy is the same as for Lemma 15.32, but with the MIS-
MATCH inversion rule from Figure 13.4.2 used to derive the case needed to
be simulated, and the MISMATCH rules from Figure 15.2 to derive the mim-
icking weak actions.

Lemma 15.35. If P
.≈ Q then [a 6=b]P

.≈ [a 6=b]Q.

Proof. Follows by coinduction and setting X to

{([a 6=b]P, [a 6=b]Q), ([a 6=b]Q, [a 6=b]P)},

and Lemma 15.34. The requirement of the candidate relation when the
mimicking agent does nothing requires a lemma stating that [a 6=b]P

.≈ P
if a 6= b. This is not a structural congruence law, as it is not preserved by
substitution, but it will be proven in Chapter 20.

15.5.3 Restriction
The proof that weak simulation is preserved by Restriction does not require
any extra assumptions of the candidate relation, as the SCOPEF-rule is lifted
to a weak semantics.

Lemma 15.36. .

P ;̂R Q∧
R S y.

(R, S) ∈ R

((νy)R, (νy)S) ∈ R ′ R ⊆ R ′ eqvt R eqvt R ′

(νx)P ;̂R ′ (νx)Q
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Proof. Follows from the definition of ;̂, the SCOPE inversion rule and the
OPEN, SCOPEF and SCOPEB-rules from the lifted operational semantics.
The assumption

∧
R S y. (R, S) ∈ R =⇒ ((νy)R, (νy)S) ∈ R ′ is used in the

OPEN-case, as the restricted names are dropped from the derivatives.

Lemma 15.37. If P
.≈ Q then (νx)P

.≈ (νx)Q.

Proof. Follows by coinduction and setting X to

{((νx)P, (νx)Q) : P
.≈ Q},

and Lemma 15.36.

15.5.4 Parallel
The semantic rules for parallel as also lifted to a weak counterpart. This
lemma too follows its strong counterpart very closely.

Lemma 15.38. .

P ;̂R Q (P, Q) ∈ R

∧
S T U .

(S, T) ∈ R

(S | U , T | U ) ∈ R ′
∧

S T x.
(S, T) ∈ R ′

((νx)S, (νx)T) ∈ R ′

P | R ;̂R ′ Q | R

Proof. The Isabelle proof can be found in Figure 15.4.

We also have to prove that weak simulations are preserved by binding
sequences, as was discussed in Section 14.3.5.

Lemma 15.39.

eqvt R
∧

R S y.
(R, S) ∈ R

((νy)R, (νy)S) ∈ R
P ;̂R Q

(νỹ)P ;̂R (νỹ)Q

Proof. By induction on ỹ and Lemma 15.36.

Lemma 15.40. If P
.≈ Q then P | R

.≈ Q | R .

Proof. Follows by coinduction and setting X to

{((νx)(P | R ), (νx)(Q | R )) : P
.≈ Q},

and lemmas 15.38 and 15.39. The Isabelle proof can be found in Figure 15.5
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Figure 15.4: The Isabelle proof that weak simulation is preserved by Parallel

Page 1/4
lemma parCompose:

fixes P :: pi and Q :: pi and R :: pi and T :: pi
and R :: (pi × pi) set and R ′ :: (pi × pi) set and R ′′ :: (pi × pi) set
assumes P ;̂R Q and (P, Q) ∈ R

and R ;̂R ′ T and (R, T) ∈ R ′
and C1:

∧
P ′ Q ′ R ′ T ′. [[(P ′, Q ′) ∈ R; (R ′, T ′) ∈ R ′]] =⇒ (P ′ | R ′, Q ′ | T ′) ∈ R ′′

and C2:
∧

P ′ Q ′ x. (P ′, Q ′) ∈ R ′′=⇒ ((νx)P ′, (νx)Q ′) ∈ R ′′
shows P | R ;̂R ′ ′ Q | T

proof(induct rule: weakSimI) — Apply introduction rule ;̂-I
case(Bound U a x)
from 〈x ] P | R〉 have x ] P and x ] R by simp+
from 〈Q | T

a (νx)−−−−→ U〉

show ∃S. P | R
a (νx)====⇒ S ∧ (S, U) ∈ R ′′

proof(induct rule: parCasesB) — Apply PARB inversion rule from
Figure 13.4.2

PAR1case
Given that Q

a(νx)−−−−→ Q ′ prove that there exists an S such that

P | R
a (νx)====⇒ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ;̂R Q〉 〈Q

a(νx)−−−−→ Q ′ 〉〈x ] P〉

obtain P ′ where P
a (νx)====⇒ P ′ and (P ′, Q ′) ∈ R by(blast dest: weakSimE)

from 〈P
a (νx)====⇒ P ′〉 〈x ] R〉 have P | R

a (νx)====⇒ P ′ | R by(rule Par1B)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
a (νx)====⇒ S ∧ (S, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

a(νx)−−−−→ T ′ prove that there exists an S such that

P | R
a (νx)====⇒ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
from 〈R ;̂R ′ T〉 〈T

a(νx)−−−−→ T ′〉 〈x ] R〉

obtain R ′ where R
a (νx)====⇒ R ′ and (R ′, T ′) ∈ R ′ by(blast dest: weakSimE)

from 〈R
a (νx)====⇒ R ′〉 〈x ] P〉 have P | R

a (νx)====⇒ P | R ′ by(rule Par2B)
moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P | R ′, Q | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
a (νx)====⇒ S ∧ (S, Q | T ′) ∈ R ′′ by blast

qed

198



Page 2/4

next
case(Free U α)

from 〈Q | T
α−→ U〉

show ∃S. P | R
α̂==⇒ S ∧ (S, U) ∈ R ′′

proof(induct rule: parCasesF[where C = (P, R)]) — Apply PARF
inversion rule

PAR1 case
Given that Q

α−→ Q ′ prove that there exists an S such that

P | R
α̂==⇒ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ;̂R Q〉 〈Q

α−→ Q ′〉 obtain P ′ where P
α̂==⇒P ′ and (P ′, Q ′) ∈ R

by(blast dest: weakSimE)

from 〈P
α̂==⇒P ′〉have P | R =⇒^ α ≺ P ′ | R by(rule Par1F)

moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′
by(rule C1)

ultimately show ∃S. P | R
α̂==⇒ S ∧ (S, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

α−→ T ′ prove that there exists an S such that

P | R
α̂==⇒ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
with 〈R ;̂R ′ T〉 〈P ;̂R Q〉 obtain R ′ where R

α̂==⇒R ′ and (R ′, T ′) ∈ R ′
by(blast dest: weakSimE)

from 〈R
α̂==⇒R ′〉 have P | R

α̂==⇒P | R ′ by(rule Par2F)
moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P | R ′, Q | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α̂==⇒ S ∧ (S, Q | T ′) ∈ R ′′ by blast
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next
COMM1 case
Given that Q

ab−−→ Q ′ and T
a [b]−−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, Q ′ | T ′ ) ∈ R ′′.

case(cComm1 Q ′ T ′ a b)

from 〈P ;̂R Q〉 〈Q
ab−−→ Q ′〉 obtain P ′ where P

ab==⇒ P ′ and (P ′, Q ′) ∈ R

by(fastsimp dest: weakSimE simp add: weakFreeTransition-def)

from 〈R ;̂R ′ T〉 〈T
ab−−→ T ′〉 obtain R ′ where R

ab==⇒ R ′ and (R ′, T ′) ∈ R ′
by(fastsimp dest: weakSimE simp add: weakFreeTransition-def)

from 〈P
ab==⇒ P ′〉 〈R

ab==⇒ R ′〉 have P | R
τ==⇒P ′ | R ′ by(rule Comm1)

hence P | R
τ̂==⇒P ′ | R ′

by(rule weakTransitionI)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P ′ | R ′, Q ′ | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, Q ′ | T ′) ∈ R ′′ by blast

next
COMM2 case
Given that Q

a [b]−−−→ Q ′ and T
ab−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, Q ′ | T ′ ) ∈ R ′′.

case(cComm2 Q ′ T ′ a b)

from 〈P ;̂R Q〉 〈Q
ab−−→ Q ′〉 obtain P ′ where P

ab==⇒ P ′ and (P ′, Q ′) ∈ R

by(fastsimp dest: weakSimE simp add: weakFreeTransition-def)

from 〈R ;̂R ′ T〉 〈T
ab−−→ T ′〉 obtain R ′ where R

ab==⇒ R ′ and (R ′, T ′) ∈ R ′
by(fastsimp dest: weakSimE simp add: weakFreeTransition-def)

from 〈P
ab==⇒ P ′〉 〈R

ab==⇒ R ′〉 have P | R
τ==⇒P ′ | R ′ by(rule Comm2)

hence P | R
τ̂==⇒P ′ | R ′

by(rule weakTransitionI)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P ′ | R ′, Q ′ | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, Q ′ | T ′) ∈ R ′′ by blast
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next
CLOSE1 case
Given that Q

ax−−→ Q ′ and T
a(νx)−−−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, (νx)(Q ′ | T ′ )) ∈ R ′′.

case(cClose1 Q ′ T ′ a x)
from 〈x ] (P, R)〉 have x ] P and x ] R by auto

from 〈P ;̂R Q〉 〈Q
ax−−→ Q ′〉

obtain P ′ where P
ax==⇒ P ′ and (P ′, Q ′) ∈ R

by(fastsimp dest: weakSimE simp add: weakFreeTransition-def)

from 〈R ;̂R ′ T〉 〈T
a (νx)−−−−→ T ′〉 〈x ] R〉

obtain R ′ where R
a (νx)====⇒ R ′ and (R ′, T ′) ∈ R ′ by(blast dest: weakSimE)

from 〈P
ax==⇒ P ′〉 〈R

a (νx)====⇒ R ′〉 〈x ] P〉 have P | R
τ==⇒ (νx)(P ′ | R ′)

by(rule Close1)

hence P | R
τ̂==⇒ (νx)(P ′ | R ′) by(rule weakTransitionI)

moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have ((νx)(P ′ | R ′), (νx)(Q ′ | T ′)) ∈ R ′′ by(blast intro: C1 C2)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, (νx)(Q ′ | T ′)) ∈ R ′′ by blast

next
CLOSE2 case
Given that Q

a(νx)−−−−→ Q ′ and T
ax−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, (νx)(Q ′ | T ′ )) ∈ R ′′.

case(cClose2 Q ′ T ′ a x)
from 〈x ] (P, R)〉 have x ] R and x ] P by auto

from 〈P ;̂R Q〉 〈Q
a (νx)−−−−→ Q ′〉 〈x ] P〉

obtain P ′ where P
a (νx)====⇒ P ′ and (P ′, Q ′) ∈ R by(blast dest: weakSimE)

from 〈R ;̂R ′ T〉 〈T
ax−−→ T ′〉 obtain R ′ where R

ax==⇒ R ′ and (R ′, T ′) ∈ R ′
by(fastsimp dest: weakSimE simp add: weakFreeTransition-def)

from 〈P
a (νx)====⇒ P ′〉 〈R

ax==⇒ R ′〉 〈x ] R〉 have P | R
τ==⇒ (νx)(P ′ | R ′)

by(rule Close2)

hence P | R
τ̂==⇒ (νx)(P ′ | R ′) by(rule weakTransitionI)

moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have ((νx)(P ′ | R ′), (νx)(Q ′ | T ′)) ∈ R ′′ by(blast intro: C1 C2)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, (νx)(Q ′ | T ′)) ∈ R ′′ by blast

qed
qed
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15.5.5 Replication
As for CCS, in order to prove that weak bisimilarity is preserved by
Replication we need to use bisimulation up-to techniques. We derive the
following coinduction law.

Lemma 15.41.

(P, Q) ∈ Y eqvt Y

∧
R S.

(R, S) ∈ Y

R ;̂ .≈ ◦ (Y ∪ .≈ ) ◦ .∼ S

∧
R S.

(R, S) ∈ Y

(S, R) ∈ Y

P
.≈ Q

Proof. By coinduction using Lemma 15.15 setting X to
.≈ ◦ (Y ∪ .≈) ◦ .≈.

This lemma is nearly identical to its counterpart for CCS, except that it
requires the candidate relation to be equivariant.

Lemma 15.42.

(P, Q) ∈ R bangRel R ⊆ R ′ eqvt R ′

∧
R S.

(R, S) ∈ R

R ;̂R S

∧
R S T U .

(R, S) ∈ R (T , U) ∈ R ′

(R | T , S | U ) ∈ R ′

∧
R S x.

(R, S) ∈ R ′

((νx)R, (νx)S) ∈ R ′
∧

R S.
(R | !R , S) ∈ R ′

(!R, S) ∈ R ′

!P ;̂R ′ !Q

Proof. Similar to the corresponding proof for strong simulation,
Lemma 14.31. However, in the replication case the REPL rule from
Figure 15.2 can only be used when the mimicking agent mimics at least
one τ-action, if it does nothing, the last assumption from the lemma is
used to ensure that the derivatives remain in R ′.

Lemma 15.43. If P
.≈ Q then !P

.≈ !Q.

Proof. Follows the same pattern as the corresponding lemma for strong
bisimilarity, Lemma 14.32, but by coinduction up-to weak bisimilarity with
Y set to bangRel

.≈. The simulation case is discharged by Lemma 15.42,
where its final requisite is proven by the fact that !P

.≈ P | !P, the proof of
which is deferred to Chapter 20.

With this lemma in place we can prove the main preservation theorem
for weak bisimilarity.
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Theorem 15.1. Weak bisimilarity is preserved by all operators except Sum
and Input.

Proof. Follows from lemmas 15.29, 15.31, 15.37, 15.40, and 15.43.

203



Figure 15.5: Isabelle proof of Lemma 15.40 which proves that weak bisimilarity is
preserved by Parallel.

lemma weakBisimParPres:
fixes P :: pi and Q :: pi and R :: pi
assumes P ≈ Q
shows P | R ≈ Q | R

proof −
let ?X = {((νx̃)(P | R), (νx̃)(Q | R)) | x̃ P R Q. P ≈ Q}
have BC:

∧
P Q. P | Q = (νε)(P | Q) by auto

from 〈P ≈ Q〉 have (P | R, Q | R) ∈ ?X by(blast intro: BC)
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)

case(cSim S T)
{ fix P Q R x̃

assume P ≈ Q
moreover hence P ;̂ .≈ Q by(rule weakBisimE)
moreover have

∧
P Q R. P ≈ Q =⇒ (P | R, Q | R) ∈ ?X using BC

by blast
moreover {

fix S T x
assume (S, T) ∈ ?X
then obtain x̃ P Q R where P ≈ Q

and A: S = (νx̃)(P | R) and B: T = (νx̃)(Q | R) by auto
from A have (νx)S = (νxx̃)(P | R) by auto
moreover from B have (νx)T = (νxx̃)(Q | R) by auto
ultimately have ((νx)S, (νx)T) ∈ ?X using 〈P ≈ Q〉 by blast }

note Res = this
moreover have eqvt weakBisim by simp
ultimately have P | R ;̂?X Q | R

by(rule-tac weakEarlySimPres.parPres)
moreover have eqvt ?X

by(auto simp add: eqvt-def) (blast intro: eqvts)
ultimately have (νx̃)(P | R) ;̂?X (νx̃)(Q | R) using Res

by(rule-tac weakEarlySimPres.resChainI)
hence (νx̃)(P | R) ;̂?X ∪ .≈ (νx̃)(Q | R) using Res

by(force intro: weakEarlySim.monotonic)
}
with 〈(S, T) ∈ ?X〉 show S ;̂?X ∪ .≈ T

by blast
next

case(cSym S T)
from 〈(S, T) ∈ ?X〉 show (T, S) ∈ ?X by(blast dest: weakBisimSymmetric)

qed
qed

204



16. Weak congruence

Weak bisimilarity is not preserved by Sum nor by Input, for the same
reasons as for weak bisimilarity for CCS and strong bisimilarity for the
pi-calculus. To define a relation which is preserved by Sum we use the
same technique as in Chapter 10 for CCS – we require that a τ-action is
mimicked by at least one τ-action, disallowing that an agent mimics a
τ-action by doing nothing. We call this bisimilarity τ-bisimilarity. A weak
congruence is then obtained by closing τ-bisimilarity under substitutions
in the same way as is done in Section 14.4 for strong equivalence.

16.1 τ-bisimilarity
As with CCS, we define a version of weak bisimilarity where agents mimick-
ing τ-actions at least have to do one τ-action – they do not have the option
of doing nothing.

Definition 16.1 (τ-simulation). An agent P τ-simulating an agent Q pre-
serving R is denoted P ;R Q.
P ;R Q ≡

(∀Q ′ a x. Q
a(νx)−−−−→ Q ′−→ x ] P −→ (∃P ′. P

a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R)) ∧ (∀Q ′

α. Q
α−→ Q ′−→ (∃P ′. P

α==⇒P ′∧ (P ′, Q ′) ∈ R))

Agents which are τ-bisimilar do not require their derivatives to be
τ-bisimilar, but only weakly bisimilar. We define τ-bisimilarity in a similar
way as weak congruence for CCS, as the conjunction of two τ-simulations.

Definition 16.2. Two agents P and Q are τ-bisimilar, denoted P ∼= Q, if they
τ-simulate each other.

P ∼= Q
def= P ; .≈ Q ∧ Q ; .≈ P

16.1.1 Primitive inference rules
The introduction rule for τ-simulation follows the standard pattern, allow-
ing the user to choose a freshness context C for which any bound names of
the simulation actions must be fresh.
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Lemma 16.3. Introduction and elimination rules for τ-simulation.

eqvt R
∧

a x Q ′.
x ] C Q

a(νx)−−−−→ Q ′

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R∧

α Q ′.
Q

α−→ Q ′

∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R

P ;R Q
;-I

P ;R Q Q
a(νx)−−−−→ Q ′ x ] P

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R

;-E1

P ;R Q Q
α−→ Q ′

∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R

;-E2

Proof. Follows from Definition 16.1. For the introduction rule, Lemma 15.7
is used to alpha-convert the bound name x such that it is fresh for C .

In order for two agents to be τ-bisimilar, they have to τ-simulate each
other. We derive the following introduction rules, which are similar to the
ones created for weak congruence for CCS.

Lemma 16.4.

Prop P Q
∧

R S.
Prop R S

Prop S R

∧
R S.

Prop R S

F R ; .≈ F S

F P ∼= F Q
∼=-I

P ∼= Q
∧

R S.
R ∼= S

F R ; .≈ F S

F P ∼= F Q
∼=-I2

Proof. Follows directly from Definition 16.2.

We also derive the elimination rules.

Lemma 16.5.

P ∼= Q

P ; .≈ Q
∼=−E1

P ∼= Q

Q ; .≈ P
∼=−E2
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16.1.2 τ-bisimilarity includes strong bisimilarity

Lemma 16.6. If P
α−→ P ′ then P

α==⇒P ′.

Proof. Follows from Definitions 15.5 by using empty τ-chains.

Lemma 16.7. If P ,→R Q then P ;R Q.

Proof. Follows from Definitions 14.1, 16.1, and Lemma 16.6.

We additionally require that τ-simulation is monotonic.

Lemma 16.8. If P ;R P ′ and R ⊆ R ′ then P ;R ′ P ′.

Proof. Follows from the Definition 16.1.

We can now prove that all strongly bisimilar agents are also τ-bisimilar.

Lemma 16.9. If P .∼ Q then P ∼= Q.

Proof. We use the symmetric introduction rule ∼=-I with Prop set to .∼ and
F set to the identity function. Prop is symmetric, since bisimilarity is sym-
metric. The simulation case is proven in the following way:

• From P .∼ Q we have that P ,→ .∼ Q by .∼-E1.
• Hence P ; .∼ Q by Lemma 16.7.
• Hence P ; .≈ Q by Lemmas 15.22 and 16.8.

16.1.3 Weak bisimilarity includes τ-bisimilarity
Lemma 16.10. If P ;R Q then P ;̂R Q.

Proof. Follows directly from Definitions 15.9, 16.1, and 15.8.

Lemma 16.11. If P ∼= Q then P
.≈ Q.

Proof. By coinduction with X set to {(P, Q) : P ∼= Q}. The relation is sym-
metric, and the simulation case is proved in the following way:

• from P ∼= Q we have that P ; .≈ Q by ∼=-E1.
• Hence P ;X ∪ .≈ Q by Lemma 16.8.
• Hence P ;̂X ∪ .≈ Q by Lemma 16.10.
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16.2 τ-bisimilarity is an equivalence relation
Lemma 16.12.

If Id ⊆ R then P ;R P.

Proof. Follows from ;-I. Any transition P
α−→ P ′ can be mimicked by a

weak transition P
α==⇒P ′, and (P ′, P ′) ∈ R.

τ-bisimilarity is symmetric. To prove it is transitive, we must first prove
two auxiliary lemmas.

Lemma 16.13.

P ;R Q
∧

R S.
(R, S) ∈ R

R ;̂R S
eqvt R (P, Q) ∈ R Q

α==⇒Q ′

∃P ′. P
α==⇒P ′∧ (P ′, Q ′) ∈ R

Proof. Proved in a similar way as Lemma 10.10.

Lemma 16.14.

P ;R Q Q ;R R eqvt R

eqvt R ′′ R ◦ R ⊆ R ′′ ∧
S T .

(S, T) ∈ R

S ;̂R T
(P, Q) ∈ R

P ;R ′ ′ R

Proof. Follows from ;-I, and lemmas 15.25 and 16.13 to simulate the weak
actions.

Lemma 16.15. τ-bisimulation is an equivalence relation

Proof. Reflexivity: Follows from the definition of ∼=, reflexivity of weak
bisimilarity (Lemma 15.27), and Lemma 16.12.

Symmetry: τ-bisimilarity is symmetric by definition.

Transitivity: The symmetric introduction rule ∼=-I is instantiated
with Prop set to λP R. ∃Q. P ∼= Q ∧ Q ∼= R.

Symmetry case: Follows immediately since τ-bisimilarity is
symmetric.

Simulation case: From Prop P R we obtain a Q such that
P ∼= Q and Q ∼= R. Hence P ; .≈ Q and Q ; .≈ R
by ∼=-E2. Moreover, since weak bisimilarity is transitive
(Lemma 15.27) and equivariant we have that

.≈ ◦ .≈ ⊆ .≈,
and hence by Lemma 16.14 that P ; .≈ R.

208



16.3 Preservation properties
In this section we prove that τ-bisimilarity is preserved by all operators ex-
cept Input.

16.3.1 Output and Tau
Lemma 16.16.

If (P, Q) ∈ R then ab.P ;R ab.Q.

Proof. Follows from ;-I and the fact that ab.P and ab.Q can each only do
an ab-action, and (P, Q) ∈ R.

Lemma 16.17. If P ∼= Q then ab.P ∼= ab.Q.

Proof. Follows from ∼=-I2 with F set to λR. ab .R. Since P ∼= Q we know that
P ; .≈ Q by ∼=-E1, and that P

.≈ Q by Lemma 16.11. The simulation can then
be proved using Lemma 16.16.

Lemma 16.18.
If (P, Q) ∈ R then τ.P ;R τ.Q.

Proof. Follows from ;-I and the fact that τ.P and τ.Q can each only do a
τ-action and (P, Q) ∈ R.

Lemma 16.19. If P ∼= Q then τ.P ∼= τ.Q.

Proof. Follows from ∼=-I2 with F set to λR. τ .R. Since P ∼= Q we know that
P ; .≈ Q by ∼=-E1, and that P

.≈ Q by Lemma 16.11. The simulation can then
be proved using Lemma 16.16.

16.3.2 Match and Mismatch
The proofs that τ-bisimilarity is preserved by Match and Mismatch are sim-
pler than the ones for weak bisimilarity – the reason for this is that we dis-
allow agents to mimic τ-actions by doing nothing. These lemmas therefore
correspond more closely to their counterparts for strong bisimilarity.

Lemma 16.20.
P ;R Q R ⊆ R ′

[a=b]P ;R ′ [a=b]Q

Proof. Follows from ;-I, the MATCH inversion rule from Figure 13.4.2, and
the MATCHF and MATCHB rules from the weak operational semantics from
Figure 15.3. The fact that R ⊆R ′ensures that the derivatives of P and Q are
in R ′.
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Lemma 16.21. If P ∼= Q then [a=b]P ∼= [a=b]Q.

Proof. Follows from ∼=-I2 with F set to λR. [a=b]R. Since P ∼= Q we have
that P ; .≈ Q, and hence that [a=b]P ; .≈ [a=b]Q by Lemma 16.20.

Lemma 16.22.
P ;R Q R ⊆ R ′

[a 6=b]P ;R ′ [a 6=b]Q

Proof. Follows from ;-I, the MISMATCH inversion rule from Figure 13.4.2,
and the MISMATCHF and MISMATCHB rules from the weak operational se-
mantics from Figure 15.3. The fact that R ⊆ R ′ ensures that the derivatives
of P and Q are in R ′.

Lemma 16.23. If P ∼= Q then [a 6=b]P ∼= [a 6=b]Q.

Proof. Follows from ∼=-I2 with F set to λR. [a 6=b]R. Since P ∼= Q we have
that P ; .≈ Q, and hence that [a 6=b]P ; .≈ [a 6=b]Q by Lemma 16.22.

16.3.3 Sum
We know that τ-bisimilarity is preserved by Sum, as an agent must mimic a
τ-action with at least one τ-action.

Lemma 16.24.
P ;R Q R ⊆ R ′ Id ⊆ R ′

P + R ;R ′ Q + R

Proof. Follows from ;-I, the SUM inversion rule from Figure 13.4.2 and
the SUM1 and SUM2-rules from the weak operational semantics from Fig-
ure 15.3. In the case where R does a transition, the assumption R ⊆ R ′ is
used to ensure that the derivatives remain in R ′.

Lemma 16.25. If P ∼= Q then P + R ∼= Q + R .

Proof. Follows from ∼=-I2 with F set to λT.T+R. Since P ∼= Q we know that
P ; .≈ Q by ∼=-E1. The simulation is then proved using Lemma 16.24.

16.3.4 Restriction
Lemma 16.26.

P ;R Q∧
R S x.

(R, S) ∈ R

((νx)R, (νx)S) ∈ R ′ R ⊆ R ′ eqvt R eqvt R ′

(νx)P ;R ′ (νx)Q
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Proof. Follows from ;-I, the SCOPE inversion rule from Figure 13.4.2 and
the SCOPE and OPEN-rules from the weak operational semantics from Fig-
ure 15.3. In the case where Q opens the bound name x, the assumption R

⊆ R ′ is used to ensure that the derivatives remain in R ′.

Lemma 16.27. If P ∼= Q then (νx)P ∼= (νx)Q.

Proof. Follows from∼=-I2 with F set toλR.((νx))R. Since P∼=Q we know that
P ; .≈ Q by ∼=-E1. The simulation is then proved using Lemma 16.26.

16.3.5 Parallel
Lemma 16.28.

P ;R Q (P, Q) ∈ R

∧
S T U .

(S, T) ∈ R

(S | U , T | U ) ∈ R ′
∧

S T x.
(S, T) ∈ R ′

((νx)S, (νx)T) ∈ R ′

P | R ;R ′ Q | R

Proof. Follows from ;-I, the PAR inversion rule from Figure 13.4.2 and the
PAR, COMM, and CLOSE-rules from the weak operational semantics from
Figure 15.3. The assumptions of the lemma ensure that any derivatives of
P and Q are in the relation R ′. The Isabelle proof is very similar to the one
found in Figure 15.4 modulo which lifted semantic rules are used.

Lemma 16.29. If P ∼= Q then P | R ∼= Q | R .

Proof. Follows from ∼=-I2 with F set to λT.T | R. Since P ∼= Q we know that
P ; .≈ Q and P

.≈ Q, by ∼=-E1 and Lemma 16.11. The simulation is then
be proved using Lemma 16.28, where Lemmas 15.40 and 15.37 proves the
constraints required of R and R ′.

16.3.6 Replication
Lemma 16.30.

(P, Q) ∈ R
∧

R S.
(R, S) ∈ R

R ;R ′ S
R ⊆ R ′ eqvt R ′

!P ;bang Rel R ′ !Q

Proof. Follows the same structure as its counterpart for strong bisimilarity,
Lemma 7.20, but with the lifted semantics from Figure 15.2.
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As for CCS, we need a few auxiliary lemmas to prove that τ-bisimilarity is
preserved by Replication.

Lemma 16.31. bangRel
.≈ ⊆ .≈

Proof. By induction on bangRel
.≈.

Parallel case: We have that R
.≈ T, and from the induction hypothesis that

P
.≈ Q, and we must prove that R | P

.≈ T | Q , which follows from the
preservation properties of weak bisimilarity, and the structural con-
gruence laws (which will be proven in Chapter 18).

Restriction case: From P
.≈ Q we have to prove that (νx)P

.≈ (νx)Q, which
follows from Lemma 15.37.

Replication case: From P
.≈ Q we have to prove that !P

.≈ !Q which follows
directly from Lemma 15.43.

Lemma 16.32. If P ∼= Q then !P ∼= !Q.

Proof. The proof uses the symmetric introduction rule ∼=-I2. From P ∼= Q,
the definition of ;, and Lemma 16.11. We have that !P ;bang Rel

.≈ !Q by
Lemma 16.30. We can then prove that !P ; .≈ !Q with Lemmas 16.8 and
16.31.

We can now prove the main preservation theorem for τ-bisimilarity.

Theorem 16.1. τ-bisimilarity is preserved by all operators except Input.

Proof. Follows from lemmas 16.17, 16.19, 16.21, 16.23, 16.25, 16.27, 16.29,
and 16.32.

16.4 Weak congruence
As for strong equivalence, we obtain a congruence by closing τ-bisimilarity
under all possible substitutions.

Definition 16.33. Weak congruence, denoted ≈ is obtained by closing
τ-bisimilarity under substitutions.

P ≈ Q
def= ∀σ. Pσ ∼= Qσ

Weak congruence is, as the name suggests, a congruence. The proof that
it is preserved by all operators except Input follows directly from their cor-
responding lemmas for τ-bisimilarity, by distributing the substitutions over
the operators of the agents. To prove that weak congruence is preserved by
Input, we use the same techniques as for strong bisimilarity in Section 14.4.
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16.4.1 Input
We must first prove that two agents a(x).P and a(x).Q are weakly bisimilar
if the agents P and Q are weakly bisimilar for all possible substitutions. We
begin with the simulation proof.

Lemma 16.34.
∀y. (P{y/x }, Q{y/x }) ∈ R eqvt R

a(x).P ;̂R a(x).Q

Proof. Follows from the definition of ;̂ and the fact that a(x).P and a(x).Q
can each only do an input-action. The assumption ∀y. (P{y/x }, Q{y/x }) ∈ R

ensures that whatever input name the agents receive along a, the deriva-
tives will still be in R.

Lemma 16.35. If ∀y. P{y/x }
.≈ Q{y/x } then a(x).P

.≈ a(x).Q.

Proof. Follows from coinduction with X set to {(a(x).P, a(x).Q) : ∀y. P{y/x }
.≈ Q{y/x }} and Lemma 16.34.

In order to prove that weak congruence is preserved by Input, we must
prove a corresponding lemma for Lemma 16.34 for τ-simulation as well.

Lemma 16.36.
∀y. (P{y/x }, Q{y/x }) ∈ R eqvt R

a(x).P ;R a(x).Q

Proof. Similar to Lemma 16.34 as an input action cannot be mimicked by
doing nothing.

Lemma 16.37. If P ≈ Q then a(x).P ≈ a(x).Q.

Proof. We must prove that a(x).Pσ ∼= a(x).Qσ for all σ. We alpha-convert x
to y such that y does not clash withσ, and pushσ past the binder. Since P ≈
Q, we know that Pσ{z/y } ∼= Qσ{z/y } for all z, and hence that Pσ{z/y }

.≈ Qσ{z/y }
by Lemma 16.11. The lemma is then proved using Lemma 16.36.

16.4.2 Weak congruence is a congruence
We can now prove that weak congruence is a congruence.

Theorem 16.2. Weak congruence is a congruence.

Proof. That weak congruence is preserved by Input is proved by
Lemma 16.37, that it is an equivalence relation and preserved by all other
operators follows from Lemma 16.15, Theorem 16.1, and the definition
of ≈, where any binders are alpha-converted not to clash with the
substitution.
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17. Late operational semantics

In the original pi-calculus paper [58], the authors describe a late operational
semantics. The difference between the two semantics lies in when an agent
instantiates an input. As the names of the semantics hint at, the early se-
mantics does this as early as possible, and the late one as late as possible,
when inferring an action. More formally, the INPUT-rules of the semantics
differ in the following way:

Early INPUT Late INPUT

a(x).P
au−−→ P{u/x } a(x).P

a(x)−−−→ P

In the early case, the agent a(x).P can evolve to an infinite number of
derivatives – one for every possible name u it can receive along a. In the late
case, no substitution is done, but the bound name x moves up to the label of
the transition. Hence, in the late semantics, the object of an input action is
binding, and the bound name x on the label binds into the derivative in the
same way as a bound output. An input label can hence be alpha-converted
in the standard way. Moreover, the syntax differs in that the bound name is
enclosed in parentheses in the late transitions, similarly to other binders.

The substitution in the late semantics is in the COMM and the CLOSE

rules.
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Early COMM1 Late COMM1

P
ab−−→ P ′ Q

ab−−→ Q ′

P | Q
τ−→ P ′ | Q ′

P
a(x)−−−→ P ′ Q

ab−−→ Q ′

P | Q
τ−→ P ′{b/x } | Q ′

Early CLOSE1

P
ax−−→ P ′ Q

a (νx)−−−−→ Q ′ x ] P

P | Q
τ−→ (νx)(P ′ | Q ′ )

Late CLOSE1

P
a(x)−−−→ P ′ Q

a (νy)−−−−→ Q ′ y ] P

P | Q
τ−→ (νy)(P ′{y/x } | Q ′ )

Intuitively, the bound name on a late input action can be thought of as
a place-holder for the name it will receive in a communication. Input ac-
tions are like functions where the bound name is the place-holder for the
argument, which is substituted when the function is invoked.

In the next few chapters we will only reason about the late semantics, and
all transitions and equivalences are assumed to be late ones. In Chapter 20,
we will compare the two semantics, at which point a distinguishing syntax
will be used.

17.1 Formalising the semantics
The formalisation of the late semantics for the pi-calculus follows the same
pattern as before, but the input actions behave differently. This also impacts
how the equivalences work. The first step is to create a residual datatype.

17.1.1 The residual datatype
As for the early semantics, a residual datatype is required in order to main-
tain the binding structure of the bound names on the label and the deriva-
tives. The late operational semantics has two types of actions with binders –
the input actions, and the bound output actions. To model this, the residual
datatype can consists of either a free action and a derivative, or of a bound
action where a subject datatype tells if the bound action is an input action
or a bound output action. This allows the semantic rules to treat both types
of transitions uniformly.
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a(x).P
a(x)−−−→ P

INPUT

ab.P
ab−−→ P

OUTPUT

τ.P
τ−→ P

TAU

P 7−→ Rs

[b=b]P 7−→ Rs
MATCH

P 7−→ Rs a 6= b

[a 6=b]P 7−→ Rs
MISMATCH

P 7−→ Rs

P + Q 7−→ Rs
SUM1

Q 7−→ Rs

P + Q 7−→ Rs
SUM2

P
α−→ P ′

P | Q
α−→ P ′ | Q

PAR1F

P
a«x»−−−→ P ′ x ] Q

P | Q
a«x»−−−→ P ′ | Q

PAR1B
Q

α−→ Q ′

P | Q
α−→ P | Q ′

PAR2F

Q
a«x»−−−→ Q ′ x ] P

P | Q
a«x»−−−→ P | Q ′

PAR2B
P

a(x)−−−→ P ′ Q
ab−−→ Q ′

P | Q
τ−→ P ′{b/x } | Q ′

COMM1

P
ab−−→ P ′ Q

a(x)−−−→ Q ′

P | Q
τ−→ P ′ | Q ′{b/x }

COMM2

P
a(x)−−−→ P ′ Q

a (νy)−−−−→ Q ′ y ] P

P | Q
τ−→ (νy)(P ′{y/x } | Q ′ )

CLOSE1

P
a (νy)−−−−→ P ′ Q

a(x)−−−→ Q ′ y ] Q

P | Q
τ−→ (νy)(P ′ | Q ′{y/x } )

CLOSE2

P
ab−−→ P ′ a 6= b

(νb)P
a (νb)−−−−→ P ′

OPEN
P

α−→ P ′ y ] α

(νy)P
α−→ (νy)P ′

SCOPEF

P
a«x»−−−→ P ′ y ] a y 6= x

(νy)P
a«x»−−−→ (νy)P ′

SCOPEB
P | !P 7−→ Rs

!P 7−→ Rs
BANG

Figure 17.1: The late operational semantics for the pi-calculus. The rules that differ
from the early semantics described in Figure 13.3 are the INPUT, the COMM and the
CLOSE rules.
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Definition 17.1. The residual datatype

nominal_datatype subject =
InputS name

| BoundOutputS name

nominal_datatype freeRes =
OutputR name name

| TauR

nominal_datatype residual =
BoundR subject «name»pi

| FreeR freeRes pi

Definition 17.2 (Late operational semantics).

1. A transition can be written as P 7−→ V where P is an agent and V is a
residual. The semantics is defined in Figure 17.1.

2. P
a«x»−−−→ P ′denotes a bound transition with the bound name x in the ac-

tion. Note that a is of type subject, which determines the type of the action.
The residual by itself is written a«x» ≺ P ′. Individually, an input residual
is written a(x) ≺ P ′, and a bound output residual is written a (νx) ≺ P ′.

3. P
α−→ P ′ denotes a transition without bound names. Note that α is of

type freeRes. The residual by itself is written α ≺ P ′. Individually, an out-
put residual is written ab ≺ P ′, and a tau-residual is written τ ≺ P ′.

At a first glance, the late residuals seem more complicated than their
early counterparts, but they are actually easier to work with. In the early
semantics, an input action is free, and the INPUT action in the semantics al-
lows arbitrary names to be introduced in both the action and the derivative,
which requires special infrastructure on how to reason about freshness.

Lemma 17.3. Derived freshness rules for actions and derivatives.

If P 7−→ Rs and x ] P then x ] Rs.

If P
α−→ P ′ and y ] P then y ] α and y ] P ′.

If P
a«x»−−−→ P ′ and y ] P then y ] a.

If P
a«x»−−−→ P ′ and y ] P and y 6= x then y ] P ′.

Proof. By induction on the length of the derivation of the transitions.

These freshness conditions state that any names fresh for a process are
fresh for its residual. Moreover if they are not equal to the bound name
in the residual, they are also fresh for the derivative. The corresponding
lemma for the early semantics, Lemma 13.12, is more complicated as it han-
dles the input cases separately.
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17.1.2 Defining the semantics
In order for Nominal Isabelle to derive induction and inversion rules, the
bound names must be fresh for everything outside their scope. These fresh-
ness conditions will hence be available in inductions on the length of a
derivation.

From the introduction rules of the semantics, and the freshness rules of
Lemma 17.3, the standard operational semantics, with minimal freshness
conditions, is derived in Fig. 17.1.

17.1.3 Inversion rules
Isabelle automatically derives a general inversion rule for the operational
semantics. As for the early semantics, this rule is cumbersome to work with
on its own, but deriving custom inversion rules is straightforward. The cus-
tom inversion rules for the late operational semantics can be found in Fig-
ure 17.2.

The late operational semantics contains more binders than the early one.
Moreover, the INPUT-rule suffers from the same problem as the SCOPEB
rule for the bound output case – two binders are present in the rule. These
must be assumed to be disjoint, and an explicit alpha-converting permuta-
tion is introduced at inversion on agents with Input as their topmost oper-
ator.

17.2 Bisimilarity
Simulation for the late semantics differs from the ones we have encoun-
tered so far. The reason is that the input-action contains a place-holder for
a name that can later be substituted.

As for early simulation, late simulation is split into two cases – one where
a free action is mimicked, and one where a bound action is mimicked. In the
case of an input action, all derivatives obtained by substituting the bound
name for any name must be in the candidate relation.

Definition 17.4 (Simulation). An agent P simulating an agent Q preserving
R is denoted P ,→R Q.

derivative P Q a x R
def=

case a of InputS b ⇒∀u. (P{u/x }, Q{u/x }) ∈ R

| BoundOutputS b ⇒ (P, Q) ∈ R

P ,→R Q
def=

(∀a x Q ′. Q
a«x»−−−→ Q ′ ∧ x ] P −→ (∃P ′. P

a«x»−−−→ P ′ ∧ derivative P ′ Q ′ a x
R)) ∧
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
a(x).P

b«y»−−−→ P ′ y 6= a y 6= x y ] P

b = InputS a P ′= (x y) · P

Prop (InputS a) y ((x y) · P)


Prop b y P ′ INPUT

[
ab.P

α−→ P ′ α = ab P = P ′

Prop ab P

]
Prop α P ′ OUTPUT

[
τ.P

α−→ P ′ α = τ P = P ′

Prop (τ) P

]
Prop α P ′ TAU

[
(νx)P

α−→ P ′ ∧
P ′.

P
α−→ P ′ x ] α

Prop ((νx)P ′)

]
Prop P ′ SCOPEF



(νy)P
a«x»−−−→ Q x 6= y x ] P

∧
b P ′.

P
by−−→ P ′ b 6= y a = BoundOutputS b

Prop (BoundOutputS b) ((x y) · P ′)

∧
P ′.

P
a«x»−−−→ P ′ y ] a

Prop a ((νy)P ′)


Prop a Q

SCOPEB

[
!P 7−→ V

P | !P 7−→ V

Prop

]
Prop

REPL
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
P | Q

a«x»−−−→ R x ] P x ] Q

∧
P ′.

P
a«x»−−−→ P ′

Prop (P ′ | Q )

∧
Q ′.

Q
a«x»−−−→ Q ′

Prop (P | Q ′ )


Prop R

PARB



P | Q
α−→ R

∧
P ′.

P
α−→ P ′

F α (P ′ | Q )

∧
Q ′.

Q
α−→ Q ′

F α (P | Q ′ )

∧
P ′ Q ′ a b x.

(
P

a(x)−−−→ P ′ Q
ab−−→ Q ′ x ] P x ] Q

x 6= a x 6= b x ] Q ′ x ] C α = τ

)
F (τ) (P ′{b/x } | Q ′ )

∧
P ′ Q ′ a b x.

(
P

ab−−→ P ′ Q
a(x)−−−→ Q ′ x ] P x ] Q

x 6= a x 6= b x ] P ′ x ] C α = τ

)
F (τ) (P ′ | Q ′{b/x } )

∧
P ′ Q ′ a x y.

P
a(x)−−−→ P ′ Q

a (νy)−−−−→ Q ′ x ] P x ] Q
x 6= a x 6= y x ] Q ′ y ] P y ] Q
y 6= a y ] P ′ x ] C y ] C α = τ


F (τ) ((νy)(P ′{y/x } | Q ′ ))

∧
P ′ Q ′ a x y.

P
a (νy)−−−−→ P ′ Q

a(x)−−−→ Q ′ x ] P x ] Q
x 6= a x 6= y x ] P ′ y ] P y ] Q
y 6= a y ] Q ′ x ] C y ] C α = τ


F (τ) ((νy)(P ′ | Q ′{y/x } ))


F α R

PARF

Figure 17.2: Custom inversion rules for the late operational semantics
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(∀α Q ′. Q
α−→ Q ′−→ (∃P ′. P

α−→ P ′∧ (P ′, Q ′) ∈ R))

The derivative predicate does a case analysis on a subject. If the subject
is a bound output, it ensures that the derivatives are in the candidate re-
lation. If the subject is an input, all derivatives obtainable by substituting
the bound name of the input action for any other name must also be in the
candidate relation.

Before defining bisimilarity we must prove that simulation is monotonic.

Lemma 17.5. If P ,→R Q and R ⊆ R ′ then P ,→R ′ Q.

Proof. Follows directly from Definition 17.4.

Late bisimilarity is defined in the standard way.

Definition 17.6. Late bisimimulation is defined coinductively as the greatest
fixed point satisfying:

P .∼ Q =⇒ P ,→ .∼ Q SIMULATION

∧ Q .∼ P SYMMETRY

17.2.1 Introduction and elimination rules
The introduction rule for simulation is defined similarly to the one for the
early semantics and allows the bound names in the transitions to avoid any
other context of names under consideration.

Lemma 17.7. Introduction rule for late simulation.

eqvt R∧
a x Q ′.

Q
a«x»−−−→ Q ′ x ] P x ] Q x ] a x ] C

∃P ′. P
a«x»−−−→ P ′∧ derivative P ′ Q ′ a x R∧

α Q ′.
Q

α−→ Q ′

∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R

P ,→R Q
,→-I

P ,→R Q Q
a«x»−−−→ Q ′ x ] P

∃P ′. P
a«x»−−−→ P ′∧ derivative P ′ Q ′ a x R

,→-E1

P ,→R Q Q
α−→ Q ′

∃P ′. P
α−→ P ′∧ (P ′, Q ′) ∈ R

,→-E2
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Proof. Follows from Definition 17.4 where the bound names of the transi-
tions are alpha-converted to not clash with C .

This introduction rule requires the candidate relation to be equivariant,
otherwise alpha-converting the derivatives would make them fall outside
the relation.

Lemma 17.8. Introduction and elimination rules for strong late bisimilarity.

P ,→ .∼ Q Q .∼ P

P .∼ Q
.∼-I

P .∼ Q

P ,→ .∼ Q
.∼-E1

P .∼ Q

Q .∼ P
.∼-E2

Proof. Follows from Definition 17.6.

The coinduction rule follows the standard pattern.

Lemma 17.9.

(P, Q) ∈ X
∧

R S.
(R, S) ∈ X

R ,→X ∪ .∼ S

∧
R S.

(R, S) ∈ X

(S, R) ∈ X

P .∼ Q

17.3 Preservation properties
Late bismiulation is preserved by the same operators as early bisimilarity –
everything except Input Even though the simulation definitions differ, the
requisites for the candidate relation for all simulation lemmas are the same.

As the lemmas are identical, they are omitted, but the proof that late sim-
ulation is preserved by Parallel is presented in Figure 17.3.

Lemma 17.10. Late bisimilarity is an equivalence relation

Proof. Similar to Lemma 14.12.

Theorem 17.1. Late bisimilarity is preserved by all operators except Input.

Proof. Similar to Theorem 14.1.

17.4 Strong equivalence
A strong equivalence is obtained in the standard way by closing strong
bisimilarity under all substitutions.
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Figure 17.3: Isabelle proof that simulation is preserved by the Parallel

Page 1/5

lemma simParCompose:
fixes P :: pi and Q :: pi and R :: pi and T :: pi
and R :: (pi × pi) set and R ′ :: (pi × pi) set and R ′′ :: (pi × pi) set

assumes P ,→R Q and (P, Q) ∈ R and R ,→R ′ T and (R, T) ∈ R ′
and C1:

∧
P ′ Q ′ R ′ T ′. [[(P ′, Q ′) ∈ R; (R ′, T ′) ∈ R ′]] =⇒ (P ′ | R ′, Q ′ | T ′) ∈ R ′′

and C2:
∧

P ′ Q ′ x. (P ′, Q ′) ∈ R ′′=⇒ (<νx>P ′, <νx>Q ′) ∈ R ′′
and eqvt R ′′

shows P | R ,→R ′′ Q | T

using 〈eqvt R ′′〉
proof(induct rule: simI[where C=()]) — Apply introduction rule ,→-I

case(Bound a x V )
from 〈x ] P | R〉 〈x ] Q | T 〉 have x ] P and x ] Q and x ] R and x ] T by simp+
from 〈Q | T

a«x»−−−→ V 〉 〈x ] Q〉 〈x ] T 〉

show ∃S. P | R
a«x»−−−→ S ∧ derivative S V a x R ′′

proof(induct rule: parCasesB) — Apply PARB inversion rule from Fig-
ure 17.2

PAR1 case
Given that Q

a«x»−−−→ Q ′ prove that there exists an S

such that P | R
a«x»−−−→ S and derivative S (Q ′ | T ) a x R ′′.

case(cPar1 Q ′)
from 〈P ,→R Q〉 〈Q

a«x»−−−→ Q ′〉 〈x ] P〉

obtain P ′ where P
a«x»−−−→ P ′ and A: derivative P ′ Q ′ a x R

by(blast dest: simE)

from 〈P
a«x»−−−→ P ′〉 〈x ] R〉 have P | R

a«x»−−−→ P ′ | R by(rule Par1B)
moreover from A 〈x ] R〉 〈x ] T 〉 〈(R, T) ∈ R ′〉
have derivative (P ′ | R) (Q ′ | T) a x R ′′

by(cases a, auto intro: C1 simp add: derivative-def forget)

ultimately show ∃S. P | R
a«x»−−−→ S ∧ derivative S (Q ′ | T) a x R ′′ by blast
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next PAR2 case
Given that T

a«x»−−−→ T ′ prove that there exists an S such that

P | R
a«x»−−−→ S and derivative S (Q | T ′ ) a x R ′′.

case(cPar2 T ′)
from 〈R ,→R ′ T〉 〈T

a«x»−−−→ T ′〉 〈x ] R〉

obtain R ′ where R
a«x»−−−→ R ′ and A: derivative R ′ T ′ a x R ′

by(blast dest: simE)

from 〈R 7−→ a«x» ≺ R ′〉 〈x ] P〉 have P | R
a«x»−−−→ P | R ′ by(rule Par2B)

moreover from A 〈x ] P〉 〈x ] Q〉 〈(P, Q) ∈ R〉

have derivative (P | R ′) (Q | T ′) a x R ′′
by(cases a, auto intro: C1 simp add: derivative-def forget)

ultimately show ∃S. P | R
a«x»−−−→ S ∧ derivative S (Q | T ′) a x R ′′ by blast

qed
next

case(Free α V)

from 〈Q | T
α−→ V〉 show ∃S. P | R

α−→ S ∧ (S, V) ∈ R ′′
proof(induct rule: parCasesF[where C=(P, R)]) — Apply PARF

inversion rule
PAR1 case
Given that Q

α−→ Q ′ prove that there exists an S such that

P | R
α−→ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ,→R Q〉 〈Q

α−→ Q ′〉 obtain P ′ where P
α−→ P ′ and (P ′, Q ′) ∈ R

by(blast dest: simE)

from 〈P
α−→ P ′〉 have Trans: P | R

α−→ P ′ | R by(rule Par1F)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α−→ S ∧ (S, Q ′ | T) ∈ R ′′ by blast

next
PAR2 case
Given that T

α−→ T ′ prove that there exists an S such that

P | R
α−→ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
from 〈R ,→R ′ T〉 〈T

α−→ T ′〉 obtain R ′ where R
α−→ R ′ and (R ′, T ′) ∈ R ′

by(blast dest: simE)

from 〈R
α−→ R ′〉 have Trans: P | R

α−→ P | R ′ by(rule Par2F)
moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P | R ′, Q | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α−→ S ∧ (S, Q | T ′) ∈ R ′′ by blast
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next
COMM1 case
Given that Q

a(b)−−−→ Q ′ and T
ab−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, Q ′ | T ′ ) ∈ R ′′.

case(cComm1 Q ′ T ′ a b x)
from 〈x ] (P, R)〉 have x ] P by simp

from 〈P ,→R Q〉 〈Q
a(x)−−−→ Q ′〉 〈x ] P〉

obtain P ′ where P
a(x)−−−→ P ′ and A: derivative P ′ Q ′ (InputS a) x R

by(blast dest: simE)
from A have (P ′{b/x }, Q ′{b/x }) ∈ R by(simp add: derivative-def)

from 〈R ,→R ′ T〉 〈T
ab−−→ T ′〉

obtain R ′ where R
ab−−→ R ′ and (R ′, T ′) ∈ R ′

by(blast dest: simE)

from 〈P
a(x)−−−→ P ′〉 〈R

ab−−→ R ′〉 have P | R
τ−→ P ′{b/x } | R ′

by(rule Comm1)
moreover from 〈(P ′{b/x }, Q ′{b/x }) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have (P ′{b/x } | R ′, Q ′{b/x } | T ′) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
τ−→ S ∧ (S, Q ′{b/x } | T ′) ∈ R ′′ by blast

next
COMM2 case
Given that Q

ab−−→ Q ′ and T
a(b)−−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, Q ′ | T ′ ) ∈ R ′′.

case(cComm2 Q ′ T ′ a b x)
from 〈x ] (P, R)〉 have x ] R by simp

from 〈P ,→R Q〉 〈Q
ab−−→ Q ′〉

obtain P ′ where P
ab−−→ P ′ and (P ′, Q ′) ∈ R by(blast dest: simE)

from 〈R ,→R ′ T〉 〈T
a(x)−−−→ T ′〉 〈x ] R〉

obtain R ′ where R
a(x)−−−→ R ′ and A: derivative R ′ T ′ (InputS a) x R ′

by(blast dest: simE)
from A have (R ′{b/x }, T ′{b/x }) ∈ R ′ by(simp add: derivative-def)

from 〈P
ab−−→ P ′〉 〈R

a(x)−−−→ R ′〉 have P | R
τ−→ P ′ | R ′{b/x }

by(rule Comm2)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′{b/x }, T ′{b/x }) ∈ R ′〉
have (P ′ | R ′{b/x }, Q ′ | T ′{b/x }) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
τ−→ S ∧ (S, Q ′ | T ′{b/x }) ∈ R ′′ by blast
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next
CLOSE1 case
Given that Q

a(x)−−−→ Q ′ and T
a (νx)−−−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, (νx)(Q ′ | T ′ )) ∈ R ′′.

case(cClose1 Q ′ T ′ a x y)
from 〈x ] (P, R)〉 have x ] P by simp

with 〈P ,→R Q〉 〈Q
a(x)−−−→ Q ′〉

obtain P ′ where P
a(x)−−−→ P ′ and A: derivative P ′ Q ′ (InputS a) x R

by(blast dest: simE)
from A have (P ′{y/x }, Q ′{y/x }) ∈ R by(simp add: derivative-def)
from 〈y ] (P, R)〉 have y ] R and y ] P by simp+
from 〈R ,→R ′ T〉 〈T

a (νy)−−−−→ T ′〉 〈y ] R〉

obtain R ′ where R
a (νy)−−−−→ R ′

and B: derivative R ′ T ′ (BoundOutputS a) y R ′
by(blast dest: simE)

from B have (R ′, T ′) ∈ R ′ by(simp add: derivative-def)

from 〈P
a(x)−−−→ P ′〉 〈R

a (νy)−−−−→ R ′〉 〈y ] P〉 have P | R
τ−→ <νy>(P ′{y/x } | (R ′))

by(rule Close1)
moreover from 〈(P ′{y/x }, Q ′{y/x }) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have ((νy)(P ′{y/x } | R ′), (νy)(Q ′{y/x } | T ′)) ∈ R ′′

by(blast intro: C1 C2)

ultimately show ∃S. P | R
τ−→ S ∧ (S, <νy>(Q ′{y/x } | T ′)) ∈ R ′′ by blast
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next
CLOSE2 case
Given that Q

a (νy)−−−−→ Q ′ and T
a(x)−−−→ T ′ prove that there exists an S

such that P | R
τ−→ S and (S, (νx)(Q ′ | T ′ )) ∈ R ′′.

case(cClose2 Q ′ T ′ a x y)
from 〈y ] (P, R)〉 have y ] R and y ] P by simp+
from 〈P ,→R Q〉 〈Q

a (νy)−−−−→ Q ′〉 〈y ] P〉

obtain P ′ where P
a (νy)−−−−→ P ′ and A: derivative P ′Q ′ (BoundOutputS a) y R

by(blast dest: simE)
from A have (P ′, Q ′) ∈ R by(simp add: derivative-def)
from 〈x ] (P, R)〉 have x ] R by simp

with 〈R ,→R ′ T〉 〈T
a(x)−−−→ T ′〉

obtain R ′ where R
a(x)−−−→ R ′ and B: derivative R ′ T ′ (InputS a) x R ′

by(blast dest: simE)
from B have (R ′{y/x }, T ′{y/x }) ∈ R ′ by(simp add: derivative-def)

from 〈P
a (νy)−−−−→ P ′〉 〈R

a(x)−−−→ R ′〉 〈y ] R〉 have P | R
τ−→ <νy>(P ′ | R ′{y/x })

by(rule Close2)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′{y/x }, T ′{y/x }) ∈ R ′〉
have ((νy)(P ′ | R ′{y/x }), (νy)(Q ′ | T ′{y/x })) ∈ R ′′

by(blast intro: C1 C2)

ultimately show ∃S. P | R
τ−→ S ∧ (S, <νy>(Q ′ | T ′{y/x })) ∈ R ′′ by blast

qed
qed
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Definition 17.11. P ∼Q
def= P .∼ s Q

The congruence theorem is established in the same way as for early
equivalence.

Theorem 17.2. Strong late equivalence is a congruence

Proof. Similar to Theorem 14.2.

17.5 Weak equivalences
The weak equivalences that have been covered so far have followed the
standard pattern that an action is mimicked by the same action, preceded
and succeeded by an arbitrary number of silent τ-actions. This turns out
not to work for weak late bisimilarity, and the reason stems from how the
late semantics handle input-actions. The following example is taken from
[67]. Consider the following three agents.

Q
def= a(x).[x=v]P + a(x).τ.0 + (τ.P + τ.([x=v]P) )

R
def= a(x).τ.0 + (τ.P + τ.([x=v]P) ) S

def= a(x).τ.0 + τ.P

First observe that R and S even are strongly bisimilar, since

τ.0 + (τ.P + τ.([x=v]P) ) ∼ τ.0 + τ.P

the last summand in R can be mimicked by one of the summands in S, de-
pending on whether x is substituted by v or not.

Next observe that since the agents Q and R only differ in that Q has one
extra summand, the relevant case is where

a(x).[x=v]P
a(x)−−−→ [x=v]P.

The agent R can mimic this action with a strong one

a(x).τ.0 + (τ.P + τ.([x=v]P) )
a(x)−−−→ τ.0 + (τ.P + τ.([x=v]P) ) ,

and then a τ-action to

τ.0 + (τ.P + τ.([x=v]P) )
τ−→ [x=v]P.

Since the derivatives are equal, any substitution for x applied to both of
them will still equate them, as ([x=v]P){u/x } ∼ ([x=v]P){u/x } for all u.
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Assume that we define a weak bisimilarity, denoted
.≈′

, for the late se-
mantics in the same way as for the early one – every action is mimicked by
the same action with a preceding and succeeding τ-chain.

We then have that Q
.≈′

R and R
.≈′

S, and we would expect that Q
.≈′

S ,
since we require our bisimulation relations to be transitive. For this candi-
date weak bisimilarity, this turns out not to be the case. Again, since R

.≈′
S,

the relevant action is when the first summand of Q does the action

a(x).[x=v]P
a(x)−−−→ [x=v]P.

In this case there is no way that S can mimic with a weak action such
that the derivatives are bisimilar for all substitutions. If the name x is being
replaced by v, then the second summand should be chosen; if it is not equal
to v, then the first one should be chosen – the τ-chain after the visible action
depends on the new name.

The solution is hinted above – the trailing τ-chain depends on which new
name is introduced; the solution is to require that for every possible name
u substituted for x in the derivative of the strong input action, there exists
a τ-chain leading to a bisimilar agent. If p is weakly bisimilar to Q, a strong

transition Q
a(x)−−−→ Q ′ is mimicked if

∃P ′′′ P ′′. P =⇒τ P ′′′∧ P ′′′ a(x)−−−→ P ′′∧ (∀u. ∃P ′. P ′′{u/x } =⇒τ P ′∧ P ′ .≈ Q ′)

Here the input substitution is done immediately after the mimicking in-
put action, and it is sufficient that a τ-chain exists for every possible input
name. With this definition, we have that Q and S are weakly bisimilar.

17.5.1 Weak semantics
Apart from the input-action, weak late semantics corresponds to the early
semantics completely. A weak input action needs to carry additional infor-
mation on the labels in order to determine the name that is substituted after
the strong input action.

Definition 17.12 (Weak input transitions).

P
u:a(x)@P ′′=======⇒ P ′ def= ∃P ′′′. P =⇒τ P ′′′∧ P ′′′ a(x)−−−→ P ′′∧ P ′′{u/x } =⇒τ P ′

The transition P
u:a(x)@P ′′=======⇒ P ′ means that P can do a τ-chain and then

the input action a(x) to an agent P ′′ where x is substituted for u and an-
other τ-chain is done to P ′. The agent P ′′ represents the exact state where
the substitution is made. This will be important when we define weak sim-
ulation.
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a(x).P
u:a(x)@P======⇒ P{u/x }

INPUT
P

u:a(x)@P ′′=======⇒ P ′ x ] Q

P | Q
u:a(x)@P ′′ | Q==========⇒ P ′ | Q

PAR1

Q
u:a(x)@Q ′′=======⇒ Q ′ x ] P

P | Q
u:a(x)@P | Q ′′==========⇒ P | Q ′

PAR2
P

b:a(x)@P ′′=======⇒ P ′ Q
âb==⇒ Q ′

P | Q
τ̂==⇒P ′ | Q ′

COMM1

P
âb==⇒ P ′ Q

b:a(x)@Q ′′=======⇒ Q ′

P | Q
τ̂==⇒P ′ | Q ′

COMM2

P
y :a(x)@P ′′=======⇒ P ′ Q

a (νy)====⇒ Q ′ y ] P y ] Q

P | Q
τ̂==⇒ (νy)(P ′ | Q ′ )

CLOSE1

P
a (νy)====⇒ P ′ Q

y :a(x)@Q ′′=======⇒ Q ′ y ] P y ] Q

P | Q
τ̂==⇒ (νy)(P ′ | Q ′ )

CLOSE2

P
u:a(x)@P ′′=======⇒ P ′ y 6= a y 6= x y 6= u

(νy)P
u:a(x)@(νy)P ′′==========⇒ (νy)P ′

RES

Figure 17.4: The weak late lifted semantic rules for input transitions.

The name x is not bound in P ′as it is substituted for u before the τ-chain.
We can still do alpha-conversions through the following lemma:

Lemma 17.13. If P
u:a(x)@P ′′=======⇒ P ′ and y ] P then P

u:a(y)@(x y) · P ′′============⇒ P ′.

Proof. Similar to Lemma 15.7.

The alpha-converting swapping shows up on the label, as it represents
the derivative of the strong action.

The weak late semantics is lifted in the same way as the weak early se-
mantics. The rules that differ are those containing input actions. Their lifted
rules can be found in Figure 17.4.

17.5.2 Weak bisimilarity
The definition of weak late simulation has three cases – one for input ac-
tions, one for bound output actions, and one for actions with no binders.

231



Definition 17.14 (Weak simulation). An agent P weakly simulating an agent
Q preserving R is denoted P ;̂R Q.

P ;̂R Q
def=

(∀Q ′ a x. Q
a (νx)−−−−→ Q ′∧ x ] P −→ (∃P ′. P

a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R)) ∧
(∀Q ′ a x. Q

a(x)−−−→ Q ′ ∧ x ] P −→ (∃P ′′. ∀u. ∃P ′. P
u:a(x)@P ′′=======⇒ P ′ ∧ (P ′,

Q ′{u/x }) ∈ R)) ∧
(∀Q ′α. Q

α−→ Q ′−→ (∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R))

The important aspect of weak late simulation is the fact mentioned above
– that an input action a(x) must be matched by a weak transition with
the same input derivative P ′′ for all possible instantiations u of the bound
name.

Before defining weak bisimilarity, we must prove that weak simulation is
monotonic.

Lemma 17.15. If P ;̂R P ′ and R ⊆ R ′ then P ;̂R ′ P ′.

Proof. Follows from the definition of ;̂.

Definition 17.16. Weak late bisimilarity is defined as the greatest fixed point
satisfying:

P
.≈ Q =⇒ P ;̂ .≈ Q SIMULATION

∧ Q
.≈ P SYMMETRY

From our definition, we can derive introduction and elimination rules
similar to the one done for strong simulation, and weak early simulation.

Lemma 17.17. Introduction and elimination rules for weak simulation
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eqvt R
∧

Q ′ a x.
x ] C Q

a (νx)−−−−→ Q ′

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R∧

Q ′ a x.
x ] C Q

a(x)−−−→ Q ′

∃P ′′. ∀u. ∃P ′. P
u:a(x)@P ′′=======⇒ P ′∧ (P ′, Q ′{u/x }) ∈ R∧

Q ′α.
Q

α−→ Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

P ;̂R Q
;̂-I

P ;̂R Q Q
a (νx)−−−−→ Q ′ x ] P

∃P ′. P
a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R

;̂-E1

P ;̂R Q Q
a(x)−−−→ Q ′ x ] P

∃P ′′. ∀u. ∃P ′. P
u:a(x)@P ′′=======⇒ P ′∧ (P ′, Q ′{u/x }) ∈ R

;̂-E2

P ;̂R Q Q
α−→ Q ′

∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R

;̂-E3

Proof. Follows from the definition of ;̂. For the introduction rule, the
bound names are alpha-converted to not clash with the freshness context
C .

The preservation proof for weak late simulation are exactly those for
weak early simulation. However, their proofs are different due to the
different quantifier ordering for the weak input action. Typically, those
proofs amount to juggling quantifier eliminations and introductions
between the assumptions and the conclusions of the goal. The proof that
weak late simulation is preserved by Parallel is presented in Figure 17.5.

Theorem 17.3. Weak bisimilarity is preserved by all operators except Sum,
and Input.

Proof. Similar to Theorem 15.1.

17.5.3 τ-bisimilarity
We define τ-bisimilarity in a similar way to the early semantics – an agent
may not mimic a τ-action by doing nothing. Otherwise, the definition is the
same as the definition for ;̂.
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Figure 17.5: Isabelle proof that weak simulation is preserved by Parallel

Page 1/6

lemma weakSimParCompose:
fixes P :: pi and Q :: pi and R :: pi and T :: pi
and Rel :: (pi × pi) set and R ′ :: (pi × pi) set and R ′′ :: (pi × pi) set

assumes P ;̂R Q and (P, Q) ∈ R

and R ;̂R ′ T and (R, T) ∈ R ′
and C1:

∧
P Q R T. [[(P, Q) ∈ R; (R, T) ∈ R ′]] =⇒ (P | R, Q | T) ∈ R ′′

and C2:
∧

P Q a. (P, Q) ∈ R ′′=⇒ (<νa>P, <νa>Q) ∈ R ′′
and eqvt R ′′

shows P | R ;̂R ′ ′ Q | T
using 〈eqvt R ′′〉
proof(induct rule: weakSimI[where C=()]) — Apply introduction rule ;̂-I

case(Bound V a x)
from 〈x ] P | R〉 〈x ] Q | T 〉 have x ] P and x ] R and x ] Q and x ] T by simp+
from 〈Q | T

a (νx)−−−−→ V 〉 〈x ] Q〉 〈x ] T 〉

show ∃S. P | R
a (νx)====⇒ S ∧ (S, V ) ∈ R ′′

proof(induct rule: parCasesB) — Apply PARB inversion rule from
Figure 13.4.2

PAR1 case
Given that Q

a (νx)−−−−→ Q ′ prove that there exists an S such that

P | R
a (νx)====⇒ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ;̂R Q〉 〈Q

a (νx)−−−−→ Q ′〉 〈x ] P〉

obtain P ′ where P
a (νx)====⇒ P ′ and (P ′, Q ′) ∈ R by(blast dest: weakSimE)

from 〈P
a (νx)====⇒ P ′〉 〈x ] R〉 have P | R

a (νx)====⇒ P ′ | R by(rule weakPar1B)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
a (νx)====⇒ S ∧ (S, Q ′ | T) ∈ R ′′ by blast
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next
PAR2 case
Given that T

a (νx)−−−−→ T ′ prove that there exists an S such that

P | R
a (νx)====⇒ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
from 〈R ;̂R ′ T〉 〈T

a (νx)−−−−→ T ′〉 〈x ] R〉

obtain R ′ where R
a (νx)====⇒ R ′ and (R ′, T ′) ∈ R ′ by(blast dest: weakSimE)

from 〈R
a (νx)====⇒ R ′〉 〈x ] P〉 have ParTrans: P | R

a (νx)====⇒ P | R ′
by(rule weakPar2B)

moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P | R ′, Q | T ′) ∈ R ′′
by(rule C1)

ultimately show ∃S. P | R
a (νx)====⇒ S ∧ (S, Q | T ′) ∈ R ′′ by blast

qed
next

case(Input V a x)
from 〈x ] P | R〉 〈x ] Q | T〉 have x ] P and x ] R and x ] Q and x ] T by simp+
from 〈Q | T

a(x)−−−→ V〉 〈x ] Q〉 〈x ] T〉

show ∃S ′. ∀u. ∃S. P | R
u:a(x)@S ′=======⇒ S ∧ (S, V{u/x }) ∈ R ′′

proof(induct rule: parCasesB) — Apply PARB inversion rule

PAR1 case
Given that Q

a(x)−−−→ Q ′ prove that there exists an S ′ such that for all u

there exists an S such that P | R
u:a(x)@S ′=======⇒ S and (S, (Q ′ | T ){u/x }) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ;̂R Q〉 〈Q

a(x)−−−→ Q ′〉 〈x ] P〉 obtain P ′′

where L1: ∀u. ∃P ′. P
u:a(x)@P ′′=======⇒ P ′ ∧ (P ′, Q ′{u/x }) ∈ R

by(blast dest: weakSimE)

have ∀u. ∃S. P | R
u:a(x)@P ′′ | R==========⇒ S ∧ (S, Q ′{u/x } | T{u/x }) ∈ R ′′

proof(rule allI)
fix u
from L1 obtain P ′ where P

u:a(x)@P ′′=======⇒ P ′ and (P ′, Q ′{u/x }) ∈ R by blast

from 〈P
u:a(x)@P ′′=======⇒ P ′ 〉 〈x ] R〉 have P | R

u:a(x)@P ′′ | R==========⇒ P ′ | R
by(rule weakPar1Input)

moreover from 〈(P ′, Q ′{u/x }) ∈ R〉 〈(R, T) ∈ R ′〉
have (P ′ | R, Q ′{u/x } | T) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
u:a(x)@P ′′ | R==========⇒ S ∧ (S, Q ′{u/x } | (T{u/x })) ∈ R ′′

using 〈x ] T 〉 by(force simp add: forget)
qed

thus ∃S ′. ∀u. ∃S. P | R
u:a(x)@S ′=======⇒ S ∧ (S, (Q ′ | T){u/x }) ∈ R ′′ by force
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next
PAR2 case
Given that T

a(x)−−−→ T ′ prove that there exists an S ′ such that for all u

there exists an S such that P | R
u:a(x)@S ′=======⇒ S and (S, (Q | T ′ ){u/x }) ∈ R ′′.

case(cPar2 T ′)
from 〈R ;̂R ′ T〉 〈T

a(x)−−−→ T ′〉 〈x ] R〉 obtain R ′′

where L1: ∀u. ∃R ′. R
u:a(x)@R ′′=======⇒ R ′∧ (R ′, T ′{u/x }) ∈ R ′

by(blast dest: weakSimE)

have ∀u. ∃S. P | R
u:a(x)@P | R ′′==========⇒ S ∧ (S, Q{u/x } | T ′{u/x }) ∈ R ′′

proof(rule allI)
fix u
from L1 obtain R ′ where R

u:a(x)@R ′′=======⇒ R ′ and (R ′, T ′{u/x }) ∈ R ′ by blast

from 〈R
u:a(x)@R ′′=======⇒ R ′〉 〈x ] P〉 have ParTrans: P | R

u:a(x)@P ∥R ′′=========⇒ P | R ′
by(rule weakPar2Input)

moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′{u/x }) ∈ R ′〉
have (P | R ′, Q | T ′{u/x }) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
u:a(x)@P | R ′′==========⇒ S ∧ (S, Q{u/x } | T ′{u/x }) ∈ R ′′

using 〈x ] Q〉 by(force simp add: forget)
qed

thus ∃S ′. ∀u. ∃S. P | R
u:a(x)@S ′=======⇒ S ∧ (S, (Q | T ′){u/x }) ∈ R ′′ by force

qed
next

case(Free V α)

from 〈Q | T
α−→ V〉 show ∃S. P | R

α̂==⇒ S ∧ (S, V) ∈ R ′′
proof(induct rule: parCasesF[where C=(P, R)]) — Apply PARF

inversion rule
PAR1case
Given that Q

α−→ Q ′ prove that there exists an S

such that P | R
α̂==⇒ S and (S, Q ′ | T ) ∈ R ′′.

case(cPar1 Q ′)
from 〈P ;̂R Q〉 〈Q

α−→ Q ′〉 obtain P ′ where P
α̂==⇒P ′ and (P ′, Q ′) ∈ R

by(blast dest: weakSimE)

from 〈P
α̂==⇒P ′〉 have Trans: P | R

α̂==⇒P ′ | R by(rule weakPar1F)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R, T) ∈ R ′〉 have (P ′ | R, Q ′ | T) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α̂==⇒ S ∧ (S, Q ′ | T) ∈ R ′′ by blast
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next
PAR2case
Given that T

α−→ T ′ prove that there exists an S

such that P | R
α̂==⇒ S and (S, Q | T ′ ) ∈ R ′′.

case(cPar2 T ′)
from 〈R ;̂R ′ T〉 〈T

α−→ T ′〉 obtain R ′ where R
α̂==⇒R ′ and (R ′, T ′) ∈ R ′

by(blast dest: weakSimE)

from 〈R
α̂==⇒R ′〉 have P | R

α̂==⇒P | R ′ by(rule weakPar2F)
moreover from 〈(P, Q) ∈ R〉 〈(R ′, T ′) ∈ R ′〉 have (P | R ′, Q | T ′) ∈ R ′′

by(rule C1)

ultimately show ∃S. P | R
α̂==⇒ S ∧ (S, Q | T ′) ∈ R ′′ by blast

next
COMM1 case
Given that Q

a(x)−−−→ Q ′ and T
ab−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, Q ′{b/x } | T ′ ) ∈ R ′′.

case(cComm1 Q ′ T ′ a b x)
from 〈x ] (P, R)〉 have x ] P by simp

from 〈P ;̂R Q〉 〈Q
a(x)−−−→ Q ′〉 〈x ] P〉

obtain P ′ P ′′ where P
b:a(x)@P ′′=======⇒ P ′ and (P ′, Q ′{b/x }) ∈ R

by(blast dest: weakSimE)

from 〈R ;̂R ′ T〉 〈T
ab−−→ T ′〉 obtain R ′ where R

âb==⇒ R ′ and (R ′, T ′) ∈ R ′
by(blast dest: weakSimE)

from 〈P
b:a(x)@P ′′=======⇒ P ′〉 〈R âb==⇒ R ′〉 have P | R

τ̂==⇒P ′ | R ′by(rule weakComm1)
moreover from 〈(P ′, Q ′{b/x }) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have (P ′ | R ′, Q ′{b/x } | T ′) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, Q ′{b/x } | T ′) ∈ R ′′ by blast
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next
COMM2 case
Given that Q

ab−−→ Q ′ and T
a(x)−−−→ T ′ prove that there exists an S

such thatP | R
τ̂==⇒ S and (S, Q ′ | T ′{b/x } ) ∈ R ′′.

case(cComm2 Q ′ T ′ a b x)

from 〈P ;̂R Q〉 〈Q
ab−−→ Q ′〉 obtain P ′ where P

âb==⇒ P ′ and (P ′, Q ′) ∈ R

by(blast dest: weakSimE)
from 〈x ] (P, R)〉 have x ] R by simp

from 〈R ;̂R ′ T〉 〈T
a(x)−−−→ T ′〉 〈x ] R〉

obtain R ′ R ′′ where R
b:a(x)@R ′′=======⇒ R ′ and (R ′, T ′{b/x }) ∈ R ′

by(blast dest: weakSimE)

from 〈P
âb==⇒ P ′〉 〈R b:a(x)@R ′′=======⇒ R ′〉 have P | R

τ̂==⇒P ′ | R ′by(rule weakComm2)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′{b/x }) ∈ R ′〉
have (P ′ | R ′, Q ′ | T ′{b/x }) ∈ R ′′ by(rule C1)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, Q ′ | T ′{b/x }) ∈ R ′′ by blast

next
CLOSE1 case
Given that Q

a(x)−−−→ Q ′ and T
a (νx)−−−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, (νx)(Q ′{y/x } | T ′ )) ∈ R ′′.

case(cClose1 Q ′ T ′ a x y)
from 〈x ] (P, R)〉 〈y ] (P, R)〉 have x ] P and y ] P and y ] R by auto

from 〈P ;̂R Q〉 〈Q
a(x)−−−→ Q ′〉 〈x ] P〉

obtain P ′ P ′′ where P
y :a(x)@P ′′=======⇒ P ′ and (P ′, Q ′{y/x }) ∈ R

by(blast dest: weakSimE)

from 〈R ;̂R ′ T〉 〈T
a (νy)−−−−→ T ′〉 〈y ] R〉

obtain R ′ where R
a (νy)====⇒ R ′ and (R ′, T ′) ∈ R ′ by(blast dest: weakSimE)

from 〈P
y :a(x)@P ′′=======⇒ P ′〉 〈R

a (νy)====⇒ R ′〉 〈y ] P〉 〈y ] R〉 have P | R
τ̂==⇒ (νy)(P ′ | R ′)

by(rule weakClose1)
moreover from 〈(P ′, Q ′{y/x }) ∈ R〉 〈(R ′, T ′) ∈ R ′〉
have ((νy)(P ′ | R ′), (νy)(Q ′{y/x } | T ′)) ∈ R ′′ by(blast intro: C1 C2)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, (νy)(Q ′{y/x } | T ′)) ∈ R ′′ by blast
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next
CLOSE2 case
Given that Q

a (νx)−−−−→ Q ′ and T
a(x)−−−→ T ′ prove that there exists an S

such that P | R
τ̂==⇒ S and (S, (νx)(Q ′ | T ′{y/x } )) ∈ R ′′.

case(cClose2 Q ′ T ′ a x y)
from 〈x ] (P, R)〉 〈y ] (P, R)〉 have x ] R and y ] P and y ] R by auto

from 〈P ;̂R Q〉 〈Q
a (νy)−−−−→ Q ′〉 〈y ] P〉

obtain P ′ where P
a (νy)====⇒ P ′ and (P ′, Q ′) ∈ R by(blast dest: weakSimE)

from 〈R ;̂R ′ T〉 〈T
a(x)−−−→ T ′〉 〈x ] R〉

obtain R ′ R ′′ where R
y :a(x)@R ′′=======⇒ R ′ and (R ′, T ′{y/x }) ∈ R ′

by(blast dest: weakSimE)

from 〈P
a (νy)====⇒ P ′〉 〈R

y :a(x)@R ′′=======⇒ R ′〉 〈y ] P〉 〈y ] R〉 have P | R
τ̂==⇒ (νy)(P ′ | R ′)

by(rule weakClose2)
moreover from 〈(P ′, Q ′) ∈ R〉 〈(R ′, T ′{y/x }) ∈ R ′〉
have ((νy)(P ′ | R ′), (νy)(Q ′ | T ′{y/x })) ∈ R ′′ by(blast intro: C1 C2)

ultimately show ∃S. P | R
τ̂==⇒ S ∧ (S, (νy)(Q ′ | T ′{y/x })) ∈ R ′′ by blast

qed
qed

Definition 17.18 (τ-simulation). An agent P τ-simulating an agent Q pre-

serving R is denoted P ;R Q. P ;R Q
def=

(∀Q ′ a x. Q
a (νx)−−−−→ Q ′∧ x ] P −→ (∃P ′. P

a (νx)====⇒ P ′∧ (P ′, Q ′) ∈ R)) ∧
(∀Q ′ a x. Q

a(x)−−−→ Q ′ ∧ x ] P −→ (∃P ′′. ∀u. ∃P ′. P
u:a(x)@P ′′=======⇒ P ′ ∧ (P ′,

Q ′{u/x }) ∈ R)) ∧
(∀Q ′α. Q

α−→ Q ′−→ (∃P ′. P
α̂==⇒P ′∧ (P ′, Q ′) ∈ R))

We can now define weak late equivalence in the standard way – the
derivatives of the simulations need not be weakly equivalent, but only
weakly bisimilar.

Definition 17.19 (τ-bisimilarity). An agent P which is τ-bisimilar to an
agent Q is denoted P ∼= Q.

P ∼= Q
def= P ; .≈ Q ∧ Q ; .≈ P

Weak equivalence is preserved by all operators except Input. The lemmas
are exactly the same as for early equivalence, but as for late bisimilarity, the
proofs differ as input actions are mimicked differently.

Theorem 17.4. Weak equivalence is preserved by all operators except Input.
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Proof. Similar to Theorem 16.1.

17.5.4 Weak congruence
Finally, we obtain a congruence by closing weak equivalence under all pos-
sible substitutions.

Definition 17.20. Two agents P and Q are weakly congruent, denoted P ≈ Q
if they are τ-bisimilar for all possible substitutions.

P ≈ Q
def= ∀σ. Pσ ∼= Qσ

The lemmas required to prove that weak late congruence is preserved
by Input are the same as for weak early congruence, but their proofs are
different as the weak late semantics handles input actions differently.

Theorem 17.5. Weak late congruence is a congruence.

Proof. Similar to Theorem 16.2
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18. Structural congruence

The structural congruence laws for the pi-calculus resembles the ones for
CCS. The rules can be found in Figure 18.1 and include the standard abelian
monoid laws for PAR and SUM as well as scope extension rules and an un-
folding law for replication.

Even though the laws are nearly identical to the ones for CCS their proofs
are different. The reason for this is the way the pi-calculus handles scoping.
The OPEN and CLOSE rules change the scope of binders and hence the can-
didate relations for the bisimulation proofs must preserve scope migration.
These proofs require infrastructure to reason about how binders behave as
their scope is changed.

In this chapter we will prove that all structurally congruent terms are also
bisimilar. The proofs will be presented in order of complexity, with the sim-
pler rules involving the Parallel and Sum first, followed by the scope exten-
sion laws and finally the abelian monoid laws for Parallel.

18.1 Abelian monoid laws for Sum
These structural congruence laws for the Sum are relatively straightforward.
Any path taken by the simulated process will discharge the other agents.
The simulating process can then follow the same path.

18.1.1 Sum is commutative
The simulation lemma is symmetric, and only one simulation rule is re-
quired.

Lemma 18.1. If Id ⊆ R then P + Q ,→R Q + P .

Proof. By the definition of ,→ and case analysis of the possible transitions
using the SUM inversion rules from Figure 17.2. The individual cases are
discharged by the SUM1 and SUM2 rules.

Using this lemma, we can prove that Sum is commutative.

Lemma 18.2. P + Q .∼ Q + P

241



The structural congruence ≡ is defined as the smallest congruence satisfy-
ing the following laws:
1. The abelian monoid laws for Parallel: commutativity P | Q ≡ Q | P , asso-

ciativity (P | Q ) | R ≡ P | (Q | R ) , and Nil as unit P | 0 ≡ P.
2. The abelian monoid laws for Sum commutativity P + Q ≡ Q + P , asso-

ciativity (P + Q ) + R ≡ P + (Q + R ) , and Nil as unit P + 0 ≡ P.
3. The unfolding law !P ≡ P | !P .
4. The scope extension laws:

(νx)0 ≡ 0

(νx)(P + Q ) ≡ (νx)P + (νx)Q

(νx)(P | Q ) ≡ P | (νx)Q if x ] P

(νx)a(y).P ≡ a(y).(νx)P if x 6= a and x 6= y

(νx)ab.P ≡ ab.(νx)P if x 6= a and x 6= b

(νx)τ.P ≡ τ.((νx)P)

(νx)(νy)P ≡ (νy)(νx)P

Figure 18.1: The definition of structural congruence.

Proof. By coinduction setting X to {(P + Q , Q + P ), (Q + P , P + Q )}. The
simulation is then proved using Lemma 18.1, and the fact that bisimula-
tion is reflexive. The symmetry case follows directly from the fact that X is
symmetric.

18.1.2 Sum is associative
Lemma 18.3.

Id ⊆ R

(P + Q ) + R ,→R P + (Q + R )

Id ⊆ R

P + (Q + R ) ,→R (P + Q ) + R

Proof. By the definition of ,→ and case analysis of the possible transitions
using the SUM inversion rules from Figure 17.2. The individul cases are then
discharged by the SUM1 and SUM2 rules.

Lemma 18.4. (P + Q ) + R .∼ P + (Q + R )

Proof. By coinduction setting X to {((P + Q ) + R , P + (Q + R ) ), (P + (Q + R
) , (P + Q ) + R )}. The simulation is then proved using Lemma 18.3, and the
fact that bisimulation is reflexive. The symmetry case follows directly from
the fact that X is symmetric.
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18.1.3 Sum has Nil as unit
Lemma 18.5.

Id ⊆ R

P + 0 ,→R P

Id ⊆ R

P ,→R P + 0

Proof. By the definition of ,→ and case analysis of the possible transitions
using the SUM inversion rules from Figure 17.2. The individul cases are then
discharged by the SUM1 rule.

Lemma 18.6. P + 0 .∼ P

Proof. By coinduction setting X to {(P, P + 0 ), (P + 0 , P)}. The simulation
is then proved using Lemma 18.5, and the fact that bisimulation is reflexive.
The symmetry case follows directly from the fact that X is symmetric.

18.2 Scope extension laws
Since agents in the pi-calculus can migrate the scope of their binders by
communicating them to other processes, any rule involving Parallel must
handle these scope changes, which requires a solid attention to detail.

18.2.1 Scope extension for Sum
The scope extension law for Sum allows a binder to distribute over the op-
erator.

Lemma 18.7.

Id ⊆ R eqvt R

(νx)P + (νx)Q ,→R (νx)(P + Q )

Id ⊆ R eqvt R

(νx)(P + Q ) ,→R (νx)P + (νx)Q

Proof. By the definition of ,→ and case analysis of the possible transitions
using the SUM and SCOPE inversion rules from Figure 17.2. This proof re-
quires more work than the previous ones for Sum due to the binder. The
cases are discharged using the SUM1, SUM2, RES, and OPEN rules from the
operational semantics. The candidate relation must be equivariant so that
the binders in the agents can be freely alpha-converted.

Lemma 18.8. (νx)(P + Q ) .∼ (νx)P + (νx)Q

Proof. By coinduction with X set to

{((νx)(P + Q ), (νx)P + (νx)Q ) : True} ∪
{((νx)P + (νx)Q , (νx)(P + Q )) : True}.
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The reason that a simple tuple candidate relation, like the ones used in pre-
vious lemmas for Sum, cannot be used for this proof is the requirement
from Lemma 18.7 that the candidate relation be equivariant. If X only con-
tained the pair of agents in the conclusion of the lemma, alpha-converting
them would make them fall out of X .

The simulation part of the proof uses Lemma 18.7, the fact that X and
bisimulation are equivariant, and the fact that bisimulation is reflexive. The
symmetry case follows since X is symmetric.

18.2.2 Discharging impossible transitions
Many of the structural congruence laws deal with agents of a very speciffic
form. These agents are often restricted in which actions they can do. When
proving that two agents are bisimilar it must be possible to determine which
actions and agent can not do, in which case the other agent should not try
to mimic it.

A necessary first step is to derive elimination rules for all impossible tran-
sitions and allow Isabelle to use those in its automatic heuristics. If such a
transition appears in a case, then the whole case can be trivially removed
from the proof.

Lemma 18.9. The following transitions can never occur.

If 0 7−→ Rs then False. If τ.P
a«x»−−−→ P ′ then False.

If τ.P
ab−−→ P ′ then False. If a(x).P

α−→ P ′ then False.

If a(x).P
α−→ P ′ then False. If a(x).P

b (νy)−−−−→ P ′ then False.

If ab.P
c«x»−−−→ P ′ then False. If ab.P

τ−→ P ′ then False.

If ab.P
cd−−→ P ′ and a 6= c ∨ b 6= d then False.

If ab.P
α−→ P ′ and a ] α ∨ b ] α then False.

If a(x).P
b«y»−−−→ P ′ and a ] b then False.

If [a=b]P 7−→ Rs and a 6= b then False.

If [a 6=a]P 7−→ Rs then False. If (νx)τ.P
a«y»−−−→ P ′ then False.

If (νx)τ.P
ab−−→ P ′ then False. If (νx)a(y).P

α−→ P ′ then False.

If (νx)a(y).P
b (νz)−−−−→ P ′ then False. If (νx)ab.P

τ−→ P ′ then False.

If (νx)ab.P
c(y)−−→ P ′ then False. If (νx)ax.P

by−−→ P ′ then False.

If (νx)xb.P 7−→ Rs then False. If (νx)x(y).P 7−→ Rs then False.

Proof. All of these sublemmas are proven by case analysis on their possible
transitions. When proven in the order listed, Isabelle can use the already
proven cases for the later ones.
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18.2.3 Restricting deadlocked agents
Lemma 18.10.

(νx)0 ,→R 0 0 ,→R (νx)0

Proof. Follows from the definition of ,→, the SCOPE inversion rule from Fig-
ure 13.4.2 and the fact that the agent 0 has no transitions (Lemma 18.9).

Lemma 18.11. (νx)0 .∼ 0

Proof. By coinduction with X set to {((νx)0, 0), (0, (νx)0)} and
Lemma 18.10.

18.2.4 Scope extension for prefixes
The elimination rules from Lemma 18.9 simplify the proofs in this section
considerably, as all actions not derivable from a given prefix will automati-
cally be discharged. Moreover, the introduction rule for ,→ ensures that any
bound name appearing in the transitions is fresh for every other name and
agent under consideration.

Lemma 18.12.

x 6= a x 6= y eqvt R Id ⊆ R

(νx)a(y).P ,→R a(y).(νx)P

x 6= a x 6= y eqvt R Id ⊆ R

a(y).(νx)P ,→R (νx)a(y).P

Proof. The introduction rule for ,→ ensures that the bound name in the in-
put action is fresh for x, y, a, and P respectively. The possible cases are then
derived by the SCOPE and INPUT inversion rules from Figure 17.2, and the
impossible ones discharged by Lemma 18.9. The INPUT and RES rules from
the operational semantics is then used to finish the proof.

Lemma 18.13. If x 6= a and x 6= y then (νx)a(y).P .∼ a(y).(νx)P.

Proof. By coinduction with X set to {((νx)a(y).P, a(y).(νx)P) : x 6= a ∧ x 6=
y} ∪ {(a(y).(νx)P, (νx)a(y).P) : x 6= a ∧ x 6= y}. The simulation case is then
proven using Lemma 18.12, and the fact that X is equivariant and that
bisimulation is reflexive. The symmetry case follows from that X is sym-
metric.
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Lemma 18.14.

x 6= a x 6= b Id ⊆ R

(νx)ab.P ,→R ab.(νx)P

x 6= a x 6= b Id ⊆ R eqvt R

ab.(νx)P ,→R (νx)ab.P

Proof. The first case follows from the definition of ,→, the OUTPUT inver-
sion rule from Figure 17.2, and the RES and the OUTPUT rules from the op-
erational semantics.

The second case uses the introduction rule for ,→ ensuring that any
bound name of the transitions is fresh for x. Since x 6= b, the OPEN-case,
from the SCOPE inversion rule, is not applicable and is discharged
automatically by Lemma 18.9. The remaining RES case is discharged using
the RESF and the OUTPUT rules of the operational semantics.

These simulation lemmas assymetric in the sence that the candidate re-
lation must be equivariant when the simulation is proven one way, but not
the other. The case where equivariance is required is when Restriction is the
topmost operator. The SCOPE inversion rule requires that the bound names
of an action are fresh for the original agent, and the easiest way to ensure
this is through the introduction rule for ,→, which requires an equivariant
candidate relation to do alpha-conversions.

Lemma 18.15. If x 6= a and x 6= b then (νx)ab.P .∼ ab.(νx)P.

Proof. By coinduction setting X to {((νx)ab.P, ab.(νx)P) : x 6= a ∧ x 6= b}
∪ {(ab.(νx)P, (νx)ab.P) : x 6= a ∧ x 6= b}. The simulation case is proved by
Lemma 18.14 and the facts that X is equivariant and that bisimulation is
reflexive. The symmetry case follows from that X is symmetric.

Lemma 18.16.

Id ⊆ R

(νx)τ.P ,→R τ.((νx)P)

Id ⊆ R

τ.((νx)P) ,→R (νx)τ.P

Proof. Follows from the definition of ,→, the SCOPE and TAU inversion rules
from Figure 17.2, and the RESF and TAU rules from the operational seman-
tics.

Lemma 18.17. (νx)τ.P .∼ τ.((νx)P)

Proof. By coinduction with X set to {((νx)τ.P, τ.((νx)P)), (τ.((νx)P),
(νx)τ.P)}. The simulation case is proven using Lemma 18.16 and the fact
that bisimulation is reflexive. The symmetry case follows from that X is
symmetric.
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Since the simulation lemmas does not require the candidate relation to
be equivariant, we prove bisimilarity with a simpler candidate relation.

18.2.5 Restriction is commutative
The structural rule for that Restriction is commutative is symmetric and
simulation needs only be proven one way.

Lemma 18.18.

∧
c d Q. ((νc)(νd)Q, (νd)(νc)Q) ∈ R Id ⊆ R eqvt R

(νa)(νb)P ,→R (νb)(νa)P

Proof. If a = b, the proof is straightforward as simulation is reflexive. In the
case that a 6= b the introduction rule for ,→ is used with the bound names of
the actions being fresh for a, b, and P. The SCOPE inversion rule is used to
strip away the binders.

This lemma is rather complex with the different combinations of the
OPEN and RES rules. The requirement that R is reflexive is used when
one or both of a and b are opened, to ensure that the derivatives stay in
the candidate relation. The first assumption is used when the RES rule is
used twice keeping both binders in the derivative – they must then be
commuted in order for the derivative to stay in R.

Lemma 18.19. (νx)(νy)P .∼ (νy)(νx)P

Proof. By coinduction with X set to {((νx)(νy)P, (νy)(νx)P) : True}. The
simulation proof follows from Lemma 18.18 and the fact that bisimulation
is reflexive. The symmetry case follows from that X is symmetric.

18.3 Bisimulation upto techniques
The scope migrating capabilities of the pi-calculus require more power-
ful candidate relations than we have encountered so far. Bisimulation upto
techniques were covered in Sections 9.6 and 15.5.5. In this section we will
work upto bisimulation, i.e. a proof being proven with the candidate rela-
tion X only requires the simulation to hold for the extended relation .∼◦ (X
∪ .∼) ◦ .∼. Moreover, the candidate relation itself need not be symmetric – it
is enough if the extended relation is symmetric. This allows us to instantiate
our bisimulation proofs with candidate relations of the same complexity as
we have seen so far, and use the laws of structural congruence to rewrite the

247



derivatives to stay in the extended candidate relation. A new coinductive
rule is derived by strengthening the general coinduction lemma, Lemma
14.7.

Lemma 18.20.

(P, Q) ∈ Y eqvt Y

∧
R S.

(R, S) ∈ Y

R ,→ .∼ ◦ (Y ∪ .∼) ◦ .∼ S
SIMULATION

∧
R S.

(R, S) ∈ Y

(S, R) ∈ .∼ ◦ (Y ∪ .∼) ◦ .∼ SYMMETRY

P .∼ Q

(P, Q) ∈ Y

eqvt Y
∧

R S.
(R, S) ∈ Y

R ,→ .∼ ◦ (Y ∪ .∼) ◦ .∼ S

∧
R S.

(R, S) ∈ Y

(S, R) ∈ .∼ ◦ (Y ∪ .∼) ◦ .∼
P .∼ Q

Proof. By coinduction using Lemma 14.7 setting X to .∼ ◦ (Y ∪ .∼) ◦ .∼. The
proof is splint into one part considering .∼ and another cosiderding Y . In
the first case, the proof follows trivially from transitivity of .∼. In the second
case, the assumptions in the lemma are used for simulation, the fact that
simulation is transitive, and symmetry respectively.

With this new coinduction lemma, we can prove the scope extension law
for Parallel.
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18.3.1 Scope extension for Parallel
Lemma 18.21.

x ] P Id ⊆ R eqvt R∧
R S y.

y ] R

((νy)(R | S ), R | (νy)S ) ∈ R
(1)

∧
R S y z.

y ] R

((νy)(νz)(R | S ), (νz)(R | (νy)S )) ∈ R
(2)

(νx)(P | Q ) ,→R P | (νx)Q

x ] P Id ⊆ R eqvt R∧
R S y.

y ] R

(R | (νy)S , (νy)(R | S )) ∈ R
(1)

∧
R S y z.

y ] R

((νz)(R | (νy)S ), (νy)(νz)(R | S )) ∈ R
(2)

P | (νx)Q ,→R (νx)(P | Q )

Proof. Follows from ,→-I, where any new bound name avoids x, P, and Q.
The PAR and SCOPE inversion rules from Figure 17.2 are then used to gen-
erate all possible cases, and the PAR, COMM, RES, OPEN, and CLOSE rules
from the operational semantics are used to discharge them.

The requisites on the candidate relation deserves special mention. As-
sumption (1) in both lemmas is straightforward – the relation must pre-
serve scope extension. Assumption (2) does the same, but it requires that
the extended name propagates outside the binder generated by the CLOSE

rules. It is this requisite which will require the use of bisimulation upto tech-
niques.

Lemma 18.22. If x ] P then (νx)(P | Q ) .∼ P | (νx)Q .

Proof. By coinduction using Lemma 18.20 with Y set to

{((νỹ)(νx)(P | Q ), (νỹ)(P | (νx)Q )) : x ] P } ∪
{((νỹ)(P | (νx)Q ), (νỹ)(νx)(P | Q )) : x ] P }.

The candidate relation is symmetric, but the simulation case requires a
bit of work. When a name x is extruded in the candidate relation it will end
up inside the scope of the binders ỹ , but requisite (2) of the candidate rela-
tion in Lemma 18.21 require that x is extruded past the binders. The requi-
site is proven by instantiating ỹ to y, and then using Lemma 18.19 to com-
mute y with x.

With these lemmas in place, we can prove the final structural congruence
laws for Parallel.
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18.4 Abelian monoid laws for Parallel

18.4.1 Parallel has Nil as unit
Lemma 18.23.

∧
Q. (Q | 0 , Q) ∈ R

P | 0 ,→R P

∧
Q. (Q, Q | 0 ) ∈ R

P ,→R P | 0

Proof. Follows from the definition of ,→, the PAR1 semantic rules for the
first sublemma, and the PAR inversion rules for the second one.

Lemma 18.24. P | 0 .∼ P

Proof. By coinduction with X set to

{(P | 0 , P) : True} ∪ {(P, P | 0 ) : True}.

The candidate relation is inherently symmetric, and the simulation cases
follow from Lemma 18.23.

18.4.2 Parallel is commutative
Lemma 18.25.∧

R S. (R | S , S | R ) ∈ R
∧

R S x.
(R, S) ∈ R

((νx)R, (νx)S) ∈ R

P | Q ,→R Q | P

Proof. Follows from the definition of ,→. The PAR inversion rules are used
to derive the relevant cases, and the PAR, COMM, and CLOSE semantic rules
are used to discharge them. In all cases the symmetric semantic rule is used
from the inversion rule used to derive the case; PAR2 for PAR1 and so on.

Lemma 18.26. P | Q .∼ Q | P

Proof. By coinduction with X set to

{((νx̃)(P | Q ), (νx̃)(Q | P )) : True}.

The candidate relation is inherently symmetric, and the simulation case is
proven using Lemma 18.25.
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18.4.3 Parallel is associative
The remaining proof is to show that Parallel is associative. Of all the proofs
covered so far, this is the one with the most cases, with 18 cases to be proven
in each direction of simulation. It turns out, however, that only one direc-
tion needs to be proven as bisimulation upto techniques will allow us to
infer a symmetric simulation case automatically.

Lemma 18.27.∧
S T U . ((S | T ) | U , S | (T | U ) ) ∈ R

∧
S T x.

(S, T) ∈ R

((νx)S, (νx)T) ∈ R∧
S T U x.

x ] S

((νx)((S | T ) | U ), S | (νx)(T | U ) ) ∈ R∧
S T U x.

x ] U

((νx)(S | T ) | U , (νx)(S | (T | U ) )) ∈ R

(P | Q ) | R ,→R P | (Q | R )

Proof. Follows from the ,→-I, and the PAR inversion rules. At all steps
newly occurring bound names avoid all other terms under consideration.
The cases are then discharged using the PAR, COMM, and CLOSE semantic
rules, and the requisites on R ensure that the derivatives remain in the
candidate relation. There are a total of 18 cases.

Lemma 18.28.

(P | Q ) | R .∼ P | (Q | R )

Proof. By coinduction using Lemma 18.20 with Y set to

{((νx̃)((P | Q ) | R ), (νx̃)(P | (Q | R ) )) : True}.

The simulation case is proven by Lemma 18.27. The candidate relation
Y is not symmetric, but Lemmas 28.23 and 27.42 can be used to show the
symmetry case.

18.5 The unfolding law
Lemma 18.29.

Id ⊆ R

!P ,→R P | !P

Id ⊆ R

P | !P ,→R !P

Proof. Follows from the definition of ,→, the REPL inversion rule from Fig-
ure 13.4.2 and the REPL semantic rule.
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Lemma 18.30. !P .∼ P | !P

Proof. By coinduction with X set to

{(!P, P | !P ), (P | !P , !P)},

Lemma 18.29 and the fact that bisimulation is reflexive.

18.6 Bisimilarity subsumes structural congruence
We finally prove our main theorem – that all structurally congruent terms
are also bisimilar.

Theorem 18.1. If P ≡ Q then P .∼ Q.

Proof.

Abelian monoid laws for Parallel: Follows from lemmas 18.24, 18.26, and
18.28.

Abelian monoid laws for Sum: Follows from lemmas 18.2, 18.4, and 18.6.

The unfolding law: Follows from lemma 18.30.

Scope extension laws: Follows from lemmas 18.8, 18.11, 18.13, 18.15,
18.17, 18.19, and 18.22.

The same result for strong equivalence follows directly.

Theorem 18.2. If P ≡ Q then P ∼ Q.

Proof. By Theorem 18.1 and the defintion of ∼ – any bound names of the
agents must be alpha-converted to not clash with the substitution.
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19. An axiomatisation of strong late
bisimilarity

The equivalences that have been covered thus far are bisimulation equiv-
alences. A different way to characterise an equivalence is through a set of
algebraic laws which do not use the operational semantics of the calculus
at all.

In this chapter we use the algebraic laws from [58] and formalise the now
well known result that they precisely capture late strong bisimilarity of the
pi-calculus without Replication. The axioms can be found in Figure 19.1.
The proof follows the standard structure and is partitioned into a sound-
ness part – saying that each law is sound, i.e. that in all instances the right
hand side is bisimilar to the left hand side, and a completeness part – saying
that if two agents are bisimilar then there exists a proof of equivalence from
the algebraic laws. As is typical in these situations the soundness proof is
straightforward but tedious to write out in detail, while the completeness
proof requires a bit more ingenuity.

19.1 Proof outline
The original manual proof of this particular result dates back to the very
first presentation of the pi-calculus [58] and its sketch occupies about one
page (on pages 67 and 68) in the journal. The result was not controversial
since it is one of many similar results on complete axiomatisations in pro-
cess algebras, the first being by Hennessy and Milner on CCS [44]. Variants
of the proof have been used in variants of the calculus, but never written
down in full detail.

We shall follow the general structure of that proof. The soundness part
is straightforward – any agents equated by the set of axioms must also be
bisimilar; most of these proofs have already been done in chapters 17 and
18. The completeness result is more involved. A subset of the agents are
defined to be so called head normal forms. An agent is on head normal form
if it is a sum of prefixes and is written

α1 .P1 +α2 .P2 + ·· · +αn .Pn
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In a head normal form, the first step of the operational semantics is ap-
parent from the syntactic structure of the agent. The subagents αi .Pi are
called the summands of the head normal form.

The completeness proof is done by induction on the depth of the agents,
where the depth of an agent is an upper bound for the number of transitions
that agent can do. We first show that each agent has a provably equivalent
head normal form of no greater depth, and then that two bisimilar head
normal forms have the same summands and are thus provably equivalent.

Existing formalisations of this proof contain several sweeping statements
which require quite some attention to detail to verify formally. An example
is the claim that if two head normal forms have provably equivalent sum-
mands then the agents are provably equivalent using laws for commutativ-
ity, associativity and idempotence of Sum (formalised as Lemma 19.25 in
Section 19.3 below).

19.1.1 Formalisation outline
The formalisation of the completeness proof has the following structure.

1. Prove that every agent has a provably equivalent agent on head normal
form of no greater depth.

2. Prove that for any agent P on head normal form, P can do a transition if
and only if there exists a summand in P that can do the same transition.

3. Prove that the depth of any agent P is strictly greater than the depth of
any of its derivatives.

4. Prove that two agents are provably equivalent if they have provably
equivalent summands.

5. Prove that any two bisimilar agents on head normal form are provably
equivalent by induction on the sum of their depth. The induction hy-
pothesis can be applied to the derivatives as they have strictly smaller
depth.

This sequence of steps will initially be proven for a subcalculus contain-
ing only the prefixes, Match, Mismatch and Sum. In Section 19.4 we will add
Restriction, and in Section 19.5 we will add Parallel. These sections will fo-
cus on how to convert agents with these operators to head normal forms,
and how to include them to the existing proof structure.

19.2 Soundness
Most of the lemmas needed to prove that the axiomatisation presented in
Figure 19.1.is sound have already been proven in chapters 17 and 18. The
exceptions are the CONGR2 rule, the rules for Match and Mismatch, the S2
rule for Sum, and the R1, R5 and R7 rules for Restriction.
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Laws of equational reasoning

REFL P ≡p P

SYM If P ≡p Q then Q ≡p P.

TRANS If P ≡p Q and Q ≡p R then P ≡p R.
Congruence laws

CONGR1 If P ≡p Q then ab.P ≡p ab.Q

τ.P ≡p τ.Q

P + R ≡p Q + R

(νx)P ≡p (νx)Q

CONGR2 If ∀y∈supp (P, Q, x). P{y/x } ≡p Q{y/x } then

a(x).P ≡p a(x).Q
Sum

S1 P + 0 ≡p P

S2 P + P ≡p P

S3 P + Q ≡p Q + P

S4 (P + Q ) + R ≡p P + (Q + R )
Restriction

R1 (νx)P ≡p P if x ] P

R2 (νx)(νy)P ≡p (νy)(νx)P

R3 (νx)(P + Q ) ≡p (νx)P + (νx)Q

R4 (νx)a(y).P ≡p a(y).(νx)P if x 6= a and x 6= y

R5 (νx)x(y).P ≡p 0

R6 (νx)ab.P ≡p ab.(νx)P if x 6= a and x 6= b

R7 (νx)xb.P ≡p 0

R8 (νx)τ.P ≡p τ.((νx)P)
Match

M1 [a=a]P ≡p P

M2 [a=b]P ≡p 0 if a 6= b
Mismatch

MM1 [a 6=a]P ≡p 0

MM2 [a 6=b]P ≡p P if a 6= b

Figure 19.1: Axiomatisation of strong late bisimulation for the pi-calculus, except
for Parallel.
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19.2.1 Match
To prove M1 sound we first need to prove a corresponding simulation
lemma.

Lemma 19.1.

Id ⊆ R

[a=a]P ,→R P

Id ⊆ R

P ,→R [a=a]P

Proof. In the first case, any action made by P can be mimicked by [a=a]P,
and any derivatives will be in R as it contains the identity relation.

In the second case, the MATCH inversion rule from Figure 17.2 ensures
that the only actions that [a=a]P can do are ones which P can do. Again,
the derivatives will be in R, as R contains the identity relation.

Lemma 19.2 (M1). [a=a]P .∼ P

Proof. By coinduction with X set to {([a = a]P, P), (P, [a = a]P)}. The
candidate relation is symmetric, and the simulations are discharged by
Lemma 19.1.

To prove M2 sound we do not need a simulation lemma – all cases sim-
plify away automatically.

Lemma 19.3 (M2). If a 6= b then [a=b]P .∼ 0.

Proof. By coinduction with X set to {([a=b]P, 0), (0, [a=b]P)}. The candi-
date relation is symmetric, and all possible simulations can be discharged
by Lemma 18.9 as neither 0 nor [a=b]P, when a 6= b, have any transitions.

19.2.2 Mismatch
Lemma 19.4 (MM1). [a 6=a]P .∼ 0

Proof. By coinduction with X set to {([a 6=a]P, 0), (0, [a 6=a]P)}. The candi-
date relation is symmetric, and all possible simulations can be discharged
by Lemma 18.9 as neither 0 nor [a 6=a]P, have any transitions.

Lemma 19.5.

Id ⊆ R a 6= b

[a 6=b]P ,→R P

Id ⊆ R a 6= b

P ,→R [a 6=b]P

Proof. In the first case, any action made by P can be mimicked by [a 6=b]P,
since a 6= b. Any derivatives will be in R as it contains the identity relation.
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In the second case, the MISMATCH inversion rule from Figure 17.2 en-
sures that the only actions that [a 6=b]P can do are ones which P can do.
Again, the derivatives will be in R, as R contains the identity relation.

Lemma 19.6 (MM2). If a 6= b then [a 6=b]P .∼ P.

Proof. By coinduction with X set to {([a 6= b]P, P), (P, [a 6= b]P)}. The
candidate relation is symmetric, and the simulations are discharged by
Lemma 19.5.

19.2.3 Input
Strong bisimulation is not a congruence as it is not closed under the input-
prefix, as was demonstrated in Section 17.3. The CONGR1-rule is a special
case of this lemma, which only requires that equivalence is preserved by all
substitutions of names which occur in the processes.

Lemma 19.7. ∧
y.

y ∈ supp (P, Q, x)

(P{y/x }, Q{y/x }) ∈ R
eqvt R

a(x).P ,→R a(x).Q

Proof. The simulation definition requires all derivatives obtained by sub-
stituting y for any name x are in R. The proof is done by case analysis on
whether or not y is in the support of (P, Q, x). If it is, the proof follows di-
rectly from the assumptions. If not, we know that y ] P and y ] Q and by
Lemma 13.8 that the substitution is equal to a permutation, and hence the
derivatives are in R, as R is equivariant.

Lemma 19.8 (CONGR1). ∧
y.

y ∈ supp (P, Q, x)

P{y/x } .∼ Q{y/x }

a(x).P .∼ a(x).Q

Proof. By coinduction with X set to {(a(x).P, a(x).Q) : ∀y∈supp (P, Q, x).
P{y/x } .∼ Q{y/x }}. The candidate relation is symmetric since bisimulation is
symmetric, and the simulation case follows immediately from Lemma 19.7.

257



19.2.4 Sum
The only rule for Sum which does not follow from the laws of structural
congruence is idempotence (S2).

Lemma 19.9.

Id ⊆ R

P ,→R P + P

Id ⊆ R

P + P ,→R P

Proof. In the first case, any action made by P can be mimicked by P + P us-
ing the SUM rule, and any derivatives will be in R as it contains the identity
relation.

In the second case, the SUM inversion rule from Figure 17.2 ensures that
the only actions that P + P can do are ones which P can do. Again, the
derivatives will be in R, as R contains the identity relation.

Lemma 19.10 (S1). P + P .∼ P

Proof. By coinduction with X set to {(P + P , P), (P, P + P )}. The candidate
relation is symmetric, and the simulations are discharged by Lemma 19.9.

19.2.5 Restriction
The laws for Restriction which must be proven sound are R1, R5, and R7.

Lemma 19.11 (R1). If x ] P then (νx)P .∼ P.

Proof. Similar to Lemma 8.17, which is the corresponding lemma for CCS.

Lemma 19.12 (R5). (νx)x(y).P .∼ 0

Proof. By coinduction with X set to {((νx)x(y).P, 0), (0, (νx)x(y).P)}. The
candidate relation is symmetric, and all possible simulations can be dis-
charged by Lemma 18.9 as neither 0 nor (νx)x(y).P, have any transitions.

Lemma 19.13 (R7). (νx)xb.P .∼ 0

Proof. By coinduction with X set to {((νx)xb.P, 0), (0, (νx)xb.P)}. The can-
didate relation is symmetric, and all possible simulations can be discharged
by Lemma 18.9 as neither 0 nor (νx)xb.P, have any transitions.
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19.2.6 Soundness
With these lemmas in place, we can prove the soundness result.

Theorem 19.1. If P ≡p Q then P .∼ Q.

Proof. Proof by induction on the inference rules of provable equality from
Figure 19.1. Every case is listed with the lemma which proves that it is
sound.

Equivalence laws
REFL Lemma 17.10

SYM Lemma 17.10

TRANS Lemma 17.10
Congruence laws

CONGR1 All axioms follow from Theorem 14.1.

CONGR2 Lemma 19.8.

Sum
S1 Lemma 18.6

S2 Lemma 19.10

S3 Lemma 18.2

S4 Lemma 18.4
Match

M1 Lemma 19.2

M2 Lemma 19.3
Mismatch

MM1 Lemma 19.4

MM2 Lemma 19.6

Restriction
R1 Lemma 19.11

R2 Lemma 18.19

R3 Lemma 18.8

R4 Lemma 18.13

R5 Lemma 19.12

R6 Lemma 18.15

R7 Lemma 19.13

R8 Lemma 18.17

19.3 Completeness
We begin by restricting attention to a subcalculus which does not contain
Parallel or Restriction, and introduce a predicate valid P to mean that P is
in the subcalculus. This predicate will be extended as support for more op-
erators are added.

Definition 19.14 (valid).

valid 0 = True

valid (τ.P) = valid a(x).P = valid ab.P = valid P

valid (P + Q ) = valid P ∧ valid Q

valid _ = False
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The first step of the proof is to define what it means for an agent to be
on head normal form, or hnf for short. An agent is on hnf if it is a sum of
prefixed agents.

Definition 19.15 (hnf).

hnf 0 = hnf (τ.P) = hnf a(x).P = hnf ab.P = True

hnf (P + Q ) = hnf P ∧ hnf Q ∧ P 6= 0 ∧ Q 6= 0

hnf _ = False

We will reason about hnfs in terms of their summands. The summands
of a term is the set of its prefixed subterms that are composed by Sum.

Definition 19.16 (summands).
summands (τ.P) = {τ.P}

summands a(x).P = {a(x).P}

summands ab.P = {ab.P}

summands (P + Q ) = summands P ∪ summands Q

summands _ = ;

For many proofs, it is convenient to reason about summands as sets of
equivalence classes, corresponding to provable equivalence by the axioms.
In order to mimic this behaviour in Isabelle, we introduce the notion of a
unique head normal form. Intuitively, an agent is on unique head normal
form, or uhnf, if it is on head normal form and no summand is provably
equivalent to any other.

Definition 19.17 (uhnf).

uhnf P
def=

hnf P ∧ (∀R∈summands P. ∀R ′∈summands P. R 6= R ′−→¬ R ≡p R ′)

The main proof is by induction over the depth of agents. Intuitively, the
depth of a term is an upper bound of the number of transitions it can make.
We define the following function:

Definition 19.18 (depth).

depth 0 = 0

depth (τ.P) = depth a(x).P = depth ab.P = 1 + depth P

depth ([a=b]P) = depth ([a 6=b]P) = depth ((νx)P) = depth P

depth (P + Q ) = max (depth P) (depth Q)

depth (P | Q ) = depth P + depth Q
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The following lemma ensures that adding an agent which is provably
equivalent to a summand of an agent has no effect.

Lemma 19.19. If Q ∈ summands P and Q ≡p Q ′ then P + Q ′ ≡p P.

Proof. By induction on the structure of P.

The completeness proof follows the pattern described in Section 19.1.1.
The first step is to prove that for every agent, there exists a provably equiva-
lent agent on unique head normal form of no greater depth. Prefixed agents
are trivially on uhnf, and any occurrences of Match or Mismatch can always
be removed by case analysis on the equality, or inequality, of the names in
the condition. The remaining operator is Sum.

Lemma 19.20. Convert Sum to uhnf.

If uhnf P and uhnf Q and valid P and valid Q then
∃R. uhnf R ∧ valid R ∧ P + Q ≡p R ∧ depth R ≤ depth (P + Q ).

Proof. By induction on the structure of P. In the prefix cases, Lemma 19.19
is used to filter out the terms which are provably equivalent to some term
in the summands of Q. Since P is on uhnf, the only relevant cases are the Nil
case, the prefix cases, and the Sum case.

Nil case (P = 0): Follows immediately by setting R to Q, the S1 rule, and the
fact that the depth of 0 is 0.

Output case (P = ab.P ′): If Q = 0 then set R to P, otherwise if there is a Q ′∈
summands Q such that Q ′≡p P, then Q + P ≡p Q by Lemma 19.19, so
set R to Q, otherwise set R to P + Q .

The other prefix cases follow the same pattern.

Sum case (P = P1 + P2 ): Since P is on uhnf, we know that P1 and P2 are on
uhnf.

• Since Q is on uhnf, we obtain from the induction hypothesis an S
where uhnf S, P2 + Q ≡p S, and depth S ≤ depth (P2 + Q ).

• Since S is on uhnf, we obtain from the induction hypothesis an R ′
where uhnf R ′, P1 + S ≡p R ′, and depth R ′≤ depth (P1 + S ).

• The proof is concluded by setting R to R ′.
• We already know that R ′ is valid, and on uhnf.
• Since P2 + Q ≡p S and P1 + S ≡p R ′, we have that (P1 + P2 ) + Q
≡p R ′

• Since depth S ≤ depth (P2 + Q ) and depth R ′ ≤ depth (P1 + S )
we have that depth R ′≤ depth ((P1 + P2 ) + Q ).
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We now prove the main lemma which states that for every valid agent,
there exists a provably equivalent agent on uhnf.

Lemma 19.21.

If valid P then ∃Q. uhnf Q ∧ valid Q ∧ Q ≡p P ∧ depth Q ≤ depth P.

Proof. By induction on the structure of P. When P is of the form P1 + P2 ,
Lemma 19.20 is used.

The next step is to connect provably equivalent agents and the transition
system through the summands.

Lemma 19.22.

If hnf P then P
τ−→ P ′= (τ.P ′∈ summands P).

If hnf P then P
a(x)−−−→ P ′= (a(x).P ′∈ summands P).

If hnf P then P
ab−−→ P ′= (ab.P ′∈ summands P).

Proof. By induction on the structure of P.

We proceed to prove that two agents are provably equivalent if their sum-
mands are provably equivalent. The proof is by induction over the sum-
mands of the agents. The following lemma takes a summand of an agent,
pulls it to the leftmost position of the agent, using the S2 and S3 rules, and
removes any provably equivalent summands with Lemma 19.19.

Lemma 19.23.

If P ∈ summands Q and uhnf Q then
∃Q ′. P + Q ′ ≡p Q ∧

summands Q ′ = summands Q − {P ′ : P ′ ∈ summands Q ∧ P ′ ≡p P} ∧
uhnf Q ′.

Proof. By induction on the structure of Q.

By extracting a summand from an agent, the set of summand shrinks. In
order to conduct induction on sets, we must prove that exactly one element
is removed from the summand set. This holds for agents on uhnf.

Lemma 19.24.

If P ∈ summands Q and uhnf Q then
summands Q − {P ′ : P ′∈ summands Q ∧ P ′≡p P} = summands Q − {P}.

Proof. Follows directly from the definition of uhnf and the REFL rule.
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With these lemmas in place, we can prove that two agents are provably
equivalent if their summands are provably equivalent.

Lemma 19.25.

uhnf P uhnf Q
∀P ′∈summands P. ∃Q ′∈summands Q. P ′≡p Q ′

∀Q ′∈summands Q. ∃P ′∈summands P. Q ′≡p P ′

P ≡p Q

Proof. By induction on summands P

Base case (summands P = ;):

• From ∀Q ′∈summands Q. ∃P ′∈summands P. Q ′ ≡p P ′ and sum-
mands P = ; we have that summands Q = ;.

• From summands P = ; and uhnf P we have that P = 0.
• Moreover from summands Q = ; and uhnf Q we have that Q = 0.
• Finally we have that P ≡p Q by REFL.

Inductive step (summands P = {P ′} ∪ L ):

• From Lemmas 19.23 and 19.24 we obtain a P ′′ such that P ′ + P ′′
≡p P, summands P = summands P ′′− {P ′}, and uhnf P ′′.

• We have that L = summands P ′′.
• From ∀P ′∈summands P. ∃Q ′∈summands Q. P ′ ≡p Q ′ and sum-

mands P = {P ′} ∪ L we obtain a Q ′ such that Q ′ ∈ summands Q
and P ′≡p Q ′.

• From Lemmas 19.23 and 19.24 we obtain a Q ′′ such that Q ′ + Q ′′
≡p Q, summands Q = summands Q ′′− {Q ′}, and uhnf Q ′′.

• From the assumptions, uhnf P ′, uhnf Q ′, and P ′≡p Q ′we have that

∀P ′′∈summands P ′. ∃Q ′′∈summands Q ′. P ′′≡p Q ′′

and

∀Q ′′∈summands Q ′. ∃P ′′∈summands P ′. Q ′′≡p P ′′.

• With uhnf P ′ and uhnf Q ′ we have that P ′′≡p Q ′′ by the induction
hypothesis.

• With P ′≡p Q ′, P ′+ P ′′ ≡p P, and Q ′+ Q ′′ ≡p Q we have that P ≡p

Q by the laws for Sum, and SYM and TRANS.

The premises of the lemma display striking similarities with bisimilarity
– for all summands in an agent, there must exists a summand in the other
agent such that they are provably equivalent, and vice versa. This similarity
will be exploited in the lemma which proves the completeness result.
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In order to do induction over the depth of agents, we need to know that
agents have strictly greater depth than their derivatives.

Lemma 19.26.

If hnf P and P
ab−−→ P ′ then depth P ′< depth P.

If hnf P and P
a(x)−−−→ P ′ then depth P ′< depth P.

If hnf P and P
τ−→ P ′ then depth P ′< depth P.

Proof. By induction on the derivation of the transitions.

We can now prove that the axiomatisation is complete.

Lemma 19.27. If valid P and valid Q and P .∼ Q then P ≡p Q.

Proof. We begin by using Lemma 19.21 to obtain provably equivalent ver-
sions of P and Q on uhnf. We then use Lemma 19.25, and hence we must
prove that for all summands in P there exists a provably equivalent sum-
mand of Q and vice versa. Since bisimilarity is symmetric, we only need to
prove this property one way – the symmetric version will be inferred auto-
matically.

The proof is done by induction on depth P + depth Q.

Base case (depth P + depth Q = 0): The only case where this can hold is if P
= 0 and Q = 0, and hence P ≡ Q by REFL.

Inductive step (depth P + depth Q ≤ n): We pick an arbitrary summand
α .P ′ from the summands of P, we must prove that there exists a Q ′
such that α .Q ′ is in the summands of Q. We begin with the case
where α is not an input prefix.

• Since α .P ′ ∈ summands P, we have by Lemma 19.22 that P
α−→ P ′.

• Since P .∼ Q we obtain a Q ′ such that Q
α−→ Q ′ and P ′ .∼ Q ′.

• From Lemma 19.21 we obtain a P ′′and a Q ′′where P ′≡p P ′′, Q ′≡p

Q ′′, depth P ′′≤ depth P ′, and depth Q ′′≤ depth Q ′.
• With Lemma 19.26 we have that depth P ′′+ depth Q ′′< n
• Moreover with P ′≡p P ′′, Q ′≡p Q ′′, and P ′ .∼Q ′we have that P ′′ .∼Q ′′

using Theorem 19.1, and symmetry and transitivity of bisimilarity.
• Finally we get that P ′′≡ Q ′′ from the induction hypothesis.
• With P ′ ≡p P ′′ and Q ′ ≡p Q ′′ we have that P ′ ≡p Q ′ by SYM and

TRANS.
• Hence α .P ′ ≡p α .Q ′ by CONGR1.

If α is an input prefix of the form a(x), we prove that P{y/x } ≡p Q{y/x }
for all y such that y ∈ supp (P, Q, x). The strategy is the same as for free
actions, and we get that P{u/x } ≡p Q{u/x } for all u, more specifically
for u = y, hence P{y/x } ≡p Q{y/x }, and hence a(x) .P ′ ≡p a(x) .Q ′ by
CONGR2.
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19.4 Adding Restriction
We have already proven that the axioms involving Restriction are sound. It
remains to prove that they are complete.

The first step is to augment the valid predicate so that it encompasses
restricted agents.

valid ((νx)P) = valid P

For the completeness proof we need to expand the definitions of sum-
mands and hnf. With Restriction there is a possibility of bound outputs. A
process which generates a bound output is of form (νx)ax.P where x 6= a.
We extend the definition of hnf with the following case:

hnf ((νx)P) = (∃a P ′. a 6= x ∧ P = ax.P ′)

We also extend the definition of summands with:

summands ((νx)P) = (if ∃a P ′. a 6= x ∧ P = ax.P ′ then {(νx)P} else ;)

Finally we expand the proofs of Lemma 19.21, which states that for every
agent there exists a provably equivalent agent on uhnf. We need the follow-
ing auxiliary lemma:

Lemma 19.28.

If uhnf P and valid P then
∃P ′. uhnf P ′∧ valid P ′∧ (νx)P ≡p P ′∧ depth P ′≤ depth ((νx)P).

Proof. By induction on the structure of P.

The extension to Lemma 19.21 now becomes quite simple.
We will also need an expanded version of Lemma 19.22 to connect sum-

mands and transitions.

If hnf P and a 6= x then P
a (νx)−−−−→ P ′= ((νx)ax.P ′∈ summands P).

The proof for this addition has the same structure as the rest of the
lemma.
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exp
Let P = ∑

i αi .Pi and Q = ∑
j β j .Q j where bn(αi )∩ fn(Q) =; and bn(β j )∩

fn(P ) =; for all i , j . Then

P |Q = ∑
i
αi . (Pi |Q) + ∑

j
β j . (P |Q j ) + ∑

αi compβ j

τ .Ri j

where the relation αi compβ j and Ri j are defined through the follwing four
cases:
1. αi = a(x) and β j = au in which case Ri j = Pi {x/u} |Q j ,
2. αi = a(x) and β j = (νu)au in which case Ri j = (νu)(Pi {x/u} |Q j ),
3. The converse of 1,
4. The converse of 2.

Figure 19.2: The traditional expansion law for strong bisimilarity. Here αi and β j

range over the prefix forms (Input, Output and Silent) and also over the combina-
tion of bound output prefix (νu)au.

19.5 Adding Parallel
We complete our proof by adding Parallel. To do this we must encode the
expansion law, which can be found in Figure 19.2 in Isabelle. Unfortunately,
the law as presented here and elsewhere is not completely formally correct.
The reason is that it makes use of a function Σwhich takes a set of agents as
a parameter and returns the sum of them. However, such a function cannot
be defined in the usual inductive way (as Σ{P }∪S = P +ΣS) since this does
not define Σ uniquely; elements can be pulled from a set in different or-
der, resulting in different order of the summands. The reason the expansion
law nevertheless is considered valid is that it implicitly operates on equiv-
alence classes of agents up to ≡p and here Sum is idempotent, associative
and commutative. As there is no easy way to incorporate such functions in
Isabelle we need to be a little more creative. We define a relation S of type
pi × pi set with the intuition that if F is a set of agents then S (P, F ) if P
can be obtained as a sum of the agents in F .

Definition 19.29.

(0, ;) ∈ S

Q ∈ F (P, F − {Q}) ∈ S

(P + Q , F ) ∈ S

We define the set of all agents generated by the expansion law.

Definition 19.30. The predicate expandSet takes two agents P and Q as ar-
guments, and returns the set of all their possible expansions.

expandSet P Q
def=

{τ.(P ′ | Q ) : τ.P ′∈ summands P} ∪ {τ.(P | Q ′ ) : τ.Q ′∈ summands Q} ∪
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{ab.P ′ | Q : ab.P ′∈ summands P} ∪
{ab.P | Q ′ : ab.Q ′∈ summands Q} ∪
{a(x).P ′ | Q : a(x).P ′∈ summands P ∧ x ] Q} ∪
{a(x).P | Q ′ : a(x).Q ′∈ summands Q ∧ x ] P } ∪
{(νx)ax.P ′ | Q : (νx)ax.P ′∈ summands P ∧ x ] Q} ∪
{(νx)ax.P | Q ′ : (νx)ax.Q ′∈ summands Q ∧ x ] P } ∪
{τ.(P ′{b/x } | Q ′ ) : ∃a. a(x).P ′∈ summands P ∧ ab.Q ′∈ summands Q} ∪
{τ.(P ′ | Q ′{b/x } ) : ∃a. ab.P ′∈ summands P ∧ a(x).Q ′∈ summands Q} ∪
{τ.((νy)(P ′{y/x } | Q ′ )) : ∃a. a(x).P ′ ∈ summands P ∧ (νy)ay.Q ′ ∈ summands
Q ∧ y ] P } ∪
{τ.((νy)(P ′ | Q ′{y/x } )) : ∃a. (νy)ay.P ′ ∈ summands P ∧ a(x).Q ′ ∈ summands
Q ∧ y ] Q}

To complete the axiomatisation we add the following two axioms:

EXPAND If (R, expandSet P Q) ∈ S , hnf P, and hnf Q then

P | Q ≡p R

CONGRPAR If P ≡p P ′ and Q ≡p Q ′ then P | Q ≡p P ′ | Q ′ .

19.5.1 Soundness
The proof that CONGRPAR is sound follows from Theorems 17.1 and 18.1.

To prove that the EXPAND axiom is sound, we need the following lemmas

Lemma 19.31. If (P, F ) ∈ S and Q ∈ F and Q 7−→ V then P 7−→ V .

Proof. By induction on the construction of S .

Lemma 19.32. If (R, F ) ∈ S and R 7−→ V then ∃P∈F . P 7−→ V .

Proof. By induction on the construction of S . The base case is trivially true
since S is empty. In the inductive step a case analysis is made on whether
or not the inserted term can do the transition to V. If so, that term is picked;
otherwise the term is obtained through the induction hypothesis.

Lemma 19.33. If (R, expandSet P Q) ∈ S and hnf P and hnf Q then

P | Q
τ−→ P ′= R

τ−→ P ′

and P | Q
ab−−→ P ′= R

ab−−→ P ′

and P | Q
a(x)−−−→ P ′= R

a(x)−−−→ P ′

and P | Q
a (νx)−−−−→ P ′= R

a (νx)−−−−→ P ′

Proof. In this proof, Lemma 19.22 is used to connect summands to transi-
tions and vice versa.
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=⇒ By case analysis on the transition done by P | Q . Each case matches
one construction in the expansion law and lemma 19.31 is used to
prove that R can make the desired transition.

⇐= Lemma 19.32 is used to find the summand in R in expandSet P Q which
can make the transition. A case analysis of R is made and each case is
matched to its corresponding rule in the operational semantics.

We can now prove soundness.

Lemma 19.34. If (R, expandSet P Q) ∈ S and hnf P and hnf Q then P | Q
.∼ R.

Proof. By coinduction with X set to {(P | Q , R) : (R, expandSet P Q) ∈ S ∧
hnf P ∧ hnf Q} ∪ {(R, P | Q ) : (R, expandSet P Q) ∈ S ∧ hnf P ∧ hnf Q}. The
relation is symmetric, and the simulation case follows from Lemma 19.33.

19.5.2 Completeness
The first step is to augment the valid predicate so that it encompasses par-
allel agents.

valid (P | Q ) = (valid P ∧ valid Q)

No additions need to be made to the actual completeness proof as it op-
erates on agents on uhnf, and as such does not contain Parallel at all. The
lemmas that need to be augmented are only the ones which prove that ev-
ery agent has a provably equivalent uhnf of no greater depth.

We need two auxiliary lemmas.

Lemma 19.35.

If (P, F ) ∈ S and ∀P∈F . uhnf P ∧ valid P then
∃P ′. uhnf P ′∧ valid P ′∧ P ≡p P ′∧ depth P ′≤ depth P.

Proof. By induction on the construction of S .

Lemma 19.36. If hnf P and hnf Q then ∃R. (R, expandSet P Q) ∈S ∧ depth
R ≤ depth (P | Q ).

Proof. By case analysis on the construction of expandSet P Q.

We finally need to modify Lemma 19.21. In the parallel case, we use the
parallel congruence laws from CONGRPAR and Lemma 19.36 to find an ex-
panded R of no greater depth than depth (P | Q ). Lemma 19.35 can then be
used to convert R to a provably equivalent uhnf.

268



19.6 Conclusion
In this chapter we proved that the axiomatisation of strong late bisimilarity
for pi-calculus is sound and complete. Most of the soundness results were
already proved in previous chapters, and most of the work was to formalise
the completeness result. For this, we had to make precise the hand sweep-
ing notions which were found in the pen-and-paper proofs – most notably
the treatment of head normal forms and summands, where the pen-and-
paper variants implicitly use the idempotence rules for Sum in induction
over the summands.
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20. Early late correspondences

Structural congruence is included by all bisimilarities we have covered so
far. However, we have only proven this fact for the late equivalences. Late
equivalences include the early ones, and by proving this we get all of the
structural congruence results for early ones as well.

In this chapter we will be using material from chapters which cover both
early and late equivalences, and we will use a subscript e for transitions and
relations using early semantics, and a subscript l for the late semantics, to

distinguish between the two. For instance, P
τ−→e P ′ denotes an early τ-

transition, whereas P
τ−→l P ′ denotes a late one.

20.1 Transitions
In order to prove that all late bisimilar agents are also early bisimilar we
must prove how the early and late transitions systems correspond. All tran-
sitions, except input transitions, map directly to each other – any action
done in one semantics can be done in the other, and the derivatives are the
same.

20.1.1 Output actions

Lemma 20.1. If P
ab−−→l P ′ then P

ab−−→e P ′.

Proof. By induction on P
ab−−→l P ′. All of the relevant cases are discharged

from the corresponding rules from the early operational semantics in Fig-
ure 13.1.

Lemma 20.2. If P
ab−−→e P ′ then P

ab−−→l P ′.

Proof. By induction on P
ab−−→e P ′. All of the relevant cases are discharged

from the corresponding rules from the late operational semantics in Fig-
ure 17.1.
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20.1.2 Bound output actions

Lemma 20.3. If P
a (νx)−−−−→l P ′ then P

a (νx)−−−−→e P ′.

Proof. By induction on P
a (νx)−−−−→l P ′. Before induction, the transitions are

alpha-converted such that x is fresh for a and P.
All cases, except the OPEN-case, are discharged from the corresponding

rules from the early operational semantics in Figure 13.3. The OPEN-case is
discharged by Lemma 20.1.

Lemma 20.4. If P
a (νx)−−−−→e P ′ then P

a (νx)−−−−→l P ′.

Proof. By induction on P
a (νx)−−−−→e P ′. Before induction, the transitions are

alpha-converted such that x is fresh for a and P.
All cases, except the OPEN-case, are discharged from the corresponding

rules from the late operational semantics in Figure 17.1. The OPEN-case is
discharged by Lemma 20.2.

20.1.3 Input actions
The difference between the late and the early operational semantics is how
they handle input actions, the early semantics instantiates them as early
as possible, whereas the late one as late as possible. The correspondance
lemmas for the input actions reflect this.

Lemma 20.5. If P
a(x)−−−→l P ′ then P

au−−→e P ′{u/x }.

Proof. By induction on P
a(x)−−−→l P ′. Before induction, the transitions are

alpha-converted such that x is fresh for a, u, and P.
All cases are discharged from the corresponding rules from the early op-

erational semantics in Figure 13.3.

Lemma 20.6.

If P
au−−→e P ′ and x ] P then ∃P ′′. P

a(x)−−−→l P ′′∧ P ′= P ′′{u/x }.

Proof. By induction on P
au−−→e P ′. All of the relevant cases are discharged by

their corresponding rule from the late operational semantics in Figure 17.1.
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20.1.4 Tau actions
Lemma 20.7. If P

τ−→l P ′ then P
τ−→e P ′.

Proof. By induction on P
τ−→l P ′. All cases except the COMM and CLOSE

cases are discharged by their corresponding rule from the early operational
semantics in Figure 13.3. The output, bound output, and input actions from
the COMM and CLOSE cases are obtained using lemmas 20.1, 20.3, and 20.5
respectively.

Lemma 20.8. If P
τ−→e P ′ then P

τ−→l P ′.

Proof. By induction on P
τ−→e P ′. All cases except the COMM and CLOSE

cases are discharged by their corresponding rule from the late operational
semantics in Figure 17.1. The output, bound output, and input actions from
the COMM and CLOSE cases are obtained using lemmas 20.2, 20.4, and 20.6
respectively.

20.2 Strong bisimilarity
To prove that late bisimilarity includes early bisimilarity, we start with sim-
ulations.

Lemma 20.9. If P ,→l R Q then P ,→eR Q.

Proof. Follows from the definition of ,→e .
Lemmas 20.2, 20.4, 20.6 and 20.8 are used to transfer the early actions to

late ones. The definition of ,→l is then used to obtain the mimicking actions,
and lemmas 20.1, 20.3, 20.5, and 20.7 are used to transfer them back to early
actions.

We can now prove the theorem that all late bisimilar agents are also early
bisimilar.

Theorem 20.1. If P .∼l Q then P .∼e Q.

Proof. By coinduction using Lemma 14.7 with X set to .∼e . The candidate
relation is inherently symmetric, as early bisimulation is symmetric, and
the simulation case is proven by Lemma 20.9.

The theorem is easily extendible for late and early equivalence.

Theorem 20.2. If P ∼l Q then P ∼e Q.

Proof. Follows immediately from the definitions of ∼e , ∼l , and
theorems 20.1 and 20.2.
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20.3 Structural congruence
All early bisimulations we have covered so far are preserved by bisimula-
tion. In Chapter 15 we made this assumption and used structural congru-
ence rules when proving preservation properties for weak bisimulation. We
must now prove this theorem.

Theorem 20.3.

If P ≡ Q then P .∼e Q.

If P ≡ Q then P ∼e Q.

Proof. Follows directly from theorems 18.1, 18.2, and 20.1.

We then also have that early weak bisimilarity and early weak congruence
include structural congruence.

Theorem 20.4.

If P ≡ Q then P
.≈e Q.

If P ≡ Q then P ≈e Q.

Proof. Follows directly from Theorem 20.3 and Lemma 15.22.
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21. Conclusions

In this part of the thesis we formalise a substantial part of the meta the-
ory of the pi-calculus. We prove most results for both the early and the late
operational semantics. We define the early semantics of the pi-calculus in
Chapter 13. In Chapter 14 we define strong bisimilarity and strong equiva-
lence and prove that strong bisimilarity is preserved by all operators except
the input prefix, and that strong equivalence is a congruence. In Chapter 15
we define weak bisimilarity and prove that it is preserved by all operators
except Sum and the input prefix. In Chapter 16 we define weak equivalence,
prove that it is preserved by all operators except the input prefix, and finally
weak congruence, also proving that it is a congruence. In Chapter 17 we de-
fine the late semantics of the pi-calculus. We also define all of the bisimu-
lation relations which are formalised for the early semantics, and prove the
same results. In Chapter 18 we define structural congruence, and prove that
it is included by all late bisimulation relations. In Chapter 19 we present the
axiomatisation of late bisimilarity for the finite segment of the pi-calculus
(without replication), and prove that it is sound and complete. Finally, in
Chapter 20 we prove that the late semantics subsumes the early one – all
late bisimilar agents are also early bisimilar for all bisimulation relations.

We believe this to be the most extensive formalisation of the pi-calculus
ever done inside a theorem prover. Earlier formalisations by e.g. Röckl [70],
Hirschkoff [45], or Honsell [46] focussed on the late operational semantics,
and only on strong equivalences. To the best of our knowledge, neither
weak equivalences nor axiomatisations of bisimilarities have previously
been formalised in a theorem prover.

As with CCS, in Part II of this thesis, no bugs were found during the for-
malisation efforts, although we did encounter several proofs in the litera-
ture where a rigourous formulation is not immediately obvious. This was
to be expected. The meta theory for the pi-calculus has been around for
nearly twenty years, and has been extensively used – the risk that bugs have
been missed is slim. The techniques used to formalise the pi-calculus are
the same as for CCS. The main extension is the encoding of residuals. If
the pi-calculus semantics were encoded using a ternary predicate like the
one for CCS the OPEN rule would become inconsistent with the Barendregt
variable convention, as demonstrated in Section 3.1.1.

The sizes of the different parts of the formalisation can be found in Fig-
ure 21.1 for both the early and the late semantics. As for CCS, the theories
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Part Lines of code

Early semantics Late semantics

Agents 443

Semantics 1296 1484

Strong bisimilarity 2517 2515

Weak bisimilarity 2491 2758

Weak congruence 3264 3503

Structural congruence - 2022

Late axiomatisation - 3620

Early late correspondence 827

Total 24913

Figure 21.1: The size of the different parts of the Isabelle formalisation of the pi-
calculus meta-theory.

for weak bisimilarity and weak congruence are intertwined. The formalisa-
tion of the late weak equivalences are slightly larger than their early coun-
terparts as the actions of weak late bisimilarity are more complex.

This formalisation took me around one and a half years to complete,
working on average around 30 hours a week. When I started Nominal Is-
abelle did not exist, but the ideas were there and I coded all of the infras-
tructure to reason about binders by hand. As newer versions of Nominal
Isabelle were released I could discard thousands of lines of code. A signifi-
cant part of this time was also spent learning Nominal Isabelle. If I were to
write the formalisation again, it would go much faster.

This part of the thesis is mainly based on our article from 2007 [19], which
was later extended into a journal version [20]. The only results not present
in there is the axiomatisation from Chapter 19; that work was published at
a workshop in 2007 [18].

21.1 Future work
There are several important aspects left to formalise. There are axiomatisa-
tions for strong equivalence [68], weak bisimilarity, and weak congruence
[53], for both early and late operational semantics. These axiomatisations
are more complicated than the one presented here.

The operational semantics presented used in this thesis works well for
mathematical proofs. However, tools which use this semantics turn out to
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be inefficient due to state space explosions in the transition system. Con-
sider the INPUT rule for the early operational semantics.

a(x).P
au−−→ P{u/x }

INPUT

Deriving all possible transitions that this rule can generate causes a state
space explosion – there is one transition for every name u. In 1994 Lin pro-
posed a symbolic semantics for the pi-calculus [52] where each transition
in addition to its label has a constraint store which keeps track of which
names have been received and what their possible values are. Symbolic se-
mantics does not suffer from the state explosion properties. The Mobility
Workbench [77] by Victor and Moller use a symbolic semantics. For a sym-
bolic semantics to be useful it needs to be sound and complete with respect
to the standard operational semantics – to the best of our knowledge, no
such result has ever been formalised using a theorem prover.

An alternative bisimulation relation is barbed bisimilarity. Barbed bisim-
ilarites were originally introduced by Milner and Sangiorgi for CCS [59], and
later extended to the pi-calculus by Sangiorgi. They use a reduction seman-
tics, i.e. a semantics without any labels on the transitions, and a STRUCT

rule. Two agents are barbed bisimilar if they have the same observable ac-
tions, and if they reduce to barbed bisimilar agents. A congruence is then
obtained by closing this bisimilarity by arbitrary agent contexts – a barbed
congruence is hence a congruence by definition. Its main advantage is that
is easier to get an intuitive grasp of a reduction semantics with structural
congruence, than of a labeled semantics without it. The disadvantage is that
a direct proof of barbed congruence needs a universal quantification over
all contexts. By proving that barbed congruence coincides with bisimilarity
of a labeled transition system we get the best of two worlds: the intuitively
attractive barbed congruence gains the powerful proof methods of bisim-
ilarity. Barbed congruence for the pi-calculus corresponds to strong early
congruence, and this result is relevant enough to warrant mechanisation.

Another area of interest is to apply Isabelle to verify properties of actual
agents, such as proving that two agents are bisimilar. The Mobility Work-
bench for the pi-calculus, and the Concurrency Workbench for CCS can
automatically compute bisimulation equivalences for simple agents. These
programs are not verified, and we lack the techniques to do so effectively,
but their output can be verified. Given two agents these tools produce a
candidate bisimulation relation if the agents are bisimilar. With a symbolic
semantics implemented in Isabelle, we could check whether or not this
candidate relation actually is a bisimulation.

The Mobility Workbench does not reason efficiently about agents using
Replication – the state space explodes for replicated agents even in a sym-
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bolic semantics. Properties of bisimilarity for such agents can be checked
in Isabelle, and heuristicts to facilitate such reasoning can be added.
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Part IV:

Psi-calculi





22. Parametric calculi

The pi-calculus is expressive, but its only type of data are names, which also
function as channels. This limits its use when modeling advanced systems
and protocols which often require more expressive data such as inductively
defined datatypes. These can be encoded in the pi-calculus, but the result-
ing agents will be bulky and cumbersome to work with – as the complexity
of the agents increase, so does the effort required to reason about them.

To circumvent this problem, augmentations and variants of the
pi-calculus have been proposed, where the desired datatypes are taken
as primitive – there is the Spi-calculus by Abadi and Gordon [8], and the
Applied pi-calculus by Abadi and Fournet [7] just to name two. Whereas
the modeling convenience of these calculi significantly exceeds that of
the pi-calculus, this convenience comes at a price – the meta theoretical
proofs of the calculi become significantly more complex. For example,
the semantics of the Applied pi-calculus is defined using two levels of
processes (pure and extended), an inductively defined reduction relation,
an algebraically defined structural congruence, and (in order to achieve
compositionality) a notion of a barb and an explicit quantification over
contexts.

22.1 Psi-calculi
Our contribution is to define psi-calculi: a framework where a range of cal-
culi can be formulated with a lean and symmetric semantics, and where
proofs can be conducted using straightforward induction without resort-
ing to a structural congruence or explicit quantification of contexts. We
claim to be the first to formulate such truly compositional labeled oper-
ational semantics for calculi of this caliber. Psi-calculi accommodate not
only the examples covered in the thesis so far, but also extensions such as
the pi-calculus with polyadic synchronisation [30], and fusion [40]. For a
full overview of how these calculi are encoded, see [17].

The main idea is that a psi-calculus is obtained by extending the basic
untyped pi-calculus with three parameters. The first is a set of data terms
which can function as both communication channels and communicated
objects. The second is a set of conditions, for use in conditional constructs
such as if statements. The third is a set of assertions, used to express e.g.
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constraints or aliases, which can resolve the conditions. These sets need not
be disjoint, and one of our main results is to identify minimal requirements
on them. They turn out to be quite general and natural.

In comparison to the applied pi-calculus We allow arbitrary assertions
(and not only declarations of aliases), and arbitrary conditions (and not
only equality tests). Also, we base our exposition on nominal datatypes and
these accommodate e.g. alpha-equivalence classes of terms with binders.
For example, we can use a higher-order logic for assertions and conditions,
and higher-order formalisms such as the lambda calculus for data terms
and channels. Last but not least the formalisation is lean and symmetric.
Thus we get the best of two worlds: expressiveness and therefore modeling
convenience significantly exceeds that of the applied pi-calculus, while the
purity of the semantics is on par with the original pi-calculus.

The straightforward definitions make our proofs suitable for checking in
a theorem prover. As for CCS and the pi-calculus, we have formalised all of
our meta theoretical results completely in Isabelle.

For the rest of this chapter we will define psi-calculi, its semantics and a
notion of strong bisimilarity. Later chapters will cover the formalisation in
Isabelle.

22.2 Definitions
A nominal data type is a nominal set together with a set of equivariant func-
tions on it. In particular we require a substitution function, which intu-
itively substitutes elements for names. If X is an element of a data type,
x̃ is a sequence of names without duplicates and T̃ s is an equally long se-
quence of elements, the substitution X[x̃ := T̃ ] is an element of the same
data type as X. In a traditional data type substitution can be thought of as
replacing all occurrences of names x̃ by T̃ s. In a calculus with binders it can
be thought of as replacing the free names, alpha-converting any binders to
avoid capture. Formally, we define substitution as any equivariant function
satisfying a set of substitution laws. The full list is given in Section 24.2.1

The main point of using nominal datatypes is that we obtain a general
framework, allowing many different instantiations. Our only requirements
are on the notions of support, name swapping, and substitution. This corre-
sponds precisely to the essential ingredients for data transmitted between
agents. Since names can be statically scoped and data sent into and out
of scope boundaries, it must be possible to discern exactly what names
are contained in what data items, and this is just the role of the support.
In case a data element intrudes a scope, the scoped name needs to be al-
pha converted to avoid clashes, and name swapping can achieve precisely
this. When a term is received in a communication between agents it must
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replace all occurrences of the placeholder in the input construct, in other
words, the placeholder is substituted by the term.

Since these are the only things we assume about data terms we can
handle datatypes that are not inductively defined, such as equivalences
classes and sets defined by comprehension or co-induction. Examples
include higher-order datatypes such as the lambda calculus, and even
agents of a psi-calculus. As long as it satisfies the axioms of a nominal data
type it can be used in our framework. Similarly, the notions of conditions,
i.e., the tests on data that agents can perform during their execution,
and assertions, i.e. the facts that can be used to resolve conditions, are
formulated as nominal datatypes. This means that logics with binders
and even higher-order logics can be used. Moreover, alpha-variants of
terms can be formally equated by taking the quotient of terms under alpha
equality, thereby facilitating the formalism and proofs.

22.2.1 Terms, assertions, and conditions
Formally, a psi-calculus is defined by instantiating three nominal datatypes
and four operators:

Definition 22.1 (Psi-calculus parameters). A psi-calculus requires the three
(not necessarily disjoint) nominal datatypes:

T the (data) terms, denoted by M , N

C the conditions, denoted by ϕ

A the assertions, denoted by Ψ

and the four equivariant operators:
.↔: T×T → C Channel Equivalence

⊗ : A×A → A Composition

1 : A Unit

`⊆ A×C Entailment

The binary functions above will be written in infix. Thus, if M and N
are terms then M

.↔ N is a condition, pronounced “M and N are channel
equivalent" and if Ψ and Ψ ′ are assertions then so is Ψ ⊗Ψ ′ . Also we write
Ψ ` ϕ, pronounced “Ψ entails ϕ", for (Ψ,ϕ) ∈`.

The data terms are used to represent all kinds of data, including commu-
nication channels. Intuitively, two agents can communicate if one sends
and the other receives along the same channel. This is why we require a
condition M

.↔ N to say that M and N represent the same communication
channel. For example, in the pi-calculus

.↔ would be just identity of names.
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The assertions will be used to declare information necessary to resolve
the conditions. Assertions can be contained in agents and represent con-
straints; they can contain names and thereby be syntactically scoped and
represent information known only to the agents within that scope. The op-
erator ⊗ on assertions will, intuitively, be used to represent conjunction of
the information in the assertions. The assertion 1 is the unit for ⊗.

Intuitively Ψ ` ϕ means that given the information in Ψ, it is possible
to infer ϕ. We say that two assertions are equivalent if they entail the same
conditions:

Definition 22.2 (assertion equivalence). Two assertions are equivalent,
written Ψ 'Ψ ′, if for all ϕ we have that Ψ ` ϕ⇔Ψ ′` ϕ.

We can now formulate our requisites on valid psi-calculus parameters:

Definition 22.3 (Requisites on valid psi-calculus parameters).

Channel Symmetry: Ψ ` M
.↔ N =⇒Ψ ` N

.↔ M

Channel Transitivity: If Ψ ` M
.↔ N and Ψ ` N

.↔ L then Ψ ` M
.↔ L .

Compositionality: If Ψ 'Ψ ′ then Ψ ⊗Ψ ′′ 'Ψ ′⊗Ψ ′′ .

Identity: Ψ ⊗ 1 'Ψ

Associativity: (Ψ ⊗Ψ ′ ) ⊗Ψ ′′ 'Ψ ⊗ (Ψ ′⊗Ψ ′′ )

Commutativity: Ψ ⊗Ψ ′ 'Ψ ′⊗Ψ

Our requisites on a psi-calculus is that the channel equivalence is a par-
tial equivalence relation, that ⊗ is compositional, and that the equivalence
classes of assertions form an abelian monoid. These requisites turn out to
be strictly minimal for our results in Section 22.3 to hold. Note that channel
equivalence is not required to be reflexive. Thus it is possible to have data
terms that are not channel equivalent to anything at all, meaning that they
cannot be used as channels.

As an example, we can choose data terms inductively generated by some
signature, assertions and conditions to be elements of a first-order logic
with equality over these terms, entailment to be logical implication, ⊗ to
be conjunction and 1 to be TRUE. To verify that this indeed is a psi-calculus
one needs to check the requirements on a nominal data type (meaning the
notions of swapping, support and substitution are defined and fulfills the
required properties), and that the requisites in Definition 22.3 hold.

22.2.2 Frames
Assertions can contain information about names, and names can be
scoped using the familiar pi-calculus operator ν. For example, in a
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cryptography application an assertion Ψ could be that the a datum
represents the encoding of a message using a key k. This Ψ can occur
under the scope of νk, to signify that the key is known only locally. In
order to admit this in a general way we use the notion of a frame, first
introduced by Abadi and Fournet [7]. Basically, a frame is just an assertion
with additional information about which names are scoped. The example
above where Ψ occurs under the scope of k will be written (νk)Ψ, to signify
a frame consisting of the assertion Ψ where the name k is local.

In the following ã means a finite (possibly empty) sequence of names,
a1, . . . , an . The empty sequence is written ε and the concatenation of ã and
b̃ is written ãb̃. When occurring as an operand of a set operator, ã means
the corresponding set of names {a1, . . . , an}. We also use sequences of terms,
conditions, assertions etc. in the same way.

Definition 22.4 (Frame). A frame is of the form (νb̃)Ψ where b̃ is a sequence
of names that bind into the assertionΨ. We identify alpha variants of frames.
1

We use F,G to range over frames. Since we identify alpha variants we can
always choose the bound names freely.

Notational conventions: We write justΨ for (νε)Ψwhen there is no risk of
confusing a frame with an assertion, and ⊗ to mean composition on frames
defined by (νb̃1)Ψ1⊗(νb̃2)Ψ2 = (νb̃1b̃2)Ψ1⊗Ψ2 where b̃1 ] b̃2,Ψ2 and vice
versa. We write (νc)((νb̃)Ψ) to mean (νcb̃)Ψ.

Intuitively a condition is entailed by a frame if it is entailed by the asser-
tion and does not contain any names bound by the frame. Two frames are
equivalent if they entail the same conditions:

Definition 22.5 (Equivalence of frames). We define F `ϕ to mean that there
exists an alpha variant (νb̃)Ψ of F such that b̃ ]ϕ and Ψ `ϕ. We also define
F 'G to mean that for all ϕ it holds that F `ϕ iff G `ϕ.

Continuing the example of first-order logic with equality, assume that the
term enc(M ,k) represents the result of encoding message M with key k. Let
Ψ be the assertion C = enc(M ,k), stating that the ciphertext C is the result of
encoding M by k. If an agent contains this assertion the environment of the
agent will be able to use it to resolve tests on the data, in particular to infer
that C = enc(M ,k). In other words, if the environment receives C it can test
if this is the encryption of M . In order to restrict access to the key k it can be
enclosed in a scope νk. The environment of the agent will then have access
to the frame (νk)Ψ rather thanΨ itself. This frame is much less informative,

1In some presentations frames have been written just as pairs 〈b̃ ,Ψ〉. The notation in this
paper better conveys the idea that the names bind into the assertion, at the slight risk of
confusing frames with agents. Formally, we establish frames and agents as separate types,
although a valid intuition is to regard a frame as a special kind of agent, containing only
scoping and assertions. This is the view taken in [7].
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for example it does not hold that (νk)Ψ`C = enc(M ,k). Here great care has
to be made to formulate the class of allowed conditions. If these only con-
tain equivalence tests of terms, (νk)Ψ will entail nothing but tautologies
and be equivalent to 1. But if quantifiers are allowed in the conditions, then
by existential introduction Ψ ` ∃k.C = enc(M ,k), and since this condition
has no free k we get (νk)Ψ` ∃k.C = enc(M ,k). In other words the environ-
ment will learn that C is the encryption of M for some key k.

Most of the properties of assertions carry over to frames. Channel sym-
metry and channel transitivity, identity, associativity and commutativity all
hold, but compositionality in general does not. In other words, there are
psi-instances with frames F,G , H where F ' G but not F⊗H ' G⊗H . An
example is if there are assertions Ψ, Ψ′ and Ψa for all names a, condi-
tions ϕ′ and ϕa for all names a, and where the entailment relation satisfies
Ψa `ϕa and Ψ′ `ϕ′. Suppose composition is defined such that Ψ⊗Ψ=Ψ

and all other compositions yield Ψ′. By adding a unit element this satisfies
all requirements on a psi-calculus. In particular ⊗ is trivially compositional
because no two different assertions are equivalent. Also (νa)Ψa ' Ψ, but
Ψ⊗(νa)Ψa 6'Ψ⊗Ψ since Ψ⊗Ψa =Ψ′ `ϕ′.

22.2.3 Agents
Definition 22.6 (psi-calculus agents). Given valid psi-calculus parameters
as in Definitions 22.1 and 22.3, the psi-calculus agents, are denoted by by
P,Q, . . ., and are of the following forms.

0 Nil

M N .P Output

M(λx̃)N .P Input

caseϕ1 : P1 [] · · · []ϕn : Pn Case

(νa)P Restriction

P |Q Parallel

!P Replication

(|Ψ|) Assertion

In the Input M(λx̃)N .P we require that x̃ ⊆ n(N ) is a sequence without du-
plicates, and the names x̃ bind occurrences in both N and P. Restriction
binds a in P. We identify alpha equivalent agents. An assertion is guarded
if it is a subterm of an Input or Output. In a replication !P there may be no
unguarded assertions in P, and in caseϕ1 : P1 [] · · · []ϕn : Pn there may be no
unguarded assertion in any Pi .

In the Output and Input forms M is called the subject and N the object.
Output and Input are similar to those in the pi-calculus, but arbitrary terms
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can function as both subjects and objects. In the input M(λx̃)N .P the intu-
ition is that there is a pattern matching where the pattern (λx̃)N can match
any term obtained by instantiating x̃, e.g., M(λx, y) f (x, y).P can only com-
municate with an output M f (N1, N2) for some data terms N1, N2. This can
be thought of as a generalisation of the polyadic pi-calculus where the pat-
terns are just tuples of names. Another significant extension is that we allow
arbitrary data terms also as communication channels. Thus it is possible to
include functions that create channels.

The case construct as expected works by behaving as one of the Pi for
which the corresponding ϕi is true. caseϕ1 : P1 [] · · · []ϕn : Pn is sometimes
abbreviated as case ϕ̃ : P̃ , or if n = 1 as ifϕ1 then P1. In psi-calculi where
a condition > exists such that Ψ ` > for all Ψ we write P +Q to mean
case > : P [] > : Q.

Input subjects are underlined to facilitate parsing of complicated expres-
sions; in simple cases we often omit the underline. In the traditional pi-
calculus terms are just names and its input construct a(x) .P can be rep-
resented as a(λx)x.P . In some of the examples to follow we shall use the
simpler notation a(x) .P for this input form.

In some examples we omit a trailing 0, writing just M N for M N .0. If the
object of an Output is a long term we enclose it in brackets 〈 〉 to make it
easier to parse.

For a simple example, the pi-calculus [58] can be represented as a psi-
calculus where the only data terms are names, the only assertion is 1, and
the conditions are equality tests on names. Formally:

T = N

C = {a = b : a,b ∈ T}∪ {a
.↔ b : a,b ∈ T}

A = {1}

⊗ = λΨ1,Ψ2. 1

` = {(1, a = a) : a ∈N }∪ {(1, a
.↔ a) : a ∈N }

Here we can let > be a = a and can thus represent pi-calculus sum through
case. We obtain the polyadic pi-calculus by adding the tupling symbols
tn for tuples of arity n to T., i.e. T = N ∪ {tn(a1, . . . , an) : a1, . . . , an ∈ N }.
The polyadic output is to simply output the corresponding tuple of object
names, and the polyadic input a(b1, . . . ,bn) .P is represented by a pattern
matching a(λb1, . . . ,bn)tn(b1, . . . ,bn) .P . Strictly speaking this allows tuples
also in subject position in agents, but as we shall see such prefixes will not
give rise to any transition, since in this psi-calculus M

.↔ M is only entailed
when M is a name, i.e., only names are channels.

In a psi-calculus the channels can be arbitrary terms. This means that it
is possible to introduce functions on channels (e.g., if M is a channel then
so is f (M)). It also means that a channel can contain more than one name.
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An extension of this kind is explored by Carbone and Maffeis [30] in the
so called pi-calculus with polyadic synchronisation, eπ. Here action sub-
jects are tuples of names, and it is demonstrated that this allows a grad-
ual enabling of communication by opening the scope of names in a sub-
ject, results in simple representations of localities and cryptography, and
gives a strictly greater expressiveness than standard pi-calculus. We can
represent eπ by using tuples of names in subject position. The only mod-
ification to the representation of the polyadic pi-calculus is to extend ` to
`= {(1, M

.↔ M) : M ∈ T}, and to remove the conditions of type M = N (since
they can be encoded in eπ).

The data terms can be also be drawn from a higher-order formalisms.
It is thus possible to transmit functions between agents. For example, let
T be the lambda calculus, containing abstractions λx.M and applications
M N . In the parallel composition a 〈λx.M〉 .P | a(z) .b 〈zN〉 .Q the left hand
component transmits the functionλx.M to the right, where the application
of it to N is transmitted along b. Reduction would be represented as a binary
predicate over lambda terms and could be tested in psi-calculus conditions
(the reduction rules would be part of the definition of entailment). In this
sense psi can resemble a higher-order calculus. It is even possible to let the
terms be the psi-calculus agents themselves. An agent transmitted as a term
cannot directly communicate with the agent that sent or received it, but
there is a possibility of indirect interaction through the entailment relation.
This area we leave for further study.

22.2.4 Operational semantics
In this section we define an inductive transition relation on agents. In par-
ticular it establishes what transitions are possible from a parallel composi-
tion P |Q. In the standard pi-calculus the transitions from a parallel compo-
sition can be uniquely determined by the transitions from its components,
but in psi-calculi the situation is more complex. Here the assertions con-
tained in P can affect the conditions tested in Q and vice versa. For this
reason we introduce the notion of the frame of an agent as the combination
of its top level assertions, retaining all the binders. It is precisely this that
can affect a parallel agent.

Definition 22.7 (Frame of an agent). The frame F (P ) of an agent P is de-
fined inductively as follows:

F (M(λx̃)N .P ) =F (M N .P ) =F (case ϕ̃ : P̃ ) =F (!P ) =F (0) = 1

F ((|Ψ|)) =Ψ
F (P |Q) =F (P ) ⊗ F (Q)

F ((νb)P ) = (νb)F (P )
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For a simple example, if a ]Ψ1:

F ((|Ψ1|) | (νa)((|Ψ2|)) |M N .(|Ψ3|)) = (νa)(Ψ1⊗Ψ2)

Here Ψ3 occurs under a prefix and is therefore not on top level. An agent
where all assertions are guarded thus has the frame 1. In the following we
often write (νb̃P )ΨP for F (P ), but note that this is not a unique represen-
tation since frames are identified up to alpha equivalence.

The actions α that agents can perform are of three kinds: output actions,
input actions of the early kind, meaning that the input action contains the
received object, and the silent action τ. The operational semantics will con-

sist of transitions of the formΨ� P
α−→ P ′. This transition intuitively means

that P can perform an actionα leading to P ′, in an environment that asserts
Ψ.

Definition 22.8 (Actions). The actions are denoted by by α,β and are of the
following three kinds:

M(νã)N Output, where ã ⊆ n(N )

M N Input

τ Silent

For actions we refer to M as the subject and N as the object. We define
bn(M(νã)N ) = ã, and bn(α) =; ifα is an input or τ. We also define n(τ) =;
and n(α) = n(N )∪n(M) if α is an output or input. As in the pi-calculus, the
output M(νã)N represents an action sending N along M and opening the
scopes of the names ã. Note in particular that the support of this action
includes ã. Thus M(νa)a and M(νb)b are different actions.

Definition 22.9 (Transitions). A transition is of the kindΨ�P
α−→ P ′, mean-

ing that when the environment contains the assertion Ψ the agent P can do
an α to become P ′. The transitions are defined inductively in Table 22.1. We

write P
α−→ P ′ to mean 1 � P

α−→ P ′.

Both agents and frames are identified by alpha equivalence. This means
that we can choose the bound names fresh in the premise of a rule. In a tran-
sition the names in bn(α) count as binding into both the action object and
the derivative, and transitions are identified up to alpha equivalence. This
means that the bound names can be chosen fresh, substituting each occur-
rence in both the object and the derivative. This is the reason why bn(α) is
in the support of the output action: otherwise it could be alpha-converted
in the action alone. Also, for the side conditions in SCOPE and OPEN it is im-
portant that bn(α) ⊆ n(α). The freshness conditions on the involved frames
will ensure that if a name is bound in one agent its representative in a frame
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IN
Ψ` M

.↔ K

Ψ� M(λỹ)N .P
K N [ỹ :=L̃]−−−−−−−→ P [ỹ := L̃]

OUT
Ψ` M

.↔ K

Ψ� M N .P
K N−−→ P

CASE
Ψ� Pi

α−→ P ′ Ψ`ϕi

Ψ� case ϕ̃ : P̃
α−→ P ′

COM

ΨQ⊗Ψ� P
M (νã)N−−−−−−→ P ′

ΨP⊗Ψ� Q
K N−−→ Q ′ Ψ⊗ΨP⊗ΨQ ` M

.↔ K

Ψ� P |Q
τ−→ (νã)(P ′ |Q ′)

ã ]Q

PAR
ΨQ⊗Ψ� P

α−→ P ′

Ψ� P |Q α−→ P ′|Q
bn(α) ]Q SCOPE

Ψ� P
α−→ P ′

Ψ� (νb)P
α−→ (νb)P ′

b ]α,Ψ

OPEN
Ψ� P

M (νã)N−−−−−−→ P ′

Ψ� (νb)P
M (νã∪{b})N−−−−−−−−−→ P ′

b ] ã,Ψ, M
b ∈ supp(N )

REP
Ψ� P | !P

α−→ P ′

Ψ� !P
α−→ P ′

Figure 22.1: Operational semantics. Symmetric versions of COM and PAR are elided.
In the rule COM we assume that F (P ) = (νb̃P )ΨP and F (Q) = (νb̃Q )ΨQ where b̃P

is fresh for all ofΨ, b̃Q ,Q, M and P , and that b̃Q is correspondingly fresh. In the rule

PAR we assume that F (Q) = (νb̃Q )ΨQ where b̃Q is fresh forΨ,P andα. In OPEN the
expression ã ∪ {b} means the sequence ã with b inserted anywhere.
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is distinct from names in parallel agents, and also (in PAR) that it does not
occur on the transition label.

The environmental assertionsΨ� · · · in Table 22.1 express the effect that
the environment has on the agent: enabling conditions in CASE, giving rise
to action subjects in IN and OUT and enabling interactions in COM. ThusΨ
never changes between hypothesis and conclusion except for the parallel
operator, where an agent is part of the environment for another agent. In a
derivation tree for a transition, the assertion will therefore increase towards
the leafs by application of PAR and COM. If all environmental assertions are
erased and channel equivalence replaced by identity we get the standard
laws of the pi-calculus enriched with data structures.

In comparison to the applied pi-calculus and the concurrent constraint
pi calculus one main novelty is the inclusion of environmental assertions
in the rules. They are necessary to make our semantics compositional, i.e.,
the effect of the environment on an agent is wholly captured by the seman-
tics. In contrast, the labeled transitions of the applied and the concurrent
constraint pi-calculi must rely on an auxiliary structural congruence, con-
taining axioms such as scope extension (νa)(P |Q) ≡ (νa)P |Q if a ]Q. With
our semantics such laws are derived rather than postulated. The advantage
of our approach is that proofs of meta-theoretical results such as composi-
tionality are much simpler since there is only the one inductive definition
of transitions.

22.2.5 Illustrative examples
For a simple example of a transition, suppose for an assertion Ψ and con-
dition ϕ that Ψ`ϕ. Assume that

∀Ψ′.Ψ′ � Q
α−→ Q ′

i.e., Q has an actionα regardless of the environment. Then by the CASE rule
we get

Ψ� ifϕ then Q
α−→ Q ′

i.e., ifϕ then Q has the same transition if the environment is Ψ. Since
F ((|Ψ|)) =Ψ and Ψ⊗1 =Ψ we get by PAR that

1 � (|Ψ|) | ifϕ then Q
α−→ (|Ψ|) |Q ′

Data terms may also represent communication channels and here the
channel equivalence comes into play. For example, in a polyadic pi-calculus
the terms include tuples and projection functions with the usual equal-
ities, for example π1(t2(a,b)) = a. If these terms can represent channels
then they must represent the same channel, consequently we must have
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Ψ`π1(t2(a,b))
.↔ a for all Ψ. As an example,

aN .P |π1(t2(a,b)) (y) .Q
τ−→ P |Q[y := N ]

Agents such as π1(t2(a,b)) (y) .Q can arise naturally if tuples of channels
are transmitted as objects. For example, an agent that receives a pair
of channels along c and then inputs along the first of them is written
c(x) .π1(x)(y) .Q. When put in parallel with an agent that sends t2(a,b)
along c it will have a transition leading to the agent where x is substituted
by t2(a,b), i.e. π1(t2(a,b)) (y) .Q.

The semantics makes no particular provision for an equality of terms in
object position. Thus, the agents ca .P and cπ1(t2(a,b)) .P have different
transitions, and correspond to sending out the unevaluated “texts” a and
π1(t2(a,b)) respectively. To represent agents which send evaluated “values”
we can do as in the applied pi-calculus where assertions declare equiva-
lence of terms and agents send freshly generated aliases, e.g.

(νz)(cz .P | (|z =π1(t2(a,b))|))

This agent has the same transition as (νz)(cz .P | (|z = a|)). Any agent receiv-
ing the z will not be able to distinguish if z is a or t2(a,b)) since these terms
are equated by all assertions. Also, if a and b are scoped as in

(νa,b, z)(cz .P | (|z =π1(t2(a,b))|))

then their scopes will not open as a consequence of the output. In the ap-
plied pi-calculus this is the only form of communication and it is not possi-
ble to directly transmit data structures containing channel names, like the
name tuples of the polyadic pi-calculus above. In psi-calculi these commu-
nication possibilities can coexist.

The main technical issue in the semantics is the treatment of scoping, as
illustrated by the following example where the terms are just names. The
intuition is that there is a communication channel available to all agents,
and agents can declare any name to represent it through an assertion. The
assertions are thus sets of names, and any name occurring in the assertion
can be used as the subject of an action. Any two names in the assertion are
deemed channel equivalent. Formally,

T = N

C = {a
.↔ b : a,b ∈ T}

A = Pfin(N )

⊗ = ∪
1 = ;
` = {(Ψ, a

.↔ b) : a,b ∈Ψ}
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Omitting the action and prefix objects we get

{a,b} � a .0 a−→ 0

and also
{a,b} � a .0 b−→ 0

By the PAR rule we have

; � a .0 | (|{a,b}|) a−→ 0 | (|{a,b}|)

and
; � a .0 | (|{a,b}|) b−→ 0 | (|{a,b}|)

Applying a restriction we get

; � (νa)(a .0 | (|{a,b}|))
b−→ (νa)(0 | (|{a,b}|))

but no corresponding action with subject a because of the side condition
on SCOPE. Thus, a communication through COM can be inferred from

(νa)(a .0 | (|{a,b}|)) | b .0

but not from
(νa)(a .0 | (|{a,b}|)) | a .0

This instance of a psi-calculus also illustrates two features of the seman-
tics: firstly that channel equivalence is used in all three rules IN, OUT and
COM, and secondly that assertions rather than frames represent the envi-
ronment. Both issues are related to the law of scope extension, i.e., if a ]Q
then the agents (νa)(P | Q) and ((νa)P ) | Q should have the same transi-
tions. Elaborating the example above and noting that {a}∪ {b} ` a

.↔ b, we
get that

(νa,b)((|{a}|) | (|{b}|) | a .0 | b .0)

has an internal communication. By scope extension this agent should have
the same transitions as P |Q where

P = (νa)((|{a}|) | a .0) Q = (νb)((|{b}|) | b .0)

Here F (P ) = (νa){a} and F (Q) = (νb){b} are alpha equivalent. Since they
will be composed below we choose different representatives for the bound
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names. A communication from P |Q is inferred by COM and the premises

1. {b} � P
b−→ (νa)((|{a}|) | 0)

(derived using {a} ⊗ {b} = {a,b} ` a
.↔ b in OUT )

2. {a} � Q
a−→ (νb)((|{b}|) | 0)

(derived using {b} ⊗ {a} = {a,b} ` a
.↔ b in IN)

3. {a} ⊗ {b} = {a,b} ` a
.↔ b

Note how the action subjects are derived by the assertions in both cases to
not clash with the binders, and that channel equivalence is necessary in all
three rules.

The same example demonstrates why transitions in Table 22.1 are de-
fined with assertions and not frames, for whereas {a,b} ` a

.↔ b the corre-
sponding result cannot be obtained from the frames of the agents. We have
that F (Q) ⊗ {a} = (νb){a,b} 0 a

.↔ b, so that frame is not useful for deriving
a transition from P . Our earlier attempt [48] erroneously used frames rather
than assertions, and this means that scope extension does not hold unless
a further condition is imposed on the entailment relation to eliminate this
kind of example. We shall discuss this issue in more detail in Section 34.1.3.

Finally, a more complicated variant of the example motivates the requi-
site that

.↔ must be transitive. Consider any psi-calculus where Ψ1 and Ψ2

such that Ψ1⊗Ψ2 ` a
.↔ b and Ψ1⊗Ψ2 ` b

.↔ c. Then the agent

(νa,b,c)((|Ψ1|) | (|Ψ2|) | a .0 | c .0)

has an internal communication using b. If c ]Ψ1 and a,b ]Ψ2, by scope ex-
tension the agent should behave similarly as

(νa,b)((|Ψ1|) | a .0) | (νc)((|Ψ2|) | c .0)

Clearly the left hand component cannot act with a subject a or b, so the
only possibility to derive an internal communication is that it can act with
subject c given assertion Ψ2, i.e. that

Ψ2 � (νa,b)((|Ψ1|) | a .0)
c−→ ·· ·

This requires that Ψ1⊗Ψ2 ` a
.↔ c.

22.3 Bisimilarity
In this section we define a notion of strong bisimilarity on agents.
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22.3.1 Definition
In the standard pi-calculus the notion of strong bisimulation is used to for-
malise the intuition that two agents “behave in the same way”; it is de-
fined as a symmetric binary relation R satisfying the simulation property:
R(P,Q) implies that for α such that bn(α) ]Q,

P
α−→ P ′ =⇒Q

α−→ Q ′∧R(P ′,Q ′)

For a psi-calculus we in addition need to take the assertions into consider-
ation. The behaviour of an agent is always taken with respect to an environ-
mental assertion, and therefore a bisimulation must include the assertion
to represent this. In other words, we get a ternary relation R(Ψ,P,Q), say-
ing that P and Q behave in the same way when the environment asserts Ψ.
Because of this two additional issues arise. The first is that the agents can
affect their environment through their frames (and not only by perform-
ing actions), and this must be represented in the definition of bisimulation.
The second is that the environment (represented by Ψ in R(Ψ,P,Q)) can
change, and for P and Q to be bisimilar they must continue to be related
after such changes. This leads to the following definition of strong bisimu-
lation.

Definition 22.10 (Bisimulation). A bisimulation R is a ternary relation be-
tween assertions and pairs of agents such that R(Ψ,P,Q) implies all of

1. Static equivalence: Ψ⊗F (P ) 'Ψ⊗F (Q)
2. Symmetry: R(Ψ,Q,P )
3. Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′,P,Q)

4. Simulation: for allα,P ′ such that bn(α) ]Ψ,Q there exists a Q ′ such that

Ψ� P
α−→ P ′ =⇒Ψ� Q

α−→ Q ′∧R(Ψ,P ′,Q ′)

We define P .∼Ψ Q to mean that there exists a bisimulation R such that
R(Ψ,P,Q), and write .∼ for .∼1.

Clauses 2 and 4 are familiar from the pi-calculus. Clause 1 captures the
fact that the related agents have exactly the same influence on the envi-
ronment through their frames, namely that when they add to the existing
environment (Ψ) then exactly the same conditions are entailed. Clause 3
means that when the environment changes (by adding a new assertion Ψ′)
the agents are still related. An example may clarify the role of this clause.
Let β be a prefix and let ϕ be any non-trivial condition, and consider

P =β.β.0+β.0+β. ifϕ then β.0

Q =β.β.0+β.0
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P can nondeterministically choose between three branches and Q between
the two first of them. Here P and Q are not bisimilar. If P performs an action
corresponding to its third case, reaching the agent P ′ = if ϕ then β.0, there
is no way that Q can simulate since neither Q ′ = 0 nor Q ′ =β.0 is equivalent
to P ′ in all environments. In fact, any reasonable variant of bisimulation
that equates P and Q will not be preserved by parallel. To see this, let T
be γ.(|Ψ|), where γ is any prefix and Ψ an assertion that entails ϕ. Then the

transition P | T
β−→ P ′ | T cannot be simulated by Q|T , since P ′|T can only

do an action γ followed by an action β, whereas β.0|T can do β immedi-
ately, and 0|T can do no β at all. This demonstrates why clause 3, extension
of arbitrary assertion, is necessary: it says that after each step all possible
extensions of the assertion must be considered. If we would merely require
this at top level, i.e. remove clause 3 and instead require ∀Ψ.R(Ψ,P,Q) in
the definition of P .∼Q, the extensions would not recur; as a consequence P
and Q in the example would be equivalent, and the equivalence would not
be preserved by parallel.

For another example, consider

R = ifϕ then β . ifϕ then β.0 S = ifϕ then β.β.0

In R the condition ϕ is checked twice. In general R and S are not equiv-
alent. To see this, let Ψ and Ψ′ be such that Ψ ` ϕ and Ψ⊗Ψ′ 6` ϕ. We

then have that Ψ � R
β−→ ifϕ then β.0 and it cannot be simulated by Ψ �

S
β−→ β.0 because of the recurring clause of extension of arbitrary assertion:

ifϕ then β.0 has no transition in the environment Ψ⊗Ψ′. However, if the
entailment relation satisfies weakening, i.e. Ψ`ϕ⇒Ψ⊗Ψ′ `ϕ, we get the
intuitive result that R and S are bisimilar. Weakening is a quite natural re-
quirement, intuitively it says that no assertion can “undo" any entailments.
This also demonstrates why we rejected the smaller and simpler definition
of .∼ as the largest relation satisfying

∀Ψ.Ψ� P
β−→ P ′ =⇒Ψ� Q

β−→ Q ′ ∧ P ′ .∼Q ′

The difference is that here bisimulation recurringly requires to hold for all
assertions, not only for those that are extensions of the ones passed so far.
This would have the unintuitive effect of making R and S in the example
above non-bisimilar, even if weakening holds.

22.4 Part outline
This part of the thesis will formalise the meta-theoretical results for psi-
calculi, which are more intricate than the ones for CCS or the pi-calculus
covered previously in the thesis.
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In Chapter 23 we describe how binding sequences are encoded
in Isabelle, what properties are required of the sequences, and how
alpha-equivalence of terms with binding sequences is computed.

In Chapter 24 we describe how we achieve the parametricity for the
terms, assertions, conditions, and operators for psi-calculi; we also define
psi-calculi agents, and define parallel substitution on agents.

In Chapter 25 we encode the operational semantics of psi-calculi, and
derive nominal induction rules for the transition system.

In Chapter 26 we provide heuristics to automatically derive inversion
rules for calculi which use sequences of binders.

In Chapter 27 we define strong bisimilarity for psi-calculi and prove that
it is preserved by all operators except Input and Replication. We also define
strong equivalence and prove that it is preserved by all operators except
Replication. The proofs that both of these equivalences are preserved by
Replication are deferred to Chapter 28.

In Chapter 28 we define structural congruence and prove that all struc-
turally congruent agents are also strongly bisimilar and strongly equivalent.
We also prove that strong bisimilarity and strong equivalence are preserved
by Replication, and hence that strong equivalence is a congruence.

In Chapter 29 we introduce weak bisimilarity for psi-calculi. We define
two versions, one where the entailment relation satisfy weakening, i.e. that
any condition made true stays true, and one where it does not. The weak
bisimilarity with weakening is substantially simpler than the one without.

In Chapter 30 we formalise weak bisimilarity without weakening, and
prove that it preserved by all operators except Input and Case.

In Chapter 31 we define weak congruence and prove that it is a congru-
ence.

In Chapter 32 we add weakening to the entailment relation, define a sim-
pler version of weak bisimilarity, and prove that it coincides with the weak
bisimilarity defined in Chapter 30.

In Chapter 33 we encode the τ-prefix, and Sum, and prove the standard
τ-laws.

Chapter 34 concludes and discusses the experiences made by formalis-
ing psi-calculi in parallel with its theoretical development. We also discuss
inconsistencies we uncovered in three other process algebras as a result of
our formalisation.
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23. Binding sequences

The main difficulty when formalising any calculus with binders is to handle
alpha-equivalence. The techniques that have been used thus far by theo-
rem provers share the trait that they only reason about single binders. This
works well for many calculi, but psi-calculi require binding sequences of
arbitrary length. For our psi-calculus datatype (Definition 22.6), a binding
sequence is needed in the Input-case where the term M(λx̃)N .P has the
sequence x̃ binding into N and P . The second place sequences are needed
is when defining frames (Definition 22.4). Frames are derived from agents,
and as agents can have an arbitrary number of binders, so can the frames.
The third occurrence of binding sequences can be found in the operational

semantics (Figure 22.1). In the transitionΨ� P
M (νã)N−−−−−−→ P ′, the sequence ã

represents the bound names in P which occur in the object N .
In order to formalise these types of calculi efficiently in a theorem prover,

libraries with support for sequences of binders have to be added. In this
chapter we will describe the techniques used in this thesis. They build on
ideas from Urban and Berghofer, and parts of the the theories have already
been incorporated into Nominal Isabelle.

23.1 Definitions
To obtain a binding sequence we initially define a nominal datatype which
binds a single name to a term of finite support.

Definition 23.1 (bindSeq). The nominal datatype bindSeq takes one type
parameter α of finite support as argument.

nominal_datatype α bindSeq = Base α

| Bind «name» (α bindSeq)

We then obtain a binding sequence by recursing over a list of names,
binding them one at a time.
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Definition 23.2 (bindSequence).

bindSequence :: name list ⇒α⇒α bindSeq

bindSequence ε T = Base T

bindSequence (xx̃) T = Bind x bindSequence x̃ T

We will use the syntactic sugar [x̃].T to mean bindSequence x̃ T. More-
over, we overload the freshness operator to include sequences.

Definition 23.3 (Freshness). A sequence ỹ fresh for the nominal term X is
denoted ỹ ] X .

ỹ ] X
def= ∀x∈set ỹ . x ] X

The function set converts a list to a set.

23.2 Generating fresh sequences
Alpha-conversion of single binders is achieved by picking a sufficiently
fresh name, exchanging it, and swapping all occurrences of the old binder
under its scope with the new one. Nominal Isabelle uses the following
lemma to obtain sufficiently fresh sequences.

Lemma 23.4. ∃p. (p · x̃) ] C ∧ set p ⊆ set x̃ × set (p · x̃)

The intuition is that instead of creating a fresh sequence, a permutation
is created which when applied to a sequence ensures the needed freshness
conditions. The following corollary makes it possible to discard permuta-
tions which are sufficiently fresh:

Corollary 23.5.

If set p ⊆ set x̃ × set ỹ and set x̃ ] T and set ỹ ] T then p · T = T .

Proof. By induction on p.

From this, a corollary to perform alpha-conversions follows.

Corollary 23.6. If set p ⊆ set x̃ ×set(p · x̃) and (p · x̃) ] T then [x̃].T = [p ·
x̃].p ·T .

Proof. since x̃ ] [x̃].T and (p · x̃) ] T we have by Cor. 23.5 that [x̃].T = p ·[x̃].T
and hence by equivariance that [x̃].T = [p · x̃] . p ·T .

Long proofs tend to introduce alpha-converting permutations and it is
therefore important to have a strategy for canceling these. If a term T has
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been alpha-converted using the swapping (a b), becoming (a b)·T , it is pos-
sible to apply the same swapping to the expression where (a b) ·T occurs.
Using equivariance properties, the swapping can be distributed over the ex-
pression, and when it reaches (a b)·T , it will cancel since (a b)·(a b)·T = T .
It can also be canceled from any remaining term U in the expression, as
long as a ]U and b ]U . This technique is not directly applicable when deal-
ing with sequences where alpha-converting permutations are used rather
than swappings. Even though (a b) · (a b) ·T = T , it is not generally the case
that p · p ·T = T . To cancel a permutation on a term, its inverse must be
applied, i.e. p− ·p ·T = T . The permutation will also be canceled from any
remaining term U as long as no names of the permutation occur in U.

This method has the problem that the reverse of a permutation does not
maintain the logical properties of the original permutation – for instance
(p · x̃) ] T does not imply (p− · x̃) ] T . For this reason, it is simpler to work
with permutations which are their own inverses. The following predicate
accomplishes this.

Definition 23.7 (distinctPerm).

distinctPerm p
def= distinct((map fst p)@(map snd p))

The distinct predicate takes a list as an argument and holds if there are no
duplicates in that list. Intuitively, the distinctPerm predicate ensures that all
names in a permutation are distinct.

Corollary 23.8. If distinctPerm p then p · p · T = T .

Proof. By induction on p.

Finally, we extend Lemma 23.4 with the condition distinctPerm p to ob-
tain permutations p which can be canceled by applying p again rather than
its inverse.

23.3 Alpha-equivalence
For single binders, the nominal approach to alpha-equivalence is quite
straightforward. Two terms [x].T and [y].U are equal if and only if either
x = y and T =U or x 6= y , x ]U and U = (x y) ·T . Reasoning about binding
sequences is more difficult. Exactly what does it mean for two terms [x̃].T
and [ỹ].U to be equal? As long as T and U cannot themselves have binding
sequences on a top level we know that length ã = length b̃, the problem
is what happens when x̃ and ỹ partially share names.

The times where we get assumptions such as [x̃].T = [ỹ].U in proofs are
when we do induction or inversion over a term with binders. Typically, [ỹ].U
is the term we start with, and [x̃].T is the term that appears in the induction
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or inversion rule. These rules are designed in such a way that any bound
names appearing in the rules can be assumed to be sufficiently fresh. More
precisely, we can ensure that x̃ ] ỹ and x̃ ]U .

We know that [x̃].T is alpha-equivalent to [ỹ].U, therefore, there is a per-
mutation which equates them. We first prove the following corollary:

Corollary 23.9.

If [a].T = [b].U then (a ∈ supp T) = (b ∈ supp U).

If [a].T = [b].U then a ] T = b ] U .

Proof. By the definition of alpha-equivalence on terms.

We can now prove the following lemma:

Lemma 23.10.

[x̃].T = [ỹ].U x̃ ] ỹ

∃p. set p ⊆ set x̃ × set ỹ ∧ distinctPerm p ∧ U = p · T

Proof. The intuition here is to construct p by using Cor. 23.9 to filter out
the pairs of names from x̃ and ỹ that do not occur in T and U respectively
and pairing the rest. Since x̃ ] ỹ we can construct p such that p contains no
duplicates. The proof is done by induction on the length of x̃ and ỹ .

The problem with this approach is that we do not know how x̃ and ỹ are
related – we can equate T and U with this technique, but not x̃ and ỹ . To do
this, we must also know that x̃ and ỹ are distinct.

Lemma 23.11.

[x̃].T = [ỹ].U x̃ ] ỹ distinct x̃ distinct ỹ

∃p. set p ⊆ set x̃ × set (p · x̃) ∧ distinctPerm p ∧ ỹ = p · x̃ ∧ U = p · T

Proof. Similar to Lemma 23.11, but as we know that x̃ and ỹ are distinct,
and that they share no names, the permutation p is created by pairwise
combining the names from the sequences.

23.4 Distinct binding sequences
For calculi with binding sequences we require that all binding sequences
are distinct. As we are working up to alpha-equivalence this is a property
which must be maintained. Consider the term

[xy].Base y
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where the distinct sequence xy binds into the name y. Since we have that

[xy].Base y = [yy].Base y

we cannot a priori assume that distinctness is maintained when working
up to alpha-equivalence. The reason this equivalence holds is that a name
can only bind into a term once – any further occurrence of the binder in
the sequence will by definition be fresh for everything under its scope, and
hence can be freely switched to any other fresh name.

This example motivates the following corollary.

Corollary 23.12. If x̃ ] C then ∃ ỹ . [x̃].T = [ỹ].T ∧ distinct ỹ ∧ ỹ ] C .

Proof. Since each name in x̃ can only bind once in T we can construct ỹ by
replacing any duplicate name in x̃ with a sufficiently fresh name.

This lemma states that any binding sequence can be replaced with a dis-
tinct one which is at least as fresh as the original.

If we know that all members of a distinct binding sequence are in the
support of the term it is binding into, then alpha-converting the sequence
maintains that it is distinct.

Lemma 23.13.

[x̃].T = [ỹ].U distinct x̃ set x̃ ⊆ supp T

distinct ỹ

Proof. By induction on the length of x̃ and ỹ .

Corollary 23.12 and Lemma 23.13 allow us to ensure that binding se-
quences are kept distinct in the proof contexts.
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24. Definitions

The framework for psi-calculi is parametric. When reasoning about the
meta-theory, it is not known what terms, assertions, and conditions are
being used, how the entailment relation or assertion composition is
defined, or what the unit element is; all we know is that they exist, and that
they satisfy a set of constraints. This poses certain requirements on the
theorem prover. Isabelle has excellent support for this style of reasoning
through the use of locales [49] .

Locales allow the user to localise variables, assumptions, and definitions
to a restricted part of the theories. Within a locale, these assumptions can
be used as if they were proved theorems; definitions can build on them,
and lemmas can be proved using them. It can then be instantiated by pro-
viding concrete values for the variables, and prove the assumptions of the
locale. This is often referred to as interpreting the locale. Once this is done,
all lemmas, definitions, and theorems inside the locale can be used for the
interpretation.

As all of the assumptions of locales are local to the locale only, there is no
risk of introducing inconsistencies in the framework – a locale itself may be
inconsistent if falsity can be derived from the assumptions, but the theories
outside of the locale will still be sound.

For psi-calculi we will use locales to create a framework which have the
axioms of substitution and static equivalence as assumptions. All of the
meta-theory of psi-calculi is proven inside this locale. Specific psi-calculus
instances can then be derived by providing the necessary parameters and
proving that they satisfy the assumptions of the locales.

24.1 Defining psi-calculus agents
Agents for psi-calculi are defined as nominal datatypes, in a similar manner
as was done for CCS, and the pi-calculus. However, nominal datatypes in
Isabelle have one restriction – neither nested datatypes, nor nested binders
are permitted. When defining psi-calculi agents this is problematic in two
cases: Firstly, the input prefix requires that an arbitrary number of names
can be bound and secondly, the case operator requires a list of pairs, with
one condition and one agent for each conditional branch.
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A nominal datatype for agents is therefore defined using mutual recur-
sion; the datatype is parametrised with three type variables α, β, and γ, for
terms, assertions, and conditions respectively.

Isabelle code Syntax

nominal_datatype (α, β, γ) psi =
Output α α ((α, β, γ) psi) M N .Q

| Input α((α, β, γ) input)

| Case ((α, β, γ) psiCase)

| Par ((α, β, γ) psi) ((α, β, γ) psi) P | Q

| Res «name» ((α, β, γ) psi) (νx)P

| Assert β (|Ψ|)
| Bang (α, β, γ) psi !P

and (α, β, γ) psiInput =
Trm α ((α, β, γ) psi)

| Bind «name» ((α, β, γ) input)

and (α, β, γ) psiCase =
EmptyCase

| Cond γ ((α, β, γ) psi) ((α, β, γ) psiCase)

Although this datatype formalises agents in psi-calculi, it is not conve-
nient to work with. It is better to reason about input prefixes and cases in
such a way that the mutually recursive structure of the psi-datatype is trans-
parent. To accomplish this, we create the following wrapper functions.

Definition 24.1 (inputChain).

inputChain :: name list ⇒α⇒ (α, β, γ) pi ⇒ (α, β, γ) psiInput

inputChain ε N P = Trm N P

inputChain (xỹ) N P = Bind x inputChain ỹ N P

Definition 24.2 (psiCases).

psiCases :: (γ, (α, β, γ) pi) list ⇒ (α, β, γ) psiCase

psiCases ε = EmptyCase

psiCases ((ϕ, P)C̃ ) = Cond ϕ P psiCases C̃

We will use the syntactic sugar M(λx̃)N .P to mean Input M (inputChain
x̃ N P), and Cases C̃ to mean and Case (psiCases C̃ )
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24.2 Substitution
Substitution on agents in psi-calculi is defined in a similar way as in the pi-
calculus – substitutions propagate over the structure of the agents, avoiding
capture by the binders. It will be formally defined in Section 24.2.2. What
cannot be defined by the framework is how substitution operates on the
terms, assertions and conditions as these are parameters, and their exact
structure is unknown. Each of them must be equipped with a substitution
function which substitutes a sequence of names for a sequence of terms. We
will write X[x̃ := T̃ ] to denote a term, assertion, or condition X which has its
names x̃ substituted for the terms T̃ . The intuition is that this substitution
should be parallel, and we will refer to them as parallel substitutions – once
a name has been replaced by a term, no further substitution is done on the
term replaced. In practice, substitution can be any function which satisfies
a minimal set of constraints. To represent this, we introduce the notion of a
substitution type.

24.2.1 Substitution types
A locale is created which takes a substitution function of type
α ⇒ name list ⇒ β list ⇒ α as an argument. The intuition is that the
function will substitute names for terms of type β, in the term, assertion or
condition of type α. Hence the types α and β can be equal, but this is not
required. A locale is created which imposes the following three constraints
on substitution.

Definition 24.3. Locale for substitution types. Given a substitution function
of the type α⇒ name list ⇒ β list ⇒ α, the following three requisites must
hold:

p · X[x̃ := T̃ ] = (p · X)[p · x̃ := p · T̃ ] SUBSTEQVT

|x̃| = |T̃ | distinct x̃
set x̃ ⊆ supp X y ] X[x̃ := T̃ ]

y ] T̃
SUBSTFRESH

|x̃| = |T̃ | distinctPerm p
set p ⊆ set x̃ × set (p · x̃) (p · x̃) ] X

X[x̃ := T̃ ] = (p · X)[p · x̃ := T̃ ]
SUBSTALPHA

Note that for all requisites, except for SUBSTEQVT, we require the length
of the vectors that are being substituted and substituted for to be of equal
length. Moreover, there must be no duplicates in the name vector. As the
function is supposed to model parallel substitution this does not impose
any serious constraints – if a duplicate name would occur, it would never be
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substituted as the parallel substitution terminates whenever a substitution
is done. We will now address the three requisites in turn.

The requisite SUBSTEQVT requires that the substitution function is equiv-
ariant, as we must be able to propagate permutations over substitutions.
Moreover, equivariance gives us an upper bound on the support of substi-
tutions – the result of any equivariant function can not have greater support
than the support of its parameters.

Lemma 24.4. supp (X[x̃ := T̃ ]) ⊆ supp X ∪ supp x̃ ∪ supp T̃

Proof. Follows from the definition of supp (Definition 5.3).

From this lemma we derive a corresponding freshness lemma.

Lemma 24.5. If y ] X and y ] x̃ and y ] T̃ then y ] X[x̃ := T̃ ].

Proof. Follows directly from Lemma 24.4.

The requisite SUBSTFRESH intuitively states that the substitution func-
tion may not discard the terms that are being substituted into a substitution
type – if a term is to be substituted for a name, then the result of the sub-
stitution must not have smaller support than that term. The requisite only
applies when all names being substituted are in the support of the substi-
tution type. We will come back to exactly why this requisite is necessary in
Section 34.3.3.

The final requisite SUBSTALPHA is required to mimic alpha-conversions.
If the bound names of an input prefix are alpha-converted, then the corre-
sponding names of the substitution must be similarly converted. This req-
uisite achieves this.

We also derive freshness lemmas to reason about sequences of names.

Lemma 24.6.
• If |x̃| = |T̃ | and distinct x̃ and set x̃ ⊆ supp X and ỹ ] X [x̃ := T̃ ] then

ỹ ] T̃ .
• If ỹ ] M and ỹ ] x̃ and ỹ ] T̃ then ỹ ] M [x̃ := T̃ ].

Proof. By induction on ỹ .

With this locale in place, we can proceed to define substitution on psi-
calculi agents.

24.2.2 Agent substitution
In order to define substitution for psi-calculi, a locale is created with three
instances of the locale for substitution types – one instance for terms, as-
sertions and conditions respectively. Since psi-calculi agents are defined by
a mutually inductive definition, the substitution function must be mutually
recursive.
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Definition 24.7 (Name capture avoiding parallel substitution for psi-calculi agents).
0[x̃ := T̃ ] = 0
(M N .P )[x̃ := T̃ ] = M [x̃ := T̃ ]N [x̃ := T̃ ] .P [x̃ := T̃ ]
(Input M I)[x̃ := T̃ ] = Input M[x̃ := T̃ ] I[x̃ := T̃ ]
(Case C)[x̃ := T̃ ] = Case C[x̃ := T̃ ]
(P | Q)[x̃ := T̃ ] = P[x̃ := T̃ ] | Q[x̃ := T̃ ]
If y ] x̃ and y ] T̃ then ((νy)P)[x̃ := T̃ ] = (νy)P[x̃ := T̃ ].
((|Ψ|))[x̃ := T̃ ] = (|Ψ[x̃ := T̃ ]|)
(!P)[x̃ := T̃ ] = !P[x̃ := T̃ ]

(Trm M P)[x̃ := T̃ ] = Trm (M[x̃ := T̃ ]) (P[x̃ := T̃ ])
If y ] x̃ and y ] T̃ then (Bind y I)[x̃ := T̃ ] = Bind y I[x̃ := T̃ ].

EmptyCase[x̃ := T̃ ] = EmptyCase
(Cond ϕ P C)[x̃ := T̃ ] = Cond ϕ[x̃ := T̃ ] P[x̃ := T̃ ] C[x̃ := T̃ ]

As in the pi-calculus, the substitutions propagate through the structure
of the agents, avoiding capture by the binders. When they reach the terms,
assertions or conditions, the appropriate substitution function is applied.
Hence, even though substitution is not explicitly defined for the parame-
ters, it is explicitly defined for agents. Therefore, the substitution axioms for
the substitution type locale can then be used to derive the same lemmas for
agent substitution.

24.3 Nominal morphisms
The four nominal morphisms required for psi-calculi are modeled using lo-
cales. A locale is created which requires the four nominal datatypes as pa-
rameters, and that they are equivariant.

Definition 24.8 (Nominal morphisms).

p ·Ψ ` ϕ = (p ·Ψ) ` (p · ϕ) IMPEQVT

p ·Ψ ⊗Ψ ′ = (p ·Ψ) ⊗ (p ·Ψ ′) COMPEQVT

p · M
.↔ N = (p · M)

.↔ (p · N) CHANEQEQVT

p · 1 = 1 UNITEQVT

24.3.1 Freshness and support
The support of a nominal datatype is derived using permutations, as was
described in Section 4.2. As for substitution, the equivariance properties
provided in the locale are enough to derive the following results.
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Lemma 24.9. Support properties for the nominal morphisms.

supp (Ψ ⊗Ψ ′) ⊆ supp Ψ ∪ supp Ψ ′

supp (M
.↔ N ) ⊆ supp M ∪ supp N

supp 1 = ;

Proof. Follows from the definition of supp.

In the same way as for substitution, support inclusion is all that is re-
quired and we do not need to strengthen the requisites of the locale.

The following freshness properties can be derived.

Lemma 24.10.

If x ] Ψ and x ] Ψ ′ then x ] Ψ ⊗Ψ ′.
If x ] M and x ] N then x ] M

.↔ N .

x ] 1

If x̃ ] Ψ and x̃ ] Ψ ′ then x̃ ] Ψ ⊗Ψ ′.
If x̃ ] M and x̃ ] N then x̃ ] M

.↔ N .

x̃ ] 1

Proof. By the definition of fresh, and Lemma 24.9. The lemmas with se-
quences of names are discharged by induction on x̃.

24.3.2 Static equivalence
In Definition 22.2 two assertions are considered statically equivalent if they
entail the same conditions. We will make this definition in two steps. First
we will define static implication. An assertion statically implies another one
if it entails at least the same conditions at the other one.

Definition 24.11 (Static implication).

Ψ ≤Ψ ′ def= ∀Φ. Ψ `Φ −→Ψ ′`Φ

Two assertions can then be defined to be statically equivalent if the stat-
ically imply each other.

Definition 24.12 (Static equivalence).

Ψ 'Ψ ′ def= Ψ ≤Ψ ′∧Ψ ′≤Ψ

We also require that static equivalence is equivariant.
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Lemma 24.13.
If Ψ ≤Ψ ′ then (p ·Ψ) ≤ (p ·Ψ ′).

If Ψ 'Ψ ′ then (p ·Ψ) ' (p ·Ψ ′).

Proof. Follows from Definitions 24.11, 24.12, and the IMPEQVT axiom.

24.4 Frames
A frame consist of an assertion and a binding sequence.

Definition 24.14 (Frames).

Isabelle code Syntax

nominal_datatype β frame =
FAssert β (νε)Ψ

| FRes «name» (β frame) (νx)F

As for input prefixes, we bind sequences of names to a frame by recursing
over the sequence.

Definition 24.15 (frameResChain).

frameResChain :: name list ⇒β⇒β frame

frameResChain ε F = F

frameResChain (xx̃) F = (νx)frameResChain x̃ F

We will use the syntactic sugar (νx̃)F to mean frameResChain x̃ F, and
(νb̃F )ΨF to mean (νb̃F )((νε)ΨF ).

24.4.1 Frame composition
The frame of an agent is defined by its unguarded assertions, i.e. those not
behind a prefix, and its unguarded binders. We define a function which cre-
ates a frame by recursively parsing an agent, retaining any assertion and
binder it finds, stopping when a prefix is reached. If two agents run in par-
allel, their frames are composed, and we first need to make this notion pre-
cise.

We overload the ⊗-operator using nominal functions which compose
frames with assertions and frames with frames.

Definition 24.16 (Composing frames with assertions). A frame F composed
with an assertion Ψ is written F ⊗Ψ.
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((νε)Ψ) ⊗Ψ ′ = (νε)Ψ ′⊗Ψ

If x ] Ψ ′ then ((νx)F) ⊗Ψ ′ = (νx)F ⊗Ψ ′

Definition 24.17 (Composing frames with frames). A frame F composed
with a frame G is written F ⊗ G.

((νε)Ψ) ⊗ G = G ⊗Ψ

If x ] G then ((νx)F) ⊗ G = (νx)F ⊗ G

With these functions in place, the following lemma can be created to rea-
son about frame composition.

Lemma 24.18.

b̃F ] Ψ

((νb̃F )ΨF ) ⊗Ψ = (νb̃F )Ψ ⊗ΨF

b̃F ] b̃G b̃F ] ΨG b̃G ] ΨF

((νb̃F )ΨF ) ⊗ ((νb̃G )ΨG ) = (νb̃F b̃G )ΨF ⊗ΨG

Proof. By induction on b̃F for the first case, and b̃G for the second one.

In order for frame composition to be defined, the bound names of the
frames must not clash. This matches precisely the intuition presented in
Section 22.2.2.

24.4.2 Frame extraction
Frame extraction is now defined as a nominal function over the mutually
recursive psi datatype. The function does not recurse past the prefix of an
agent.
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Definition 24.19 (F ). The function F returns the frame of an agent and has
the type: (α, β, γ) psi ⇒β frame.

F 0 = 1

F (Input M I) = 1

F (M N .P ) = 1

F (Case C) = 1

F (P | Q) = (F P) ⊗ (F Q)

F ((|Ψ|)) = (νε)Ψ

F ((νx)P) = (νx)F P

F (!P) = 1

24.5 Guarded agents
Agents which are either replicated, or have the case operator as their top-
most operator must be guarded, i.e. no assertion may syntactically occur if
it is not under a prefix. More formally, we have the following definition.

Definition 24.20. The guarded function is a mutually recursive function de-
fined over psi-calculi agents.

guarded (0) = guarded (M N .P ) = guarded (Input M I) = True

guarded (Case C) = guarded ′′ C

guarded (P | Q) = (guarded P ∧ guarded Q)

guarded ((νx)P) = guarded (!P) = guarded P

guarded ′ (Trm M P) = guarded ′ (Bind y I) = False

guarded ′′ EmptyCase = True

guarded ′′ (Cond ϕ P C) = (guarded P ∧ guarded ′′ C)

In the original version of psi-calculi we defined 0 to be (|1|) – i.e. the dead-
locked process was defined to be the unit frame. All results hold with this
definition, but it does not match the desired intuition, as the agent 0 would
by definition be unguarded.
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24.6 Requisites of static equivalence
With the definition of static equivalence in place, we can create a locale with
the requisites described in Section 22.2.1.

Definition 24.21 (Requirements of static equivalence).

If Ψ ` (M
.↔ N ) then Ψ ` (N

.↔ M ). CESYM

If Ψ ` (M
.↔ N ) and Ψ ` (N

.↔ L ) then Ψ ` (M
.↔ L ). CETRANS

If Ψ 'Ψ ′ then Ψ ⊗Ψ ′′ 'Ψ ′⊗Ψ ′′ . ACOMP

Ψ ⊗ 1 'Ψ AID

Ψ ⊗Ψ ′ 'Ψ ′⊗Ψ ACOMM

(Ψ ⊗Ψ ′ ) ⊗Ψ ′′ 'Ψ ⊗ (Ψ ′⊗Ψ ′′ ) AASSOC

These laws can then be used to form derive a set of inferred static equiva-
lence rules. One such rule states that the assertion component of the frame
of any guarded agent is statically equivalent to 1.

Lemma 24.22.

If guarded P and F P = (νb̃P )ΨP then ΨP ' 1 ∧ supp ΨP = ;.

Proof. By induction over P where any bound names avoid b̃P and ΨP .
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25. Operational semantics

One of the main contributions of psi-calculi is that the operational seman-
tics, although significantly more expressive than the one for the pi-calculus,
has a complexity which remains on par with the original pi-calculus. The
main addition is that that an agent must take parallel frames into consid-
eration. A consequence is that transitions are defined with respect to envi-
ronmental contexts. While the operational semantics for the pi-calculus is
an inductively defined binary predicate of agents and residuals, the seman-
tics for psi-calculi will be modeled using a ternary predicate of assertions,
agents and residuals.

In this chapter we will cover the basic tactics for defining the psi-calculi
operational semantics in Isabelle, comparing it to the ones already
formalised for the pi-calculus and CCS. While the pi-calculus splits the
operational rules which reason about binders on the label, we will present
general tactics to avoid these splits, making the proofs more like their
pen-and-paper counterparts.

25.1 Residuals
As with the early semantics of the pi-calculus, the labels of the operational
semantics of psi-calculi contain binders in the OPEN-case. Whereas the pi-
calculus only requires single binders on the label, psi-calculi require bind-
ing sequences; since a term can contain an arbitrary number of names, any
output term must open all restricted names it contains. To model this, a
nominal datatype is created containing an object, a derivative and a se-
quence of opened names binding into both.

Definition 25.1 (boundOutput).

nominal_datatype (α, β, γ) boundOutput =
BOut α ((α, β, γ) psi)

| BStep «name» ((α, β, γ) boundOutput)

Binding sequences are added by recursively binding names to the nomi-
nal datatype in the standard way.
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Definition 25.2 (BOresChain).

BOresChain :: name list ⇒ (α, β, γ) boundOutput ⇒ (α, β, γ) boundOutput

BOresChain ε B = B

BOresChain xx̃ B = BStep x (BOresChain x̃ B)

We can now define residuals

Definition 25.3. A residual is parametrised with the same parameters as psi-
calculi agents.

nominal_datatype (α, β, γ) residual =
Rin α α ((α, β, γ) psi)

| ROut α ((α, β, γ) boundOutput)

| RTau ((α, β, γ) psi)

Residuals will be denoted using V and W.
When modeling the semantics for the pi-calculus, the PAR and SCOPE

rules are split into two cases – one where the label contains bound names,
and another where it does not. The reason for this is that the rules need
to state conditions on the bound names on the label, namely that they are
sufficiently fresh. Also in the psi-calculi semantics, the rules state such con-
ditions.. When doing proofs on paper, it is common to define a function
which extracts bound names of the label. However, nominal functions can-
not access bound names and hence, a function which extracts the bound
names of a residual does not exist.

In order to avoid duplication of the inference rules, and to be able to
conduct our proofs as we would on paper, we create a nominal datatype
α acti on, containing the three types of actions, including the bound
names, and a function of typeα action ⇒ (α, β, γ) psi ⇒ (α, β, γ) residual.
Given an action, and a derivative this function creates a residual, binding
any sequence of names in a bound output action.

Definition 25.4 (action).

Isabelle code Syntax

nominal_datatype α action =
In α α M N

| Out α "name list" α M (νx̃)N

| Tau τ

We now define an infix function ≺, which creates a residual from an ac-
tion and an agent.
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Definition 25.5 (≺).

≺ :: α action ⇒ (α, β, γ) psi ⇒ (α, β, γ) residual

M N ≺ P = RIn M N P

M (νx̃)N ≺ P = ROut M (BOresChain x̃ (BOut N P))

τ ≺ P = RTau P

In this manner we retain the necessary requisite that the bound names
of the actions are actually bound in the derivative. We also define functions
to extract the subject, the object and the bound names from an action.

Definition 25.6 (subject, object, bn).

subject :: α action ⇒α option

subject (M N ) = Some M

subject (M (νx̃)N ) = Some M

subject (τ) = None

object :: α action ⇒α option

object (M N ) = Some N

object (M (νx̃)N ) = Some N

object (τ) = None

bn :: α action ⇒ name list

bn (M N ) = ε

bn (M (νx̃)N ) = x̃

bn (τ) = ε

Since actions do not have any binders on their own, functions such as bn
and object can be defined. By modeling residuals in this manner we get the
best of two worlds – the bound names of actions do bind into the deriva-
tives, but we can still uniquely determine which binders are used, and the
terms and agents under their scope. This means that we will be able to de-
fine the operational semantics without the duplicated inference rules, in
contrast to the pi-calculus formalisation.

25.1.1 Alpha-equivalence
Dealing with alpha-equivalences of residuals is not entirely straight-
forward. What does it mean for two residuals α ≺ P and β ≺ Q to be
equivalent? The subjects are not under the scope of the binders, so clearly
they must be equal, but the object and the derivatives are under the
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scope of the bound names of α and β, and hence they are not necessarily
syntactically equal, but alpha-equivalent. Moreover, we do not want to
resort to case analysis of the structure of the residuals whenever an equality
such as this appears in a proof state – the whole point of the residual
construction is to avoid separate cases for actions with bound names
and for those without. The following lemma obtains an alpha-converting
permutation which equates two residuals.

Lemma 25.7.

α ≺ P = β ≺ Q bn α ] bn β distinct (bn α)
distinct (bn β) bn α ] α ≺ P bn β ] β ≺ Q

∃p. set p ⊆ set (bn α) × set (bn (p · α)) ∧ β = p · α ∧ Q = p · P ∧
bn α ] β ∧ bn α ] Q ∧ bn (p · α) ] α ∧ bn (p · α) ] P

This lemma is similar to Lemma 23.10. Given two residuals with disjoint
bound names, an alpha-converting permutation is constructed by pairing
the bound names together. The requirements that bn α ] α ≺ P and
bn β ] β ≺ Q deserve special mention. Bound names of residuals can
appear in the subject position. For the equivalence to hold, the bound
names must not occur outside their scope; if they did, the alpha-converting
permutation would switch them as well.

We also prove an alpha-conversion lemma for residuals.

Lemma 25.8.
bn (p · α) ] ob j ect α bn (p · α) ] P bn α ] sub j ect α
bn (p · α) ] sub j ect α set p ⊆ set (bn α) × set (bn (p · α))

α ≺ P = (p · α) ≺ (p · P)

As when alpha-converting binding sequences, the permutation applied
to the sequence must be fresh for everything under the scope of the binder.
Moreover, for the same reason as the previous lemma, neither the original
bound names, nor the new ones, may occur in the subject of the action.

With the residuals in place and a means to alpha-convert them we de-
fine the operational semantics as an inductively defined predicate in the
standard way. As for the pi-calculus we require that the bound names are
fresh for everything outside their scope, and that all binding sequences are
distinct.

Definition 25.9 (Operational semantics).
A transition is written Ψ � P 7−→ V and intuitively means that Ψ is an

assertion environment which enables P to enact the residual V. We will use
the notation Ψ � P

α−→ P ′ to mean Ψ� P 7−→α ≺ P ′

The operational semantics can be found in Figure 25.1.
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25.2 Induction rules
The nominal techniques used to derive induction and inversion rules for
the pi-calculus and for CCS is not applicable to psi-calculi, as they only
work for calculi with single binders.

Recent additions to Nominal Isabelle, by Urban and Berghofer, allow the
user to specify sets of names for every inductive case which avoid a speci-
fied freshness context when applying the inductive rules. This set does not
necessarily have to be the set of binders, although for psi-calculi it is. In
[75], Urban and Nipkow prove soundness and completeness of the Milner-
Damas typing algorithm W where this is not the case.

The context avoiding sets for the different cases from Figure 25.1 are the
following:

set x̃ for the INPUT case

set b̃Q ∪ set (bn α) for the PAR1 case

set b̃P ∪ set (bn α) for the PAR2 case

set b̃P ∪ set b̃Q ∪ set x̃ for the COMM cases

{x} ∪ set x̃ ∪ set ỹ for the OPEN case

{x} ∪ set (bn α) for the SCOPE case

Isabelle will generate proof obligations to ensure that the sets provided
can be alpha-converted to avoid any freshness context provided. These are
discharged using the alpha-converting lemmas for binding sequences. As
for the single binding case, all inductive rules are saturated with freshness
conditions for the binding sequences to be as fresh as possible. Moreover,
all binding sequences are required to be distinct. The latter case is not
strictly necessary for rules other than the INPUT and OPEN rules, but it
makes the inductive rule more powerful and the proofs simpler.

Isabelle also proves the following equivariance lemma automatically.

Lemma 25.10. If Ψ� P 7−→ V then p ·Ψ� p · P 7−→ p · V .

We will later derive the semantic rules found in Figure 22.1 and discharge
the superfluous freshness and distinctness conditions.

25.2.1 Switching assertions
The actions of an agent depend on its environment. The assertion Ψ in
Ψ� P 7−→ V determines which subjects are channel equivalent, as well as
which conditions hold in the Case operator.

One main lemma is that a transition can exchange its environmental as-
sertion for a statically equivalent one.
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(
Ψ ` M

.↔ K distinct x̃ |x̃| = |T̃ | set x̃ ⊆ supp N
x̃ ] T̃ x̃ ] Ψ x̃ ] M

)
Ψ � M(λx̃)N .P

K N [x̃:=T̃ ]−−−−−−−→ P[x̃ := T̃ ]
INPUT

Ψ ` M
.↔ K

Ψ � M N .P
K N−−→ P

OUTPUT

Ψ� P 7−→ V (ϕ, P) mem C̃ Ψ ` ϕ guarded P

Ψ� Cases C̃ 7−→ V
CASE


Ψ ⊗ΨQ � P

α−→ P ′ F Q = (νb̃Q )ΨQ distinct b̃Q

b̃Q ] P b̃Q ] Q b̃Q ] Ψ b̃Q ] α b̃Q ] P ′

distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] ΨQ bn α ] Q bn α ] P


Ψ � P | Q

α−→ P ′ | Q
PAR1


Ψ ⊗ΨP � Q

α−→ Q ′ F P = (νb̃P )ΨP distinct b̃P

b̃P ] P b̃P ] Q b̃P ] Ψ b̃P ] α b̃P ] Q ′

distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] ΨP bn α ] P bn α ] Q


Ψ � P | Q

α−→ P ′ | Q
PAR2


Ψ � P

M (νỹ z̃)N−−−−−−−→ P ′ x ∈ supp N
x ] ỹ x ] z̃ x ] M x ] Ψ
distinct ỹ ỹ ] Ψ ỹ ] P ỹ ] M ỹ ] z̃
distinct z̃ z̃ ] Ψ z̃ ] P z̃ ] M


Ψ � (νx)P

M (νỹ xz̃)N−−−−−−−→ P ′
OPEN

(
Ψ � P

α−→ P ′ distinct (bn α)
x ] Ψ x ] α x ] C bn α ] Ψ bn α ] P

)
Ψ � (νx)P

α−→ (νx)P ′
SCOPE
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

Ψ ⊗ΨQ � P
M N−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP � Q
K (νx̃)N−−−−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP x̃ ] ΨQ

x̃ ] P x̃ ] M x̃ ] Q x̃ ] K


Ψ � P | Q

τ−→ (νx̃)(P ′ | Q ′)
COMM1



Ψ ⊗ΨQ � P
M (νx̃)N−−−−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP � Q
K N−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP x̃ ] ΨQ

x̃ ] P x̃ ] M x̃ ] Q x̃ ] K


Prop C Ψ (P | Q) (τ ≺ (νx̃)(P ′ | Q ′))

COMM2

Ψ� P | !P 7−→ V guarded P

Ψ� !P 7−→ V
REPL

Figure 25.1: The operational semantics for psi-calculi. All bound names are as-
sumed to be fresh for everything outside of their scope, and all binding sequences
are assumed to be distinct. The exceptions are the COMM-rules, where the binding
sequences b̃P and b̃Q cannot be assumed to be fresh for K and M respectively.
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Ψ� R 7−→ W(
Ψ ` M

.↔ K distinct x̃ set x̃ ⊆ supp N
x̃ ] T̃ |x̃| = |T̃ | x̃ ] Ψ x̃ ] M x̃ ] K x̃ ] C

)
Prop C Ψ M(λx̃)N .P (K N [x̃ := T̃ ] ≺ P[x̃ := T̃ ])

INPUT

Ψ ` M
.↔ K

Prop C Ψ (M N .P ) (K N ≺ P)
OUTPUT

(
Ψ� P 7−→ V

∧
C . Prop C Ψ P V

(ϕ, P) mem C̃ Ψ ` ϕ guarded P

)
Prop C Ψ (Cases C̃ ) V

CASE


Ψ ⊗ΨQ � P

α−→ P ′ ∧
C . Prop C (Ψ ⊗ΨQ ) P (α ≺ P ′)

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] C

b̃Q ] P b̃Q ] Q b̃Q ] Ψ b̃Q ] α b̃Q ] P ′

distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] ΨQ bn α ] Q bn α ] P


Prop C Ψ (P | Q) (α ≺ P ′ | Q)

PAR1


Ψ ⊗ΨP � Q

α−→ Q ′ ∧
C . Prop C (Ψ ⊗ΨP ) Q (α ≺ Q ′)

F P = (νb̃P )ΨP distinct b̃P b̃P ] C

b̃P ] P b̃P ] Q b̃P ] Ψ b̃P ] α b̃P ] Q ′

distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] ΨP bn α ] P bn α ] Q


Prop C Ψ (P | Q) (α ≺ P | Q ′)

PAR2


Ψ � P

α−→ P ′ ∧
C . Prop C Ψ P (α ≺ P ′)

bn α ] sub j ect α distinct (bn α)
x ] Ψ x ] α x ] C

bn α ] Ψ bn α ] P bn α ] C


Prop C Ψ ((νx)P) (α ≺ (νx)P ′)

SCOPE


Ψ � P

M (νỹ z̃)N−−−−−−−→ P ′ ∧
C . Prop C Ψ P (M (νx̃ ỹ)N ≺ P ′)

x ∈ supp N x ] ỹ x ] z̃ x ] M x ] Ψ x ] C

distinct ỹ ỹ ] Ψ ỹ ] P ỹ ] M ỹ ] z̃ ỹ ] C

distinct z̃ z̃ ] Ψ z̃ ] P z̃ ] M z̃ ] C


Prop C Ψ ((νx)P) (M (νỹ xz̃)N ≺ P ′)

OPEN
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

Ψ ⊗ΨQ � P
M N−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P∧

C . Prop C (Ψ ⊗ΨQ ) P (M N ≺ P ′) b̃P ] C

Ψ ⊗ΨP � Q
K (νx̃)N−−−−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q∧

C . Prop C (Ψ ⊗ΨP ) Q (K (νx̃)N ≺ Q ′) b̃Q ] C

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP x̃ ] ΨQ

x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ ≺ (νx̃)(P ′ | Q ′))

COMM1



Ψ ⊗ΨQ � P
M (νx̃)N−−−−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P∧

C . Prop C (Ψ ⊗ΨQ ) P (M (νx̃)N ≺ P ′) b̃P ] C

Ψ ⊗ΨP � Q
K N−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q∧

C . Prop C (Ψ ⊗ΨP ) Q (K N ≺ Q ′) b̃Q ] C

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP x̃ ] ΨQ

x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ ≺ (νx̃)(P ′ | Q ′))

COMM2

Ψ� P | !P 7−→ V
∧

C . Prop C Ψ (P | !P) V guarded P

Prop C Ψ (!P) V
REPL

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍË
Prop C Ψ R W

Figure 25.2: Derived induction rule for the operational semantics of psi-calculi. The
inductive cases share the name of the semantic rule which they are derived from.
For space reasons, all meta quantifiers for each inductive step has been removed –
every term of every case is locally universally quantified.
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Lemma 25.11. If Ψ� P 7−→ V and Ψ 'Ψ ′ then Ψ ′� P 7−→ V .

Proof. By induction on Ψ� P 7−→ V. The only non-trivial cases are the PAR

and COMM cases where ACOMP is used in order to apply the induction hy-
pothesis.

25.2.2 Deriving freshness conditions
In order to derive the semantic rules from Figure 22.1, we must remove
the superfluous freshness conditions from the semantics defined in
Isabelle. The standard way is to provide lemmas which derive freshness
conditions from the semantics. Moreover, as psi-calculi uses an early
operational semantics, lemmas which allow the input actions to mimic
alpha-conversions must be provided. Finally, distinctness of all binding
sequences must be derivable. We will start proving the relevant properties
for input transitions, then output transitions and finally for τ-transitions.

25.2.2.1 Input actions

We first prove which freshness conditions can be derived from input tran-
sitions.

Lemma 25.12. If Ψ � P
M N−−−→ P ′ and x ] P and x ] N then x ] P ′.

Proof. By induction on Ψ � P
M N−−−→ P ′.

In order to guarantee that a name is fresh for the derivative of an agent,
it may not occur in the agent itself, nor in the object of the action, as new
names can be introduced by substitution. Proving the same for sequences
follows naturally.

Lemma 25.13. If Ψ � P
M N−−−→ P ′ and x̃ ] P and x̃ ] N then x̃ ] P ′.

Proof. By induction on x̃ and Lemma 25.12.

A subject on a label does not necessarily have to be in the agent which
generates the transition; the subject on the label needs only be channel
equivalent to the subject in the agent. This is in contrast to the pi-calculus
or CCS where the subject on the label syntactically have to occur in the
agent. In these calculi we can always know that a name fresh for an agent
is always fresh for the subjects of its actions. As the psi-calculi semantics
has freshness conditions on the subject of actions, we must admit alpha-
converting permutations to be applied to a subject. The following lemma
does this.
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Lemma 25.14.
Ψ � P

M N−−−→ P ′ x ] P y ] P

(x y) ·Ψ � P
(x y) · M N−−−−−−−→ P ′

Proof. By induction on Ψ � P
M N−−−→ P ′.

The intuition of this lemma is that if two names do not occur in an agent,
they can still be swapped for the subject of its action as long as the corre-
sponding permutation is applied to the environment. As the environment
determines which terms are channel equivalent.

A corresponding lemma is also needed for permutations.

Lemma 25.15.

Ψ � P
M N−−−→ P ′ set p ⊆ X × Y X ] P Y ] P

p ·Ψ � P
(p · M)N−−−−−−→ P ′

Proof. By induction on p and Lemma 25.14.

Since the COMM rules contain both input and output actions, and the
output actions can be alpha-converted, it must be possible for the input
transition to match these alpha-conversions. The following lemma does
this.

Lemma 25.16.

Ψ � P
M N−−−→ P ′

set p ⊆ set x̃ × set (p · x̃) distinctPerm p x̃ ] P (p · x̃) ] P

Ψ � P
M(p · N )−−−−−−→ p · P ′

Proof.

• From the assumptions we have that p · Ψ � P
(p · M)N−−−−−−→ P ′ by

Lemma 25.15.
• Hence p · p ·Ψ� p · P 7−→ p · (p · M)N ≺ P ′ by Lemma 25.10.
• With set p ⊆ set x̃ × set (p · x̃), distinctPerm p, x̃ ] P , and (p · x̃) ] P the

permutations simplify away, and we get that Ψ � P
M(p · N )−−−−−−→ p · P ′.

Finally, we must prove that whenever an agent of the form M(λx̃)N .P
does an action, x̃ is distinct. Since this is a requisite of the semantics, what
we in reality must prove is that there is no way to alpha-convert x̃ such that
it is not distinct.

Lemma 25.17. If Ψ� M(λx̃)N .P 7−→ V then distinct x̃.
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Proof. By case analysis on Ψ � M(λx̃)N .P 7−→ V. The INPUT case gives us
an agent K (λỹ)L.Q such that M(λx̃)N .P = K (λỹ)L.Q, distinct ỹ , and set ỹ ⊆
supp L. Lemma 23.13 then proves that distinct x̃.

25.2.2.2 Output actions

The induction rule from Figure 25.2 works well only as long as the predicate
to be proven does not depend on anything under the scope of a binder.
Trying to prove the following lemma illustrates the problem.

If Ψ � P
M (νx̃)N−−−−−−→ P ′ and x ] P and x ] x̃ then x ] N and x ] P ′

This lemma is provable by induction onΨ � P
M (νx̃)N−−−−−−→ P ′. The problem

is that the induction rule will not prove this lemma in a satisfactory way.
Every applicable case in the induction rule will introduce its own bound
output term K (νỹ)L ≺ P ′′where we know that K (νỹ)L ≺ P ′′= M (νx̃)N ≺ P ′.
What we need to prove relates to the term P ′, what the inductive hypotheses
will give us is something related to the term P ′′, where all we know is that
they are part of alpha-equivalent terms.

Proving this lemma on its own is not too difficult but in every step of every
proof of this type, manual alpha-conversions and equivariance properties
are needed. An induction rule which solves this problem can be found in
Figure 25.3

The difference between this rule and the induction rule in Figure 25.2 is
that the predicate in Figure 25.2 takes a residual V as one argument and the
predicate in this rule takes α and P ′ as two separate ones. By disassociat-
ing the action from the derivative in this manner we have lost the ability to
alpha-convert the residual, but we have gained the ability to reason about
terms under the scope of its binders. The extra ALPHA case in the induction
rule is designed to allow the predicate to mimic the alpha-conversion abil-
ities we have lost. Moreover, when proving this induction rule, Lemma 25.8
is used in each step to generate the alpha-converting permutation. This
lemma requires that the bound names of the transition are distinct, and
do not occur free in the residual, in effect the subject of the action. These
requirements can be found as two extra requirements bn α ] sub j ect α,
and distinct (bn α) to the induction rule in Figure 25.2. In every case, Prop
is proven in the standard way and then alpha-converted using the new in-
ductive case ALPHA.

With this lemma, we must prove that the predicate we are trying to prove
respects alpha-conversions. The advantage is that it only has to be done
once for each proof. Moreover, the case is very general and does not require
the agents or actions to be of a specific form.

We can now prove the freshness lemma.
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Lemma 25.18. If Ψ � P
M (νx̃)N−−−−−−→ P ′ and x̃ ] M and distinct x̃ and x ] P

and x ] x̃ then x ] N . and x ] P ′

Proof. By induction on Ψ � P
M (νx̃)N−−−−−−→ P ′, using the induction rule from

Figure 25.3.

This lemma illustrates a problem with the method used to derive general
induction rules – it requires the extra freshness and distinctness assump-
tions x̃ ] M and distinct x̃. These assumptions are not strictly necessary
to solve this lemma, but they are needed in order to invoke the induction
rule in Figure 25.2. If required, they can later be removed by manual alpha-
conversions. This is a tedious process, and the user has to decide for each
proof if its worth the effort. Nominal Isabelle is very good at ensuring that
binding sequences are sufficiently fresh, and infrastructure to prove the dis-
tinctness property will be provided. In practice, these extra constraints are
unproblematic; if the standard induction rule were used, manual alpha-
conversions would have to be done for every inductive step.

The corresponding proof for binding sequences follows immediately.

Lemma 25.19. IfΨ � P
M (νx̃)N−−−−−−→ P ′ and x̃ ] M and distinct x̃ and ỹ ] P

then ỹ ] N and ỹ ] P ′

Proof. By induction on x̃ and Lemma 25.18.

We must also prove that for every transition Ψ � P
M (νx̃)N−−−−−−→ P ′, x̃ is dis-

tinct.

Lemma 25.20. If Ψ � P
α−→ P ′ then distinct (bn α).

Proof. Similar to Lemma 25.17

We also require lemmas which allow us to apply permutations to the sub-
ject position of output actions.

Lemma 25.21. If Ψ � P
M (νx̃)N−−−−−−→ P ′ and x̃ ] M and x ] P and y ] P then

(x y) ·Ψ � P
(x y) · M (νx̃)N−−−−−−−−−−→ P ′.

Proof. By induction on Ψ � P
M (νx̃)N−−−−−−→ P ′ using the induction rule from

Figure 25.2. The condition that x̃ is distinct follows from Lemma 25.20.

The corresponding lemma for permutations is not entirely straightfor-
ward.

Lemma 25.22. If Ψ � P
M (νx̃)N−−−−−−→ P ′ and set p ⊆ set ỹ × set z̃ and ỹ ] P

and z̃ ] P then p ·Ψ � P
(p · M) (νx̃)N−−−−−−−−−→ P ′.
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Figure 25.3: Derived induction rule for transitions of the form Ψ � R
α−→ R ′. The extra

ALPHA case ensures that the bound names of α can be freely alpha-converted in Prop. The
inductive cases share the name of the semantic rule which they are derived from. For space
reasons, all meta quantifiers for each inductive step have been removed – every term of
every case is locally quantified. To apply the rule, the requisites bn α ] sub j ect α and
distinct (bn α) must be met.

ÈÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Ψ � R
α−→ R ′ bn α ] sub j ect α distinct (bn α)bn α ] Ψ bn α ] P bn α ] sub j ect α bn α ] C

bn α ] bn (p · α) set p ⊆ set (bn α) × set (bn (p · α))
distinctPerm p bn (p · α) ] α bn (p · α) ] P ′ Prop C P α P ′


Prop C Ψ P (p · α) (p · P ′)

ALPHA

(
Ψ ` M

.↔ K distinct x̃ set x̃ ⊆ supp N
x̃ ] T̃ |x̃| = |T̃ | x̃ ] Ψ x̃ ] M x̃ ] K x̃ ] C

)
Prop C Ψ M(λx̃)N .P (K N [x̃ := T̃ ]) (P[x̃ := T̃ ])

INPUT

Ψ ` M
.↔ K

Prop C Ψ (M N .P ) (K N ) P
OUTPUT

(
Ψ � P

α−→ P ′ ∧
C . Prop C Ψ P α P ′

(ϕ, P) mem C̃ Ψ ` ϕ guarded P

)
Prop C Ψ (Cases C̃ ) α P ′ CASE



Ψ ⊗ΨQ � P
α−→ P ′ ∧

C . Prop C (Ψ ⊗ΨQ ) P α P ′

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] C

b̃Q ] P b̃Q ] Q b̃Q ] Ψ b̃Q ] α b̃Q ] P ′

distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] ΨQ bn α ] Q bn α ] P


Prop C Ψ (P | Q) α (P ′ | Q)

PAR1



Ψ ⊗ΨP � Q
α−→ Q ′ ∧

C . Prop C (Ψ ⊗ΨP ) Q α Q ′

F P = (νb̃P )ΨP distinct b̃P b̃P ] C

b̃P ] P b̃P ] Q b̃P ] Ψ b̃P ] α b̃P ] Q ′

distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] ΨP bn α ] P bn α ] Q


Prop C Ψ (P | Q) α (P | Q ′)

PAR2
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

Ψ ⊗ΨQ � P
M N−−−→ P ′ ∧

C . Prop C (Ψ ⊗ΨQ ) P (M N ) P ′

F P = (νb̃P )ΨP distinct b̃P b̃P ] C

Ψ ⊗ΨP � Q
K (νx̃)N−−−−−→ Q ′ ∧

C . Prop C (Ψ ⊗ΨP ) Q (K (νx̃)N ) Q ′

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] C

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP x̃ ] ΨQ

x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ) ((νx̃)(P ′ | Q ′))

COMM1



Ψ ⊗ΨQ � P
M (νx̃)N−−−−−−→ P ′ ∧

C . Prop C (Ψ ⊗ΨQ ) P (M (νx̃)N ) P ′

F P = (νb̃P )ΨP distinct b̃P b̃P ] C

Ψ ⊗ΨP � Q
K N−−→ Q ′ ∧

C . Prop C (Ψ ⊗ΨP ) Q (K N ) Q ′

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] C

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP x̃ ] ΨQ

x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ) ((νx̃)(P ′ | Q ′))

COMM2


Ψ � P

M (νỹ z̃)N−−−−−−−→ P ′ ∧
C . Prop C Ψ P (M (νx̃ ỹ)N ) P ′

x ∈ supp N x ] ỹ x ] z̃ x ] M x ] Ψ x ] C

distinct ỹ ỹ ] Ψ ỹ ] P ỹ ] M ỹ ] z̃ ỹ ] C

distinct z̃ z̃ ] Ψ z̃ ] P z̃ ] M z̃ ] C


Prop C Ψ ((νx)P) (M (νỹ xz̃)N ) P ′ OPEN
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
Ψ � P

α−→ P ′ ∧
C . Prop C Ψ P α P ′

bn α ] sub j ect α distinct (bn α)
bn α ] Ψ bn α ] P bn α ] C

x ] Ψ x ] α x ] C


Prop C Ψ ((νx)P) α ((νx)P ′)

SCOPE

(
Ψ � P | !P

α−→ P ′ ∧
C . Prop C Ψ (P | !P) (α ≺ P ′) guarded P

)
Prop C Ψ (!P) (α ≺ P ′)

REPL

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍË
Prop C Ψ R α R ′

Proof. First, the special case of this lemma is proven with the extra require-
ments that x̃ ] ỹ and x̃ ] z̃. The proof is done by induction on p. The extra
requirements are needed for the inductive steps where Lemma 25.21 is used
to add a swapping of names obtained from x̃ and ỹ to M. If these names
where not fresh for x̃, the requisite that x̃ ] M from Lemma 25.21 would
not be fulfilled, and the proof not possible to complete.

Once the special case is proven, the main lemma is proven by manually
alpha-converting x̃ to not clash with ỹ or z̃.

25.2.2.3 τ-actions

Once the freshness proofs have been done for input and output actions, the
ones for τ-actions follow directly.

Lemma 25.23. If Ψ � P
τ−→ P ′ and x ] P then x ] P ′.

Proof. By induction onΨ � P
τ−→ P ′. In the COMM case, lemmas 25.12 and

25.18 are used do ensure that x is fresh for the derivatives.

Lemma 25.24. If Ψ � P
τ−→ P ′ and x̃ ] P then x̃ ] P ′.

Proof. By induction on x̃ and Lemma 25.23

We can now prove the following general freshness lemmas.

Lemma 25.25.

Ψ � P
α−→ P ′

bn α ] sub j ect α distinct (bn α) x ] α x ] P

x ] P ′
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Proof. By case analysis of α and Lemmas 25.12, 25.18, and 25.23.

Lemma 25.26.

Ψ � P
α−→ P ′

bn α ] sub j ect α distinct (bn α) x̃ ] P x̃ ] α

x̃ ] P ′

Proof. By induction on x̃ and Lemma 25.25.

With the lemmas to derive freshness and distinctness conditions in place,
it is possible to derive the operational semantics from Figure 22.1 from the
ones in Figure 25.1. The resulting semantics can be found in Figure 25.4

25.3 Frame induction rules
The induction rule in Figure 25.2 demonstrates the need to create custom
induction rules allowing for proofs which reason about terms under the
scope of binders. Another common type of proof for psi-calculi is to do in-
duction over a transition where the agent has a specific frame. Trying to
prove the following lemma illustrates this.

Ψ � P
M N−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP ` M
.↔ K b̃P ] Ψ b̃P ] P b̃P ] M b̃P ] K

Ψ � P
K N−−→ P ′

This lemma states that an action subject can be replaced by a channel
equivalent one, where the frame of P is allowed to help. The proof is done

by induction on Ψ � P
M N−−−→ P ′ and suffers from the same problem as

Lemma 25.18 – every inductive step will generate a frame alpha-equivalent
to (νb̃P )ΨP and many tedious alpha-conversions have to be done to prove
the lemma. A similar induction rule as for output transitions can be derived
to solve the problem. The induction rule for doing induction on transitions
where the agent has a specific frame can be found in Figure 25.5.

There are times where a subject has to be fresh for any name which is
fresh for the originating agent. Any subject of a transition has to be channel
equivalent to the subject of a prefix which syntactically occurs in the orig-
inating agent. Therefore, any name which is fresh for the agent, and which
does not occur in the bound names of its frame, must also be fresh for its
subjects. Intuitively, the following lemma retrieves the prefix subject of an
agent which is channel equivalent to the subject of its transition.
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(
Ψ ` M

.↔ K distinct x̃ set x̃ ⊆ supp N |x̃| = |T̃ |)
Ψ � M(λx̃)N .P

K N [x̃:=T̃ ]−−−−−−−→ P[x̃ := T̃ ]
INPUT

(
Ψ ` M

.↔ K
)

Ψ � M N .P
K N−−→ P

OUTPUT

Ψ� P 7−→ V
(ϕ, P) mem Cs
Ψ ` ϕ guarded P


Ψ� Cases Cs 7−→ V

CASE

(
Ψ ⊗ΨQ � P

α−→ P ′ F Q = (νb̃Q )ΨQ

bn α ] Q b̃Q ] Ψ b̃Q ] P b̃Q ] α

)
Ψ � P | Q

α−→ P ′ | Q
PAR1

(
Ψ ⊗ΨP � Q

α−→ Q ′ F P = (νb̃P )ΨP

bn α ] P b̃P ] Ψ b̃P ] Q b̃P ] α

)
Ψ � P | Q

α−→ P | Q ′
PAR2


Ψ ⊗ΨQ � P

M N−−−→ P ′

F P = (νb̃P )ΨP Ψ ⊗ΨP � Q
K (νx̃)N−−−−−→ Q ′

F Q = (νb̃Q )ΨQ Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] P b̃P ] Q b̃P ] M b̃P ] b̃Q

b̃Q ] Ψ b̃Q ] P b̃Q ] Q b̃Q ] K x̃ ] P


Ψ � P | Q

τ−→ (νx̃)(P ′ | Q ′)
COMM1


Ψ ⊗ΨQ � P

M (νx̃)N−−−−−−→ P ′

F P = (νb̃P )ΨP Ψ ⊗ΨP � Q
K N−−→ Q ′

F Q = (νb̃Q )ΨQ Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] P b̃P ] Q b̃P ] M b̃P ] b̃Q

b̃Q ] Ψ b̃Q ] P b̃Q ] Q b̃Q ] K x̃ ] Q


Ψ � P | Q

τ−→ (νx̃)(P ′ | Q ′)
COMM2

Ψ � P
M (νx̃ ỹ)N−−−−−−−→ P ′

x ∈ supp N x ] Ψ
x ] M x ] x̃ x ] ỹ


Ψ � (νx)P

M (νx̃x ỹ)N−−−−−−−−→ P ′
OPEN

(
Ψ � P

α−→ P ′

x ] Ψ x ] α

)
Ψ � (νx)P

α−→ (νx)P ′
SCOPE

(
Ψ� P | !P 7−→ V guarded P

)
Ψ� !P 7−→ V

REPL

Figure 25.4: Derived operational semantics for psi-calculi.
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Figure 25.5: Derived induction rule for the psi-calculi operational semantics for
transitions of the form Ψ � R 7−→ W, where R has the frame (νb̃R )ΨR . The ex-
tra ALPHA case ensures that the frame of R can be alpha-converted in the predi-
cate Prop. The inductive cases share the name of the semantic rule which they are
derived from. For space reasons, all meta quantifiers for each inductive step have
been removed – every term of every case is locally quantified.

ÈÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Ψ� R 7−→ W F R = (νb̃R )ΨR distinct b̃Rb̃P ] Ψ b̃P ] P b̃P ] p · b̃P b̃P ] V b̃P ] C

set p ⊆ set b̃P × set (p · b̃P ) distinctPerm p
Prop C Ψ P V b̃P ΨP


Prop C Ψ P V (p · b̃P ) (p ·ΨP )

ALPHA

(
Ψ ` M

.↔ K distinct x̃ set x̃ ⊆ supp N
x̃ ] T̃ |x̃| = |T̃ | x̃ ] Ψ x̃ ] M x̃ ] K x̃ ] C

)
Prop C Ψ M(λx̃)N .P (K N [x̃ := T̃ ] ≺ P[x̃ := T̃ ]) ε (1)

INPUT

Ψ ` M
.↔ K

Prop C Ψ (M N .P ) (K N ≺ P) ε (1)
OUTPUT


Ψ� P 7−→ V

∧
C . Prop C Ψ P V b̃P ΨP

(ϕ, P) mem C̃ Ψ ` ϕ guarded P
F P = (νb̃P )ΨP distinct b̃P ΨP ' 1 supp ΨP = ;
b̃P ] Ψ b̃P ] P b̃P ] V b̃P ] C


Prop C Ψ (Cases C̃ ) V ε (1)

CASE



Ψ ⊗ΨQ � P
α−→ P ′ ∧

C . Prop C (Ψ ⊗ΨQ ) P (α ≺ P ′) b̃P ΨP

F P = (νb̃P )ΨP distinct b̃P b̃P ] b̃Q b̃P ] ΨQ

b̃P ] P b̃P ] Q b̃P ] Ψ b̃P ] α b̃P ] P ′ b̃P ] C

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] P b̃Q ] Q
b̃Q ] Ψ b̃Q ] α b̃Q ] P ′ b̃Q ] ΨP b̃Q ] C

distinct (bn α) bn α ] sub j ect α bn α ] Ψ

bn α ] ΨP bn α ] ΨQ bn α ] P bn α ] Q


Prop C Ψ (P | Q) (α ≺ P ′ | Q) (b̃P b̃Q ) (ΨP ⊗ΨQ )

PAR1

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
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

Ψ ⊗ΨP � Q
α−→ Q ′∧

C . Prop C (Ψ ⊗ΨP ) Q (α ≺ P ′) b̃Q ΨQ

F P = (νb̃P )ΨP distinct b̃P b̃P ] b̃Q b̃P ] ΨQ

b̃P ] P b̃P ] Q b̃P ] Ψ b̃P ] α b̃P ] P ′ b̃P ] C

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] P b̃Q ] Q
b̃Q ] Ψ b̃Q ] α b̃Q ] P ′ b̃Q ] ΨP b̃Q ] C

distinct (bn α) bn α ] sub j ect α bn α ] Ψ

bn α ] ΨP bn α ] ΨQ bn α ] P bn α ] Q


Prop C Ψ (P | Q) (α ≺ P | Q ′) (b̃P b̃Q ) (ΨP ⊗ΨQ )

PAR2


Ψ � P

α−→ P ′ ∧
C . Prop C Ψ P (α ≺ P ′)

bn α ] sub j ect α distinct (bn α)

x ] Ψ x ] α x ] C

bn α ] Ψ bn α ] P bn α ] C


Prop C Ψ ((νx)P) (α ≺ (νx)P ′)

SCOPE



Ψ � P
M (νỹ z̃)N−−−−−−−→ P ′ ∧

C . Prop C Ψ P (M (νx̃ ỹ)N ≺ P ′)

x ∈ supp N x ] ỹ x ] z̃ x ] M x ] Ψ x ] C

distinct ỹ ỹ ] Ψ ỹ ] P ỹ ] M ỹ ] z̃ ỹ ] C

distinct z̃ z̃ ] Ψ z̃ ] P z̃ ] M z̃ ] C


Prop C Ψ ((νx)P) (M (νỹ xz̃)N ≺ P ′)

OPEN


Ψ� P | !P 7−→ V

∧
C . Prop C Ψ (P | !P) V b̃P ΨP

guarded P F P = (νb̃P )ΨP distinct b̃P ΨP ' 1

supp ΨP = ; b̃P ] Ψ b̃P ] P b̃P ] V b̃P ] C


Prop C Ψ (!P) V ε (1)

REPL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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

Ψ ⊗ΨQ � P
M N−−−→ P ′∧

C . Prop C (Ψ ⊗ΨQ ) P (M N ≺ P ′) b̃P ΨP

F P = (νb̃P )ΨP distinct b̃P b̃P ] C

Ψ ⊗ΨP � Q
K (νx̃)N−−−−−→ Q ′∧

C . Prop C (Ψ ⊗ΨP ) Q (K (νx̃)N ≺ Q ′) b̃Q ΨQ

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] C

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N
b̃Q ] P ′ b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP

x̃ ] ΨQ x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ ≺ (νx̃)(P ′ | Q ′)) (b̃P b̃Q ) (ΨP ⊗ΨQ )

COMM1



Ψ ⊗ΨQ � P
M (νx̃)N−−−−−−→ P ′∧

C . Prop C (Ψ ⊗ΨQ ) P (M (νx̃)N ≺ P ′) b̃P ΨP

F P = (νb̃P )ΨP distinct b̃P b̃P ] C

Ψ ⊗ΨP � Q
K N−−→ Q ′∧

C . Prop C (Ψ ⊗ΨP ) Q (K N ≺ Q ′) b̃P ΨP

F Q = (νb̃Q )ΨQ distinct b̃Q b̃Q ] C

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N
b̃Q ] P ′ b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP

x̃ ] ΨQ x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ ≺ (νx̃)(P ′ | Q ′)) (b̃P b̃Q ) (ΨP ⊗ΨQ )

COMM2

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍË
Prop C Ψ R W b̃R ΨR
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Lemma 25.27.

Ψ � P
α−→ P ′

F P = (νb̃P )ΨP distinct b̃P bn α ] sub j ect α distinct (bn α)
α 6= τ x̃ ] P b̃P ] Ψ b̃P ] x̃ b̃P ] P b̃P ] sub j ect α

∃M . Ψ ⊗ΨP ` the (subject α)
.↔ M ∧ x̃ ] M

Proof. By induction on Ψ � P
α−→ P ′. Intuitively, the lemma extracts the

subject of P. The the-function retrieves the value of an option type, which
is always possible since α 6= τ

This lemma obtains the subject from the prefix of P. Moreover, it ensures
that any sequence of names x̃ that are fresh for P and the bound names b̃P

from the frame of Ps are also fresh for the obtained subject.
The following lemmas can then be used to replace the subject of an ac-

tion.

Lemma 25.28. Replacing the subject of an input action.

Ψ � P
M N−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP ` M
.↔ K b̃P ] Ψ b̃P ] P b̃P ] M b̃P ] K

Ψ � P
K N−−→ P ′

Proof. By induction on Ψ � P
M N−−−→ P ′

Lemma 25.29. Replacing the subject of an output action.

Ψ � P
M (νx̃)N−−−−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP ` M
.↔ K b̃P ] Ψ b̃P ] P b̃P ] M b̃P ] K

Ψ � P
K (νx̃)N−−−−−→ P ′

Proof. By induction on Ψ � P
M (νx̃)N−−−−−−→ P ′

25.4 Replication
Similarly to CCS and the pi-calculus we require an induction rule to reason
about the transitions of replicated agents. This is required as instances of
Replication occur in the assumptions of the REPL rule. The induction rule
can be simplified considerably compared to the general induction rule from
Figure 25.2 as all replicated agents have guarded frames; the frames of the
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rule can thus be removed altogether as they are empty by definition. The
induction rule for replicated agents can be found in Figure 25.6.

337





Ψ� !P 7−→ W

∧
α P’ C

(
Ψ � P

α−→ P ′ distinct (bn α) bn α ] Ψ

bn α ] sub j ect α bn α ] P bn α ] C

)
Prop C Ψ (P | !P) (α ≺ P ′ | !P)

PAR1

∧
α P’ C

Ψ � P
α−→ P ′ ∧

C . Prop C Ψ (!P) (α ≺ P ′)
distinct (bn α) bn α ] sub j ect α
bn α ] Ψ bn α ] P bn α ] C


Prop C Ψ (P | !P) (α ≺ P | P ′)

PAR2

∧
M x̃ N P’ K P” C


Ψ � P

M N−−−→ P ′ Ψ � !P
K (νx̃)N−−−−−→ P ′′∧

C . Prop C Ψ (!P) (K (νx̃)N ≺ P ′)
Ψ ` M

.↔ K x̃ ] Ψ x̃ ] P
x̃ ] M x̃ ] K x̃ ] C distinct x̃


Prop C Ψ (P | !P) (τ ≺ (νx̃)(P | P ′))

COMM1

∧
M x̃ N P’ K P” C


Ψ � P

M (νx̃)N−−−−−−→ P ′ Ψ � !P
K N−−→ P ′′∧

C . Prop C Ψ (!P) (K N ≺ P ′)
Ψ ` M

.↔ K x̃ ] Ψ x̃ ] P
x̃ ] M x̃ ] K x̃ ] C distinct x̃


Prop C Ψ (P | !P) (τ ≺ (νx̃)(P | P ′))

COMM2

∧
V C

(
Ψ� P | !P 7−→ V

∧
C . Prop C Ψ (P | !P) V

guarded P

)
Prop C Ψ (!P) V

REPL


Prop C Ψ (!P) W

Figure 25.6: Induction rule for transitions of the form Ψ� !P 7−→ V. Since all repli-
cated agents are guarded, their frames are empty and can be removed from the
cases.
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26. Inversion rules

For calculi with single binders, like the pi-calculus and CCS, Isabelle
automatically creates induction and inversion rules from the operational
semantics. For calculi with sequences of binders, like psi-calculi, Isabelle
only manages to create induction rules, and it has been an open problem
how to create inversion rules for calculi with sequences of binders. In this
chapter we propose a candidate technique to generate inversion rules for
these types of formalisations. The proofs are currently manual, but the
techniques are general enough to allow for automatisation, and have been
used successfully to generate inversion rules for psi-calculi, and also by
Berghofer in a formalisation of the simply type lambda-calculus extended
with let patterns for tuples [22].

26.1 Rule generation
Examples of inversion rules for calculi with single binders can be found in
Figure 6.4 for CCS, and in Figure 13.4 for the pi-calculus. The main requi-
site of these rules is that no bound names are locally quantified for each se-
mantic case – they are all globally quantified and must hence be initialised
before the inversion rule is instantiated.

When inversion is done on a transition, it is necessary that the bound
names of this transition are not swapped – if we do inversion over the tran-
sition

Ψ � (νx)P
α−→ P ′

then the name x is already fixed in the proof environment and may not
be freely alpha-converted by the inversion rule. The way this is achieved is
that the standard inversion rule generated by Isabelle is used, which locally
quantify the binders, and that binder is then alpha-converted back to the
original one, which is possible as long as the original binder is sufficiently
fresh. For an overview, see [23].

The general inversion rule that we are aiming for does inversion on tran-
sitions of the form

Ψ� P 7−→ V
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where binding sequences can occur either in input prefixes, or in bound
outputs. We will use the same technique as is done for single binders – Is-
abelle’s non nominal inversion rule is used, and the binding sequences are
then alpha-converted back to the ones provided by the user. Whereas the
only requisite of the bound names for the single binder case is that they are
sufficiently fresh, binding sequences are also required to be distinct, and
have the same length as the binding sequences in the transition being in-
verted.

The last requisite deserves special mention. Consider doing inversion on
the transition above, and requiring that the bound names of the action of V
are equal to x̃. This is only possible if x̃ is sufficiently fresh and has the same
length as the binding sequence in V.

The result of a nominal function must not depend on the values of the
binders of its arguments, but it is possible to compute the length of binding
sequences using nominal functions.

Definition 26.1. The function inputLength counts the number of binders in
an input prefix. It has the type (α,β,γ) psi ⇒N

inputLength (0) = inputLength (M N .P ) = inputLength (Case C)

= inputLength (P | Q) = inputLength ((νx)P)

= inputLength ((|Ψ|)) = inputLength (!P) = 0

inputLength (Input M I) = inputLength ′ I

inputLength ′ (Trm M P) = 0

inputLength ′ (Bind y I) = 1 + inputLength ′ I

Definition 26.2. The function residualLength counts the number of
binders in the action of a residual. It has the type (α,β,γ) residual ⇒ N

and uses the auxiliary function boundOutputLength which has the type
(α,β,γ) boundOutput ⇒N

boundOutputLength (BOut M P) = 0

boundOutputLength (BStep x B) = boundOutputLength B + 1

residualLength (RIn M N P) = 0

residualLength (ROut M B) = boundOutputLength B

residualLength (RTau P) = 0

These definitions allow us to check the length of the binding sequences of
agents and residuals even though they have not yet been fixed in the proof
environment. We will use the notation |P|b and |V |b for inputLength P and
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residualLength V respectively. The following lemma can then be used to
generate the alpha-converting permutations.

Lemma 26.3.

|x̃| = |ỹ | x̃ ] ỹ distinct x̃ distinct ỹ

∃p. set p ⊆ set x̃ × set (p · x̃) ∧ distinctPerm p ∧ ỹ = p · x̃

Proof. By induction on the length of x̃ and ỹ . The perumation p is con-
structed by pairwise composing the elements from the sequences x̃ and
ỹ .

The permutations can then be used to alpha-convert the agents and
residuals provided by Isabelle such that their binding sequences are the
ones provided by the user. For input prefixes and bound output actions,
Corollary 23.6 is used, and for residuals of the form α ≺ P ′, Lemma 25.8.

The generated inversion rule for psi-calculi can be found in Figure 26.1.
As for its counterparts from CCS and the pi-calculus, the bound names are
globally quantified and supplied by the user, and not locally quantified for
each case. The exception to this are the PAR and the SCOPE rules; these
rules have residuals of the form α ≺ P ′, and even though α contains bound
names, it is locally quantified by the corresponding rules. However, the user
still provides the bound names of the actions, as seen by the constraints bn
α = x̃ in these cases.

To summarise the requirements we have for each nominal datatype in
order to derive an inversion rule are:

• Any sequence of bound names in a binding structure available for inver-
sion must be obtainable by a bn function.

• There must be a length function to determine the length of the binding
sequence of the binding structures.

• There must be an alpha-conversion lemma like Lemma 25.8 for every
binding structure.

None of these require that what we are doing inversion over have to be of
a particular form. We must be able to obtain an alpha-converting permuta-
tion to equate the nominal datatypes, but that is all. We believe neither of
these requirements to be difficult to automate.

Similarly to the previous inversion rules, the rule in Figure 26.1 is not
well suited for inversion in most proofs – every bound sequence must be
instantiated, their lengths must be verified and they must be sufficiently
fresh. This process is tedious and should preferably not be required every
time inversion is used. Inversion rules specifically tailored for use with the
different operators can be found in Figure 26.2. The proofs for all of these
inversion rules are very short, and follow directly from the general inver-
sion rule. For the rest of the thesis, whenever inversion is used, the rules in
Figure 26.2 are the ones used.
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Ψ ′� R 7−→ V
x̃1 ] Ψ

′ x̃1 ] R x̃1 ] V |x̃1| = |R|b distinct x̃1

Ψ ′=Ψ ∧ R = M(λx̃1)N .P ∧ V = K N [x̃1 := T̃ ] ≺ P[x̃1 := T̃ ]∧
Ψ ` M

.↔ K ∧ set x̃1 ⊆ supp N ∧ |x̃1| = |T̃ | ∧
x̃1 ] T̃ ∧ x̃1 ] Ψ ∧ x̃1 ] M ∧ x̃1 ] K


Prop

INPUT

Ψ ′=Ψ R = M N .P V = K N ≺ P Ψ ` M
.↔ K

Prop
OUTPUT

(
Ψ ′=Ψ R = Cases Cs V = U
Ψ� P 7−→ U (ϕ, P) mem Cs Ψ ` ϕ guarded P

)
Prop

CASE


x̃2 ] Ψ

′ x̃2 ] R x̃2 ] V |x̃2| = |V|b distinct x̃2

Ψ ′=Ψ ∧ R = P | Q ∧ V = α ≺ P ′ | Q ∧ x̃2 = bn α∧
Ψ ⊗ΨQ � P

α−→ P ′∧ F Q = (νb̃Q )ΨQ ∧ distinct b̃Q ∧
b̃Q ] P ∧ b̃Q ] Q ∧ b̃Q ] Ψ ∧ b̃Q ] α ∧ b̃Q ] P ′∧ b̃Q ] C


Prop

PAR1


x̃3 ] Ψ

′ x̃3 ] R x̃3 ] V |x̃3| = |V|b distinct x̃3

Ψ ′=Ψ ∧ R = P | Q ∧ V = α ≺ P | Q ′∧ x̃3 = bn α∧
Ψ ⊗ΨP � Q

α−→ Q ′∧ F P = (νb̃P )ΨP ∧ distinct b̃P ∧
b̃P ] P ∧ b̃P ] Q ∧ b̃P ] Ψ ∧ b̃P ] α ∧ b̃P ] P ′∧ b̃P ] C


Prop

PAR2



Ψ ′=Ψ R = P | Q V = τ ≺ (νx̃)(P ′ | Q ′)
Ψ ⊗ΨQ � P

M N−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP � Q
K (νx̃)N−−−−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K b̃P ] C b̃Q ] C

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N b̃Q ] P ′

b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃ distinct x̃

x̃ ] Ψ x̃ ] ΨP

x̃ ] ΨQ x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop

COMM1

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
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

Ψ ′=Ψ R = P | Q V = τ ≺ (νx̃)(P ′ | Q ′)
Ψ ⊗ΨQ � P

M (νx̃)N−−−−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP � Q
K N−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K b̃P ] C b̃Q ] C

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N
b̃Q ] P ′ b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP

x̃ ] ΨQ x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop C Ψ (P | Q) (τ ≺ (νx̃)(P ′ | Q ′))

COMM2



x̃4 ] Ψ
′ x̃4 ] R x̃4 ] V |x̃4| = |V|b distinct x̃4

x1 ]Ψ
′ x1 ] R x1 ] V x1 ] x̃4

Ψ ′=Ψ ∧ R = (νx1)P ∧ V = M (νx̃x1 ỹ)N ≺ P ′∧ x̃4 = x̃yỹ ∧
Ψ � P

M (νx̃ ỹ)N−−−−−−−→ P ′∧ x1 ∈ supp N ∧ x1 ] x̃ ∧ x1 ] ỹ ∧
distinct x̃ ∧ distinct ỹ ∧ x̃ ] Ψ ∧ x̃ ] P ∧ x̃ ] M ∧ x̃ ] ỹ ∧
ỹ ] Ψ ∧ ỹ ] P ∧ ỹ ] M


Prop

OPEN


x̃4 ] Ψ

′ x̃5 ] R x̃5 ] V |x̃5| = |V|b distinct x̃5

x2 ]Ψ
′ x2 ] R x2 ] V x2 ] x̃5

Ψ ′=Ψ ∧ R = (νx2)P ∧ V = α ≺ (νx2)P ′∧ x̃5 = bn α∧
Ψ � P

α−→ P ′∧ x2 ] Ψ ∧ x2 ] α ∧ bn α ] sub j ect α∧
distinct (bn α)


Prop

SCOPE

(
Ψ ′=Ψ R = !P V = W
Ψ� P | !P 7−→ W guarded P

)
Prop

REPL

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍË
Prop

Figure 26.1: The nominal inversion rule for the operational semantics of psi-calculi.
The predicate Prop, the assertion Ψ ′, the agent R, the residual V, the binding se-
quences x̃1-x̃5, the names x1 and x2, and the freshness context C are quantified
globally, and presented in bold font for clarity. All other terms are locally quantified
in their respective inversion case.
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
Ψ � M(λx̃)N.P α−→ Q(
Ψ ` M

.↔ K distinct x̃ set x̃ ⊆ supp N |x̃| = |T̃ |)
Prop (K N[x̃ := T̃ ]) (P[x̃ := T̃ ])


Prop α Q

INPUT

[
Ψ � MN .P α−→ Q

Ψ ` M
.↔ K

Prop (K N) P

]
Prop α Q

OUTPUT


Ψ� Cases C̃ 7−→ V(
Ψ� P 7−→ V (ϕ, P) mem Cs Ψ ` ϕ guarded P

)
Prop


Prop

CASE



Ψ � (νa)P α−→ Q a ]Ψ a ]α a ] Q
bn α ] Ψ bn α ] P bn α ] sub j ect α
Ψ � P M (νx̃ ỹ)(a b) · N−−−−−−−−−−−→ (a b) · P ′ b ∈ supp N
a ] N a ] P ′ a 6= b y ] x̃ y ] ỹ
y ] M distinct x̃ distinct ỹ x̃ ] Ψ b ]Ψ ỹ ] Ψ

x̃ ] P b ] P ỹ ] P x̃ ] M b ] M ỹ ] M x̃ ] ỹ


Prop (M (νx̃ y ỹ)N ) P ′

Ψ � P α−→ P ′

Prop α ((νa)P ′)


Prop α Q

SCOPE

[
Ψ� !P 7−→ V

Ψ� P | !P 7−→ V guarded P

Prop

]
Prop

REPL

Figure 26.2: Derived inversion rules for the operational semantics of psi-calculi. To
save space, the meta quantifiers for each rule have been removed. The arguments
marked in bold font are globally quantified for the entire rule, and the italic ones
are quantified for their respective cases. The PAR and SCOPE rules require freshness
conditions of the bound names of the transitions in order for the inversion rule to
be applicable.
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

Ψ � P | Q α−→ R
bn α ] Ψ bn α ] P bn α ] Q bn α ] sub j ect α(
Ψ ⊗ΨQ � P α−→ P ′ F Q = (νb̃Q )ΨQ distinct b̃Q

b̃Q ] P b̃Q ] Q b̃Q ] Ψ b̃Q ] α b̃Q ] P ′ b̃Q ] C

)
Prop α (P ′ | Q)(

Ψ ⊗ΨP � Q α−→ Q ′ F P = (νb̃P )ΨP distinct b̃P

b̃P ] P b̃P ] Q b̃P ] Ψ b̃P ] α b̃P ] Q ′ b̃P ] C

)
Prop α (P | Q ′)

Ψ ⊗ΨQ � P M N−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP � Q K (νx̃)N−−−−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K b̃P ] C b̃Q ] C

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N
b̃Q ] P ′ b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP

x̃ ] ΨQ x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop (τ) ((νx̃)(P ′ | Q ′))

Ψ ⊗ΨQ � P M (νx̃)N−−−−−−→ P ′ F P = (νb̃P )ΨP distinct b̃P

Ψ ⊗ΨP � Q K N−−→ Q ′ F Q = (νb̃Q )ΨQ distinct b̃Q

Ψ ⊗ (ΨP ⊗ΨQ ) ` M
.↔ K b̃P ] C b̃Q ] C

b̃P ] Ψ b̃P ] ΨQ b̃P ] P b̃P ] M b̃P ] N
b̃P ] P ′ b̃P ] Q b̃P ] Q ′ b̃P ] b̃Q b̃P ] x̃

b̃Q ] Ψ b̃Q ] ΨP b̃Q ] P b̃Q ] N
b̃Q ] P ′ b̃Q ] Q b̃Q ] K b̃Q ] Q ′ b̃Q ] x̃

distinct x̃ x̃ ] Ψ x̃ ] ΨP

x̃ ] ΨQ x̃ ] P x̃ ] M x̃ ] Q x̃ ] K x̃ ] C


Prop (τ) ((νx̃)(P ′ | Q ′))


Prop α R

PAR
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27. Strong bisimilarity

Strong bisimilarity for psi-calculi differs from the pi-calculus and CCS in
three main regards. Firstly, bisimilarity in parametrised by an environment
in which the agents operate. Secondly, as in the Applied pi-calculus, the
frames of bisimilar agents must be statically equivalent. Finally, if two
agents are bisimilar in an environment, they must be bisimilar for all
possible extensions of that environment.

Whereas these additions add to the complexity of the calculus, the for-
malisation techniques used for the pi-calculus and CCS scale remarkably
well. Simulations are still defined in the standard way, with the exception
that the relations are ternary rather than binary, and bisimilarity is defined
coinductively.

The proof techniques deserve special mention. In psi-calculi an agent in
a parallel composition may use the frame of the other agent to derive its
transitions. For the bisimilarity proofs, this requires that any transition de-
rived using the frame of an agent must also be derivable using the frame of
any bisimilar agent. One of our main contributions is how this is formalised
in a smooth and transparent way.

It must be stressed that even though the actual proofs are substantially
more involved than for the ones covered previously in this thesis, their gen-
eral structure remains the same – case analysis is done on what actions an
agent can do, and the simulating agents uses the rules from the operational
semantics to mimic these actions.

27.1 Frame equivalences
We will now formalise the frame equivalences defined in Definition 22.5.

Definition 27.1. A frame F entails a condition ϕ, written F ` ϕ.

F ` ϕ = (∃ b̃F ΨF . F = (νb̃F )ΨF ∧ b̃F ] ϕ ∧ΨF ` ϕ)

A frame entails a conditionϕ if it has an alpha-variant such that its asser-
tion component entails ϕ, and none of its bound names clash with ϕ.

Introduction and elimination rules for ` can then be derived.
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Lemma 27.2. Introduction and elimination rules for frame entailment.

F = (νb̃F )ΨF b̃F ] ϕ ΨF ` ϕ

F ` ϕ
` -I

F ` ϕ F = (νb̃F )ΨF b̃F ] ϕ

ΨF ` ϕ
` -E

Proofs involving frame entailment generally require that a candidate with
sufficiently fresh bound names is chosen for each frame present in the con-
text.

Static equivalence for frames is then defined in the same way as for as-
sertions.

Definition 27.3. A frame F which statically implies G is written F ≤ G.

F ≤ G
def= ∀ϕ. F ` ϕ −→ G ` ϕ

Definition 27.4. Two statically equivalent frames F and G is written F ' G.

F ' G
def= F ≤ G ∧ G ≤ F

Lemma 27.5. Static equivalence is an equivalence relation

Proof. Follows from definitions 27.3 and 27.4.

Lemma 27.6. Static equivalence is equivariant

If F ` ϕ then (p · F) ` (p · ϕ).

If F ≤ G then (p · F) ≤ (p · G).

If F ' G then (p · F) ' (p · G).

Proof. Follows directly from Definitions 27.1, 27.3, 27.4 and Lemma 24.13.

Static equivalence for frames is not compositional, i.e. we do not have
that if F ' G then F ⊗ H ' G ⊗ H . The reason for this is that the we do not
necessarily have that ΨF 'ΨG as the binders of F and G can mask the be-
haviour which separates the assertions, and hence the ACOMP rule cannot
be used. For a counter-example, see Section 22.2.2.

27.2 Definitions
The definition for simulation for psi-calculi is significantly simpler than the
one for the pi-calculus, and more on par with the one for CCS. Since resid-
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uals for psi-calculi are defined to include both bound and free actions, the
case distinction which is made for the pi-calculus is not necessary. The
freshness conditions for the bound names additionally require that they
must be fresh for the environment.

Definition 27.7 (simulation). An agent term P simulating an agent Q pre-
serving R in the environment Ψ is denoted Ψ � P ,→R Q.

Ψ � P ,→R Q
def= ∀αQ ′. Ψ � Q

α−→ Q ′ ∧ bn α ] Ψ ∧ bn α ] P −→
∃P ′. Ψ � P

α−→ P ′ ∧ (Ψ, P ′, Q ′) ∈ R

Simulation is monotonic with respect to the candidate relation.

Lemma 27.8. If Ψ � P ,→R Q and R ⊆ R ′ then Ψ � P ,→R ′ Q.

Proof. By the definition of ,→. The requisite that R ⊆ R ′ ensures that any
derivatives of P and Q are in R ′.

Bisimilarity can now be defined coinductively in the standard way.

Definition 27.9 (Strong bisimilarity). Bisimilarity, denoted .∼, is defined
coinductively as the greatest fixpoint satisfying:

Ψ � P .∼ Q =⇒ (F P) ⊗Ψ ' (F Q) ⊗Ψ STATEQ

∧Ψ � P ,→ .∼ Q SIMULATION

∧ ∀Ψ ′. Ψ ⊗Ψ ′ � P .∼ Q EXTENSION

∧Ψ � Q .∼ P SYMMETRY

27.2.1 Primitive inference rules
As for the pi-calculus, simulation for psi-calculi requires freshness condi-
tions of the bound names in the actions of the transitions. An introduc-
tion rule is created such that these bound names are guaranteed to be suf-
ficiently fresh.

Lemma 27.10. Introduction rule for simulation.

eqvt R

∧
α Q ′.

Ψ � Q
α−→ Q ′

bn α ] P bn α ] Q bn α ] Ψ

distinct (bn α) bn α ] sub j ect α bn α ] C


∃P ′. Ψ � P

α−→ P ′∧ (Ψ, P ′, Q ′) ∈ R

Ψ � P ,→R Q
,→-I
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Proof. Follows from the definition of ,→. The bound names in the actions
of the transitions are alpha-converted to avoidΨ, P, Q, subject α and C and
the fact that R is equivariant allows the alpha-converting permutations to
be applied to the derivatives in R.

The freshness lemmas for psi-calculi transitions differ from the
pi-calculus in that even though a name is fresh for an agent, it may very
well appear in the subject of a transition. This phenomenon was covered
in detail in Section 25.2.2.

Lemma 27.11. Introduction rule for simulation ensuring freshness condi-
tions on the subject.

eqvt R x̃ ] Ψ x̃ ] P x̃ ] Q

∧
α Q ′.

Ψ � Q
α−→ Q ′

bn α ] P bn α ] Q bn α ] Ψ bn α ] sub j ect α
distinct (bn α) bn α ] C x̃ ] α x̃ ] Q ′


∃P ′. Ψ � P

α−→ P ′∧ (Ψ, P ′, Q ′) ∈ R

Ψ � P ,→R Q

Proof. The introduction rule ,→-I is used such that the bound names of the
transition avoid C and x̃. A fresh subject is retrieved using Lemma 25.27
and exchanged in the transition by using Lemma 25.28 if it is an input tran-
sition, and Lemma 25.29 if it is an output transition.

Given that a sequence x̃ is fresh for the originating agents in a simula-
tion and their environment, the subject of any transition can be translated
in such a way that the sequence is fresh for that subject too. This introduc-
tion rule will be useful for some of the congruence proofs in this and future
chapters.

Lemma 27.12. Elimination rule for simulation

Ψ � P ,→R Q Ψ � Q
α−→ Q ′ bn α ] Ψ bn α ] P

∃P ′. Ψ � P
α−→ P ′∧ (Ψ, P ′, Q ′) ∈ R

,→−E

Proof. Follows from the definition of ,→.

The introduction and elimination rule for bisimilarity follow immedi-
ately from its definition.

Lemma 27.13. Introduction and elimination rules for bisimilarity.
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(F P) ⊗Ψ ' (F Q) ⊗Ψ

Ψ � P ,→ .∼ Q ∀Ψ ′. Ψ ⊗Ψ ′ � P .∼ Q Ψ � Q .∼ P

Ψ � P .∼ Q
.∼-I

Ψ � P .∼ Q

(F P) ⊗Ψ ' (F Q) ⊗Ψ

.∼-E1
Ψ � P .∼ Q

Ψ � P ,→ .∼ Q
.∼-E2

Ψ � P .∼ Q

Ψ ⊗Ψ ′ � P .∼ Q
.∼-E3

Ψ � P .∼ Q

Ψ � Q .∼ P
.∼-E4

Proof. Follows from the definition of .∼.

In order to prove that two processes are bisimilar, a symmetric candidate
relation X is chosen such that all agent pairs in X simulate each other in
an environment and that their derivatives are either in X or bisimilar in
that environment. Moreover, for any environment and pair of agents in X ,
the pair of agents and the environment extended with an arbitrary assertion
must also be in X , or bisimilar.

Lemma 27.14. Coinduction rule for bisimilarity.

(Ψ, P, Q) ∈ X

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

(F R) ⊗Ψ ′' (F S) ⊗Ψ ′ STATEQ

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

Ψ ′ � R ,→X ∪ .∼ S
SIMULATION

∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ X

(Ψ ′⊗Ψ ′′ , R, S) ∈ X ∨Ψ ′⊗Ψ ′′ � R .∼ S
EXTENSION

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

(Ψ ′, S, R) ∈ X ∨Ψ ′ � S .∼ R
SYMMETRY

Ψ � P .∼ Q

Proof. Derived from the coinductive rule generated by Isabelle.

27.2.2 Equivariance
The equivariance proof follows the standard pattern. The first step is to
prove that simulation is preserved by permutations.
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Lemma 27.15. Simulation is equivariant

eqvt R Ψ � P ,→R Q

p ·Ψ � p · P ,→R p · Q

Proof. Follows from the definition of ,→. The fact that the transition sys-
tem is equivariant (Lemma 25.10) makes it possible to cancel the permu-
tation p by applying its inverse and perform the simulation. The proof can
then be finished by applying the permutation p to the simulating transi-
tion, canceling the inverse, and the assumptionΨ � P ,→R Q ensures that
the derivatives are still in R.

The proof that bisimilarity is equivariant is done in two steps, the first is
to prove that bisimilarity is closed by permutations.

Lemma 27.16. If Ψ � P .∼ Q then p ·Ψ � p · P .∼ p · Q.

Proof. By coinduction setting X to {(p · Ψ, p · P, p · Q) : Ψ � P .∼ Q}. The
four cases are then proven separately.

Static equivalence: From (F P) ⊗ Ψ ' (F Q) ⊗ Ψ we have from
Lemma 27.6 that (F (p · P)) ⊗ (p ·Ψ) ' (F (p · Q)) ⊗ (p ·Ψ)

Simulation: The candidate relation X is equivariant. From Ψ � P .∼ Q we
have by .∼-E2 that Ψ � P ,→ .∼ Q, and hence by Lemma 27.15 that p ·
Ψ � p · P ,→X p · Q.

Extension: From Ψ � P .∼ Q we have by .∼-E3 that Ψ ⊗ (p− ·Ψ ′) � P .∼ Q
for any possible Ψ ′. Hence (p ·Ψ ⊗ (p− ·Ψ ′) , p · P, p · Q) ∈ X , by the
definition of X , and hence ((p ·Ψ) ⊗Ψ ′ , p · P, p · Q) ∈ X for all Ψ ′.

Symmetry: The candidate relation X is symmetric since bisimilarity is
symmetric.

From this lemma, the proof that bisimilarity is equivariant follows di-
rectly.

Lemma 27.17. eqvt .∼

Proof. Follows immediately from the definition of eqvt and Lemma 27.16
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27.2.3 Preserved by static equivalence
The remaining proof for the basic infrastructure of bisimilarity is to prove
that if two processes are bisimilar in an environment, they are also bisimilar
in a statically equivalent one. We first do the proof for simulation.

Lemma 27.18. Simulation is preserved by static equivalence

Ψ � P ,→R Q

eqvt R ′ Ψ 'Ψ ′ ∧
Ψ ′′ R S Ψ ′′′.

(Ψ ′′, R, S) ∈ R Ψ ′′'Ψ ′′′

(Ψ ′′′, R, S) ∈ R ′

Ψ ′ � P ,→R ′ Q

Proof. The introduction rule ,→-I is used such that any bound names avoid

Ψ. We must then prove that given Ψ ′ � Q
α−→ Q ′, bn α ] Ψ ′, and bn α ] P

there exists a P ′ such that Ψ ′ � P
α−→ P ′ and (Ψ ′, P ′, Q ′) ∈ R ′. Moreover we

know from the avoiding context that bn α ] Ψ.

• From Ψ ′ � Q
α−→ Q ′ and Ψ 'Ψ ′, we have by Lemma 25.11 that Ψ � Q

α−→ Q ′.
• With Ψ � P ,→R Q, bn α ] Ψ, and bn α ] P we obtain a P ′ such that

Ψ � P
α−→ P ′ and (Ψ, P ′, Q ′) ∈ R, by ,→-E.

• From Ψ � P
α−→ P ′ and Ψ 'Ψ ′, we have by Lemma 25.11 that Ψ ′ � P

α−→ P ′ proving the transition part of the simulation.
• Finally, from (Ψ, P ′, Q ′) ∈R andΨ'Ψ ′we have that (Ψ ′, P ′, Q ′) ∈R ′by

the environment switching rule in the assumptions.

Before proving this property for bisimilarity, an auxiliary lemma is
needed. As we discussed in Section 27.1, static equivalence on frames
is not preserved by composition. A weaker result is however available –
static equivalence of assertions is preserved by frame composition. More
precisely, we have the following lemma.

Lemma 27.19. If Ψ 'Ψ ′ then F ⊗Ψ ' F ⊗Ψ ′.

Proof. An instance (νb̃F )ΨF of F is chosen such that b̃F ] Ψ and b̃F ] Ψ ′.
The assertions can then propagate past b̃F . The proof is then done by in-
duction on b̃F .

Base case (b̃P = ε): Since Ψ 'Ψ ′, we have by ACOMP that Ψ ⊗ΨF 'Ψ ′⊗
ΨF .

Inductive step (b̃P = xb̃P ′): From the induction hypothesis we get that
((νb̃F

′)Ψ ⊗ ΨF ) ' ((νb̃F
′)Ψ ′ ⊗ ΨF ) and by Lemma 27.30 that

((νxb̃F
′)Ψ ⊗ΨF ) ' ((νxb̃F

′)Ψ ′⊗ΨF ).
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Lemma 27.20. If Ψ � P .∼ Q and Ψ 'Ψ ′ then Ψ ′ � P .∼ Q.

Proof. By coinduction with X set to {(Ψ ′, P, Q) : ∃Ψ. Ψ � P .∼ Q ∧Ψ 'Ψ ′}

Static equivalence: FromΨ � P .∼ Q we have by .∼-E1 that (F P) ⊗Ψ' (F
Q) ⊗Ψ. Since Ψ 'Ψ ′ we have by Lemma 27.19 that (F P) ⊗Ψ ′' (F
Q) ⊗Ψ ′.

Simulation: From Ψ � P .∼ Q we have by .∼-E2 that Ψ � P ,→ .∼ Q. More-
over, X is equivariant as both bisimilarity and static equivalence are
equivariant, and with Ψ 'Ψ ′ we can prove that Ψ � P ,→X Q using
Lemma 27.18.

Extension: From Ψ � P .∼ Q we have by .∼-E3 that Ψ ⊗Ψ ′′ � P .∼ Q for all
possible Ψ ′′. That (Ψ ′⊗ Ψ ′′ , P, Q) ∈ X follows directly from Ψ ' Ψ ′
and the ACOMP rule.

Symmetry: The candidate relation X is symmetric as bisimilarity is sym-
metric.

27.3 Bisimulation is an equivalence relation
That bisimulation is an equivalence relation is not more difficult to prove
than for CCS or the pi-calculus. Bisimilarity is symmetric, so the remain-
ing proofs are the ones for reflexivity and transitivity. For CCS and the pi-
calculus, the reflexivity proof requires that the candidate relation is reflex-
ive but for for psi-calculi, the candidate relation is ternary and not binary,
and the requirement is that it is reflexive for all possible environments.

Lemma 27.21. If {(Ψ, P, P) : True} ⊆ R then Ψ � P ,→R P .

Proof. Follows from the definition of ,→. The requisite that {(Ψ, P, P) : True}
⊆ R ensures that for all environments, any derivatives of P are in the can-
didate relation.

The proof that simulation is transitive follows the one from the
pi-calculus closely.

Lemma 27.22.

Ψ � P ,→R Q Ψ � Q ,→R ′ R
eqvt R ′′ {(Ψ, P, R) : ∃Q. (Ψ, P, Q) ∈ R ∧ (Ψ, Q, R) ∈ R ′} ⊆ R ′′

Ψ � P ,→R ′ ′ R
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Proof. The introduction rule ,→-I is used such that any bound names avoid

Q. We must then prove that given Ψ � R
α−→ R ′, bn α ] Ψ, and bn α ] P

there exists a P ′ such that Ψ ′ � P
α−→ P ′ and (Ψ, P ′, R ′) ∈ R ′′. Moreover we

know from the avoiding context that bn α ] Q.

• From Ψ � Q ,→R ′ R, Ψ � R
α−→ R ′, bn α ] Ψ, and bn α ] Q we obtain

a Q ′ such that Ψ � Q
α−→ Q ′ and (Ψ, Q ′, R ′) ∈ R ′ from ,→-E.

• From Ψ � P ,→R Q, Ψ � Q
α−→ Q ′, bn α ] Ψ, and bn α ] P we obtain

a P ′ such that Ψ � P
α−→ P ′ and (Ψ, P ′, Q ′) ∈ R from ,→-E, solving the

transition part of the simulation.
• From (Ψ, P ′, Q ′) ∈ R and (Ψ, Q ′, R ′) ∈ R ′ we have from the assumptions

that (Ψ, P ′, R ′) ∈ R ′′.

We can now prove that bisimulation is an equivalence relation.

Lemma 27.23. Bisimulation is an equivalence relation

Proof.

Reflexivity: Ψ � P .∼ P

Proof by coinduction and setting X to {(Ψ, P, P) : True}.

Static equivalence: Follows directly since static equivalence is
reflexive.

Simulation: Follows from Lemma 27.21.

Extension: Follows directly since static equivalence is reflexive.

Symmetry: The candidate relation X is trivially symmetric.

Symmetry: If Ψ � P .∼ Q then Ψ � Q .∼ P.

Follows immediately from the definition of .∼
Transitivity: If Ψ � P .∼ Q and Ψ � Q .∼ R then Ψ � P .∼ R.

Proof by coinduction and setting X to {(Ψ, P, R) : ∃Q.Ψ � P .∼ Q ∧Ψ

� Q .∼ R}.

Static equivalence: Follows directly since static equivalence is tran-
sitive.

Simulation: Follows from Lemma 27.22 and the fact that bisimilarity
is equivariant.

Extension: Follows directly since static equivalence is transitive.

Symmetry: The candidate relation X is symmetric since bisimilarity
is symmetric.
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27.4 Preservation properties
The proofs will follow the standard pattern and be divided into simulation
and bisimilarity lemmas. The requisites of the candidate relations for sim-
ulations follow the corresponding ones from the pi-calculus almost com-
pletely, but some of the proofs require more work, especially the ones where
Parallel is involved.

27.4.1 Output
The requirements of the candidate relation for Output for psi-calculi are
the same as for the pi-calculus – the prefixed agents and their environment
must be in the relation.

Lemma 27.24. Simulation is preserved by Output.

(Ψ, P, Q) ∈ R

Ψ � M N .P ,→R M N .Q

Proof. Follows from the definition of ,→. The OUTPUT inversion rule is used
to derive the only possible type of transition from the prefixed agent, and
the OUTPUT rule from the operational semantics is used to discharge it. The
derivatives can only be P and Q, which are in R.

Lemma 27.25. If Ψ � P .∼ Q then Ψ � M N .P .∼ M N .Q.

Proof. By coinduction with X set to {(Ψ, M N .P , M N .Q) : Ψ � P .∼ Q}.

Static equivalence: Since both frames of M N .P and M N .Q are empty, we
have that (F (M N .P )) ⊗ Ψ ' (F (M N .Q)) ⊗ Ψ since static equiva-
lence is reflexive.

Simulation: Follows immediately from Lemma 27.24.

Extension: From Ψ � P .∼ Q we have by .∼-E3 that Ψ ⊗Ψ ′ � P .∼ Q for all
Ψ ′, and hence that (Ψ ⊗Ψ ′ , M N .P , M N .Q) ∈ X .

Symmetry: The candidate relation X is symmetric since bisimilarity is
symmetric.

27.4.2 Case
The preservation property for case differs from the one presented in our
original paper [17]. In section 4.2 of that paper, the preservation property
for case is defined as
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∀i .Ψ� Pi
.∼Qi =⇒Ψ� case ϕ̃ : P̃ .∼ case ϕ̃ : Q̃

where the ϕ, P̃ , and Q̃ are equally long sequences indexed by an index i .
In this formalisation we prove a slightly stronger result – two agents Cases
C̃ P and Cases C̃Q are bisimilar, if for every condition ϕ and P in C̃ P , there
exists a Q such that ϕ and Q are in C̃Q , P is bisimilar to Q, and vice versa.
This preservation property does not require the number of case-constructs
for each agent to be the same, nor does it require that the bisimilar agents
are present at the same index of the corresponding sequences.

Lemma 27.26. Simulation is preserved by Case.
R ⊆ R ′ ∧

Ψ ′ R S.
(Ψ ′, R, S) ∈ R

Ψ ′ � R ,→R S

∧
ϕ Q.

(ϕ, Q) mem C̃Q

∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧ (Ψ, P, Q) ∈ R


Ψ � C ases C̃ P ,→R ′ C ases C̃Q

Proof. From the definition of ,→ we have that for all transitions Ψ � Cases

C̃Q
α−→ Q ′ such that bn α ] Ψ and bn α ] C̃ P .

• From Ψ � Cases C̃Q
α−→ Q ′ and the CASE inversion rule we obtain a ϕ

and a Q such that (ϕ, Q) mem C̃Q , guarded Q, Ψ � Q
α−→ Q ′ and Ψ ` ϕ.

• From (ϕ, Q) mem C̃Q and the assumptions we obtain a P such that (ϕ,
P) mem C̃ P , guarded P and (Ψ, P, Q) ∈ R.

• From (Ψ, P, Q) ∈ R and the assumptions we get that Ψ � P ,→R Q.
• From bn α ] C̃ P and (ϕ, P) mem C̃ P we have that bn α ] P

• From Ψ � P ,→R Q, Ψ � Q
α−→ Q ′, bn α ] Ψ, and bn α ] P we obtain

a P ′ such that Ψ � P
α−→ P ′ and (Ψ, P ′, Q ′) ∈ R by ,→-E.

• From Ψ � P
α−→ P ′, (ϕ, P) mem C̃ P , guarded P, and Ψ ` ϕ we have

by the CASE rule that Ψ � C̃ P
α−→ P ′, solving the transition part of the

simulation.
• Finally from (Ψ, P ′, Q ′) ∈ R and R ⊆ R ′ we have that (Ψ, P ′, Q ′) ∈ R ′.

To prove that bisimilarity is preserved by Case, the membership requisite
of the previous lemma must be encoded in the candidate relation, making
it somewhat intimidating.
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Lemma 27.27. Bisimilarity is preserved by Case.
∧
ϕ P.

(ϕ, P) mem C̃ P

∃Q. (ϕ, Q) mem C̃Q ∧ guarded Q ∧Ψ � P .∼ Q

∧
ϕ Q.

(ϕ, Q) mem C̃Q

∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧Ψ � P .∼ Q


Ψ � Cases C̃ P

.∼ Cases C̃Q

Proof. By coinduction with X set to

{(Ψ, Cases C̃ P ,
Cases C̃Q ) : (∀ϕ P. (ϕ, P) mem C̃ P −→

(∃Q. (ϕ, Q) mem C̃Q ∧ guarded Q ∧Ψ � P .∼ Q)) ∧
(∀ϕ Q. (ϕ, Q) mem C̃Q −→

(∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧Ψ � P .∼ Q))}

Static equivalence: Since both frames of Cases C̃ P and Cases C̃Q are empty,
we have that (F (Cases C̃ P )) ⊗ Ψ ' (F (Cases C̃Q )) ⊗ Ψ since static
equivalence is reflexive.

Simulation: This case is discharged by Lemma 27.24, where the first as-
sumption is derived from the definition of X , and the second follows
directly from .∼-E2

Extension: Follows directly from the definition of X and .∼-E3.

Symmetry: The candidate relation X is symmetric since bisimilarity is
symmetric.

27.4.3 Restriction
The lemma that simulation is preserved by restriction looks almost exactly
like its pi-calculus counterpart, apart from the extra assumption that the
bound name is required to be fresh for the environment. The proof also fol-
lows the same general structure, but with one observation – as the SCOPE

and OPEN rules require that the bound name is fresh for the subject of tran-
sitions. This property is not ensured by the definition of ,→, but must be
inferred through the custom introduction rule derived in Lemma 27.11.
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Lemma 27.28. Simulation is preserved by restriction.

Ψ � P ,→R Q

eqvt R ′ x ] Ψ R ⊆ R ′ ∧
Ψ ′ R S y.

(Ψ ′, R, S) ∈ R y ] Ψ ′

(Ψ ′, (νy)R, (νy)S) ∈ R ′

Ψ � (νx)P ,→R ′ (νx)Q

Proof. Since x ] Ψ, x ] (νx)P, and x ] (νx)Q, Lemma 27.11 can be used to
ensure that x is fresh for any action or derivative of (νx)Q.

The SCOPE inversion rule is then used to generate two possible transi-
tions, which are discharged by the SCOPE and OPEN rules respectively.

The static equivalence case of the bisimilarity requires that static equiv-
alence is preserved by restriction. We start by proving the corresponding
property for static implication.

Lemma 27.29. If F ≤ G then ((νx)F) ≤ ((νx)G).

Proof. We must prove that for all ϕ if ((νx)F) ` ϕ then ((νx)G) ` ϕ. The
complication of the proof lies in that x is not guaranteed to be fresh for ϕ

• We obtain a fresh name y such that y is fresh for everything in the proof
context.

• From ((νx)F) ` ϕ we have by alpha-conversion that ((νy)(x y) · F) ` ϕ.
• Since y ] ϕ we have that (x y) · F ` ϕ by `-E.
• From F ≤ G we have that (x y) · F ≤ (x y) · G
• With (x y) · F ` ϕ we have that (x y) · G ` ϕ.
• Since y ] ϕ we have that ((νy)(x y) · G) ` ϕ by `-I.
• Finally, we have by alpha-conversion that ((νx)G) ` ϕ

We can now prove that static equivalence for frames is preserved by
Restriction.

Lemma 27.30. If F ' G then ((νx)F) ' ((νx)G).

Proof. Follows immediately form the definition of ' and Lemma 27.29.

Lemma 27.31. If F ' G then ((νx̃)F) ' ((νx̃)G).

Proof. By induction on x̃ and Lemma 27.30

In order for bisimilarity to be preserved by restriction the restricted name
must not occur in the environment.

Lemma 27.32. If Ψ � P .∼ Q and x ] Ψ then Ψ � (νx)P .∼ (νx)Q.

Proof. By coinduction with X set to {(Ψ, (νx)P, (νx)Q) :Ψ � P .∼ Q ∧ x ] Ψ}
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Static equivalence: From Ψ � P .∼ Q we have that (F P) ⊗Ψ ' (F Q) ⊗Ψ

by .∼-E1, and hence (F ((νx)P)) ⊗ Ψ ' (F ((νx)Q)) ⊗ Ψ, since x ] Ψ
and Lemma 27.30.

Simulation: From Ψ � P .∼ Q we have that Ψ � P ,→ .∼ Q by .∼-E2,
and hence using x ] Ψ and that bisimilarity is equivariant that
Ψ � (νx)P ,→X (νx)Q, by Lemma 27.28.

Extension: Given Ψ � P .∼ Q, we must prove that (Ψ ⊗ Ψ ′ , (νx)P, (νx)Q)
∈ X for all possible Ψ ′, including those containing names that clash
with x.

• A fresh name y is chosen such that y ] Ψ, y ] Ψ ′, y ] P, and y ] Q.
• From Ψ � P .∼ Q we have that Ψ ⊗ (x y) ·Ψ ′ � P .∼ Q by .∼-E3.
• Since bisimilarity is equivariant we have that (x y) ·Ψ ⊗ (x y) ·Ψ ′

� (x y) · P .∼ (x y) · Q.
• Since x ] Ψ and y ] Ψ we have that Ψ ⊗Ψ ′ � (x y) · P .∼ (x y) · Q.
• Finally, since y ] Ψ and y ] Ψ ′, we can derive that (Ψ ⊗ Ψ ′ , (νy)(x

y) · P, (νy)(x y) · Q) ∈ X , and since y ] P and y ]Q we have by alpha-
conversion that (Ψ ⊗Ψ ′ , (νx)P, (νx)Q) ∈ X .

Symmetry: The candidate relation X is symmetric as bisimilarity is sym-
metric.

The corresponding lemmas for binding sequences can then be created.

Lemma 27.33. Simulation is preserved by binding sequences.

Ψ � P ,→R Q

eqvt R x̃ ] Ψ
∧
Ψ ′ R S y.

(Ψ ′, R, S) ∈ R y ] Ψ ′

(Ψ ′, (νy)R, (νy)S) ∈ R

Ψ � (νx̃)P ,→R (νx̃)Q

Proof. By induction on x̃. In the inductive step, Lemma 27.28 is used on the
result from the induction hypothesis to discharge the proof.

Lemma 27.34. If Ψ � P .∼ Q and x̃ ] Ψ then Ψ � (νx̃)P .∼ (νx̃)Q.

Proof. By induction on x̃ and Lemma 27.32

27.4.4 Parallel
The proof that bisimilarity is preserved by Parallel is the most awkward of
the preservation proofs, and historically this is the proof that most often

360



fails in calculi of this complexity; the intricate correspondences between
parallel processes and their assertions are hard to get completely right. We
will give a brief outline of the proof, pointing at the complicated cases, be-
ginning with the case where only one of the processes does an action, and
then proceeding to the case where they communicate. All freshness condi-
tions and explicit notion of frames will be omitted for the time being, they
will be added at the end of the section where we provide a detailed descrip-
tion of the proof.

We pick the candidate relation

X = {(Ψ, (νx̃)(P | R), (νx̃)(Q | R)) : Ψ ⊗ΨR � P .∼ Q}.

The proof is done by induction on x̃, where Lemma 27.34 is used to prove
the inductive steps. The problematic case is the base case, where x̃ = ε.

Assuming that Ψ ⊗ΨR � P .∼ Q we want to prove that Ψ � P | R .∼ Q |
R. This means that for any action that Q | R does, P | R must mimic that
action, and their derivatives must be in the candidate relation X . The other
direction is proven implicitly since X is symmetric. The PAR inversion rule
will give us the following four cases:

1. Ψ ⊗ΨR � Q
α−→ Q ′, where we need to find a P ′ such that

Ψ � P | R
α−→ P ′ and (Ψ, P ′, Q ′ | R) ∈ X .

2. Ψ ⊗ΨQ � R
α−→ R ′, where we need to find a P ′ such that

Ψ � P | R
α−→ P ′ and (Ψ, P ′, Q | R ′) ∈ X .

3. Ψ ⊗ΨR � Q
M N−−−→ Q ′, Ψ ⊗ΨQ � R

K (νx̃)N−−−−−→ R ′, and Ψ ⊗ (ΨQ ⊗ΨR ) `
M

.↔ K , where we need to find a P ′ such that

Ψ � P | R
τ−→ P ′ and (Ψ, P ′, (νx̃)(Q ′ | R ′)) ∈ X .

4. Ψ ⊗ΨR � Q
M (νx̃)N−−−−−−→ Q ′, Ψ ⊗ΨQ � R

K N−−→ R ′, and Ψ ⊗ (ΨQ ⊗ΨR ) `
M

.↔ K , where we need to find a P ′ such that

Ψ � P | R
τ−→ P ′ and (Ψ, P ′, (νx̃)(Q ′ | R ′)) ∈ X .

Case number 1 is unproblematic, and can be solved in much the same
way as the corresponding proof for the pi-calculus and CCS.

Case number 2 is an easy case for both the pi-calculus and CCS, but there
are two complications. First of all, we can only derive the transition Ψ � P

| R
α−→ P | R ′ if we know that Ψ ⊗ΨP � R

α−→ R ′, but the inversion rule

providesΨ⊗ΨQ � R
α−→ R ′– the transition is derived from the frame of Q,

but we need the frame of P. SinceΨ � P .∼ Q, we know that their frames are
statically equivalent, but we need a lemma which switches the frames that
enables the transition of R. Secondly, we need to prove that the derivatives
are in the candidate relation, i.e. (Ψ, P | R ′, Q | R ′) ∈ X , but this requires
Ψ ⊗ ΨR

′ � P .∼ Q, and we only know that Ψ ⊗ ΨR � P .∼ Q. We need a
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lemma which shows that if two processes are bisimilar in the frame of an
agent, they are also bisimilar in the frame of any of its derivatives.

Cases 3 and 4 are symmetric, and we focus on case number 3. In order

to derive a communication Ψ � P | R
τ−→ (νx̃)(P ′ | R ′) we have to know

that Ψ ⊗ΨP � R
M (νx̃)N−−−−−−→ R ′ and Ψ ⊗ (ΨP ⊗ΨR ) ` M

.↔ K , but we only

know that Ψ ⊗ ΨQ � R
M (νx̃)N−−−−−−→ R ′ and Ψ ⊗ (ΨQ ⊗ ΨR ) ` M

.↔ K . The
technique used to switch the environment for the transition of R in case 2
is not enough here – we have to simultaneously switch the environment in

the transitionΨ⊗ΨQ � R
M (νx̃)N−−−−−−→ R ′ toΨ⊗ΨP � R

M (νx̃)N−−−−−−→ R ′, and the
channel equality Ψ ⊗ (ΨQ ⊗ΨR ) ` M

.↔ K to Ψ ⊗ (ΨP ⊗ΨR ) ` M
.↔ K

. Finally, in order to prove that the derivatives are in the candidate relation,
the same technique as was used in case 2 must be employed.

To summarize, the lemmas required are ones which switch the environ-
ment of a transition to a statically equivalent one, both for single transitions
and for transitions and channel equivalence when agents communicate.
Moreover, we need a lemma which switches the environment of a bisimi-
larity to any possible derivative environment.

27.4.4.1 Switching environments

The problem from case 2 was that given a transition Ψ ⊗ ΨQ � R
α−→ R ′,

we wanted to show that Ψ ⊗ΨP � R
α−→ R ′ as long as Ψ ⊗ΨR � P .∼ Q.

We have from .∼-E1 that (F P) ⊗ (Ψ ⊗ΨR ) ' (F Q) ⊗ (Ψ ⊗ΨR ), and it is
this observation which motivates the following lemma.

Lemma 27.35.

ΨF � P
α−→ P ′ F P = (νb̃P )ΨP distinct b̃P

((νb̃F )ΨF ⊗ΨP ) ≤ ((νb̃G )ΨG ⊗ΨP )

b̃F ] P b̃G ] P b̃F ] sub j ect α b̃G ] sub j ect α
b̃P ] b̃F b̃P ] b̃G b̃P ] ΨG


ΨG � P

α−→ P ′

Proof. By frame induction using the lemma from Figure 25.5 on the tran-

sition ΨF � P
α−→ P ′ with the frame F P = (νb̃P )ΨP . The reason that the

assumption ((νb̃F )ΨF ⊗ΨP ) ≤ ((νb̃G )ΨG ⊗ΨP ) includes the frame of P is
that any assertion which comprises that frame will be available to the envi-
ronment when the action α is derived from a prefix in P.

With this lemma, the environment can be switched. We have thatΨ⊗ΨQ

� R
α−→ R ′, and from (F P) ⊗ (Ψ ⊗ΨR ) ' (F Q) ⊗ (Ψ ⊗ΨR ) we have that
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(F Q) ⊗ (Ψ ⊗ΨR ) ≤ (F P) ⊗ (Ψ ⊗ΨR ). By choosing candidate frames for
P and Q such that b̃P and b̃Q are sufficiently fresh, and by commutativity
and associativity of Composition, we have that ((νb̃P )(Ψ ⊗ ΨQ ) ⊗ ΨR ) ≤
((νb̃Q )(Ψ ⊗ΨP ) ⊗ΨR ), and hence by Lemma 27.35 that Ψ ⊗ΨP � R

α−→
R ′.

The other case where an environment has to be switched is when two
agents communicate. When the agents Ψ ⊗ΨR � Q

M N−−−→ Q ′ and Ψ ⊗ΨQ

� R
K (νx̃)N−−−−−→ R ′communicate with the channel equivalenceΨ⊗ (ΨQ ⊗ΨR

) `M
.↔ K , all occurrences ofΨQ in the transition and the entailment must

be switched for ΨP . A first attempt could be to use Lemma 27.35 to switch
the environment of the transition, but to do the corresponding switch in
the entailment turns out to be impossible in the general case. Even though
Ψ ⊗ (ΨQ ⊗ ΨR ) ` M

.↔ K and (F P) ⊗ (Ψ ⊗ ΨR ) ' (F Q) ⊗ (Ψ ⊗ ΨR ),
it is not possible to deduce that Ψ ⊗ (ΨP ⊗ΨR ) ` M

.↔ K . The only way
an environment can be switched for any entailment is if no bound names
of either frame occur in the condition of the entailment.

The following lemma does a simultaneous switch of the environment of
both the transition, and the channel equivalence entailment.

Lemma 27.36.

Ψ ⊗ΨQ � R
K (νx̃)N−−−−−→ R ′ Ψ ⊗ΨR � P

ML−−→ P ′

Ψ ⊗ (ΨQ ⊗ΨR ) ` M
.↔ K

((νb̃Q )(Ψ ⊗ΨQ ) ⊗ΨR ) ≤ ((νb̃P )(Ψ ⊗ΨP ) ⊗ΨR )
F P = (νb̃P )ΨP F Q = (νb̃Q )ΨQ F R = (νb̃R )ΨR

distinct b̃P distinct b̃R b̃R ] b̃P

b̃R ] b̃Q b̃R ] Ψ b̃R ] P b̃R ] Q b̃R ] R b̃R ] K
b̃P ] Ψ b̃P ] R b̃P ] P b̃P ] M b̃Q ] R b̃Q ] M


∃K ′. Ψ ⊗ΨP � R

K ′(νx̃)N−−−−−−→ R ′∧Ψ ⊗ (ΨP ⊗ΨR ) ` M
.↔ K ′ ∧ b̃R ] K ′

Proof. By frame induction using the lemma from Figure 25.5 on the transi-

tion Ψ ⊗ΨQ � R
K (νx̃)N−−−−−→ R ′ with the frame F R = (νb̃R )ΨR .

This lemma obtains an alternative channel equivalent term K ′ which the
agents can use to communicate, and which is derivable from the desired
environment.

We have that Ψ ⊗ΨR � Q
M N−−−→ Q ′, and since Ψ ⊗ΨP � P .∼ Q that Ψ

⊗ΨR � Q
M N−−−→ Q ′. We also know that Ψ ⊗ΨQ � R

K (νx̃)N−−−−−→ R ′ and Ψ ⊗
(ΨQ ⊗ ΨR ) ` M

.↔ K . From (F P) ⊗ (Ψ ⊗ ΨR ) ' (F Q) ⊗ (Ψ ⊗ ΨR ) we
can derive that ((νb̃P )(Ψ⊗ΨQ ) ⊗ΨR ) ≤ ((νb̃Q )(Ψ⊗ΨP ) ⊗ΨR ), as we did
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for the previous case. Finally, using Lemma 27.36 we can obtain a K ′ such

thatΨ⊗ΨP � R
K ′(νx̃)N−−−−−−→ R ′ andΨ⊗ (ΨP ⊗ΨR ) ` M

.↔ K ′ , allowing the
agents P and R to communicate.

A similar lemma to Lemma 27.36 is required for the symmetric case
where P does an output action, and R an input action.

27.4.4.2 Generate derivative frame

The final case which requires special attention is how to ensure that the
derivatives of the parallel agents are in the candidate relation X = {(Ψ,
(νx̃)(P | R), (νx̃)(Q | R)) : Ψ ⊗ ΨR � P .∼ Q}. Consider the case where

only R does a transition and we have derived that Ψ ⊗ΨP � R
α−→ R ′. We

can then derive Ψ � P | R
α−→ P | R ′, and we must then prove that (Ψ, P |

R ′, Q | R ′) ∈ X , but this is only true if Ψ ⊗ΨR
′ � P .∼ Q, and we only know

that Ψ ⊗ΨR � P .∼ Q.
However, two bisimilar terms must also be bisimilar for all possible ex-

tensions of their environment. If we can find aΨ ′ such thatΨR ⊗Ψ ′ 'ΨR
′,

we could add Ψ ′ to the environment of the bisimilarity obtaining (Ψ ⊗ΨR

) ⊗Ψ ′ � P .∼ Q, and hence by Lemma 27.20, that Ψ ⊗ΨR
′ � P .∼ Q.

Since the frame of an agent is comprised of all of its top level assertions,
the frame of the derivative should be these assertions composed with the
ones under the prefix used to derive the action of the transition. An ex-
pected property is:

If Ψ � P
α−→ P ′ and F P = (νb̃P )ΨP then there exists a Ψ ′

such that ΨP ⊗Ψ ′ 'ΨP
′.

However, this turns out to be false. Consider the following psi-calculus
instance.

T = N

C = {a : a ∈ T}∪ {a
.↔ b : a,b ∈ T}

1 = ;
A = N

⊗ = ∪
` = {(Ψ, a) : a ∈Ψ}∪ {(Ψ, a

.↔ a) : a ∈N }

This instance is a variant of the pi-calculus instance defined in
Section 22.2.3, but with assertions being sets of names, and a condition
consisting of a single name which is entailed by an environment if that
name exists in the environment.

Now consider the transition
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(νx)((|{x}|) | ax.(|{b}|))
a (νx)x−−−−−→ (|{x}|) | (|{b}|)

where an agent contains the bound name x in an assertion, which is then
opened. Initially it might appear that the property above would hold.
The agent has the frame (νx){x}, the derivative has the frame {x, b} and
{x}⊗{b} ' {x, b}.

However, by alpha-conversion the agent also has the frame (νy){y}, and
there exists noΨ ′such that {y}⊗Ψ′ ' {x, b}. The opened name is fixed in the
derivative, but the frame of the original agent can still be alpha-converted
freely.

There does, however, exists an alpha-converting permutation which if
applied to the assertion component of the frame would make the two as-
sertions statically equivalent. In the example above, there exists a permuta-
tion (x y), and ((x y)·{y})⊗{b} ' {x, b}. More formally, we have the following
lemma.

Lemma 27.37.

Ψ � P
α−→ P ′ F P = (νb̃P )ΨP distinct b̃P

bn α ] sub j ect α distinct (bn α) b̃P ] α b̃P ] P
b̃P ] C b̃P ] C ′ bn α ] P bn α ] C ′

∃p Ψ′ b̃P ′ ΨP ′ . set p ⊆ set (bn α) × set (bn (p · α)) ∧ distinctPerm p ∧
(p ·ΨP ) ⊗Ψ ′ 'ΨP ′ ∧ F P ′= (νb̃P ′)ΨP ′ ∧
distinct b̃P ′ ∧ b̃P ′ ] P ′ ∧ b̃P ′ ] α ∧ b̃P ′ ] p · α ∧
b̃P ′ ] C ∧ bn (p · α) ] C ′ ∧
bn (p · α) ] α ∧ bn (p · α) ] P ′

This rather intimidating lemma is one of the most complex in the for-
malisation. It states that for every transition, where the originating agent
has a certain frame, there exists a frame for the derivative, an assertion, and
an alpha-converting permutation such that the assertion component of the
derivative frame is statically equivalent to the originating one with the per-
mutation applied, composed with the new assertion.

Moreover, many lemmas will requires that the bound names of the
derivative frames and the alpha-converted bound names are sufficiently
fresh, but the freshness contexts C and C ′ for the two cannot be chosen
completely arbitrarily. As the bound names of the frame of the originating
process may occur in both the opened names and the names of the
derivative frame, these must be fresh for both freshness contexts.

27.4.4.3 Bisimilarity is preserved by Parallel

The candidate relation for the proof is X = {(Ψ, (νx̃)(P | R), (νx̃)(Q | R)) :Ψ
⊗ΨR � P .∼ Q}. Therefore, the simulation lemma requires that the agent P
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simulates the agent Q in all possible environments of R. Moreover, in order
to prove the simulation, the candidate relation must be a bisimulation. This
demonstrates why the definition of bisimilarity looks the way it does – it is
when proving that simulation is preserved by the Parallel that the clauses
for static equivalence and environment extensions are required.

Lemma 27.38. Simulation is preserved by Parallel.

eqvt R eqvt R ′

1 :
∧

b̃R ΨR .
F R = (νb̃R )ΨR b̃R ] Ψ b̃R ] P b̃R ] Q

(Ψ ⊗ΨR , P, Q) ∈ R

2 :
∧
Ψ ′ S T b̃U ΨU U .

(
(Ψ ′⊗ΨU , S, T) ∈ R

F U = (νb̃U )ΨU b̃U ] Ψ ′ b̃U ] S b̃U ] T

)
(Ψ ′, S | U , T | U) ∈ R ′

3 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

(F T) ⊗Ψ ′≤ (F S) ⊗Ψ ′

4 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

Ψ ′ � S ,→R T

5 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R

(Ψ ′⊗Ψ ′′ , S, T) ∈ R

6 :
∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R ′ x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R ′

7 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R

Ψ � P | R ,→R ′ Q | R

Premise 1 states that (Ψ ⊗ ΨR , P, Q) ∈ R for all sufficiently fresh frames
(νb̃R )ΨR of R. If this were not the case, it would not be possible to alpha-
convert the frame of R without falling outside the relation R. Premise 2
states the preservation property of R ′, again, the frame of the parallel agent
must be sufficiently fresh. Premises 3-5 are properties of bisimilarity. Premise
6 states that the relation R ′must be preserved by Restriction. Premise 7 states
that it must be possible to switch the assertion component of the elements of
R for statically equivalent ones.

Proof. From ,→-I we have that for all α and T ′ where Ψ � Q | R
α−→ T ′

there must exist a S ′ such that Ψ � P | R
α−→ S ′ and (Ψ, S ′, T ′) ∈ R ′. We

then apply the PAR-inversion rule on the transition Ψ � Q | R
α−→ T ′ and

ensure that any bound names avoid Ψ, P, Q, and R. We get the following
four cases.

PAR1 (Ψ ⊗ΨR � Q
α−→ Q ′ and T ′= Q ′ | R):
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Moreover we know that F R = (νb̃R )ΨR , b̃R ] Ψ, b̃R ] P , b̃R ] Q and
b̃R ] α.

• From b̃R ] Ψ, b̃R ] P , b̃R ] Q we have from the assumptions that
(Ψ ⊗ΨR , P, Q) ∈ R, and hence that Ψ ⊗ΨR � P ,→R Q.

• With Ψ ⊗ΨR � Q
α−→ Q ′, bn α ] Ψ, and bn α ] P we obtain a P ′

such that Ψ ⊗ΨR � P
α−→ P ′ and (Ψ ⊗ΨR , P ′, Q ′) ∈ R.

• From Ψ ⊗ΨR � P
α−→ P ′, Ψ ⊗ΨR � Q

α−→ Q ′, b̃R ] P , b̃R ] Q,
and b̃R ] α we have that b̃R ] P ′ and b̃R ] Q ′ by Lemma 25.26.

• From Ψ ⊗ΨR � P
α−→ P ′, bn α ] R, b̃R ] Ψ, b̃R ] P , and b̃R ] α

we have that Ψ � P | R
α−→ P ′ | R by PAR1.

• Moreover from (Ψ ⊗ΨR , P ′, Q ′) ∈ R, b̃R ] Ψ, b̃R ] P ′, and b̃R ] Q ′
we have by the assumptions that (Ψ, P ′ | R, Q ′ | R) ∈ R ′.

• Finally we prove the goal by instantiating S ′ to P ′ | R.

PAR2 (Ψ ⊗ΨQ � R
α−→ R ′ and T ′= Q | R ′):

Moreover we know that F Q = (νb̃Q )ΨQ , b̃Q ] Ψ, b̃Q ] P , and
b̃Q ] Q.

• We pick frames for P and R such that F P = (νb̃P )ΨP , F R =
(νb̃R )ΨR such that b̃P and b̃R are fresh for everything in the proof
context.

• Since b̃R ] Ψ, b̃R ] P , b̃R ] Q we have from the assumptions that
(Ψ ⊗ΨR , P, Q) ∈ R, and hence that (F Q) ⊗ (Ψ ⊗ΨR ) ≤ (F P) ⊗
(Ψ ⊗ΨR ).

• With the definitions of the frames of P and Q, and the laws of static
equivalence we have that ((νb̃Q )(Ψ⊗ΨQ ) ⊗ΨR ) ≤ ((νb̃P )(Ψ⊗ΨP

) ⊗ΨR ).

• With Ψ ⊗ΨQ � R
α−→ R ′ we have that Ψ ⊗ΨP � R

α−→ R ′ using
Lemma 27.35.

• With bn α ] P , b̃P ] Ψ, b̃P ] R, and b̃P ] α we have that Ψ � P |
R

α−→ P | R ′ by PAR2.

• From Ψ ⊗ ΨQ � R
α−→ R ′ and derived freshness conditions we

obtain a p, a Ψ ′, a b̃R ′, and a ΨR
′ such that set p ⊆ set (bn α) × set

(bn (p · α)), (p ·ΨR ) ⊗Ψ ′ 'ΨR
′, F R ′= (νb̃R ′)ΨR

′, and that bn (p
· α) and b̃R ′ are sufficiently fresh, using Lemma 27.37.

• From (Ψ ⊗ ΨR , P, Q) ∈ R, and equivariance of R, we have that
(p · Ψ ⊗ ΨR , p · P, p · Q) ∈ R, and hence by derived freshness
conditions that (Ψ ⊗ (p ·ΨR ) , P, Q) ∈ R.

• With the assumptions we have that ((Ψ ⊗ (p · ΨR ) ) ⊗ Ψ ′ , P, Q) ∈
R, and hence that (Ψ ⊗ΨR

′ , P, Q) ∈ R since (p ·ΨR ) ⊗Ψ ′ 'ΨR
′,

and the static equivalence laws.
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• With b̃R ′ ] Ψ, b̃R ′ ] P, and b̃R ′ ] Q we have that (Ψ, P | R ′, Q | R ′) ∈
R ′ using the assumptions.

• Finally we prove the goal by instantiating S ′ to P | R ′.

COMM1 (Ψ ⊗ΨR � Q
M N−−−→ Q ′,Ψ ⊗ΨQ � R

K (νx̃)N−−−−−→ Q ′, and
T ′= (νx̃)(Q ′ | R ′)):

Moreover we know that F Q = (νb̃Q )ΨQ , b̃Q ] Ψ, b̃Q ] P , b̃Q ] Q, F

R = (νb̃R )ΨR , b̃R ] Ψ, b̃R ] P , b̃R ] Q, and that Ψ ⊗ (ΨQ ⊗ΨR ) ` M
.↔ K .

One crucial observation is that we cannot guarantee that b̃R ] M , and
this complicates the proof considerably.

• We pick a frame for P such that F P = (νb̃P )ΨP and that b̃P is fresh
for everything in the proof context.

• From Ψ ⊗ ΨQ � R
K (νx̃)N−−−−−→ R ′ and derived freshness conditions

we obtain a p, a Ψ ′, a b̃R ′, and a ΨR
′ such that set p ⊆ set x̃ × set

(p · x̃), (p · ΨR ) ⊗ Ψ ′ ' ΨR
′, F R ′= (νb̃R ′)ΨR

′, and that p · x̃ and
b̃R ′ are sufficiently fresh, using Lemma 27.37. Note that since we
do not have that b̃R ] M we also do not have that (p · x̃) ] M .

• From Ψ ⊗ ΨR � Q
M N−−−→ Q ′, x̃ ] Q, and (p · x̃) ] Q we have that

p · Ψ ⊗ ΨR � Q
(p · M)N−−−−−−→ Q ′ using Lemma 25.15, and hence Ψ

⊗ (p · ΨR ) � Q
(p · M)N−−−−−−→ Q ′ by equivariance and that x̃ ] Ψ and

(p · x̃) ] Ψ.
• From F R = (νb̃R )ΨR , x̃ ] R, and (p · x̃) ] R we have that F R = (ν(p
· b̃R ))(p ·ΨR )

• The freshness conditions are extended such that for all contexts C

such that b̃R ] C , x̃ ] C , and (p · x̃) ] C we have that (p · b̃R ) ] C .
• Since (p · b̃R ) ] Ψ, (p · b̃R ) ] P , (p · b̃R ) ] Q we have from the

assumptions that (Ψ ⊗ (p ·ΨR ) , P, Q) ∈ R, and hence that Ψ ⊗ (p
·ΨR ) � P ,→R Q.

• With Ψ ⊗ (p ·ΨR ) � Q
(p · M)N−−−−−−→ Q ′ we obtain a P ′ such that Ψ ⊗

(p ·ΨR ) � P
(p · M)N−−−−−−→ P ′ and (Ψ ⊗ (p ·ΨR ) , P ′, Q ′) ∈ R.

• Moreover from Ψ ⊗ (ΨQ ⊗ ΨR ) ` M
.↔ K we have that (p · Ψ

⊗ (ΨQ ⊗ ΨR ) ) ` (p · M)
.↔ (p · K ) , and hence by the freshness

conditions that Ψ ⊗ (ΨQ ⊗ (p ·ΨR ) ) ` (p · M)
.↔ K .

• Moreover Since (p · b̃R ) ] Ψ, (p · b̃R ) ] P , (p · b̃R ) ] Q we have
from the assumptions that (Ψ ⊗ (p · ΨR ) , P, Q) ∈ R, and hence
that (F Q) ⊗ (Ψ ⊗ (p ·ΨR ) ) ≤ (F P) ⊗ (Ψ ⊗ (p ·ΨR ) ).

• With the definitions of the frames of P and Q, and the laws of static
equivalence we have that ((νb̃Q )(Ψ ⊗ΨQ ) ⊗ (p ·ΨR ) ) ≤ ((νb̃P )(Ψ
⊗ΨP ) ⊗ (p ·ΨR ) ).
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• Finally with Ψ ⊗ ΨQ � R
K (νx̃)N−−−−−→ Q ′ we obtain a K ′ such that Ψ

⊗ΨP � R
K ′(νx̃)N−−−−−−→ Q ′, Ψ ⊗ (ΨQ ⊗ (p ·ΨR ) ) ` (p · M)

.↔ K ′ , and
b̃R ] K ′ using Lemma 27.36.

• Hence Ψ � P | R
τ−→ (νx̃)(P ′ | R ′) by COMM1.

• Moreover, from (Ψ ⊗ (p · ΨR ) , P ′, Q ′) ∈ R and the assumptions
we have that ((Ψ ⊗ (p · ΨR ) ) ⊗ Ψ ′ , P ′, Q ′) ∈ R, and hence that
(Ψ ⊗ ΨR

′ , P ′, Q ′) ∈ R since (p · ΨR ) ⊗ Ψ ′ ' ΨR
′, and the static

equivalence laws.
• With b̃R ′ ] Ψ, b̃R ′ ] P ′, and b̃R ′ ] Q ′ we have by the assumptions

that (Ψ, P ′ | R ′, Q ′ | R ′) ∈ R ′ and hence that (Ψ, (νx̃)(P ′ | R ′),
(νx̃)(Q ′ | R ′)) ∈ R ′.

• Finally we prove the goal by instantiating S ′ to (νx̃)(P ′ | R ′).

COMM2: Symmetric version of COMM1, but considerably simpler as the
permutation p simplifies away completely since input actions have
no bound names.

Before proving that bisimilarity is preserved by Parallel we must prove
that static implication of frames is preserved if their binders are commuted.
This is done in two steps. First we require a lemma which propagates a sin-
gle binder over a sequence of binders.

Lemma 27.39. ((νx)(νx̃)F) ' ((νx̃)(νx)F)

Proof. By induction on x̃.

Base case (x̃ = ε): Follows immediately since ' is reflexive.

Inductive step x̃ = yỹ :

• From the induction hypothesis we have that ((νx)(νỹ)F) '
((νỹ)(νx)F)

• With Lemma 27.30 we have that ((νy)(νx)(νỹ)F) ' ((νy)(νỹ)(νx)F)
• Hence ((νx)(νy)(νỹ)F) ' ((νy)(νỹ)(νx)F) by Lemma 28.12 and

transitivity of static equivalence.

We can now prove that binding sequences commute.

Lemma 27.40. ((νx̃)(νỹ)F) ' ((νỹ)(νx̃)F)

Proof. By induction on x̃.

Base case (x̃ = ε): Follows immediately since ' is reflexive.
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Inductive step x̃ = xz̃:

• From the induction hypothesis we have that ((νz̃)(νỹ)F) '
((νỹ)(νz̃)F)

• With Lemma 27.30 we have that ((νx)(νz̃)(νỹ)F) ' ((νx)(νỹ)(νz̃)F)
• Hence ((νx)(νz̃)(νỹ)F) ' ((νỹ)(νx)(νz̃)F) by Lemma 28.12 and

transitivity of static equivalence.

We will do the proof for bisimilarity in two stages. First we will prove that
bisimilarity is preserved by Parallel if P and Q are bisimilar in the frame of
R. We will then prove the general case.

Lemma 27.41.

Ψ ⊗ΨR � P .∼ Q F R = (νb̃R )ΨR b̃R ] Ψ b̃R ] P b̃R ] Q

Ψ � P | R .∼ Q | R

Proof. By coinduction with X set to

{(Ψ, (νx̃)(P | R),
(νx̃)(Q | R)) : x̃ ] Ψ ∧

(∀ b̃R ΨR . F R = (νb̃R )ΨR ∧ b̃R ] Ψ ∧ b̃R ] P ∧ b̃R ] Q −→
Ψ ⊗ΨR � P .∼ Q)}

Static equivalence: Frames (νb̃P )ΨP , (νb̃Q )ΨQ , and (νb̃R )ΨR are chosen
for agents P, Q, and R respectively, where b̃P , b̃Q , and b̃R are fresh for
everything in the proof context.

Assuming
(F P) ⊗ (Ψ ⊗ΨR ) ' (F Q) ⊗ (Ψ ⊗ΨR )

we have to prove that

(F ((νx̃)(P | R))) ⊗Ψ ' (F ((νx̃)(Q | R))) ⊗Ψ.

• From
(F P) ⊗ (Ψ ⊗ΨR ) ' (F Q) ⊗ (Ψ ⊗ΨR )

we have that

((νb̃P )(Ψ ⊗ΨR ) ⊗ΨP ) ' ((νb̃Q )(Ψ ⊗ΨR ) ⊗ΨQ ).

• By associativity and commutativity of ⊗, Lemma 27.31, and transi-
tivity of ' we have that

((νb̃P )Ψ ⊗ (ΨP ⊗ΨR ) ) ' ((νb̃Q )Ψ ⊗ (ΨQ ⊗ΨR ) ).
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• Hence

((νb̃R b̃P )Ψ ⊗ (ΨP ⊗ΨR ) ) ' ((νb̃R b̃Q )Ψ ⊗ (ΨQ ⊗ΨR ) )

by Lemma 27.31.
• Hence

((νb̃P b̃R )Ψ ⊗ (ΨP ⊗ΨR ) ) ' ((νb̃Q b̃R )Ψ ⊗ (ΨQ ⊗ΨR ) )

by Lemma 27.40 and transitivity of '.
• Finally we have by Lemma 27.31 that

((νx̃b̃P b̃R )Ψ ⊗ (ΨP ⊗ΨR ) ) ' ((νx̃b̃Q b̃R )Ψ ⊗ (ΨQ ⊗ΨR ) )

which is equal to

(F ((νx̃)(P | R))) ⊗Ψ ' (F ((νx̃)(Q | R))) ⊗Ψ.

Simulation: Given that Ψ ⊗ ΨR � P ,→X Q for all possible frames
of R such that b̃R is fresh for Ψ, P, and Q, we must prove that
Ψ � (νx̃)(P | R) ,→X ∪ .∼ (νx̃)(Q | R), where x̃ ] Ψ

• Using Lemma 27.38 we prove that Ψ � P | R ,→X ∪ .∼ Q | R.
• Moreover we have that for all Ψ, P, Q, and x such that x ] Ψ, (Ψ, P,

Q) ∈ X ∪ .∼ implies (Ψ, (νx)P, (νx)Q) ∈ X ∪ .∼, by the definition of
X and Lemma 27.32.

• Finally we have that Ψ � (νx̃)(P | R) ,→X ∪ .∼ (νx̃)(Q | R) using
Lemma 27.33.

Extension: Follows from the definition of X . The binding sequence x̃ is
alpha-converted to avoid the extended assertion Ψ ′.

Symmetry: The candidate relation X is symmetric as bisimilarity is sym-
metric.

From this lemma, the main result follows directly.

Lemma 27.42. If Ψ � P .∼ Q then Ψ � P | R .∼ Q | R.

Proof. Follows directly by chosing a sufficiently fresh frame for R and
Lemma 27.41.

27.5 Strong equivalence
In a similar way to the pi-calculus, we obtain a congruence by closing
bisimilarity under substitutions.
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27.5.1 Sequential substitution
For the pi-calculus, we used sequences of single substitutions to define
strong equivalence, here we use sequences of parallel substitutions. A par-
allel substitution is a list of names and list of terms, and a sequential sub-
stitution can hence be modeled as a list of such pairs.

Definition 27.43. The sequential substitution σ applied to X is denoted Xσ.

Xσ
def= foldl (λQ (x̃, T̃ ). Q[x̃ := T̃ ]) X σ

This function iterates over a list of substitutions and applies each substi-
tution to X. It is defined for terms, assertions, conditions, and agents.

Lemma 27.44. Sequential substitution distributes over agents.

0σ = 0

(M N .P )σ = MσNσ .Pσ

(Input M I )σ = Input Mσ Iσ

(Case C )σ = Case Cσ

(P | Q)σ = Pσ | Qσ

If y ] σ then ((νy)P )σ = (νy)Pσ

((|Ψ|))σ = (|Ψσ|)
(!P )σ = !Pσ

(Trm M P )σ = Trm (Mσ) (Pσ)

If y ] σ then (Bind y I )σ = Bind y Iσ

Empt yC aseσ = EmptyCase

(Cond ϕ P C )σ = Cond ϕσ PσCσ

Proof. By induction on σ.

27.5.2 Closure under substitution
The constraints on substitution types, defined in Section 24.2.1 require that
the length of the sequencens of names and terms are equal, and that the
names being substituted are distinct. We define the following predicate to
define well formed substitutions.

Definition 27.45 (wellFormedSubst).

wellFormedSubst σ
def=

(filter (λ(x̃, T̃ ). ¬(length x̃ = length T̃∧distinct x̃)) σ) = ε
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Intuitively, the predicate filters out all of the elements (x̃, T̃ ) of σ such
that either x̃ is not distinct, or the lengths of x̃ and T̃ differ – if the resulting
list is empty, the sequential substitution is well formed.

We can now define closure under well formed substitution in a similar
way as for the pi-calculus.

Definition 27.46 (Closure under substitution). A relation R closed under
substitution is denoted Rs .

Rs def= {(Ψ, P, Q) : ∀σ. wellFormedSubst σ −→ (Ψ, Pσ, Qσ) ∈ R}

We derive the standard primitive inference rules.

Lemma 27.47. Introduction and elimination rule for substitution closed re-
lations.∧

σ.
wellFormedSubst σ

(Ψ, Pσ, Qσ) ∈ R

(Ψ, P, Q) ∈ Rs

(Ψ, P, Q) ∈ Rs wellFormedSubst σ

(Ψ, Pσ, Qσ) ∈ R

27.5.3 Strong equivalence
Strong equivalence is defined by closing bisimilarity under well formed se-
quential substitutions.

Definition 27.48 (Strong equivalence).

Ψ � P ∼ Q
def= (Ψ, P, Q) ∈ .∼s

As for the pi-calculus, in order to prove that strong equivalence is pre-
served by Input we must first prove when bisimilarity is preserved by Input.

Lemma 27.49. Simulation is preserved by Input.∧
T̃ .

|x̃| = |T̃ |
(Ψ, P[x̃ := T̃ ], Q[x̃ := T̃ ]) ∈ R

Ψ � M(λx̃)N .P ,→R M(λx̃)N .Q

Proof. Follows immediately from the definition of ,→, the INPUT inversion
rule, and the INPUT semantic rule.

Lemma 27.50. ∧
T̃ .

|x̃| = |T̃ |
Ψ � P[x̃ := T̃ ] .∼ Q[x̃ := T̃ ]

Ψ � M(λx̃)N .P .∼ M(λx̃)N .Q
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Proof. By coinduction with X set to

{(Ψ, M(λx̃)N .P, M(λx̃)N .Q) : ∀ T̃ . |x̃| = |T̃ | −→Ψ � P[x̃ := T̃ ] .∼ Q[x̃ := T̃ ]}.

The simulation case is discharged using Lemma 27.49, and all other cases
follow immediately from the bisimilarity elimination rules.

We can now prove that strong equivalence is preserved by Input.

Lemma 27.51.
Ψ � P ∼ Q x̃ ] Ψ distinct x̃

Ψ � M(λx̃)N .P ∼ M(λx̃)N .Q

Proof. By the introduction rule in Lemma 27.47 we need to prove that
for all σ such that wellFormedSubst σ, it holds that Ψ � M(λx̃)N .Pσ .∼
M(λx̃)N .Qσ.

• We obtain a p such that set p ⊆ set x̃ × set (p · x̃) and p · x̃ is fresh for
everything in the proof context.

• By alpha-converting the proof goal, and pushing the substitu-
tions over the binders we get that we have to prove that Ψ �

Mσ(λp · x̃)(p · N )σ.(p · P )σ .∼ Mσ(λp · x̃)(p · N )σ.(p · Q)σ.
• Lemma 27.50 proves this goal if we know that for all T̃ such that |x̃| =
|T̃ | we have that Ψ � (p · P )σ[p · x̃ := T̃ ] .∼ (p · Q)σ[p · x̃ := T̃ ].

• From Ψ � P ∼ Q we have that p ·Ψ � p · P ∼ p · Q, and hence that Ψ
� p · P ∼ p · Q since x̃ ] Ψ and (p · x̃) ] Ψ.

• Since |x̃| = |T̃ |, distinct x̃, and wellFormedSubst σ we have that
wellFormedSubst (σ[(p · x̃, T̃ )]), and hence Ψ � (p · P )σ[(p · x̃, T̃ )] .∼
(p · Q)σ[(p · x̃, T̃ )] by the definition of ∼ .

• Hence we have that Ψ � (p · P )σ[p · x̃ := T̃ ] .∼ (p · Q)σ[p · x̃ := T̃ ].
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28. Structural congruence

The structural congruence law for psi-calculi are generally the same as the
ones for the pi-calculus. The main difference comes from Case. Whereas
the pi-calculus has conditional operators such as Match and Mismatch,
and nondeterministic choice using Sum, psi-calculi uses Case. Therefore,
the only relevant structural congruence law for Case is scope extension. A
complete list of the structural congruence laws can be found in Figure 28.1.

28.1 Scope extension laws
When proving the scope extension laws for the psi-calculi extra care has
to be taken when reasoning about the binders. The simulation cases for
the OPEN and SCOPE rules require that any bound name is fresh for the
environment, and hence this is an added requirement for the simulation.
When bisimilarity is proven, this has to be taken into account. Bisimilarity
is proven with that extra freshness requirement as well, and before proving
the main goal, the binders can be alpha-converted to be sufficiently fresh.

Lemma 28.1. If x ] F then ((νx)F) ' F .

Proof. From the definitions of ' and ≤ we have that we must prove for allϕ
that ((νx)F) ` ϕ = F ` ϕ

• We pick a y such that y ] ϕ, y ] P, and alpha-convert the goal so that we
have to prove that ((νy)(x y) · F) ` ϕ = F ` ϕ.

• Since x ] P and y ] P we must prove that ((νy)F) ` ϕ = F ` ϕ.
• Since y ] ϕ the goal follows directly from the introduction and elimina-

tion rules for ` found in Lemma 27.2.

28.1.1 Scope extension for Case
The informal version of the scope extension law says that

case φ̃ : �(νx)P .∼ (νx)case φ̃ : P̃ if x ] φ̃
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The structural congruence ≡ is defined as the smallest congruence satisfy-
ing the following laws:
1. The abelian monoid laws for Parallel: commutativity P | Q ≡ Q | P,

associativity (P | Q) | R ≡ P | (Q | R), and 0 as unit P | 0 ≡ P.
2. The unfolding law: !P ≡ P | !P, if guarded P.
3. The scope extension laws:

(νx)0 ≡ 0

(νx)(P | Q) ≡ P | (νx)Q if x ] P

(νx)(Cases Cs) ≡ Cases map (λ(ϕ, P). (ϕ, (νx)P)) Cs if x ] map fst C̃

(νx)M(λx̃)N .P ≡ M(λx̃)N .(νx)P if x ] M andx ] x̃ and x ] N

(νx)(M N .P ) ≡ M N . (νx)P if x ] M and x ] N

(νx)((νy)P) ≡ (νy)((νx)P)

Figure 28.1: The structural congruence laws for psi-calculi

and we need to encode this using the Cases function, which takes a list of
pairs of conditions and agents to construct an agent. We encode this lemma
in the following way

If x ] map fst C̃ then
(νx)(Cases C̃ ) ≡ Cases map (λ(ϕ, P). (ϕ, (νx)P)) C̃ .

The freshness condition x ] φ̃ is encoded with the condition x ]map fst C̃
– since the conditions are the first element of every tuple in the list C̃ . Sec-
ondly, the agent case φ̃ : �(νx)P is encoded by the function Cases map (λ(ϕ,
P). (ϕ, (νx)P)) C̃ – the tuple list C̃ is traversed, and every agent has the name
x restricted to it. The simulation lemmas can then be proven.

Lemma 28.2.

eqvt R x ] Ψ x ] map fst C̃
∧

Q. (Ψ, Q, Q) ∈ R

Ψ � (νx)(C ases C̃ ) ,→R C ases map (λ(ϕ, P ). (ϕ, (νx)P )) C̃

eqvt R x ] Ψ x ] map fst C̃
∧

Q. (Ψ, Q, Q) ∈ R

Ψ � C ases map (λ(ϕ, P ). (ϕ, (νx)P )) C̃ ,→R (νx)(C ases C̃ )

Proof. Since x ] map fst C̃ , we have by induction on C̃ that x ] Cases map
(λ(ϕ, P). (ϕ, (νx)P)) C̃ . Moreover since x ] Ψ and x ] (νx)(Cases C̃ ) we can
use the simulation introduction rule from Lemma 27.11 to ensure that x is
fresh for the subject of any transition under consideration. The CASE and
SCOPE inversion rules can then be used to derive the possible transitions,
and the the SCOPE, OPEN, and CASE semantic rules to discharge them.

376



Lemma 28.3.

If x ] map fst C̃ then Ψ � (νx)(Cases C̃ ) .∼ Cases map (λ(ϕ, P). (ϕ, (νx)P)) C̃ .

Proof. By coinduction with X set to

{(Ψ, (νx)(Cases C̃ ),
Cases map (λ(ϕ, P). (ϕ, (νx)P)) C̃ ) : x ] Ψ ∧ x ] map fst C̃ } ∪

{(Ψ, Cases map (λ(ϕ, P). (ϕ, (νx)P)) C̃ ,
(νx)(Cases C̃ )) : x ] Ψ ∧ x ] map fst C̃ }

In order to prove that the agents (νx)(Cases C̃ ) and Cases map (λ(ϕ, P).
(ϕ, (νx)P)) C̃ are in the relation X , x must first be alpha-converted to avoid
Ψ.

Static equivalence: We must prove that ((νx)1) ⊗ Ψ ' 1 ⊗ Ψ. Since x ] Ψ
we have that ((νx)(νε)1 ⊗ Ψ ) ' ((νε)1 ⊗ Ψ ), which is proved by
Lemma 28.1.

Simulation: Follows from Lemma 28.2.

Extension: Follows from the definition of X , where x is alpha-converted
to avoid the new assertion.

Symmetry: The candidate relation X is symmetric.

28.1.2 Discharging impossible transitions
As for the pi-calculus, we create a set of elimination rules which help dis-
charge cases that contain transitions that can never occur in the assump-
tions. The rules are considerably fewer than the ones for the pi-calculus,
described in Lemma 18.9 for two reasons. Firstly, the formalisation for psi-
calculi does not have the case distinction of actions with or without bound
names, and thus there is no need for lemmas which state e.g. that an input-
action cannot generate an action with bound names. Secondly there are no
lemmas which check equality of names with subjects or objects, as in psi-
calculi, these are terms.

Lemma 28.4. The following transitions can never occur.

If Ψ� 0 7−→ Rs then False.

If Ψ � M(λx̃)N .P
K (νỹ)N ′−−−−−−→ P ′ then False.

If Ψ � M(λx̃)N .P
τ−→ P ′ then False.

If Ψ � M N .P
K N ′−−−→ P ′ then False.

If Ψ � M N .P
τ−→ P ′ then False.

If Ψ� (|Ψ ′|) 7−→ Rs then False.
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Proof. By induction on the inference of the transitions.

28.1.3 Restricting deadlocked agents
Lemma 28.5.

Ψ � (νx)0 ,→R 0 Ψ � 0 ,→R (νx)0

Follows from ,→-I, and the SCOPE inversion rules to derive the possible
cases – neither agent has any actions.

Lemma 28.6. Ψ � (νx)0 .∼ 0

Proof. By coinduction with X set to

{(Ψ, (νx)0, 0) : x ] Ψ} ∪ {(Ψ, 0, (νx)0) : x ] Ψ}.

The name x is alpha-converted to be fresh forΨ and Lemma 28.5 discharges
the simulation. The other cases follow from the definition of X .

28.1.4 Scope extension for prefixes
Lemma 28.7.

eqvt R x ] Ψ x ] M x ] N
∧

Q. (Ψ, Q, Q) ∈ R

Ψ � (νx)(M N .P ) ,→R M N . (νx)P

eqvt R x ] Ψ x ] M x ] N
∧

Q. (Ψ, Q, Q) ∈ R

Ψ � M N . (νx)P ,→R (νx)(M N .P )

Proof. Follows from ,→-I, the SCOPE and OUTPUT inversion rules to derive
the possible cases, and the SCOPE and OUTPUT semantic laws to discharge
them. Note that since x ] N the OPEN rule is never used.

Lemma 28.8. If x ] M and x ] N then Ψ � (νx)(M N .P ) .∼ M N . (νx)P .

Proof. By coinduction with X set to

{(Ψ, (νx)(M N .P ), M N . (νx)P ) : x ] Ψ ∧ x ] M ∧ x ] N} ∪
{(Ψ, M N . (νx)P , (νx)(M N .P )) : x ] Ψ ∧ x ] M ∧ x ] N}

Static equivalence : We must prove that ((νx)1) ⊗ Ψ ' 1 ⊗ Ψ. Since x ]

Ψ we have that ((νx)(νε)1 ⊗ Ψ ) ' ((νε)1 ⊗ Ψ ), which is proved by
Lemma 28.1.

Simulation: Follows from Lemma 28.7.
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Extension: Follows from the definition of X , where x is alpha-converted
to avoid the new assertion.

Symmetry: The candidate relation X is symmetric.

Lemma 28.9.

eqvt R x ] Ψ x ] M x ] x̃ x ] N
∧

Q. (Ψ, Q, Q) ∈ R

Ψ � (νx)M(λx̃)N .P ,→R M(λx̃)N .(νx)P

eqvt R x ] Ψ x ] M x ] x̃ x ] N
∧

Q. (Ψ, Q, Q) ∈ R

Ψ � M(λx̃)N .(νx)P ,→R (νx)M(λx̃)N .P

Proof. Follows from ,→-I, the SCOPE and INPUT inversion rules to derive
the possible cases, and the SCOPE and INPUT semantic laws to discharge
them.

Lemma 28.10. If x ] M and x ] x̃ and x ] N then Ψ � (νx)M(λx̃)N .P .∼
M(λx̃)N .(νx)P.

Proof. By coinduction with X set to

{(Ψ, (νx)M(λx̃)N .P, M(λx̃)N .(νx)P) : x ] Ψ ∧ x ] M ∧ x ] x̃ ∧ x ] N} ∪
{(Ψ, M(λx̃)N .(νx)P, (νx)M(λx̃)N .P) : x ] Ψ ∧ x ] M ∧ x ] x̃ ∧ x ] N}

In order to prove that (νx)M(λx̃)N .P and M(λx̃)N .(νx)P are in X , x must
be alpha-converted to avoid Ψ.

Static equivalence : We must prove that ((νx)1) ⊗ Ψ ' 1 ⊗ Ψ. Since x ]

Ψ we have that ((νx)(νε)1 ⊗ Ψ ) ' ((νε)1 ⊗ Ψ ), which is proved by
Lemma 28.1.

Simulation: Follows from Lemma 28.9.

Extension: Follows from the definition of X , where x is alpha-converted
to avoid the new assertion.

Symmetry: The candidate relation X is symmetric.
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28.1.5 Restriction is commutative
The proof that restriction is commutative follows its counterpart for the pi-
calculus in all cases except the OPEN case. In psi-calculi, we encode the no-
tion that binders on labels behave as sets, by allowing the opened bound
name to be inserted anywhere in the already existing binding sequence of
the action. Recall that the OPEN-rule is of the form

Ψ � P
M (νx̃ ỹ)N−−−−−−−→ P ′ z ∈ supp N z ] Ψ z ] M z ] x̃ z ] ỹ

Ψ � (νz)P
M (νx̃z ỹ)N−−−−−−−→ P ′

OPEN

where the binding sequence in the assumptions is split into x̃ and ỹ . Since
the rule is derived from all possible such splits, the effect is that the bound
name x can be inserted anywhere in the sequence. When proving that re-
striction is commutative we have, when the OPEN-rule is applied twice that

Ψ � (νx)((νy)P)
M (νz̃)N−−−−−−→ P ′

where z̃ can either have the form

x̃1x(x̃2yx̃3)

or

x̃1y(x̃2xx̃3),

and when reapplying the OPEN-rule to commute the binders x and y, the
sequences x̃ and ỹ have to be instantiated properly for the proof to work.
The proof is not particularly difficult, but it is tedious, and demonstrates
the drawbacks of encoding sets of binders in this way.

Lemma 28.11.

x ] Ψ y ] Ψ eqvt R∧
Ψ ′ Q. (Ψ ′, Q, Q) ∈ R

∧
Ψ ′ a b Q.

a ] Ψ ′ b ] Ψ ′

(Ψ ′, (νa)((νb)Q), (νb)((νa)Q)) ∈ R

Ψ � (νx)((νy)P ) ,→R (νy)((νx)P )

Proof. If x = y, the proof is straightforward as simulation is reflexive. In the
case that x 6= y the introduction rule from Lemma 27.11 is used, ensuring
that the bound names of the actions are fresh for x, y, and P, and that x and
y are fresh for their subjects. The SCOPE inversion rule from Figure 26.2 is
used to strip away the binders.
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This lemma is rather complex with the different combinations of the
OPEN and RES rules. The requirement that R is reflexive is used when one
or both of x and y are opened, to ensure that the derivatives stay in the
candidate relation. The assumption for the commuting binders is used
when the RES rule is used twice keeping both binders in the derivative
– they must then be commuted in order for the derivative to stay in R.
In the case that the OPEN rule is used twice, the strategy discussed above
for placing the binders in the correct place in the binding sequence is
used.

Before moving on to bisimilarity, we must prove that frames with com-
muted binders are statically equivalent.

Lemma 28.12. ((νx)(νy)F) ' ((νy)(νx)F)

Proof. Follows immediately from definitions 27.1, 27.3, and 27.4.

Lemma 28.13. Ψ � (νx)((νy)P) .∼ (νy)((νx)P)

Proof. An auxiliary lemma is proven where x and y are assumed to be fresh
for Ψ. The proof is then done by coinduction with X set to

{(Ψ, (νx)((νy)P), (νy)((νx)P)) : x ] Ψ ∧ y ] Ψ}

Static equivalence: A frame for P is picked such that F P = (νb̃P )ΨP and
b̃P ] Ψ. We must hence prove that ((νxyb̃P )Ψ ⊗ ΨP ) ' ((νyxb̃P )Ψ ⊗
ΨP ) which follows immediately from Lemma 28.12.

Simulation: Follows immediately from Lemma 28.11, and equivariance
and reflexivity of bisimilarity.

Extension: Follows from the definition of X , but the binders x and y must
be alpha-converted to avoid the new assertion Ψ ′.

Symmetry: Follows directly since bisimilarity is reflexive.

The proof is concluded by alpha-converting the binders to be fresh for Ψ
and using the auxiliary lemma.

We also require a lemma which commutes a sequence of binders with a
single binder.

Lemma 28.14. If y ] Ψ and x̃ ] Ψ then Ψ � (νy)((νx̃)P ) .∼ (νx̃)((νy)P ).

Proof. By induction on x̃ and Lemma 28.13
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28.2 Bisimulation up-to techniques
We define a function bisimCompose which takes a relation, and returns that
relation composed with bisimilarity.

Definition 28.15 (bisimCompose). bisimCompose X
def=

{(Ψ, P, Q) : ∃P ′ Q ′. Ψ � P .∼ P ′∧ (Ψ, P ′, Q ′) ∈ X ∪ .∼ ∧Ψ � Q ′ .∼ Q}

The coinduction rule for bisimulation up-to techniques are then defined
in the standard way.

Lemma 28.16. Coinduction rule for bisimilarity using bisimulation up-to
techniques.

(Ψ, P, Q) ∈ Y eqvt Y

∧
Ψ P Q.

(Ψ, P, Q) ∈ Y

(F P) ⊗Ψ ' (F Q) ⊗Ψ
STATEQ

∧
Ψ P Q.

(Ψ, P, Q) ∈ Y

Ψ � P ,→bi si mCompose Y Q
SIMULATION

∧
Ψ P Q Ψ ′.

(Ψ, P, Q) ∈ Y

(Ψ ⊗Ψ ′ , P, Q) ∈ Y ∨Ψ ⊗Ψ ′ � P .∼ Q
EXTENSION

∧
Ψ P Q.

(Ψ, P, Q) ∈ Y

(Ψ, Q, P) ∈ bisimCompose Y
SYMMETRY

Ψ � P .∼ Q

Proof. By coinduction with X set to bisimCompose Y .

Note that the bisimCompose function is only used in the simulation and
the symmetry cases.
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28.2.1 Scope extension for Parallel
Lemma 28.17.

x ] P x ] Ψ eqvt R∧
Ψ ′ R. (Ψ ′, R, R) ∈ R∧
y Ψ ′ R S z̃.

y ] Ψ ′ y ] R z̃ ] Ψ ′

(Ψ ′, (νy)((νz̃)(R | S)), (νz̃)(R | (νy)S)) ∈ R∧
Ψ ′ z̃ R y.

y ] Ψ ′ z̃ ] Ψ ′

(Ψ ′, (νy)((νz̃)R), (νz̃)((νy)R)) ∈ R

Ψ � (νx)(P | Q) ,→R P | (νx)Q

x ] P x ] Ψ eqvt R∧
Ψ ′ R. (Ψ, R, R) ∈ R∧
y Ψ ′ R S z̃.

y ] Ψ ′ y ] R z̃ ] Ψ ′

(Ψ ′, (νz̃)(R | (νy)S), (νy)((νz̃)(R | S))) ∈ R

Ψ � P | (νx)Q ,→R (νx)(P | Q)

Proof. Follows from ,→-I, where any new bound name avoids x, Ψ, P, and
Q. The PAR and SCOPE inversion rules from Figure 26.2 are then used to gen-
erate all possible cases, and the PAR, COMM, SCOPE, and OPEN rules from
the operational semantics are used to discharge them.

Lemma 28.18. If x ] P then Ψ � (νx)(P | Q) .∼ P | (νx)Q.

Proof. By coinduction using Lemma 28.16 with Y set to

{(Ψ, (νỹ)((νx)(P | Q)), (νỹ)(P | (νx)Q)) : x ] Ψ ∧ x ] P ∧ ỹ ] Ψ} ∪
{(Ψ, (νỹ)(P | (νx)Q), (νỹ)((νx)(P | Q))) : x ] Ψ ∧ x ] P ∧ ỹ ] Ψ}

Static equivalence: Frames are picked for P and Q such that their binders
are sufficiently fresh. The proof then follows from Lemma 27.39.

Simulation: Follows from Lemma 28.17 which has its requisites proven by
reflexivity of bisimilarity and bisimulation up-to techniques used in
conjunction with Lemma 28.14.

Extension: Follows from the definition of Y , with the binders
alpha-converted to not clash with the the new assertion Ψ ′.

Symmetry: The candidate relation Y is symmetric.

A corresponding lemma can be proven for binding sequences.
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Lemma 28.19. If x̃ ] Ψ and x̃ ] P then Ψ � (νx̃)(P | Q) .∼ P | (νx̃)Q.

Proof. By induction on x̃ and Lemma 28.18.

28.3 Abelian monoid laws for Parallel

28.3.1 Parallel has Nil as unit
Lemma 28.20.

eqvt R
∧

Q. (Ψ, Q | 0, Q) ∈ R

Ψ � P | 0 ,→R P

eqvt R
∧

Q. (Ψ, Q, Q | 0) ∈ R

Ψ � P ,→R P | 0

Proof. Follows from the definition of ,→, the PAR1 semantic rule for the first
sub-lemma, and the PAR inversion rule for the second one.

Lemma 28.21. Ψ � P | 0 .∼ P

Proof. By coinduction with X set to

{(Ψ, P | 0, P) : True} ∪ {(Ψ, P, P | 0) : True}.

Static equivalence: A frame for P is picked such that F P = (νb̃P )ΨP . We
must hence prove that ((νb̃P )1 ⊗ ΨP ) ' ((νb̃P )ΨP ), which follows
from Lemma 27.31, the fact that static equivalence is an equivalence
relation and the AID and ACOMM static equivalence laws.

Simulation: Follows directly from Lemma 28.20.

Extension: Follows from the definition of X .

Symmetry: Follows from the definition of X .

28.3.2 Parallel is commutative
Lemma 28.22.

eqvt R
∧
Ψ ′ R S. (Ψ ′, R | S, S | R) ∈ R∧

Ψ ′ R S x̃.
(Ψ ′, R, S) ∈ R x̃ ] Ψ ′

(Ψ ′, (νx̃)R, (νx̃)S) ∈ R

Ψ � P | Q ,→R Q | P
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Proof. Follows from the definition of ,→. The PAR inversion rules from Fig-
ure 26.2 are used to derive the relevant cases, and the PAR, COMM, and
CLOSE semantic rules are used to discharge them. In all cases the symmet-
ric semantic rule is used from the inversion rule used to derive the case;
PAR2 for PAR1 and so on.

We must also prove that frame composition commutes.

Lemma 28.23. Ψ � P | Q .∼ Q | P

Proof. By coinduction with X set to {(Ψ, (νx̃)(P | Q), (νx̃)(Q | P )) : x̃ ] Ψ}

Static equivalence: We must prove that

((νx̃)(F P ⊗ F Q )) ⊗Ψ ' ((νx̃)(F Q ⊗ F P )) ⊗Ψ.

• We pick frames for P and Q such that F P = (νb̃P )ΨP , F Q =
(νb̃Q )ΨQ , and b̃P and b̃Q are fresh for everything in the proof con-
text.

• We have that Ψ ⊗ (ΨP ⊗ ΨQ ) ' Ψ ⊗ (ΨQ ⊗ ΨP ) by the laws of
static equivalence.

• Hence ((νb̃P b̃Q )Ψ ⊗ (ΨP ⊗ΨQ ) ) ' ((νb̃P b̃Q )Ψ ⊗ (ΨQ ⊗ΨP ) ) by
Lemma 27.31.

• Hence ((νb̃P b̃Q )Ψ ⊗ (ΨP ⊗ΨQ ) ) ' ((νb̃Q b̃P )Ψ ⊗ (ΨQ ⊗ΨP ) ) by
Lemma 27.40.

• Finally, we have that ((νx̃b̃P b̃Q )Ψ ⊗ (ΨP ⊗ΨQ ) ) ' ((νx̃b̃P b̃Q )Ψ ⊗
(ΨQ ⊗ΨP ) ) by Lemma 27.31, proving the case since x̃, b̃P , and b̃Q

are sufficiently fresh.

Simulation: We must prove that

Ψ � (νx̃)(P | Q) ,→X ∪ .∼ (νx̃)(Q | P )

• Using Lemma 27.34 we have that Ψ � P | Q ,→X Q | P by
Lemma 28.22.

• Since x̃ ] Ψ we have that Ψ � (νx̃)(P | Q) ,→X (νx̃)(Q | P ) by
Lemma 27.33

• Finally we have that Ψ � (νx̃)(P | Q) ,→X ∪ .∼ (νx̃)(Q | P ) since
,→ is monotonic.

Extension: Follows from the definition of X , but the sequence x̃ must be
alpha-converted to avoid the new assertion Ψ ′

Symmetry: Follows from the definition of X .
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28.3.3 Parallel is associative
As for the pi-calculus, we use bisimulation up-to techniques to only have
to prove the simulation one way. The pi-calculus simulation proof had 18
cases to prove. For psi-calculi, there are only nine. There are two reasons
for this. Firstly, the pi-calculus has its semantics split between transitions
which do bound and free actions, whereas the coding of residuals for psi-
calculi allow us to reason about both types of actions without a case dis-
tinction. Secondly, the pi-calculus has two types of communication rules –
the COMM and the CLOSE rules, whereas psi-calculi only has a COMM rule.

Lemma 28.24.

eqvt R∧
Ψ ′ S T U . (Ψ, (S | T) | U , S | (T | U)) ∈ R∧
x̃ Ψ ′ S T U .

x̃ ] Ψ ′ x̃ ] S

(Ψ ′, (νx̃)((S | T ) | U ), S | (νx̃)(T | U )) ∈ R∧
x̃ Ψ ′ S T U .

x̃ ] Ψ ′ x̃ ] U

(Ψ ′, (νx̃)(S | T ) | U , (νx̃)(S | (T | U ))) ∈ R∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R

Ψ � (P | Q) | R ,→R P | (Q | R)

Proof. Follows from the ,→-I, and the PAR inversion rules. At all steps
newly occurring bound names avoid all other terms under consideration.
The cases are then discharged using the PAR and COMM semantic rules,
and the requisites on R ensure that the derivatives remain in the candidate
relation.

Lemma 28.25.
Ψ � (P | Q) | R .∼ P | (Q | R)

Proof. By coinduction using Lemma 28.16 with Y set to

{(Ψ, (νx̃)((P | Q) | R), (νx̃)(P | (Q | R))) : x̃ ] Ψ}.

Static equivalence: Similar to the proof for the corresponding case for
Lemma 28.23, but with AASSOC used to prove associativity of the
assertion components of the frames for P, Q, and R.

Simulation: Follows from Lemma 28.24 which has its requisites proven by
reflexivity of bisimilarity, and bisimulation up-to techniques using
Lemmas 28.23, 27.34 and 28.19.

Extension: Follows from the definition of Y , with the bound names alpha-
converted to avoid the new assertion Ψ ′.
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Symmetry: The candidate relation Y is not symmetric. We must prove that
for all agents S and T, if S and T are in Y , then T and S are in bisim-
Compose Y . By unfolding the definition of Y we obtain x̃, P, Q, and
R such that S = (νx̃)((P | Q) | R) and T = (νx̃)(P | (Q | R)), we
must hence prove that (νx̃)(P | (Q | R)) and (νx̃)((P | Q) | R) are in
bisimCompose Y .

• Since x̃ ] Ψ, we have that

Ψ � (νx̃)(P | (Q | R)) .∼ (νx̃)((R | Q) | P )

by Lemmas 28.23, 27.42, 27.34, and transitivity of bisimilarity.
• Moreover since x̃ ] Ψ we have that

(Ψ, (νx̃)((R | Q) | P ), (νx̃)(R | (Q | P ))) ∈ Y

by the definition of Y .
• Moreover since x̃ ] Ψ, we have that

Ψ � (νx̃)(R | (Q | P )) .∼ (νx̃)((P | Q) | R)

by Lemmas 28.23, 27.42, 27.34, and transitivity of bisimilarity.
• Hence we have that

(Ψ, (νx̃)(P | (Q | R)), (νx̃)((P | Q) | R)) ∈ bisimCompose Y

by Definition 28.15.

28.4 The unfolding law
Lemma 28.26.

guarded P
∧
Ψ ′ Q. (Ψ ′, Q, Q) ∈ R

Ψ � !P ,→R P | !P

∧
Ψ ′ Q. (Ψ ′, Q, Q) ∈ R

Ψ � P | !P ,→R !P

Proof. Follows from the ,→-I, the REPL inversion rule, and the REPL seman-
tic rule.

Lemma 28.27. If guarded P then Ψ � !P .∼ P | !P.

Proof. By coinduction with X set to {(Ψ, !P, P | !P) : guarded P} ∪ {(Ψ, P |
!P, !P) : guarded P}.

Static equivalence: Since P is guarded we know that it has an empty frame,
and the AID axiom proves the case.
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Simulation: Follows from Lemma 28.26 and reflexivity of bisimilarity.

Extension: Follows from the definition of X .

Symmetry: The relation X is symmetric.

28.5 Bisimilarity is preserved by Replication

The proof utilises the observation that whenever a transition Ψ � !P
α−→

P ′, the agent !P will be present as a parallel component of the derivative P ′;
the semantic rule for replication unfolds instances of P as many times as is
needed to infer the desired action, but the agent !P is never eliminated from
the derivation. This requires that the simulation proof has more constraints
on the candidate relation than seen so far.

388



Lemma 28.28. Simulation is preserved by Replication. There are a total of
18 premisess for this simulation lemma.

(Ψ, P, Q) ∈ R eqvt R eqvt R ′ guarded P guarded Q

1 :
∧
Ψ ′ΨU S T U b̃U .

(Ψ ′⊗ΨU , S, T) ∈ R

F U = (νb̃U )ΨU b̃U ] Ψ ′ b̃U ] S b̃U ] T

(Ψ ′, U | S, U | T) ∈ R

2 :
∧
Ψ S T U .

(Ψ, S, T) ∈ R guarded S guarded T

(Ψ, U | !S, U | !T) ∈ R ′

3 :
∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R

4 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

Ψ ′ � S ,→R T

5 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R

(Ψ ′⊗Ψ ′′ , S, T) ∈ R
6 :

∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

(Ψ ′, T , S) ∈ R

7 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R

8 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R (Ψ ′, T , U) ∈ R

(Ψ ′, S, U) ∈ R

9 :
∧

x̃ Ψ ′ S T .
x̃ ] Ψ ′ x̃ ] T

(Ψ ′, (νx̃)(S | T ), (νx̃)S | T) ∈ R

10 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R

(Ψ ′, S | U , T | U) ∈ R

11 :
∧
Ψ ′ S T U . (Ψ ′, S | (T | U), (S | T) | U) ∈ R

12 :
∧
Ψ ′ S T U O.

(Ψ ′, S, T) ∈ R (Ψ ′, T , U) ∈ R ′ (Ψ ′, U , O) ∈ R

(Ψ ′, S, O) ∈ R ′

13 :
∧
Ψ ′ S α S ′ T .

Ψ ′ � !S
α−→ S ′

(Ψ ′, S, T) ∈ R bn α ] Ψ ′ bn α ] S
bn α ] T guarded T bn α ] sub j ect α

∃T ′ U O. Ψ ′ � !T
α−→ T ′∧ (Ψ ′, S ′, U | !S) ∈ R ∧

(Ψ ′, T ′, O | !T) ∈ R ∧ (Ψ ′, U , O) ∈ R ∧ supp U ⊆
supp S ′∧ supp O ⊆ supp T ′

Ψ � R | !P ,→R ′ R | !Q
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The unnumbered premisess dictate that the agents P and Q must be in
R, that the relations are equivariant, and that P and Q must be guarded.
Premises 1-3 provide the preservation properties required for R and R ′.
Premises 4-6 ensure that R meets all requirements of strong bisimilarity,
except static equivalence. Premise 7 ensures that statically equivalent
assertions can be switched in R, and premise 8 that R is transitive. Premises
9-11 are structural congruence laws. Premise 12 allows bisimulation up-to
techniques to be used on the relations.

Premise 13 states that for all possible actions that if Ψ � !P
α−→ P ′, there

must be a Q ′, an R and a T such that Ψ � !Q
α−→ Q ′, and it must be possi-

ble to ensure that the pair of agents Q ′ and T | !Q, are in the relation R as
well as the agents P ′ and R | !Q. Moreover, R and T must be in R. This last
premise states that it is possible to extract the replicated component from any
derivative and the derivatives are still in the relation.

Proof. The proof follows from ,→-I, and the PAR inversion rule. When the
agent !Q does an action, the last of the assumptions is used to generate
a mimicking action by !P. The other assumptions are then used to ensure
that the derivatives are in R ′. Other than that, the proof structure is almost
identical to the preservation lemma for Parallel, Lemma 27.38.

This lemma looks intimidating since there requirements on R and R ′
are extensive. However, all of the requirements except 13 have either al-
ready been proven, or are easily derivable from the rules already proven for
bisimilarity. For requirement 13, we need an auxiliary lemma.

Lemma 28.29.

Ψ � !P
α−→ P ′ Ψ � P .∼ Q

bn α ] Ψ bn α ] P bn α ] Q bn α ] sub j ect α guarded Q

∃Q ′ R T .

Ψ � !Q
α−→ Q ′∧

Ψ � P ′ .∼ R | !P ∧
Ψ � Q ′ .∼ T | !Q ∧Ψ � R .∼ T ∧ supp R ⊆ supp P ′∧ supp T ⊆ supp Q ′

Proof. Proof by induction on Ψ � !P
α−→ P ′ using Lemma 25.6.

Given two bisimilar processes P and Q, this lemma states that if !P can
do an action, !Q can mimic that action, and their derivatives can be trans-
formed using the laws of bisimilarity such that they consist of two bisimilar
processes in parallel with the replicated ones.

With this lemma in place we derive the lemma which proves that bisimi-
larity is preserved by replication.

390



Lemma 28.30.

If Ψ � P .∼ Q and guarded P and guarded Q then Ψ � !P .∼ !Q.

Proof. By coinduction using Lemma 28.16, with Y set to

{(Ψ, R | !P, R | !Q) : Ψ � P .∼ Q ∧ guarded P ∧ guarded Q}.

The proof is done by proving that Ψ � 0 | !P .∼ 0 | !Q.

Static equivalence: Follows immediately since both !P and !Q have empty
frames, by Definition 24.19.

Simulation: Follows from Lemma 28.28 with R set to .∼, and R ′ set to
bisimCompose .∼. Premises 1-3 follow from Lemmas 27.41, 27.42,
and 27.34; for Premise 2, some rewriting up to structural congruence
is required. Premises 4-6 are properties of bisimilarity. Premise 7
is proven by Lemma 27.20. Premise 8 is proven by transitivity of
bisimilarity. Premise 9-11 are proven by Lemma 28.19, 28.23, and
28.25. Premise 12 follows from Definition 28.15. Finally Premise 13 is
proven by Lemma 28.29.

Extension: Follows immediately from the definition of Y

Symmetry: The candidate relation Y is symmetric.

From Ψ � 0 | !P .∼ 0 | !Q we can derive that Ψ � !P .∼ !Q by Lemma 28.21,
and symmetry and transitivity of .∼.

28.6 Main results
With the results from this and the previous chapter we can prove three
main theorems – that bisimilarity is preserved by all operators except Input,
that strong equivalence is a congruence, and that all structurally congruent
agents are bisimilar and strongly equivalent.

Theorem 28.1. Bisimilarity is preserved by all operators except Input.

Proof. Follows directly from lemmas 27.25, 27.27, 27.32, 27.42, and 28.30.

Theorem 28.2. Strong equivalence is a a congruence

Proof. That strong equivalence is preserved by Input was proven in
Lemma 27.51. That it also is an equivalence relation and preserved
by the remaining operators follows immediately from Lemma 27.23,
Theorem 28.1, and the definition of ∼ , where any bound names are
alpha-converted to avoid the substitutions.
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We also prove that strong bisimilarity and strong equivalence include
structural congruence.

Theorem 28.3. If P ≡ Q then 1 � P .∼ Q.

Abelian monoid laws for Parallel: Follows from Lemmas 28.25, 28.23 and
28.21

Unfolding law: Follows from Lemma 28.27.

Scope extension laws: Follows from Lemmas 28.6, 28.10, 28.3, 28.8, 28.13,
and 28.18.

Theorem 28.4. If P ≡ Q then 1 � P ∼ Q.

Proof. Follows from Theorem 28.3 and Definition 27.48 where any binders
in the agents are alpha-converted to avoid the sequential substitution.
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29. Weak bisimilarity

In this chapter we introduce weak bisimilarity,
.≈, with the intuition that τ

actions are invisible. We will encode τ-prefixes as a communication over
a restricted channel; the exact mechanisms for this encoding will be dis-
cussed in Chapter 33. This notion is standard in many variants of the pi-
calculus, but in our framework it poses unexpected challenges. As an exam-
ple, consider the law P

.≈ τ.P . This law looks obvious and indeed holds for
weak bisimulation in the pi-calculus. But in psi-calculi in general it would
imply that parallel composition does not preserve

.≈. Consider a situation
where it holds that 1 `ϕ and F (P ) 6`ϕ. In other words, F (P ) makes condi-
tion ϕ false. Now consider

P | ifϕ then Q and τ.P | ifϕ then Q

Here only the right hand side has the possibility of acting like Q. Therefore
the left and right hand sides are not in general equivalent. If parallel pre-
serves

.≈ then it follows that P and τ.P are not always equivalent.
The root of this issue is that the frame of P can falsify the condition ϕ.

There are some circumstances where this might happen; an example is if
the assertions represent constraint stores and the constraint system admits
retracts. Suppose that P represents a retract ofϕ. A system sitting in parallel
with P cannot infer ϕ, and therefore ifϕ then Q will have no action. But a
system in parallel with τ .P might infer ϕ. Only when this agent executes
its action τ and asserts the retract will ifϕ then Q become blocked. Thus P
and τ .P cannot be deemed equivalent: the parallel context of ifϕ then Q
can tell the difference by proceeding only in company with the latter.

29.1 Psi-calculi with weakening
In many natural instances of psi-calculi this situation cannot arise. For ex-
ample, if the logics involved are monotonic there can be nothing similar
to a retract: formally, frame composition ⊗ is interpreted as conjunction of
information, and a logical weakening law is assumed, saying that a con-
junction cannot entail less than its conjuncts. In our framework this is rep-
resented as an extra requisite:

weakening: Ψ`ϕ ⇒ Ψ⊗Ψ′ `ϕ
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Since (⊗,1) is a monoid we have 1⊗Ψ'Ψ for allΨ, and with weakening this
implies 1 ` ϕ⇒Ψ ` ϕ, in other words, no assertion can falsify any condi-
tion. With this requisite the law P

.≈ τ .P indeed holds, and it turns out that
the definition of weak bisimilarity is significantly simpler. We shall there-
fore begin by exploring weak bisimilarity for psi-instances with weakening,
and later generalise to the situation without weakening.

Our approach is to adjust Definition 22.10 (strong bisimilarity) so that τ
actions can be inserted or removed when simulating a transition. Clause 1
in the definition, that P and Q are statically equivalent, is adjusted so that if
P can make conditions true, then Q can make them true possibly after per-
forming some τ actions. Clauses 2 and 3 are unchanged. Clause 4 (simula-
tion) is split in two parts. If the action α to be simulated is τ then Q should
simulate by doing zero or more τs. If it is a visible (i.e. non-τ) action then Q
simulates by doing an arbitrary number of τ actions before and after the α
action.

We define Ψ� P ==⇒ P ′ to mean that there exist P1, . . .Pn where P = P1,

P ′ = Pn , andΨ�Pi
τ−→ Pi+1 for all i in [1,n−1], allowing the case where n =

1 and P = P ′. The weak transition Ψ� P
α==⇒ P ′ is defined as Ψ� P ==⇒ P ′′

andΨ�P ′′ α−→ P ′′′ andΨ�P ′′′ ==⇒ P ′. We also define P ≤Ψ Q, pronounced
P statically implies Q, to mean that ∀ϕ.Ψ⊗F (P ) `ϕ ⇒ Ψ⊗F (Q) `ϕ. We
write P ≤Q for P ≤1 Q.

Definition 29.1 (Simple weak bisimilarity). A simple weak bisimilarity R is
a ternary relation between assertions and pairs of agents such that R(Ψ,P,Q)
implies all of

1. Weak static implication: There exists Q ′ such that

Ψ� Q ==⇒ Q ′ and P ≤Ψ Q ′ and R(Ψ,P,Q ′).
2. Symmetry: R(Ψ,Q,P )
3. Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′,P,Q)

4. Weak simulation: for all α,P ′ such that bn(α) ]Ψ,Q and Ψ � P
α−→ P ′

it holds
ifα= τ : ∃Q ′.Ψ� Q ==⇒ Q ′ ∧ R(Ψ,P ′,Q ′)

ifα 6= τ : ∃Q ′.Ψ� Q
α==⇒ Q ′ ∧ R(Ψ,P ′,Q ′)

We define Ψ� P
.≈

smp
Q to mean that there exists a simple weak bisimulation

R such that R(Ψ,P,Q), and write P
.≈

smp
Q for 1 � P

.≈
smp

Q.

The one point which may not be immediately obvious is Clause 1, weak
static implication, where the conjunct R(Ψ,P,Q ′) may be surprising. It
states that Q must evolve to a Q ′ that is statically implied by P , and also
bisimilar to P . This last requirement may seem unnecessarily strong, but in
fact without it the resulting simple weak bisimulation equivalence would
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not be preserved by the parallel operator. To prove this, let
.≈′

be defined
as simple weak bisimilarity above but without the conjunct R(Ψ,P,Q ′) in
Clause 1. Let there be an assertion Ψ and condition ϕ such that Ψ`ϕ and
1 6` ϕ, and let L, M , N be distinct terms. Consider the following agents (the
diagrams illustrate agents informally):

P = (|Ψ|) | (τ.M .0+τ.N .0)

Q = τ.((|Ψ|)|M .0)+τ.((|Ψ|)|N .0)

R = ifϕ then L.0

The transitions from P and Q are identical, only their frames differ in that
F (P ) =Ψ and F (Q) = 1. With our original definition P 6 .≈

smp
Q, since there is

no appropriate Q ′ for Clause 1. In contrast we have P
.≈′

Q since Q
τ−→ Q ′

implies F (Q ′) = F (P ). But to simulate P |R L−→ P |0 from Q|R the only pos-

sibilities are Q|R L==⇒ (|Ψ|)|M .0|0 and Q|R L==⇒ (|Ψ|)|N .0|0. Neither of these
can continue to simulate P |0 which can perform both actions M and N .
Therefore P |R 6 .≈′

Q|R.
Simple weak bisimilarity is the natural weak counterpart of

Definition 22.10. For all psi-calculi that satisfy the weakening requisite
it is sufficient. As we demonstrate in the following section, without
weakening simple weak bisimilarity is in general not preserved by parallel
composition and also not transitive; therefore a more elaborate definition
is required in these cases.

29.2 Psi-calculi without weakening
We now generalise to psi-calculi without the weakening requisite. It turns
out that the definition of weak labeled bisimilarity needs to be adjusted in
Clauses 1 and 4, where the interplay of assertions and transitions is quite
subtle. We proceed to give the full definition of weak labeled bisimilarity
followed by a series of examples motivating the need for the added com-
plexities. In Chapter 32 we provide a proof that it coincides with

.≈
smp

for psi-

calculi with weakening,

Definition 29.2 (Weak bisimilarity). A weak bisimilarity R is a ternary rela-
tion between assertions and pairs of agents such that R(Ψ,P,Q) implies all
of
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1. Weak static implication:

∀Ψ′∃Q ′′,Q ′.

Ψ� Q ==⇒ Q ′′ ∧ P ≤Ψ Q ′′ ∧
Ψ⊗Ψ′ � Q ′′ ==⇒ Q ′ ∧ R(Ψ⊗Ψ′,P,Q ′)

2. Symmetry: R(Ψ,Q,P )
3. Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′,P,Q)

4. Weak simulation: for all α,P ′ such that bn(α) ]Ψ,Q and Ψ � P
α−→ P ′

it holds

ifα= τ : ∃Q ′. Ψ� Q ==⇒ Q ′ ∧ R(Ψ,P ′,Q ′)
ifα 6= τ : ∀Ψ′∃Q ′′,Q ′′′.

Ψ� Q ==⇒ Q ′′′ ∧ P ≤Ψ Q ′′′ ∧
Ψ� Q ′′′ α−→ Q ′′ ∧
∃Q ′. Ψ⊗Ψ′ � Q ′′ ==⇒ Q ′ ∧ R(Ψ⊗Ψ′,P ′,Q ′)

We define P
.≈Ψ Q to mean that there exists a weak bisimulation R such that

R(Ψ,P,Q) and write P
.≈Q for P

.≈1 Q.

We will for the remainder of the chapter motivate the added complexities
of this definition.

Example: the use of P ≤Ψ Q ′′′.
We shall demonstrate that with a simplification omitting P ≤Ψ Q ′′′ in Clause
4, i.e., if we do not take into account the conditions that hold at the point of
executing the visible part of a simulation, then equivalence is not in general
preserved by parallel. Let

.≈′
be defined with this simplification. Choose an

instance with an assertion Ψ and condition ϕ such that Ψ 6` ϕ and 1 ` ϕ,
i.e., Ψ makes ϕ false. Consider the agents

P = τ.((|Ψ|) |M .0)+M .(|Ψ|)
Q = τ.((|Ψ|) |M .0)

R = ifϕ then M .N .0

Here P
.≈′

Q. To see this, consider the only transition that differs between

the agents, namely P
M−→ (|Ψ|). This can be simulated by Q

τ−→ (|Ψ|) |M .0 =
Q ′′′ and Q ′′′ M−→ (|Ψ|)|0. But in composition with R, we have through the sec-

ond branch of P that P |R τ−→ (|Ψ|)|N .0. This cannot be weakly simulated by
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Q|R since Q|R τ−→ (|Ψ|) |M .0 |R which has no N transition. Therefore P |R 6 .≈′

Q|R and
.≈′

is not preserved by parallel.

Example: the quantification ∀Ψ′.
Next we motivate the quantification of Ψ′ in the sub-clause α 6= τ of weak
simulation, showing that without it, again equivalence would not be pre-
served by parallel. Let

.≈′
be defined with this simplification. LetΨ andϕ be

such that 1 `ϕ and Ψ 6`ϕ and let

P = M . ifϕ then τ.P ′

Q = P + ifϕ then M .P ′

R = M .(|Ψ|)

Here P
.≈′

Q. Clearly we have Q|R τ−→ P ′|(|Ψ|) through the second branch
of Q. This cannot be weakly simulated by P |R. Here the only transition

is P |R τ−→ ifϕ then τ.P ′ | (|Ψ|) which has no further transition. Therefore
P |R 6 .≈′

Q|R and
.≈′

is not preserved by parallel.

Example: quantifier order of Ψ′ and Q ′.
Next we motivate the order of the quantifiers, showing that if we commute
the quantifiers ∀Ψ′ and ∃Q ′ the resulting “equivalence” would not be tran-
sitive. Let

.≈′
be defined with these quantifiers commuted. Let all Qi for

i = 1,2,3 be distinct but weakly equivalent, and let ϕ,¬ϕ be two conditions
that partition the assertions in two disjoint sets {Ψ. Ψ ` ϕ∧Ψ 6` ¬ϕ} and
{Ψ.Ψ 6`ϕ∧Ψ`¬ϕ}. Let > be a condition that is entailed by all assertions,
and let

U = caseϕ : τ.Q1 [] ¬ϕ : τ.Q2

V = caseϕ : τ.Q1 [] ¬ϕ : τ.Q2 [] > : τ.Q3

Here U
.≈ V . The rightmost branch in Ψ � V

τ−→ Q3 is simulated by one of
the two branches in U (which one depends on Ψ). Let

P = M .Q1 +M .U

Q = M .U

R = M .V
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Our point is that although P
.≈ R

.≈ Q we have P
.≈′

R and R
.≈′

Q, but not
P

.≈′
Q. The crucial difference between the equivalences is explained as fol-

lows. P
.≈ Q holds because the only nontrivial simulation is for Q to simu-

late the first branch of P . This is done by first doing M leading to U , and
then for all Ψ′ continuing to either Q1 or Q2, depending on whether Ψ′ `ϕ
or not. Here the quantification order is important. If the final bisimulation
clause would read ∃Q ′∀Ψ′ . . . then Q cannot simulate the first branch of P
and therefore P 6 .≈′

Q. Note that P
.≈′

R since the only nontrivial case is again
for R to simulate the first branch of P . This can be done through the third
branch leading to Q3. This holds for any Ψ′.

Example: quantifier order of Ψ′ and Q ′′.
In Clause 4, the quantifier order is ∀Ψ′∃Q ′′. Let

.≈′
be defined with the alter-

native order ∃Q ′′∀Ψ′. The difference is highlighted by the following exam-
ple. Let ϕ and ¬ϕ be two conditions such that for any assertion exactly one
of them is entailed, as in the previous example. Let

P = M .Q ′+Q

Q = M .ifϕ then τ.Q ′

+M .if ¬ϕ then τ.Q ′

Here P
.≈ Q and P 6 .≈′

Q. To see this consider how Q can simulate P
M−→ Q ′.

Using
.≈, for allΨ′ we must find a Q ′′ such that Q

M−→ Q ′′ and Q ′′ ==⇒ Q ′. This
holds, since the choice of Q ′′ may depend onΨ′. Using

.≈′
we must find one

Q ′′ suitable for all Ψ′, and there is none.
As it turns out

.≈′
is a viable definition, in the sense that it is transitive

and preserves parallel. But from an observational point of view it is hard to
argue that P and Q should be different — in essence that would give the
observer the power to observe that a conditional branch has been passed.
The difference between

.≈ and
.≈′

is reminiscent of the difference between
late and early equivalence.

Example: quantifiers in Clause 1.

Keeping the simpler Clause 1 from Definition 29.1 will also yield an equiv-
alence

.≈′
that preserves parallel. A distinguishing example is similar to the

one above. Again, let ϕ and ¬ϕ be two conditions such that for any asser-
tion exactly one of them is entailed. Let Ψ be an assertion such that 1 ≤Ψ

and Ψ 6≤ 1 and Ψ⊗Ψ' 1.
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P = (|Ψ|) | (τ . ifϕ then τ.Q ′+τ . if ¬ϕ then τ.Q ′

Q = τ . ((|Ψ|) | ifϕ then τ.Q ′)
+ τ . ((|Ψ|) | if ¬ϕ then τ.Q ′)

Here we assume that Q ′ is weakly bisimilar to (|Ψ|) |Q. Then P
.≈Q. The crit-

ical argument is that in Clause 1, depending on whether Ψ′⊗Ψ ` ϕ or not,
Q can evolve to either (|Ψ|) | ifϕ then τ.Q ′ or (|Ψ|) | if ¬ϕ then τ.Q ′, in either
case reaching an agent with a frame Ψ. It can then continue to (|Ψ|) | Q ′ .≈
(|Ψ⊗Ψ|) | Q

.≈ Q. In contrast P 6 .≈′
Q, since Q cannot evolve to an agent that

both hasΨ as frame and is bisimilar to P . Again, it is hard to argue that they
should be different from an observational point of view. In [47] we define a
barbed bisimilarity for psi-calculi and prove that it is sound and complete
with respect to weak bisimilarity. This last example was discovered in the
process of doing this proof.
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30. Formalising weak bisimilarity

In this chapter we will formalise our results for weak bisimilarity in Isabelle.
All proofs will be conducted on psi-calculi without weakening. We will later
in Chapter 32 prove that the simple bisimilarity described in the previous
chapter coincide for psi-calculi with weakening.

30.1 Tau chains
The encodings of τ-chains for CCS and the pi-calculus use the reflexive
transitive closure of τ-actions. For psi-calculi transitions are parametrised
with an environment. We define τ-chains in the following way.

Definition 30.1 (τ-chain).

Ψ � P =⇒ P ′def= (P, P ′) ∈ {(P, P ′) : Ψ � P
τ−→ P ′}∗

We also define τ-chains which must contain at least one τ-action. This is
defined as the transitive closure of τ-actions.

Definition 30.2 (τ-respecting τ-chain).

Ψ � P
τ==⇒P ′def= (P, P ′) ∈ {(P, P ′) : Ψ � P

τ−→ P ′}+

The definition of τ-chains allows us to use Isabelle’s induction rules for
reflexive transitive closures and transitive closures.

Lemma 30.3. Induction rule for τ-chains.
Ψ � R =⇒ R ′ ∧

P. Prop P P

∧
P P ′ P ′′.

Ψ � P ′ τ−→ P ′′ Ψ � P =⇒ P ′ Prop P P ′

Prop P P ′′


Prop R R ′
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
Ψ � R

τ==⇒R ′ ∧
P P ′.

Ψ � P
τ−→ P ′

Prop P P ′

∧
P P ′ P ′′.

Ψ � P ′ τ−→ P ′′ Ψ � P
τ==⇒P ′ Prop P P ′

Prop P P ′′


Prop R R ′

Proof. Follows immediately from Isabelle’s induction rule for reflexive tran-
sitive closures and transitive closures.

We can now derive basic lemmas for equivariance, freshness, and static
equivalence.

Lemma 30.4. If Ψ � P =⇒ P ′ then p ·Ψ � p · P =⇒ p · P ′.

Proof. By induction on Ψ � P =⇒ P ′

Base case (P = P ′): Follows immediately since p ·Ψ � p · P =⇒ p · P.

Inductive step (Ψ � P =⇒ P ′′ andΨ � P ′′ τ−→ P ′): From the induction

hypothesis we have that p ·Ψ � p · P =⇒ p · P ′′, withΨ � P ′′ τ−→ P ′

we have that p ·Ψ � p · P ′′ τ−→ p · P ′ by Lemma 25.10, and hence p ·
Ψ � p · P =⇒ p · P ′ from Definition 30.1.

Lemma 30.5. If Ψ � P
τ==⇒P ′ then p ·Ψ � p · P

τ==⇒p · P ′.

Proof. Similar to Lemma 30.4

Lemma 30.6. If Ψ � P =⇒ P ′ and x̃ ] P then x̃ ] P ′.

Proof. By induction on Ψ � P =⇒ P ′

Base case (P = P ′): Follows immediately since x̃ ] P .

Inductive step (Ψ � P =⇒ P ′′ andΨ � P ′′ τ−→ P ′): From the induction

hypothesis we have that x̃ ] P ′′, and with Ψ � P ′′ τ−→ P ′ we have
that x̃ ] P ′ by Lemma 25.23.

Lemma 30.7. If Ψ � P
τ==⇒P ′ and x̃ ] P then x̃ ] P ′.

Proof. Similar to Lemma 30.6
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Ψ ⊗ΨQ � P =⇒ P ′

F Q = (νb̃Q )ΨQ b̃Q ] Ψ b̃Q ] P

Ψ � P | Q =⇒ P ′ | Q
PAR1

Ψ ⊗ΨP � Q =⇒ Q ′

F P = (νb̃P )ΨP b̃P ] Ψ b̃P ] Q

Ψ � P | Q =⇒ P | Q ′ PAR2

Ψ � P =⇒ P ′ x ] Ψ

Ψ � (νx)P =⇒ (νx)P ′ SCOPE

Figure 30.1: Lifted operational semantics for τ-chains

Lemma 30.8. If Ψ � P =⇒ P ′ and Ψ 'Ψ ′ then Ψ ′ � P =⇒ P ′.

Proof. By induction on Ψ � P =⇒ P ′

Base case (P = P ′): Follows immediately since Ψ ′ � P =⇒ P.

Inductive step (Ψ � P =⇒ P ′′ andΨ � P ′′ τ−→ P ′): From the induction

hypothesis we have that Ψ ′ � P =⇒ P ′′, with Ψ � P ′′ τ−→ P ′ we

have that Ψ ′ � P ′′ τ−→ P ′ by Lemma 25.11, and hence Ψ ′ � P =⇒ P ′
from Definition 30.1.

Lemma 30.9. If Ψ � P =⇒ P ′ and Ψ 'Ψ ′ then Ψ ′ � P =⇒ P ′.

Proof. Similar to Lemma 30.8

As for pi-calculus and CCS we lift the operational semantics to include
τ-chains. The lifted semantics for the relevant rules can be found in Fig-
ure 30.1.

30.2 Weak semantics
Recall the simulation requisite of weak bisimilarity
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for all α,P ′ such that bn(α) ]Ψ,Q and Ψ� P
α−→ P ′ it holds

ifα= τ : ∃Q ′. Ψ� Q ==⇒ Q ′ ∧ R(Ψ,P ′,Q ′)
ifα 6= τ : ∀Ψ′∃Q ′′,Q ′′′.

Ψ� Q ==⇒ Q ′′′ ∧ P ≤Ψ Q ′′′ ∧
Ψ� Q ′′′ α−→ Q ′′ ∧
∃Q ′. Ψ⊗Ψ′ � Q ′′ ==⇒ Q ′ ∧ R(Ψ⊗Ψ′,P ′,Q ′)

For the case when α 6= τ there are two things we must take into consid-
eration apart from the τ-chains. The first is that the frame of the agent after
the first τ-chain must meet a static equivalence constraints. The second is
that the path the τ-chains take depend on the extended assertionΨ ′ for the
trailing τ-chain.

Weak transitions for psi-calculi are defined by a τ-chain, a static implica-
tion, and a strong transition in the following manner:

Definition 30.10 (Weak transition). Ψ : Q � P
α==⇒P ′ def=

∃P ′′. Ψ � P =⇒ P ′′∧ (F Q) ⊗Ψ ≤ (F P ′′) ⊗Ψ ∧Ψ � P ′′ α−→ P ′

A weak transition has one additional parameter to regular transitions,
and that is the agent whose frame must statically imply the frame of the
agent at the end of the first τ-chain.

The reason that the trailing τ-chain is not included in the weak transi-
tions is that the quantifier order of weak bisimilarity – the assertion Ψ ′ is
universally quantified before the existential quantifiers for the actions. If
the trailing τ-chain were included, the weak transition would require an
extra parameter solely for the purpose of extending the environment of the
trailing τ-chain.

30.2.1 Lifting the semantics
The semantics for weak transitions can be found in Figure 30.2, and are
lifted in a similar way as is done for the pi-calculus and for CCS. The main
difference is the COMM rule. For the previous calculi both transitions in the
assumptions of the COMM rules are weak, whereas for psi-calculi only the
leftmost transition is weak – the other one is a standard strong transition.
The reason for this stems from the proof that weak bisimilarity is preserved
by Replication. For the pi-calculus and CCS, a simulation lemma for Parallel
is required which states that if P simulates R and Q simulates T, then P |
Q simulates R | T. The lemmas in question are Lemmas 9.26 and 15.38.
For psi-calculi, we use an alternate strategy to prove that bisimilarity is pre-
served by Replication, where these types of lemmas for Parallel are not re-
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quired, and the significantly simpler weak semantic rules for COMM are suf-
ficient.

30.3 Weak Bisimilarity
Recall that weak bisimilarity has the following requisite for weak static im-
plication:

∀Ψ′∃Q ′′ Q ′.

Ψ� Q ==⇒ Q ′′ ∧ P ≤Ψ Q ′′ ∧
Ψ⊗Ψ′ � Q ′′ ==⇒ Q ′ ∧ R(Ψ⊗Ψ′,P,Q ′)

This requisite is significantly more complex than the corresponding req-
uisite for strong bisimilarity, which only requires the frames of the agents to
be statically equivalent. Hence for weak bisimilarity we define weak impli-
cation as a separate definition.

Definition 30.11 (Weak static implication).

Ψ � P / RQ
def=

∀Ψ ′. ∃Q ′ Q ′′.
Ψ � Q =⇒ Q ′∧
(F P) ⊗Ψ ≤ (F Q ′) ⊗Ψ ∧Ψ ⊗Ψ ′ � Q ′=⇒ Q ′′∧ (Ψ ⊗

Ψ ′ , P, Q ′′) ∈ R

As for simulations, a weak static implication is parametrised with a set R

which contains the environment and the agents that are required to be in
the candidate relation.

We define weak simulation in a similar way.

Definition 30.12 (Weak simulation). Ψ � P ;̂R Q
def=

(∀Ψ′ αQ ′. Ψ � Q
α−→ Q ′∧ bn α ] Ψ ∧ bn α ] P ∧ α 6= τ−→

∃P ′′. Ψ : Q � P
α==⇒P ′′∧

∃P ′. Ψ ⊗Ψ ′ � P ′′=⇒ P ′∧ (Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R) ∧
(∀Q ′. Ψ � Q

τ−→ Q ′−→ (∃P ′. Ψ � P =⇒ P ′∧ (Ψ, P ′, Q ′) ∈ R))

Before we define bisimilarity, we must prove that weak simulation, and
weak static implication are monotonic with respect to the candidate rela-
tion.

Lemma 30.13. Weak static implication and weak simulation are
monotonic.
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(
Ψ ` M

.↔ K distinct x̃
set x̃ ⊆ supp N |x̃| = |T̃ | (F Q) ⊗Ψ ≤ ((νε)Ψ ⊗ 1 )

)
Ψ : Q � M(λx̃)N .P

K N [x̃:=T̃ ]=======⇒ P [x̃ := T̃ ]
INPUT

Ψ ` M
.↔ K (F Q) ⊗Ψ ≤ ((νε)Ψ ⊗ 1 )

Ψ : Q � M N .P
K N==⇒ P

OUTPUT

(
Ψ : Q � P

α==⇒P ′ (ϕ, P) mem C̃ P Ψ ` ϕ

guarded P (F R) ⊗Ψ ≤ (F Q) ⊗Ψ (F R) ⊗Ψ ≤ ((νε)Ψ)

)
Ψ : R � C ases C̃ P

α==⇒P ′
CASE

(
Ψ ⊗ΨQ : R � P

α==⇒P ′ F Q = (νb̃Q )ΨQ

bn α ] Q b̃Q ] Ψ b̃Q ] P b̃Q ] α b̃Q ] R

)

Ψ : R | Q � P | Q
α==⇒P ′ | Q

PAR1

(
Ψ ⊗ΨP : R � Q

α==⇒Q ′ F P = (νb̃P )ΨP

bn α ] P b̃P ] Ψ b̃P ] Q b̃P ] α b̃P ] R

)

Ψ : P | R � P | Q
α==⇒P | Q ′

PAR2

(
Ψ : Q � P

M (νx̃ ỹ)N=======⇒ P ′

x ∈ supp N x ] Ψ x ] M x ] x̃ x ] ỹ

)
Ψ : (νx)Q � (νx)P

M (νx̃x ỹ)N========⇒ P ′
OPEN
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
Ψ ⊗ΨQ : R � P

M N===⇒ P ′ F R = (νb̃R )ΨR

Ψ ⊗ΨR � Q
K (νx̃)N−−−−−→ Q ′ F Q = (νb̃Q )ΨQ

Ψ ⊗ (ΨR ⊗ΨQ ) ` M
.↔ K b̃R ] Ψ b̃R ] P

b̃R ] Q b̃R ] R b̃R ] M b̃R ] b̃Q b̃Q ] Ψ

b̃Q ] P b̃Q ] Q b̃Q ] R b̃Q ] K x̃ ] P


Ψ � P | Q

τ==⇒ (νx̃)(P ′ | Q ′)
COMM1



Ψ ⊗ΨQ : R � P
M (νx̃)N======⇒ P ′

F R = (νb̃R )ΨR Ψ ⊗ΨR � Q
K N−−→ Q ′

F Q = (νb̃Q )ΨQ Ψ ⊗ (ΨR ⊗ΨQ ) ` M
.↔ K

b̃R ] Ψ b̃R ] P b̃R ] Q b̃R ] R b̃R ] M
b̃R ] b̃Q b̃Q ] Ψ b̃Q ] P b̃Q ] Q b̃Q ] R
b̃Q ] K x̃ ] Q x̃ ] M x̃ ] b̃Q x̃ ] b̃R


Ψ � P | Q

τ==⇒ (νx̃)(P ′ | Q ′)
COMM2

Ψ : Q � P
α==⇒P ′ x ] Ψ x ] α

Ψ : (νx)Q � (νx)P
α==⇒ (νx)P ′

SCOPE

Ψ : R � P | !P
α==⇒P ′ guarded P

Ψ : R � !P
α==⇒P ′

REPL

Figure 30.2: Lifted semantics for weak transitions.
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If Ψ � P ;̂R Q and R ⊆ R ′ then Ψ � P ;̂R ′ Q.
If Ψ � P / RQ and R ⊆ R ′ then Ψ � P / R ′Q.

Proof. Follows immediately from the definitions of ;̂ and /.

Weak bisimilarity can then be defined in the standard way.

Definition 30.14 (Weak bisimilarity). Weak bisimilarity, denoted
.≈, is de-

fined coinductively as the greatest fixpoint satisfying:

Ψ � P
.≈ Q =⇒Ψ � P / .≈Q STATIMP

∧Ψ � P ;̂ .≈ Q SIMULATION

∧ ∀Ψ ′. Ψ ⊗Ψ ′ � P
.≈ Q EXTENSION

∧Ψ � Q
.≈ P SYMMETRY

The simulation, symmetry, and extension cases resemble their
counterparts from strong bisimilarity. The static implication differs in that
the frames of the agents must weakly statically imply each other, rather
than be statically equivalent.

30.3.1 Primitive inference rules
We define an introduction rule for weak simulation which allows the user to
specify an arbitrary freshness context C with which no bound names which
appear on the label of the transitions may not clash.

Lemma 30.15. Introduction rule for weak simulation

eqvt R

∧
Ψ ′α Q ′.

Ψ � Q
α−→ Q ′ bn α ] Ψ

bn α ] P bn α ] Q bn α ] sub j ect α
bn α ] C distinct (bn α) α 6= τ


∃P ′′. Ψ : Q � P

α==⇒P ′′∧ (∃P ′. Ψ ⊗Ψ ′ � P ′′=⇒ P ′∧
(Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R)∧

Q ′.
Ψ � Q

τ−→ Q ′

∃P ′. Ψ � P =⇒ P ′∧ (Ψ, P ′, Q ′) ∈ R

Ψ � P ;̂R Q
;̂-I

Proof. Follows from the definition of ;̂ where the bound names are alpha-
converted to avoid C .
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Lemma 30.16. Introduction and elimination rules for weak bisimilarity.

Ψ � P / .≈Q
Ψ � P ;̂ .≈ Q ∀Ψ ′. Ψ ⊗Ψ ′ � P

.≈ Q Ψ � Q
.≈ P

Ψ � P
.≈ Q

.≈-I

Ψ � P
.≈ Q

Ψ � P / .≈Q

.≈-E1
Ψ � P

.≈ Q

Ψ � P ;̂ .≈ Q

.≈-E2
Ψ � P

.≈ Q

Ψ ⊗Ψ ′ � P
.≈ Q

.≈-E3

Ψ � P
.≈ Q

Ψ � Q
.≈ P

.≈-E4

Proof. Follows from the definition of
.≈

Moreover we derive the following coinduction rule from the one gener-
ated by Isabelle.

Lemma 30.17. Coinduction rule for weak bisimilarity.

(Ψ, P, Q) ∈ X

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

Ψ ′ � R /
X ∪ .≈S

STATIMP

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

Ψ ′ � R ;̂X ∪ .≈ S
SIMULATION

∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ X

(Ψ ′⊗Ψ ′′ , R, S) ∈ X ∨Ψ ′⊗Ψ ′′ � R
.≈ S

EXTENSION

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

(Ψ ′, S, R) ∈ X ∨Ψ ′ � S
.≈ R

SYMMETRY

Ψ � P
.≈ Q

Proof. Follows from the automatically generated rule for coinduction.

As for strong simulation, we derive an introduction rule which allows us
to ensure that the subjects of the simulating actions are sufficiently fresh.
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Lemma 30.18.

eqvt R x̃ ] Ψ x̃ ] P x̃ ] Q

∧
Ψ ′α Q ′.

Ψ � Q
α−→ Q ′ bn α ] Ψ bn α ] P

bn α ] Q α 6= τ bn α ] sub j ect α
bn α ] C x̃ ] α x̃ ] Q ′ x̃ ] Ψ ′


∃P ′′. Ψ : Q � P

α==⇒P ′′∧ (∃P ′. Ψ ⊗Ψ ′ � P ′′=⇒ P ′∧
(Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R)∧

Q ′.
Ψ � Q

τ−→ Q ′ x̃ ] Q ′

∃P ′. Ψ � P =⇒ P ′∧ (Ψ, P ′, Q ′) ∈ R

Ψ � P ;̂R Q
;̂-I2

Proof. Similar to Lemma 27.11, but the introduction rule used is ;̂-I.

Note that this lemma also guarantees that the sequence x̃ is fresh for the
new assertion Ψ ′.

30.3.2 Equivariance
When proving that weak simulation and weak static implication are equiv-
ariant, extra care has to be taken when reasoning about the assertion ex-
tending the environment of the last τ-chain.

Lemma 30.19. Weak static implication is equivariant

eqvt R Ψ � P / RQ

p ·Ψ � p · P / Rp · Q

Proof. We must prove that for all Ψ ′ there exists an R and an S such that

p ·Ψ � p · Q =⇒ R

(F (p · P)) ⊗ (p ·Ψ) ≤ (F R) ⊗ (p ·Ψ),

(p ·Ψ) ⊗Ψ ′ � R =⇒ S, and

((p ·Ψ) ⊗Ψ ′ , p · P, S) ∈ R.

From Ψ � P / RQ we obtain a Q ′ and a Q ′′ such that.

Ψ � Q =⇒ Q ′

(F P) ⊗Ψ ≤ (F Q ′) ⊗Ψ,

Ψ ⊗ (p− ·Ψ ′) � Q ′=⇒ Q ′′, and

(Ψ ⊗ (p− ·Ψ ′) , P, Q ′′) ∈ R.
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• From Ψ � Q =⇒ Q ′ we have that p · Ψ � p · Q =⇒ p · Q ′ by
Lemma 30.4.

• Moreover from (F P) ⊗Ψ≤ (F R) ⊗Ψwe have that (F (p · P)) ⊗ (p ·Ψ)
≤ (F (p · Q ′)) ⊗ (p ·Ψ) by Lemma 27.6.

• Moreover from Ψ ⊗ (p− · Ψ ′) � Q ′ =⇒ Q ′′ we have that p · Ψ ⊗ (p− ·
Ψ ′) � p · Q ′=⇒ p · Q ′′ by Lemma 30.4, and hence that (p ·Ψ) ⊗Ψ ′ �

p · Q ′=⇒ p · Q ′′ by equivariance.
• Moreover from (Ψ ⊗ (p− ·Ψ ′) , P, Q ′′) ∈ R and eqvt R we have that (p ·
Ψ⊗ (p− ·Ψ ′) , p · P, p · Q ′′) ∈R and hence that ((p ·Ψ) ⊗Ψ ′ , p · P, p · Q ′′)
∈ R by equivariance.

• Finally we can finish the proof by setting R to p · Q ′ and S to p · Q ′′.

Lemma 30.20. Simulation is equivariant

eqvt R Ψ � P ;̂R Q

p ·Ψ � p · P ;̂R p · Q

Proof. The proof follows the same structure as Lemma 30.19.

With these lemmas in place we can prove that weak bisimilarity is equiv-
ariant.

Lemma 30.21. If Ψ � P
.≈ Q then p ·Ψ � p · P

.≈ p · Q .

Proof. By coinduction with X set to {(p ·Ψ, p · P, p · Q) : Ψ � P
.≈ Q }. The

candidate relation X is equivariant.

Static implication: Lemma 30.19 proves that p · Ψ � p · P / X p · Q, and
hence p ·Ψ � p · P /

X ∪ .≈p · Q since / is monotonic.

Simulation: Lemma 30.20 proves that p ·Ψ � p · P ;̂X p · Q, and hence
p ·Ψ � p · P ;̂X ∪ .≈ p · Q since ;̂ is monotonic.

Extension: Follows by choosing the extended assertion to be p− ·Ψ ′ – the
permutation then cancels out when p is applied.

Symmetry: The candidate relation X is symmetric as
.≈ is symmetric.

30.3.3 Preserved by static equivalence
Lemma 30.22. Weak static implication and weak simulation are preserved
by static equivalence
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Ψ � P / RQ Ψ 'Ψ ′ ∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, R, S) ∈ R ′

Ψ ′ � P / R ′Q

Ψ � P ;̂R Q

eqvt R ′ Ψ 'Ψ ′ ∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, R, S) ∈ R ′

Ψ ′ � P ;̂R ′ Q

Proof. Follows from the definitions of ;̂ and /, where any bound names
on the transitions avoid Ψ and Ψ ′. The subgoals can then be proved using
Lemmas 25.11, 30.8

Lemma 30.23.

If Ψ � P
.≈ Q and Ψ 'Ψ ′ then Ψ ′ � P

.≈ Q .

Proof. By coinduction with X set to {(Ψ ′, P, Q) : ∃Ψ.Ψ � P
.≈ Q ∧Ψ'Ψ ′}.

Static implication: Follows from Lemma 30.22

Simulation: Follows from Lemma 30.22

Extension: Follows from the axioms of static equivalence.

Symmetry: The candidate relation X is symmetric as
.≈ is symmetric.

30.4 Weak bisimulation is an equivalence relation
Lemma 30.24. Weak static implication and weak simulation are reflexive

{(Ψ, P, P) : True} ⊆ R

Ψ � P / RP

{(Ψ, P, P) : True} ⊆ R

Ψ � P ;̂R P

Proof. By the definitions of ;̂ and /, where the τ-chains are set to be
empty.
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Lemma 30.25.

Ψ � Q =⇒ Q ′ (Ψ, P, Q) ∈ R
∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ R

Ψ ′ � R ;̂R S

∃P ′. Ψ � P =⇒ P ′∧ (Ψ, P ′, Q ′) ∈ R

Proof. By induction on Ψ � Q =⇒ Q ′

Base case (Q = Q ′): Follows immediately by setting P ′ to P.

Inductive step (Ψ � Q =⇒ Q ′ andΨ � Q ′ τ−→ Q ′′):

• From the induction hypothesis we obtain a P ′ such that Ψ � P
=⇒ P ′ and (Ψ, P ′, Q ′) ∈ R.

• From (Ψ, P ′, Q ′) ∈ R we have that Ψ � P ′ ;̂R Q ′ by the assump-
tions

• With Ψ � Q ′ τ−→ Q ′′ we obtain a P ′′ such that Ψ � P ′=⇒ P ′′ and
(Ψ, P ′′, Q ′′) ∈ R.

• From Ψ � P =⇒ P ′ and Ψ � P ′=⇒ P ′′ we have that Ψ � P =⇒
P ′′.

Lemma 30.26.

(Ψ, P, Q) ∈ R
∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ R

Ψ ′ � R ;̂R S

Ψ : R � Q
α==⇒Q ′ bn α ] Ψ bn α ] P α 6= τ

∃P ′′ P ′. Ψ : R � P
α==⇒P ′′∧Ψ ⊗Ψ ′ � P ′′=⇒ P ′∧ (Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R

Proof. From (Ψ, P, Q) ∈ R we obtain a Q ′′ such that Ψ � Q =⇒ Q ′′, (F R)

⊗Ψ ≤ (F Q ′′) ⊗Ψ and Ψ � Q ′′ α−→ Q ′.
• From Ψ � Q =⇒ Q ′′ and the assumptions we obtain a P ′′ where Ψ �

P =⇒ P ′′ and (Ψ, P ′′, Q ′′) ∈ R using Lemma 30.25.
• From (Ψ, P ′′, Q ′′) ∈ R we have that Ψ � P ′′ ;̂R Q ′′ by the assump-

tions.
• With Ψ � Q ′′ α−→ Q ′, bn α ] Ψ, bn α ] P , and α 6= τ we obtain P ′′′ and

a P ′ where Ψ : Q ′′ � P ′′ α==⇒P ′′′, Ψ ⊗Ψ ′ � P ′′′=⇒ P ′, and (Ψ ⊗Ψ ′ , P ′,
Q ′) ∈ R.

• From Ψ : Q ′′ � P ′′ α==⇒P ′′′ we obtain a P ′′′′ where Ψ � P ′′=⇒ P ′′′′, (F

Q ′′) ⊗Ψ ≤ (F P ′′′′) ⊗Ψ, and Ψ � P ′′′′ α−→ P ′′′ from Definition 30.10.
• From Ψ � P =⇒ P ′′ and Ψ � P ′′ =⇒ P ′′′′ we have that Ψ � P =⇒

P ′′′′.
• Moreover from (F R) ⊗Ψ ≤ (F Q ′′) ⊗Ψ and (F Q ′′) ⊗Ψ ≤ (F P ′′′′) ⊗
Ψ we have that (F R) ⊗Ψ ≤ (F P ′′′′) ⊗Ψ since ≤ is transitive.
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• Finally with Ψ � P ′′′′ α−→ P ′′′ we have that Ψ : R � P
α==⇒P ′′′ by Defi-

nition 30.10.
• With (Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R we prove the goal.

Lemma 30.27. Simulation is transitive

(Ψ, P, Q) ∈ R Ψ � Q ;̂R ′ R eqvt R ′′

{(Ψ, P, R) : ∃Q. (Ψ, P, Q) ∈ R ∧ (Ψ, Q, R) ∈ R ′} ⊆ R ′′

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ R

Ψ ′ � R ;̂R S

Ψ � P ;̂R ′ ′ R

Proof. The introduction rule ;̂-I is used such that the bound names
of the transitions avoid Q. The weak transition case is then discharged
using Lemmas 30.26 and 30.25, and the τ-chain case is discharged using
Lemma 30.25.

30.5 Equivalence correspondences
As with the weak bisimilarities for CCS and the pi-calculus, we prove that
weak bisimilarity includes strong bisimilarity. This is useful in a variety of
proofs, and establishes that weak bisimilarity preserves structural congru-
ence.

Lemma 30.28. Static implication implies weak static implication.

(F P) ⊗Ψ ≤ (F Q) ⊗Ψ
∧
Ψ ′. (Ψ ⊗Ψ ′ , P, Q) ∈ R

Ψ � P / RQ

Proof. For all Ψ ′ we have that

Ψ � Q =⇒ Q,

(F P) ⊗Ψ ≤ (F Q) ⊗Ψ,

Ψ ⊗Ψ ′ � Q =⇒ Q, and

(Ψ ⊗Ψ ′ , P, Q) ∈ R
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Lemma 30.29. Strong simulation implies weak simulation.

(Ψ, P, Q) ∈ R
∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ R

(F S) ⊗Ψ ′≤ (F R) ⊗Ψ ′∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ R

Ψ ′ � R ,→R S

∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ R

(Ψ ′⊗Ψ ′′ , R, S) ∈ R

Ψ � P ;̂R Q

Proof. Follows from the definitions of ;̂ and ,→.

Lemma 30.30. If Ψ � P .∼ Q then Ψ � P
.≈ Q .

Proof. By coinduction with X set to .∼
Static implication: Follows from .∼-E1, .∼-E3, the definition of ' and

Lemma 30.28.

Simulation: Follows from .∼-E1, .∼-E2, .∼-E3, the definition of ',
Lemma 30.29, and monotonicity of ;̂.

Extension: Follows directly from .∼-E3.

Symmetry: Follows directly from .∼-E4.

We can now prove the theorem that structurally congruent agents are
also weakly bisimilar.

Theorem 30.1. If P ≡ Q then 1 � P
.≈ Q .

Proof. Follows directly from Theorem 28.3 and Lemma 30.30.

30.6 Preservation properties
Weak bisimilarity is preserved by all operators except for Case and Input,
for the same reason as the pi-calculus. In Section 22.2.3 we demonstrated
how the Sum is encoded in psi-calculi, and hence the counterexample for
the pi-calculus can be used to prove that weak bisimilarity is not preserved
by Case.

The preservation proofs for weak bisimilarity are similar to their strong
counterparts, with the exception that for simulation, there must be a re-
quirement on the candidate relation that it is preserved by extension of
arbitrary assertions. This requisite has up until now only been present for
the bisimilarity proofs, but as assertions are added before the final τ-chain
when mimicking a strong action, this requisite is also required for the sim-
ulation proofs.
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30.6.1 Output
To prove that weak static implication and weak simulation is preserved by
Output, the agents under the prefix must be in the candidate relation for all
possible extensions of the environment.

Lemma 30.31. Weak static implication is preserved by Output.∧
Ψ ′. (Ψ ⊗Ψ ′ , M N .P , M N .Q) ∈ R

Ψ � M N .P / RM N .Q

Proof. From the definition of / we have to find for all assertions Ψ ′, agents
Q ′ and Q ′′ such that

Ψ � M N .Q =⇒ Q ′,
(F (M N .P )) ⊗Ψ ≤ (F Q ′) ⊗Ψ,

Ψ ⊗Ψ ′ � Q ′=⇒ Q ′′, and

(Ψ ⊗Ψ ′ , M N .P , Q ′′) ∈ R.

This follows directly from the assumptions, and by setting Q ′ and Q ′′ to
M N .Q.

Lemma 30.32. Weak simulation is preserved by Output.∧
Ψ ′. (Ψ ⊗Ψ ′ , P, Q) ∈ R

Ψ � M N .P ;̂R M N .Q

Proof. Follows from the definition of ;̂, the OUTPUT inversion rule from
Figure 26.2, and the weak OUTPUT semantic rule from Figure 30.2.

Lemma 30.33. If Ψ � P
.≈ Q then Ψ � M N .P

.≈ M N .Q .

Proof. By coinduction with X set to {(Ψ, M N .P , M N .Q) : Ψ � P
.≈ Q }.

Static implication: Follows from Lemma 30.31.

Simulation: Follows from Lemma 30.32.

Extension: Follows directly from
.≈-E3.

Symmetry: The candidate relation X is symmetric since weak bisimilarity
is symmetric.
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30.6.2 Restriction
Weak static implication and weak simulation introduce universally quan-
tified assertions for the trailing τ-chains. Bound names are required to be
fresh for these extended environments, and must hence be manually alpha-
converted.

Lemma 30.34. Weak static implication is preserved by restriction.

Ψ � P / RQ eqvt R x ] Ψ

∧
Ψ ′ R S y.

(Ψ ′, R, S) ∈ R y ] Ψ ′

(Ψ ′, (νy)R, (νy)S) ∈ R ′

Ψ � (νx)P / R ′(νx)Q

Proof. From the definition of / we have to find for all assertions Ψ ′, agents
R and S such that

Ψ � (νx)Q =⇒ R,

(F ((νx)P)) ⊗Ψ ≤ (F R) ⊗Ψ,

Ψ ⊗Ψ ′ � R =⇒ S, and

(Ψ ⊗Ψ ′ , (νx)P, S) ∈ R.

• We obtain a name y such that y is sufficiently fresh.
• From Ψ � P / RQ and eqvt R we have that

(x y) ·Ψ � (x y) · P / R(x y) ·Q

by Lemma 30.19, and hence that

Ψ � (x y) · P / R(x y) ·Q

since x ] Ψ and y ] Ψ.
• From the definition of / we obtain a Q ′ and a Q ′′ such that

Ψ � (x y) · Q =⇒ Q ′,
(F (x y) · P) ⊗Ψ ≤ (F Q ′) ⊗Ψ,

Ψ ⊗Ψ ′ � Q ′=⇒ Q ′′, and

(Ψ ⊗Ψ ′ , (x y) · P, Q ′′) ∈ R.

• From Ψ � (x y) · Q =⇒ Q ′ and y ] Ψ we have that

Ψ � (νy)(x y) · Q =⇒ (νy)Q ′

by the SCOPE law from Figure 30.1, and hence that

Ψ � (νx)Q =⇒ (νy)Q ′
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by alpha-conversion.
• Moreover, from (F (x y) · P) ⊗Ψ ≤ (F Q ′) ⊗Ψ we have that

((νy)(F (x y) · P) ⊗Ψ) ≤ ((νy)(F Q ′) ⊗Ψ)

by Lemma 27.29, and hence that

(F ((νx)P)) ⊗Ψ ≤ (F ((νy)Q ′)) ⊗Ψ

since y ] Ψ and by alpha-conversion.
• Moreover from Ψ ⊗Ψ ′ � Q ′=⇒ Q ′′ we have that

Ψ ⊗Ψ ′ � (νy)Q ′=⇒ (νy)Q ′′,

by the SCOPE rule from Figure 30.1, and that y ] Ψ and y ] Ψ ′.
• Moreover from (Ψ ⊗Ψ ′ , (x y) · P, Q ′′) ∈ R we have that

(Ψ ⊗Ψ ′ , (νy)(x y) · P, (νy)Q ′′) ∈ R

by the assumptions and that y ] Ψ and y ] Ψ ′, and hence that

(Ψ ⊗Ψ ′ , (νx)P, (νy)Q ′′) ∈ R

by alpha-conversion.
• Finally, we prove the lemma by setting R to (νy)Q ′ and S to (νy)Q ′′

Lemma 30.35. Weak simulation is preserved by restriction.

Ψ � P ;̂R Q eqvt R ′ x ] Ψ R ⊆ R ′

∧
Ψ ′ R S y.

(Ψ ′, R, S) ∈ R y ] Ψ ′

(Ψ ′, (νy)R, (νy)S) ∈ R ′

Ψ � (νx)P ;̂R ′ (νx)Q

Proof. Since x ] Ψ, x ] (νx)P, and x ] (νx)Q, Lemma 30.18 can be used to
ensure that x is fresh for any action or derivative of (νx)Q.

The SCOPE inversion rule is then used to generate two possible transi-
tions, which are discharged by the SCOPE and OPEN rules from Figure 30.2
respectively. The trailing τ-chains are discharged using the SCOPE rule from
Figure 30.1 when applicable.

We also require a corresponding lemma for binding sequences.
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Lemma 30.36.

Ψ � P ;̂R Q

eqvt R x̃ ] Ψ
∧
Ψ ′ R S ỹ .

(Ψ ′, R, S) ∈ R ỹ ] Ψ ′

(Ψ ′, (νỹ)R, (νỹ)S) ∈ R

Ψ � (νx̃)P ;̂R (νx̃)Q

Proof. By induction on R and Lemma 30.35.

Lemma 30.37. If Ψ � P
.≈ Q and x ] Ψ then Ψ � (νx)P

.≈ (νx)Q .

Proof. By coinduction with X set to {(Ψ, (νx)P, (νx)Q) :Ψ � P
.≈ Q ∧ x ] Ψ}

Static implication: Follows from
.≈-E1 and Lemma 30.34.

Simulation: Follows from
.≈-E2 and Lemma 30.35.

Extension: Given Ψ � P
.≈ Q , we must prove that (Ψ ⊗ Ψ ′ , (νx)P, (νx)Q)

∈ X for all possible Ψ ′, including those containing names that clash
with x.

• A fresh name y is chosen such that y ] Ψ, y ] Ψ ′, y ] P, and y ] Q.
• From Ψ � P .∼ Q we have that Ψ ⊗ (x y) ·Ψ ′ � P

.≈ Q by
.≈-E3.

• Since weak bisimilarity is equivariant we have that (x y) · Ψ ⊗ (x
y) ·Ψ ′ � (x y) · P

.≈ (x y) · Q .
• Since x ] Ψ and y ] Ψ we have that Ψ ⊗Ψ ′ � (x y) · P

.≈ (x y) · Q .
• Finally, since y ] Ψ and y ] Ψ ′, we can derive that (Ψ ⊗ Ψ ′ , (νy)(x

y) · P, (νy)(x y) · Q) ∈ X , and since y ] P and y ]Q we have by alpha-
conversion that (Ψ ⊗Ψ ′ , (νx)P, (νx)Q) ∈ X .

Symmetry: The candidate relation X is symmetric as weak bisimilarity is
symmetric.

30.6.3 Parallel
The proof that weak bisimilarity is preserved by Parallel is more involved
than the corresponding proof for strong bisimilarity. The main reason for
this is that the frames of two weakly bisimilar agents are not required to be
statically equivalent, but for each pair of bisimilar agents, there must exist a
τ-chain from one of the agents to an agent such that the frame of the other
agent statically implies the one at the end of the τ-chain.

Lemma 30.38. Weak static implication is preserved by Parallel.

419



∧
b̃R ΨR .

F R = (νb̃R )ΨR b̃R ] Ψ b̃R ] P b̃R ] Q

Ψ ⊗ΨR � P / RQ
x̃ ] Ψ eqvt R

∧
Ψ ′ S T b̃U ΨU U .

(Ψ ′⊗ΨU , S, T) ∈ R

F U = (νb̃U )ΨU b̃U ] Ψ ′ b̃U ] S b̃U ] T

(Ψ ′, S | U , T | U) ∈ R ′∧
Ψ ′ S T ỹ .

(Ψ ′, S, T) ∈ R ′ ỹ ] Ψ ′

(Ψ ′, (νỹ)S, (νỹ)T ) ∈ R ′∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R

Ψ � (νx̃)(P | R) / R ′(νx̃)(Q | R)

Proof. Follows from the definition of /. The binding sequence x̃ must be
alpha-converted to avoid the new assertion Ψ ′.

Lemma 30.39. Weak simulation is preserved by Parallel.

eqvt R eqvt R ′

1 :
∧

b̃R ΨR .
F R = (νb̃R )ΨR b̃R ] Ψ b̃R ] P b̃R ] Q

(Ψ ⊗ΨR , P, Q) ∈ R

2 :
∧
Ψ ′ S T b̃U ΨU U .

(Ψ ′⊗ΨU , S, T) ∈ R

F U = (νb̃U )ΨU b̃U ] Ψ ′ b̃U ] S b̃U ] T

(Ψ ′, S | U , T | U) ∈ R ′

3 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

Ψ ′ � S / RT
4 :

∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

Ψ ′ � S ;̂R T

5 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

(Ψ ′, T , S) ∈ R
6 :

∧
Ψ ′ S T Ψ ′a.

(Ψ ′a, S, T) ∈ R

(Ψ ′a ⊗Ψ ′′ , S, T) ∈ R

7 :
∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R ′ x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R ′

8 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R

Ψ � P | R ;̂R ′ Q | R

The premises for this lemma are nearly identical to the ones for strong bisim-
ilarity, Lemma 27.38. Premise 1 states that (Ψ ⊗ ΨR , P, Q) ∈ R for all suf-
ficiently fresh frames (νb̃R )ΨR of R. If this were not the case, it would not
be possible to alpha-convert the frame of R without falling outside the re-
lation R. Premise 2 states the preservation property of R ′, again, the frame
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of the parallel agent must be sufficiently fresh. Premises 3-6 are properties of
weak bisimilarity. Premise 7 states that the relation R ′ must be preserved by
Restriction. Premise 8 states that it must be possible to switch the assertion
component of the elements of R for statically equivalent ones.

Proof. From ;̂-I we obtain two goals which need to be proven – one where
P | R does a τ-action, and one for the other actions.

For the first case we have to prove that for all α and T ′ where Ψ � Q | R
α−→ T ′ and α 6= τ, then for all Ψ ′, there must exist an S ′′ and an S ′ such that

Ψ : Q | R � P | R
α==⇒ S ′′,Ψ⊗Ψ ′ � S ′′ τ==⇒ S ′ and (Ψ⊗Ψ ′ , S ′, T ′) ∈ R. We

apply the PAR-inversion rule on the transitionΨ � Q | R
α−→ T ′and ensure

that any bound names avoid Ψ, Ψ ′, P, Q, and R, and get the following two
cases.

PAR1 (Ψ ⊗ΨR � Q
α−→ Q ′ and T ′= Q ′ | R):

Moreover we know that F R= (νb̃R )ΨR , b̃R ] Ψ, b̃R ] P , and b̃R ] Q.

• From b̃R ] Ψ, b̃R ] P , b̃R ] Q we have from the assumptions that
(Ψ ⊗ΨR , P, Q) ∈ R, and hence that Ψ ⊗ΨR � P ;̂R Q.

• With Ψ ⊗ ΨR � Q
α−→ Q ′, bn α ] Ψ, bn α ] P , and α 6= τ we

obtain a P ′′ and a P ′ such that Ψ ⊗ΨR : Q � P
α==⇒P ′′, (Ψ ⊗ΨR )

⊗Ψ ′ � P ′′ τ==⇒P ′, and ((Ψ ⊗ΨR ) ⊗Ψ ′ , P ′, Q ′) ∈ R.

• From Ψ ⊗ΨR : Q � P
α==⇒P ′′, Ψ ⊗ΨR � Q

α−→ Q ′, (Ψ ⊗ΨR ) ⊗
Ψ ′ � P ′′ τ==⇒P ′, b̃R ] P , and b̃R ] Q we have that b̃R ] P ′, b̃R ] P ′′
and b̃R ] Q ′ by Lemmas 25.25 and 30.6

• From Ψ ⊗ΨR : Q � P
α==⇒P ′′, bn α ] R, b̃R ] Ψ, b̃R ] P , b̃R ] Q,

and b̃R ] α we have that Ψ : Q | R � P | R
α==⇒P ′′ | R by PAR1.

• Moreover from (Ψ⊗ΨR ) ⊗Ψ ′ � P ′′ τ==⇒P ′we have that (Ψ⊗Ψ ′ )
⊗ΨR � P ′′ τ==⇒P ′ by Lemma 30.8 and the static equivalence laws
for commutativity and associativity of '.

• hence Ψ ⊗ Ψ ′ � P ′′ | R
τ==⇒ P ′ | R by the PAR1 rule from Fig-

ure 30.1.
• Moreover from ((Ψ ⊗ ΨR ) ⊗ Ψ ′ , P ′, Q ′) ∈ R we have that ((Ψ ⊗
Ψ ′ ) ⊗ ΨR , P ′, Q ′) ∈ R since the assumptions allow us to switch
static equivalent assertions in R, and static equivalence laws for
commutativity and associativity of '.

• Since b̃R ] Ψ, b̃R ] Ψ ′, b̃R ] P ′, and b̃R ] Q ′ we have by the as-
sumptions that (Ψ, P ′ | R, Q ′ | R) ∈ R ′.

• Finally we prove the goal by instantiating S ′′ to P ′′ | R, and S ′ to P ′
| R.

PAR2 (Ψ ⊗ΨQ � R
α−→ R ′ and T ′= Q | R ′):

421



Moreover we know that F Q = (νb̃Q )ΨQ , b̃Q ] Ψ, b̃Q ] P , and
b̃Q ] Q.

• We pick frames for P and R such that F P = (νb̃P )ΨP , F R =
(νb̃R )ΨR such that b̃P and b̃R are fresh for everything in the proof
context.

• From Ψ ⊗ ΨQ � R
α−→ R ′ and derived freshness conditions we

obtain a p, a Ψ ′′, a b̃R ′, and a ΨR
′ such that set p ⊆ set (bn α) × set

(bn (p · α)), (p ·ΨR ) ⊗Ψ ′′ 'ΨR
′, F R ′= (νb̃R ′)ΨR

′, and that bn (p
· α) and b̃R ′ are sufficiently fresh, using Lemma 27.37.

• From b̃R ] Ψ, b̃R ] P , b̃R ] Q we have from the assumptions that
(Ψ ⊗ΨR , P, Q) ∈ R, and thus we obtain a P ′ and a P ′′ such that

Ψ ⊗ΨR � P =⇒ P ′,
(F Q) ⊗ (Ψ ⊗ΨR ) ≤ (F P ′) ⊗ (Ψ ⊗ΨR ),

(Ψ ⊗ΨR ) ⊗ ((p ·Ψ ′′) ⊗ (p ·Ψ ′) ) � P ′=⇒ P ′′, and

((Ψ ⊗ΨR ) ⊗ ((p ·Ψ ′′) ⊗ (p ·Ψ ′) ) , P ′′, Q) ∈ R.

• We pick a frame for P ′ such that F P ′= (νb̃P ′)ΨP
′, and b̃P ′ is fresh

for everything in the proof context.
• From Ψ ⊗ΨR � P =⇒ P ′, b̃R ] Ψ, and b̃R ] P we have that Ψ �

P | R =⇒ P ′ | R by the PAR1 rule from Figure 30.1.
• Moreover from

(F Q) ⊗ (Ψ ⊗ΨR ) ≤ (F P ′) ⊗ (Ψ ⊗ΨR )

and the derived freshness conditions, we have that

(F (Q | R)) ⊗Ψ ≤ (F (P ′ | R)) ⊗Ψ.

• Moreover from (F Q) ⊗ (Ψ⊗ΨR ) ≤ (F P ′) ⊗ (Ψ⊗ΨR ), the defini-
tions of the frames of P ′ and Q, and the laws of static equivalence
we have that ((νb̃Q )(Ψ ⊗ΨQ ) ⊗ΨR ) ≤ ((νb̃P )(Ψ ⊗ΨP

′ ) ⊗ΨR ).

• With Ψ ⊗ΨQ � R
α−→ R ′ we have that Ψ ⊗ΨP

′ � R
α−→ R ′ using

Lemma 27.35.
• With bn α ] P ′, b̃P ] Ψ, b̃P ] R, and b̃P ] α we have that Ψ � P ′ |

R
α−→ P ′ | R ′ by PAR2.

• Finally we have that Ψ : Q | R � P | R
α==⇒P ′ | R ′ by Defini-

tion 30.10.
• Moreover from

(Ψ ⊗ΨR ) ⊗ ((p ·Ψ ′′) ⊗ (p ·Ψ ′) ) � P ′=⇒ P ′′
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we have by equivariance that

p · (Ψ ⊗ΨR ) ⊗ ((p ·Ψ ′′) ⊗ (p ·Ψ ′) ) � p · P ′=⇒ p · P ′′,

and by equivariance and the freshness conditions that

(Ψ ⊗ (p ·ΨR ) ) ⊗ (Ψ ′′⊗Ψ ′ ) � P ′=⇒ P ′′.

• With (p · ΨR ) ⊗ Ψ ′′ ' ΨR
′ and the laws of static equivalence we

have that
(Ψ ⊗Ψ ′ ) ⊗ΨR

′ � P ′=⇒ P ′′

using Lemma 30.8.
• With b̃R ′ ] Ψ, b̃R ′ ] Ψ ′, and b̃R ′ ] P ′ we have that

Ψ ⊗Ψ ′ � P ′ | R ′=⇒ P ′′ | R ′

using the PAR1-rule from Figure 30.1.
• Moreover from

((Ψ ⊗ΨR ) ⊗ ((p ·Ψ ′′) ⊗ (p ·Ψ ′) ) , P ′′, Q) ∈ R

we have that

p · ((Ψ ⊗ΨR ) ⊗ ((p ·Ψ ′′) ⊗ (p ·Ψ ′) ) , p · P ′′, p · Q) ∈ R

since R is equivariant, and hence

((Ψ ⊗ (p ·ΨR ) ) ⊗ (Ψ ′′⊗Ψ ′ ) , P ′′, Q) ∈ R

by equivariace and the freshness conditions.
• With the assumptions and (p ·ΨR ) ⊗Ψ ′′ 'ΨR

′ we have that

((Ψ ⊗Ψ ′ ) ⊗ΨR
′ , P ′′, Q) ∈ R

using the static equivalence laws.
• With b̃R ′ ] Ψ, b̃R ′ ] Ψ ′, b̃R ′ ] P ′′, and b̃R ′ ] Q we have that

(Ψ ⊗Ψ ′ , P ′′ | R ′, Q | R ′) ∈ R ′

using the assumptions
• Finally we can prove the case by setting S ′′ to P ′ | R ′ and S ′ to P ′′ |

R ′.

We now have to prove the case where Q | R does a τ-action i.e. for all T ′

where Ψ � Q | R
τ−→ T ′ then there must exist an S ′ such that Ψ � P | R

τ==⇒S ′, and (Ψ, S ′, T ′) ∈R. We apply the PAR-inversion rule on the transition

Ψ � Q | R
τ−→ T ′ and ensure that any bound names avoid Ψ, P, Q, and
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R. We get four cases, where the PAR1 and PAR2 are very similar to the ones
we have already proven for the non τ-actions, and hence we focus on the
communication case.

COMM1 (Ψ ⊗ΨR � Q
M N−−−→ Q ′,Ψ ⊗ΨQ � R

K (νx̃)N−−−−−→ Q ′, and
T ′= (νx̃)(Q ′ | R ′)):

Moreover we know that F Q = (νb̃Q )ΨQ , b̃Q ] Ψ, b̃Q ] P , b̃Q ] Q, F

R = (νb̃R )ΨR , b̃R ] Ψ, b̃R ] P , b̃R ] Q, and that Ψ ⊗ (ΨQ ⊗ΨR ) ` M
.↔ K .

One crucial observation is that we cannot guarantee that b̃R ] M , and
this complicates the proof considerably.

• We pick a frame for P such that F P = (νb̃P )ΨP and that b̃P is fresh
for everything in the proof context.

• From Ψ ⊗ ΨQ � R
K (νx̃)N−−−−−→ R ′ and derived freshness conditions

we obtain a p, a Ψ ′, a b̃R ′, and a ΨR
′ such that set p ⊆ set x̃ × set

(p · x̃), (p · ΨR ) ⊗ Ψ ′ ' ΨR
′, F R ′= (νb̃R ′)ΨR

′, and that p · x̃ and
b̃R ′ are sufficiently fresh, using Lemma 27.37. Note that since we
do not have that b̃R ] M we also do not have that (p · x̃) ] M .

• From Ψ ⊗ ΨR � Q
M N−−−→ Q ′, x̃ ] Q, and (p · x̃) ] Q we have that

p · Ψ ⊗ ΨR � Q
(p · M)N−−−−−−→ Q ′ using Lemma 25.15, and hence Ψ

⊗ (p · ΨR ) � Q
(p · M)N−−−−−−→ Q ′ by equivariance and that x̃ ] Ψ and

(p · x̃) ] Ψ.
• From F R = (νb̃R )ΨR , x̃ ] R, and (p · x̃) ] R we have that F R = (ν(p
· b̃R ))(p ·ΨR )

• The freshness conditions are extended such that for all contexts C

such that b̃R ] C , x̃ ] C , and (p · x̃) ] C we have that (p · b̃R ) ] C .
• Since (p · b̃R ) ] Ψ, (p · b̃R ) ] P , (p · b̃R ) ] Q we have from the

assumptions that (Ψ ⊗ (p ·ΨR ) , P, Q) ∈ R, and hence that Ψ ⊗ (p
·ΨR ) � P ,→R Q.

• With Ψ ⊗ (p ·ΨR ) � Q
(p · M)N−−−−−−→ Q ′ we obtain a P ′′ and a P ′ such

that Ψ ⊗ (p ·ΨR ) : Q � P
(p · M)N======⇒ P ′′, (Ψ ⊗ (p ·ΨR ) ) ⊗Ψ ′ � P ′′

=⇒ P ′ and ((Ψ ⊗ (p ·ΨR ) ) ⊗Ψ ′ , P ′, Q ′) ∈ R.
• From Ψ ⊗ (ΨQ ⊗ΨR ) ` M

.↔ K we have that (p ·Ψ ⊗ (ΨQ ⊗ΨR

) ) ` (p · M)
.↔ (p · K ) , and hence by the freshness conditions that

Ψ ⊗ (ΨQ ⊗ (p ·ΨR ) ) ` (p · M)
.↔ K .

• With Ψ ⊗ (p · ΨR ) : Q � P
(p · M)N======⇒ P ′′, Ψ ⊗ ΨQ � R

K (νx̃)N−−−−−→
R ′ and the freshness conditions we have that Ψ � P | R =⇒
(νx̃)(P ′′ | R ′) using the COMM1 rule from Figure 30.2.

• Moreover from (Ψ⊗ (p ·ΨR ) ) ⊗Ψ ′ � P ′′=⇒ P ′ and (p ·ΨR ) ⊗Ψ ′
'ΨR

′ we have that Ψ ⊗ΨR
′ � P ′′=⇒ P ′, by Lemma 30.8.
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• With b̃R ′ ] Ψ and b̃R ′ ] P ′′ we have that Ψ � P ′′ | R ′=⇒ P ′ | R ′,
and since x̃ ] Ψ that Ψ � (νx̃)(P ′′ | R ′) =⇒ (νx̃)(P ′ | R ′) by the
PAR1 and SCOPE rules from Figure 30.1.

• Moreover, from ((Ψ ⊗ (p ·ΨR ) ) ⊗Ψ ′ , P ′, Q ′) ∈ R and the assump-
tions we have that (Ψ⊗ΨR

′ , P ′, Q ′) ∈R since (p ·ΨR ) ⊗Ψ ′ 'ΨR
′,

and the static equivalence laws.
• With b̃R ′ ] Ψ, b̃R ′ ] P ′, and b̃R ′ ] Q ′ we have by the assumptions

that (Ψ, P ′ | R ′, Q ′ | R ′) ∈ R ′ and hence that (Ψ, (νx̃)(P ′ | R ′),
(νx̃)(Q ′ | R ′)) ∈ R ′ since x̃ ] Ψ.

• Finally we prove the goal by instantiating S ′′ to (νx̃)(P ′′ | R ′) and
S ′ to (νx̃)(P ′ | R ′).

COMM2: Symmetric version of COMM1, but considerably simpler as the
permutation p simplifies away completely since input actions have
no bound names.

As with strong bisimilarity, we first prove that weak bisimilarity is pre-
served by Parallel for agents with sufficiently fresh frames.

Lemma 30.40.

Ψ ⊗ΨR � P
.≈ Q F R = (νb̃R )ΨR b̃R ] Ψ b̃R ] P b̃R ] Q

Ψ � P | R
.≈ Q | R

Proof. By coinduction with X set to

{(Ψ, (νx̃)(P | R), (νx̃)(Q | R)) : x̃ ] Ψ∧
∀b̃R ΨR . F R = (νb̃R )ΨR ∧ b̃R ] Ψ ∧ b̃R ] P ∧ b̃R ] Q −→

Ψ ⊗ΨR � P
.≈ Q }.

Static implication: Follows from Lemma 30.38.

Simulation: Given that Ψ ⊗ ΨR � P ;̂X Q for all possible frames
of R such that b̃R is fresh for Ψ, P, and Q, we must prove that Ψ
� (νx̃)(P | R) ;̂X ∪ .≈ (νx̃)(Q | R), where x̃ ] Ψ

• Using Lemma 30.39 we prove that Ψ � P | R ;̂X ∪ .≈ Q | R.
• Moreover we have that for all Ψ, P, Q, and x such that x ] Ψ, (Ψ, P,

Q) ∈ X ∪ .∼ implies (Ψ, (νx)P, (νx)Q) ∈ X ∪ .∼, by the definition of
X and Lemma 30.35.

• Finally we have that Ψ � (νx̃)(P | R) ,→X ∪ .≈ (νx̃)(Q | R) using
Lemma 30.36.

Extension: Follows from the definition of X . The binding sequence x̃ is
alpha-converted to avoid the extended assertion Ψ ′.
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Symmetry: The candidate relation X is symmetric as weak bisimilarity is
symmetric.

We can now prove that weak bisimilarity is preserved by Parallel.

Lemma 30.41. If Ψ � P
.≈ Q then Ψ � P | R

.≈ Q | R .

Proof. Follows from Lemma 30.40 by choosing a sufficiently fresh frame for
R.

30.6.4 Replication
The proof that weak bisimilarity is preserved by Replication follows a sim-
ilar pattern to the corresponding proof for strong bisimilarity. The bisim-
iluation up-to technique required for the proof is bisimulation up-to weak
bisimilarity, in a similar manner as is done for CCS or the pi-calculus.

We define the function weakBisimCompose which takes a relation as an
argument and composes that relation with weak and strong bisimilarity.

Definition 30.42 (weakBisimCompose).

weakBisimCompose X
def=

{(Ψ, P, Q) : ∃P ′ Q ′. Ψ � P
.≈ P ′ ∧ (Ψ, P ′, Q ′) ∈ X ∪ .≈ ∧Ψ � Q ′ .∼ Q}

Lemma 30.43. Bisimulation up-to weak bisimilarity.

(Ψ, P, Q) ∈ Y

eqvt Y

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ Y

Ψ ′ � R /
Y ∪ .≈S

STATIMP

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ Y

Ψ ′ � R ;̂weakBi si mCompose Y S
SIMULATION

∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ Y

(Ψ ′⊗Ψ ′′ , R, S) ∈ Y ∨Ψ ′⊗Ψ ′′ � R
.≈ S

EXTENSION

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ Y

(Ψ ′, S, R) ∈ Y
SYMMETRY

Ψ � P
.≈ Q
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Proof. By coinduction with X set to {(Ψ, P, Q) : ∃P ′ Q ′. Ψ � P
.≈ P ′ ∧ (Ψ,

P ′, Q ′) ∈ Y ∪ .≈ ∧Ψ � Q ′ .≈ Q }.

The proof that weak simulations are preserved by Replication follows the
same structure as the one for strong simulations. We have the agents P and
Q which are weakly bisimilar, and we must prove that !P and !Q are weakly
bisimilar. Every derivative P ′of !P must have !P as a parallel component, and
hence P ′ must be structurally congruent to an agent T | !P for some T. The
agent !Q can then mimic any action of !Q to a derivative Q ′, which is struc-
turally congruent to an agent S | !Q for some S where T is weakly bisimilar
to S; the simulation lemma hence needs three relations – weak bisimilar-
ity for T and S, strong bisimilarity for applying the structural congruence
laws and extracting the replicated component of the derivatives, and the
candidate relation for the simulation proof. The corresponding lemma for
strong simulations only required two simulations, which makes this lemma
slightly more involved.

Lemma 30.44. Weak simulations preserved by Replication. The lemma can
be found in Figure 30.3.

Proof. The proof follows from ;̂-I, and the PAR inversion rule. When the
agent !Q does an action α, case analysis is done on whether or not α is a
τ-action, and Premises 22 or 23 are used for the different cases and a sim-
ulating action can be derived. Premise 24 is used to when the mimicking
action is of the form S | S =⇒τ S ′. Other than that, the proof structure is
almost identical to the preservation lemma for Parallel, Lemma 28.28.

The proof that weak bisimilarity is preserved by Replication will instan-
tiate the relation R in Figure 30.3 to

.≈, R ′ to .∼ and R ′′ to weakBisimCom-
pose

.≈. Hence all premises required for the simulation lemma has already
been proven in previous chapters, except Premises 22-24. We will now prove
them in turn.

Lemma 30.45. Proof of Premise 22

Ψ � !P
α−→ P ′

bn α ] sub j ect α guarded P α 6= τ bn α ] P

∃Q. Ψ � P
α−→ Q ∧ 1 � P ′ .∼ Q | !P

Proof. By induction onΨ � !P
α−→ P ′. The agent P which does the actionα

is obtained, and the derivative rewriten such that !P is to the far right using
the laws of structural congruence.
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(Ψ, P, Q) ∈ R

eqvt R eqvt R ′ eqvt R ′′ guarded P guarded Q R ′⊆ R

1 :
∧
Ψ ′ΨU S T U b̃U .

(Ψ ′⊗ΨU , S, T) ∈ R

F U = (νb̃U )ΨU b̃U ] Ψ ′ b̃U ] S b̃U ] T

(Ψ ′, U | S, U | T) ∈ R

2 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R guarded S guarded T

(Ψ ′, U | !S, U | !T) ∈ R ′′

3 :
∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R

4 :
∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R ′ x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R ′

5 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R

6 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R ′ Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R ′

7 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R (Ψ ′, T , U) ∈ R

(Ψ ′, S, U) ∈ R

8 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R ′ (Ψ ′, T , U) ∈ R ′

(Ψ ′, S, U) ∈ R ′

9 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

Ψ ′ � S ;̂R T
10 :

∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R

(Ψ ′⊗Ψ ′′ , S, T) ∈ R

11 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R ′

(Ψ ′⊗Ψ ′′ , S, T) ∈ R ′ 12 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

(Ψ ′, T , S) ∈ R

13 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R ′

(Ψ ′, T , S) ∈ R ′ 14 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R

(Ψ ′, S | U , T | U) ∈ R

15 :
∧
Ψ ′ S T U .

(Ψ ′, S, T) ∈ R ′

(Ψ ′, U | S, U | T) ∈ R ′

16 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

(Ψ ′, S | S, T | T) ∈ R
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17 :
∧
Ψ ′ S T U . (Ψ ′, S | (T | U), (S | T) | U) ∈ R

18 :
∧
Ψ ′ S T U . (Ψ ′, S | (T | U), (S | T) | U) ∈ R ′

19 :
∧

x̃ Ψ ′ T S.
x̃ ] Ψ ′ x̃ ] T

(Ψ ′, (νx̃)(S | T ), (νx̃)S | T) ∈ R

20 :
∧

x̃ Ψ ′ T S.
x̃ ] Ψ ′ x̃ ] T

(Ψ ′, (νx̃)(S | T ), (νx̃)S | T) ∈ R ′

21 :
∧
Ψ ′ S T U O.

(Ψ ′, S, T) ∈ R (Ψ ′, T , U) ∈ R ′′ (Ψ ′, U , O) ∈ R ′

(Ψ ′, S, O) ∈ R ′′

22 :
∧
Ψ ′ S α S ′.

Ψ ′ � !S
α−→ S ′

guarded S bn α ] S α 6= τ bn α ] sub j ect α

∃T . Ψ ′ � S
α−→ T ∧ (1, S ′, T | !S) ∈ R ′

23 :
∧
Ψ ′ S S ′.

Ψ ′ � !S
τ−→ S ′ guarded S

∃T . Ψ ′ � S | S
τ−→ T ∧ (1, S ′, T | !S) ∈ R ′

24 :
∧
Ψ ′ S S ′.

Ψ ′ � S | S =⇒ S ′ guarded S

∃T . Ψ ′ � !S =⇒ T ∧ (Ψ ′, T , S ′ | !S) ∈ R ′

Ψ � R | !P ;̂R ′ ′ R | !Q

Figure 30.3: Weak simulations which are preserved by Replication. The lemma con-
tains three equivariant relations R, R ′, and R ′′.
Premise 1 states that R must be preserved by Parallel if the bound names of the
frame of the parallel agent are sufficiently fresh.
Premise 2 states that R ′′ must be preserved by Replication and Parallel.
Premises 3 and 4 state that R and R ′ must be preserved by Restriction.
Premises 5 and 6 state that the assertion components of R and R ′ must be inter-
changeable with statically equivalent assertions.
Premises 7 and 8 state that R and R ′ must be transitive.
Premises 9-13 are properties of strong and weak bisimilarity for R and R ′.
Requsites 14 and 15 state that R and R ′ must be preserved by Parallel.
Premises 16-20 are structural congruence properties of R and R ′.
Requsite 21 allows bisimulation up-to techniques to be used on R ′′.
Premise 22 states that for all environmentsΨ ′, if !S does a non τ-actionα to S ′, then
S must be able to do the same action to a T such that (1, S ′, T | !S) ∈ R ′
Premise 23 states that for all environments Ψ ′, if !S does a τ-action to S ′, then S | S
must be able to do a τ-action to a T such that (1, S ′, T | !S) ∈ R ′
Premise 24 states that for all environments Ψ ′, if S | S does a τ-chain to S ′, then !S
must be able to do a τ-chain to a T such that (Ψ ′, S ′, T | !S) ∈ R ′
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Lemma 30.46. Proof of Premise 23

Ψ � !P
τ−→ P ′ guarded P

∃Q. Ψ � P | P
τ−→ Q ∧ 1 � P ′ .∼ Q | !P

Proof. By induction on Ψ � !P
τ−→ P ′. The Parallel cases are discharged in

the same way as Lemma 30.45, but with an inert copy of P added to com-
plete the lemma. For the communication case, two copies of P are extracted
to communicate with each other. The derivatives are then rewritten such
that !P is to the far right using the laws of structural congruence.

To prove Premise 24, an auxiliary lemma is required.

Lemma 30.47.
Ψ � P | P

τ−→ P ′ guarded P

∃Q. Ψ � !P
τ−→ Q ∧ 1 � Q .∼ P ′ | !P

Proof. Follows from the PAR inversion rule. All cases are discharged by
adding !P as a parallel component using the PAR2 rule from the operational
semantics. The parallel copies of P are then folded into !P using the REPL

rule.

Lemma 30.48. Proof of Premise 24

Ψ � P | P =⇒ P ′ guarded P

∃Q. Ψ � !P =⇒ Q ∧Ψ � Q .∼ P ′ | !P

Proof. By induction on Ψ � P | P =⇒ P ′.

Base case (P ′= P | P): Follows immediately by setting Q to !P since Ψ �

!P
τ==⇒ !P and Ψ � !P .∼ (P | P) | !P by the laws of structural congru-

ence.

Inductive step (Ψ � P | P
τ==⇒P ′′ andΨ � P ′′ τ−→ P ′): We have to find a

Q such that Ψ � !P
τ==⇒Q and Ψ � Q .∼ P ′ | !P.

• From the induction hypothesis we obtain an R such that Ψ � !P
τ==⇒R and Ψ � R .∼ P ′′ | !P.

• From Ψ � P ′′ τ−→ P ′ we have that Ψ ⊗ 1 � P ′′ τ−→ P ′ by
Lemma 25.11 and the AID axiom.

• Hence Ψ � P ′′ | !P
τ−→ P ′ | !P by PAR2.

• With Ψ � R .∼ P ′′ | !P we obtain an agent R ′ such that Ψ � R
τ−→

R ′ and Ψ � R ′ .∼ P ′ | !P.

• From Ψ � !P
τ==⇒R and Ψ � R

τ−→ R ′ we have that Ψ � !P
τ==⇒R ′

430



• We prove the goal by setting Q to R ′.

With these lemmas in place we can prove that weak bisimilarity is pre-
served by Replication.

Lemma 30.49. If Ψ � P
.≈ Q and guarded P and guarded Q then Ψ � !P

.≈ !Q .

Proof.

By coinduction using Lemma 30.43 with Y set to

{(Ψ, R | !P, R | !Q) : guarded P ∧ guarded Q ∧Ψ � P
.≈ Q }

Static implication: Follows directly from the definition of / and
.≈-E3

since !P and !Q have empty frames.

Simulation: Follows from Lemma 30.44 with R set to
.≈, R ′ set to .∼ and

R ′′ set to weakBisimCompose
.≈.

Premise 1 follows from Lemma 30.40. Premise 2 follows from the def-
inition of weakBisimCompose. Premise 3 and 4 follows from Lem-
mas 30.37 and 27.32. Premises 5 and 6 follow from Lemmas 30.23 and
27.20. Premises 7 and 8 follow from transitivity of weak bisimilarity
and strong bisimilarity. Premises 9-13 are properties of weak and/or
strong bisimilarity. Premises 14 and 16 follow from Lemmas 30.41 and
27.42. Premises 17-20 are structural congrence laws for strong and
weak bisimilarity. Premise 21 allows weak bisimulation up-to tech-
niques to be used on R ′′. Premises 22-24 follow from Lemmas 30.45,
30.46, and 30.48.

In some of the cases laws of structural congruence are used to rewrite
the rules to match the premises.

Extension: Follows directly from
.≈-E3

Symmetry: The candidate relation Y is symmetric.

We can now prove a main theorem for weak bisimilarity.

Theorem 30.2. Weak bisimilarity is preserved by all opertors except Case and
Input.

Proof. Follows from Lemmas 30.33, 30.37, 30.41, and 30.49.

431





31. Weak congruence

Weak bisimilarity is not a congruence, as it is preserved neither by Input
nor Case. We obtain a congruence in a similar manner as is done for the
pi-calculus and for CCS. We first obtain a weak equivalence by disallowing
agents to mimic a τ-action by doing nothing. A congruence is then obtained
by closing weak equivalence under sequential substitutions, in the same
way as for strong bisimilarity.

In the next section we will define weak τ-bisimilarity, sometimes denoted
τ-bisimilarity, which does not allow an agent to mimic a τ-action by doing
nothing. We then obtain a congruence by closing τ-bisimilarity under sub-
stitutions.

31.1 Weak τ-bisimilarity
Before defining τ-bisimilarity, we must define its simulation. A
τ-simulation only mimics τ-actions – any other action is mimicked in the
same way as for weak simulations, and hence will not be redefined.

Definition 31.1 (τ-simulation).

Ψ � P ;R Q
def=

∀Q ′. Ψ � Q
τ−→ Q ′−→ (∃P ′. Ψ � P

τ==⇒P ′ ∧ (Ψ, P ′, Q ′) ∈ R)

Note that the mimicking τ-chain is the transitive closure, and not the re-
flexive transitive closure of τ-actions, and hence any τ-action must be mim-
icked by at least one τ-action.

We now define τ-bisimilarity.

Definition 31.2 (weak τ-bisimilarity).

Ψ � P ∼= Q
def= Ψ � P

.≈ Q ∧Ψ � P ; .≈ Q ∧Ψ � Q ; .≈ P

We do not require that weak τ-bisimilarity is closed by arbitrary asser-
tions. We will discuss the absence of this requirement when defining weak
congruence.
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31.1.1 Primitive inference rules
The introduction rule for τ-simulation is significantly simpler than the pre-
vious simulation rules – since it only refers to τ-actions and no new binders
are introduced.

Lemma 31.3. Introduction and elimination rules for τ-simulation

∧
Q ′.

Ψ � Q
τ−→ Q ′

∃P ′. Ψ � P
τ==⇒P ′∧ (Ψ, P ′, Q ′) ∈ R

Ψ � P ;R Q
;-I

Ψ � P ;R Q Ψ � Q
τ−→ Q ′

∃P ′. Ψ � P
τ==⇒P ′∧ (Ψ, P ′, Q ′) ∈ R

;-E

Proof. Follows immediately from the definition of ;.

Lemma 31.4. Introduction and elimination rules for τ-bisimilarity.

Ψ � P
.≈ Q Ψ � P ; .≈ Q Ψ � Q ; .≈ P

Ψ � P ∼= Q
∼=-I

Ψ � P ∼= Q

Ψ � P
.≈ Q

∼=-E1
Ψ � P ∼= Q

Ψ � P ; .≈ Q
∼=-E2

Ψ � P ∼= Q

Ψ � Q ; .≈ P
∼=-E3

Proof. Follows from the definition of ∼=.

The symmetric introduction rule for τ-bisimilarity follows the same for-
mat as for CCS and the pi-calculus. It has one extra case for the bisimilarity
case.

Lemma 31.5. Symmetric introduction rule for τ-bisimilarity.

Prop P Q
∧

P Q.
Prop P Q

Prop Q P∧
P Q.

Prop P Q

Ψ � F P
.≈ F Q

∧
P Q.

Prop P Q

Ψ � F P ; .≈ F Q

Ψ � F P ∼= F Q

Proof. Follows from the definition of ∼=.
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31.2 Weak τ-bisimilarity is an equivalence relation
Lemma 31.6. Weak τ-simulation is reflexive

{(Ψ, P, P) : True} ⊆ R

Ψ � P ;R P

Proof. Follows from the definition of ;.

Lemma 31.7.

Ψ � Q
τ==⇒Q ′ Ψ � P ;R Q

∧
Ψ P Q.

(Ψ, P, Q) ∈ R

Ψ � P ;̂R Q

∃P ′. Ψ � P
τ==⇒P ′∧ (Ψ, P ′, Q ′) ∈ R

Proof. By induction on Ψ � Q
τ==⇒Q ′.

Base case (Ψ � Q
τ−→ Q ′): The proof follows directly from Ψ � P ;R Q

and ;-E.

Inductive step (Ψ � Q
τ==⇒Q ′ andΨ � Q ′ τ−→ Q ′′):

• From the induction hypothesis we obtain a P ′ such that Ψ � P
τ==⇒P ′ and (P ′, Q ′) ∈ R.

• From (P ′, Q ′) ∈ R and the assumptions we have that Ψ

� P ′ ;̂R Q ′.
• With Ψ � Q ′ τ−→ Q ′′ we obtain a P ′′ such that Ψ � P ′=⇒ P ′′ and

(Ψ, P ′′, Q ′′) ∈ R.

• Finally with Ψ � P
τ==⇒P ′ we have that Ψ � P

τ==⇒P ′′ and (Ψ, P ′′,
Q ′′) ∈ R.

Lemma 31.8. Weak τ-simulation is transitive

(Ψ, P, Q) ∈ R Ψ � P ;R Q Ψ � Q ;R ′ R

{(Ψ, P, R) : ∃Q. (Ψ, P, Q) ∈ R ∧ (Ψ, Q, R) ∈ R ′} ⊆ R ′′

∧
Ψ P Q.

(Ψ, P, Q) ∈ R

Ψ � P ;̂R Q

Ψ � P ;R ′ ′ R

Proof. From ;-I we have that given that Ψ � R
τ−→ R ′, we must find a P ′

such that Ψ � P =⇒ P ′ and (Ψ, P ′, R ′) ∈ R ′′.
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• From Ψ � Q ;R ′ R and Ψ � R
τ−→ R ′ we obtain a Q ′ such that Ψ �

Q
τ==⇒Q ′ and (Ψ, Q ′, R ′) ∈ R ′ by ;-E.

• From Ψ � P ;R Q and Ψ � Q
τ==⇒ Q ′ we obtain a P ′ such that Ψ �

P
τ==⇒P ′ and (Ψ, P ′, Q ′) ∈ R by Lemma 31.7.

• Finally, from (Ψ, P ′, Q ′) ∈ R and (Ψ, Q ′, R ′) ∈ R ′ we have from the as-
sumptions that (Ψ, P ′, R ′) ∈ R ′′.

Lemma 31.9. Weak τ-bisimilarity is an equivalence relation.

Proof.

Reflexivity: Follows from Lemma 31.6 and reflexivity of weak bisimilarity.

Symmetry: Follows from ∼=-E and symmetry of weak bisimilarity.

Transitivity: Follows from Lemma 31.8 and transitivity of weak bisimilar-
ity.

31.3 Equivalence correspondences
That τ-bisimilarity includes weak bisimilarity follows directly from its def-
inition. The remaining proof is that it also includes strong bisimilarity. We
begin with proving the correspondence of simulations.

Lemma 31.10. If Ψ � P ,→R Q and R ⊆ R ′ then Ψ � P ;R ′ Q.

Proof. Follows immediately from the definitions of ,→ and ;. The only ac-
tions involved are τ-actions, and the mimicking τ-action can be converted
to a τ-chain.

Lemma 31.11. If Ψ � P .∼ Q then Ψ � P ∼= Q .

Proof. We use the symmetric introduction rule from Lemma 31.5 with Prop
set to λR S. R .∼ S and F set to the identity function.

Symmetry: Follows directly since strong bisimilarity is symmetric.

Simulation: Follows from Lemma 31.10.

Bisimilarity: Follows from Lemma 30.30.
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We can now prove that τ-bisimilarity includes structural congruence.

Theorem 31.1. If P ≡ Q then 1 � P ∼= Q.

Proof. Follows directly from Theorem 28.3 and Lemma 31.11.

31.4 Preservation properties
In order to facilitate the preservation proofs we create an alternative intro-
duction rule specially tailored for proving congruence properties.

Lemma 31.12. Symmetric introduction rule for weak congruence.

Ψ � P ∼= Q
∧

P Q.
Ψ � P ∼= Q

Ψ � F P
.≈ F Q

∧
P Q.

Ψ � P ∼= Q

Ψ � F P ; .≈ F Q

Ψ � F P ∼= F Q
∼=-I2

Proof. Follows from Lemma 31.5 with Prop set to λP Q. Ψ� P ∼=Q.

Whenever this introduction rule is used two cases have to be proven –
one for the τ-simulation, and one for the weak bisimilarity. This rule is also
the one used for the remaining preservation proofs for τ-bisimilarity.

31.4.1 Output
As an agent with an output prefix cannot do any τ-actions, the τ-simulation
is not applicable for this preservation proof.

Lemma 31.13. If Ψ � P ∼= Q then Ψ � M N .P ∼= M N .Q .

Proof. Follows from ≈-I2

Simululation: Trivially true since none of the agents can do any τ-actions.

Bisimilarity: Follows directly from Lemma 30.33.

31.4.2 Case
The first part of the proof is to prove that weak bisimilarity is preserved by
Case as long as τ-actions may not be mimicked by doing nothing.
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Lemma 31.14.∧
ϕ Q.

(ϕ, Q) mem C̃Q

∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧ Eq Ψ P Q

∧
Ψ ′ P Q.

(Ψ ′, P, Q) ∈ R

Ψ ′ � P ;̂R Q

∧
Ψ ′ P Q.

Eq Ψ ′ P Q

(Ψ ′, P, Q) ∈ R

∧
Ψ ′ P Q.

Eq Ψ ′ P Q

Ψ ′ � P ;R Q

Ψ � Cases C̃ P ;̂R Cases C̃Q

The function mem checks whether or not an element is a member of a
list. The Eq predicate is an arbitrary predicate meeting the constraints of
the lemma, but will later be instantiated to τ-bisimilarity.

Proof. Similar to Lemma 27.26, but a case analysis is done on whether or
not the action being mimicked is a τ-action. If a τ-action is being mimicked
then the τ-simulation is used, which guarantees that the mimicking agent
does at least one τ-action, otherwise regular weak simulation is used.

Lemma 31.15.∧
ϕ P.

(ϕ, P) mem C̃ P

∃Q. (ϕ, Q) mem C̃Q ∧ guarded Q ∧ (∀Ψ. Ψ � P ∼= Q )

∧
ϕ Q.

(ϕ, Q) mem C̃Q

∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧ (∀Ψ. Ψ � P ∼= Q )

Ψ � Cases C̃ P
.≈ Cases C̃Q

Proof. By coinduction with X set to

{(Ψ, Cases C̃ P ,
Cases C̃Q ) : (∀ϕ P. (ϕ, P) mem C̃ P −→

(∃Q. (ϕ, Q) mem C̃Q ∧
guarded Q ∧ (∀Ψ. Ψ � P ∼= Q ))) ∧

(∀ϕ Q. (ϕ, Q) mem C̃Q −→
(∃P. (ϕ, P) mem C̃ P ∧

guarded P ∧ (∀Ψ. Ψ � P ∼= Q )))}

Static implication: Similar to Lemma 30.31 – agents with Case as their top-
most operator have empty frames.

Simulation: Follows from Lemma 31.14
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Extension: Follows directly from the definition of X

Symmetry: Follows directly since τ-bisimilarity is symmetric.

We can now prove the corresponding lemma for weak congruence.

Lemma 31.16.∧
ϕ Q.

(ϕ, Q) mem C̃Q

∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧ Eq Ψ P Q

∧
Ψ ′ P Q.

Eq Ψ ′ P Q

Ψ ′ � P ;R Q

Ψ � Cases C̃ P ;R Cases C̃Q

Proof. Similar to Lemma 31.14, but only the mimicking of τ-actions must
be considered.

Lemma 31.17.∧
ϕ P.

(ϕ, P) mem C̃ P

∃Q. (ϕ, Q) mem C̃Q ∧ guarded Q ∧ (∀Ψ. Ψ � P ∼= Q )

∧
ϕ Q.

(ϕ, Q) mem C̃Q

∃P. (ϕ, P) mem C̃ P ∧ guarded P ∧ (∀Ψ. Ψ � P ∼= Q )

Ψ � Cases C̃ P
∼= Cases C̃Q

Proof. Proof using ≈-I2

Simulation: Follows from Lemma 31.16

Bisimilarity: Follows directly from Lemma 31.15

31.4.3 Restriction
The proof that τ-bisimilarity is preserved by restriction is significantly sim-
pler than its counterpart for strong and weak bisimilarity, where the simu-
lation lemmas require the renaming of the subjects of the transitions such
that they do not clash with the bound names. Since τ-actions have no sub-
jects, this is not required for τ-simulation.
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Lemma 31.18.

Ψ � P ;R Q

eqvt R ′ x ] Ψ R ⊆ R ′ ∧
Ψ ′ R S x.

(Ψ ′, R, S) ∈ R x ] Ψ ′

(Ψ ′, (νx)R, (νx)S) ∈ R ′

Ψ � (νx)P ;R ′ (νx)Q

Proof. Follows from ;-I and the CASE inversion rule from Figure 26.2. The
only applicable action is where a τ-action is done, which can be mimicked
using the SCOPE rule from Figure 30.2.

Lemma 31.19. If Ψ � P ∼= Q and x ] Ψ then Ψ � (νx)P ∼= (νx)Q .

Proof. Proof using ≈-I2

Simulation: Follows from Lemma 31.18

Bisimilarity: Follows directly from Lemma 30.37

31.4.4 Parallel
Lemma 31.20. Weak τ-simulation is preserved by Parallel.

eqvt R eqvt R ′

1 :
∧
Ψ ′. Ψ ′ � P ;R Q

2 :
∧
Ψ ′. Ψ ′ � P ;̂R Q 3 :

∧
Ψ ′. Ψ ′ � Q / RP

4 :
∧
Ψ ′ S T b̃U ΨU U .

(Ψ ′⊗ΨU , S, T) ∈ R

F U = (νb̃U )ΨU b̃U ] Ψ ′ b̃U ] S b̃U ] T

(Ψ ′, S | U , T | U) ∈ R ′

5 :
∧
Ψ ′ S T .

(Ψ ′, S, T) ∈ R

(Ψ ′, T , S) ∈ R
6 :

∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R

(Ψ ′⊗Ψ ′′ , S, T) ∈ R

7 :
∧
Ψ ′ S T x̃.

(Ψ ′, S, T) ∈ R ′ x̃ ] Ψ ′

(Ψ ′, (νx̃)S, (νx̃)T ) ∈ R ′

8 :
∧
Ψ ′ S T Ψ ′′.

(Ψ ′, S, T) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, S, T) ∈ R

Ψ � P | R ;R ′ Q | R

Premises 1-3 states that P must weakly simulate, τ-simulate, and weakly
statically imply Q in all possible environments. Premise 4 states the preserva-
tion properties for Parallel required of R and R ′. Premises 5 and 6 are prop-
erties of weak bisimilarity for R. Premise 7 states that R ′ must be preserved
by Restriction. Premise 8 states that the assertion component of R must be
exchangeable for a statically equivalent one.
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Proof. The proof is similar to Lemma 30.39, with one key difference – weak
τ-bisimilarity is not required to be preserved by extensions of the environ-
ment. For this proof, the agents P and Q must be τ-bisimilar in all envi-
ronments, allowing the appropriate environment to be picked for differ-
ent parts of the proof. Once a transition has been made, the derivatives are
weakly bisimilar, and weak bisimilarity is preserved by extensions of the en-
vironment, as required by Premise 6.

Lemma 31.21. If ∀Ψ. Ψ � P ∼= Q then Ψ � P | R ∼= Q | R .

Proof. Follows from the symmetric introduction rule from Lemma 31.5
with Prop set to λS T. ∀Ψ. Ψ � S ∼= T and F set to the λS. S | R.

Symmetry: Follows directly since τ-bisimilarity is symmetric.

Bisimilarity: Follows from ∼=-E1 and Lemma 30.41.

Simulation: Proved using Lemma 31.20. Premise 1-3 are properties
of τ-bisimilarity and weak bisimilarity. Premise 4 follows from
Lemma 30.40. Premises 5-6 are properties of weak bisimilarity.
Premise 7 follows from Lemma 30.37.

31.4.5 Replication
The proof that τ-bisimilarity is preserved by Replication is similar to its
counterpart for weak bisimilarity. The cases where only one parallel agent
does an action are simpler, as we only have to consider τ-actions, but the
cases where they communicate require that we reason about input and out-
put actions in the standard way.

Lemma 31.22.

If ∀Ψ. Ψ � P ∼= Q and guarded P and guarded Q then Ψ � !P ∼= !Q .

Proof. Similar to Lemma 30.49.

We can now prove that weak τ-bisimilarity is preserved by all operators
except Input.

Theorem 31.2. Weak τ-bisimilarity is preserved by all operators except
Input.

Proof. Follows from Lemmas 31.13, 31.17, 31.19, 31.21, and 31.22.
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31.5 Weak congruence
Weak congruence is defined as a binary predicate. Two agents are weakly
congruent if they are τ-bisimilar for all environmentsΨ and for all possible
substitutions. The proof is similar to that of strong equivalence presented
in Section 27.5.3.

Definition 31.23.

P ≈ Q
def= ∀Ψ σ. wellFormedSubst σ −→Ψ � Pσ ∼= Qσ

Weak congruence is defined without the extra requisite that it is closed
under arbitrary assertions. This property is implicit since at the top level,
the environments are universally quantified, and for the derivatives as they
are weakly bisimilar. Agents which are weakly bisimilar can have their envi-
ronments extended by definition.

31.5.1 Primitive inference rules
The only inference rules required for weak congruence is an introduction,
and an elimination rule.

Lemma 31.24. Introduction and elimination rules for weak congruence∧
Ψ σ.

wellFormedSubst σ

Ψ � Pσ ∼= Qσ

P ≈ Q
≈-I

P ≈ Q wellFormedSubst σ

Ψ � Pσ ∼= Qσ
≈-E

Proof. Follows immediately from the definition of ≈

31.5.2 Preservation properties
The only remaining preservation property is that weak congruence is pre-
served by Input.

Lemma 31.25. Weak static implication is preserved by Input.∧
Ψ ′. (Ψ ⊗Ψ ′ , M(λx̃)N .P, M(λx̃)N .Q) ∈ R

Ψ � M(λx̃)N .P / RM(λx̃)N .Q
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Proof. From the definition of / we have to find for all assertions Ψ ′, agents
Q ′ and Q ′′ such that

Ψ � M(λx̃)N .Q =⇒ Q ′,
(F M(λx̃)N .P) ⊗Ψ ≤ (F Q ′) ⊗Ψ,

Ψ ⊗Ψ ′ � Q ′=⇒ Q ′′, and

(Ψ ⊗Ψ ′ , M(λx̃)N .P, Q ′′) ∈ R.

This follows directly from the assumptions, and by setting Q ′ and Q ′′ to
M(λx̃)N .Q.

Lemma 31.26. Weak simulation is preserved by Input.∧
T̃ Ψ ′.

|x̃| = |T̃ |
(Ψ ⊗Ψ ′ , P[x̃ := T̃ ], Q[x̃ := T̃ ]) ∈ R

Ψ � M(λx̃)N .P ;̂R M(λx̃)N .Q

Proof. Follows from the definition of ;̂, the INPUT inversion rule from Fig-
ure 26.2, and the weak INPUT semantic rule from Figure 30.2.

Lemma 31.27. ∧
T̃ .

|x̃| = |T̃ |
Ψ � P[x̃ := T̃ ]

.≈ Q[x̃ := T̃ ]

Ψ � M(λx̃)N .P
.≈ M(λx̃)N .Q

Proof. Similar to Lemma 27.50

Lemma 31.28. ∧
T̃ .

|x̃| = |T̃ |
Ψ � P[x̃ := T̃ ]

.≈ Q[x̃ := T̃ ]

Ψ � M(λx̃)N .P ∼= M(λx̃)N .Q

Proof. Follows from the symmetric introduction rule, Lemma 31.5 with
Prop set to λR S. ∀ T̃ . |x̃| = |T̃ | −→Ψ � R[x̃ := T̃ ]

.≈ S[x̃ := T̃ ] and F set to
λR. M(λx̃)N .R.

Symmetry: Follows from symmetry of weak bisimilarity.

Bisimilarity: Follows from Lemma 31.27.

Simulation: This case is trivially true as τ-simulations do not simulate in-
put actions.
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Lemma 31.29.

If P ≈ Q and distinct x̃ then M(λx̃)N .P ≈ M(λx̃)N .Q .

Proof. Similar to Lemma 27.51

We can now prove that weak congruence is a congruence.

Theorem 31.3. Weak congruence is a congruence.

Proof. That weak congruence is preserved by Input follows from
Lemma 31.29; that it is preserved by all other operators follows from ≈-I,
≈-E and Theorem 31.2, where all bound names are alpha-converted to
avoid the substitution σ.
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32. Psi-calculi with weakening

Given an entailment relation which satisfies logical weakening, a simpler
version of weak bisimilarity suffices. In this chapter we formally demon-
strate this using Isabelle’s support for locales.

Creating a locale with the additional requirement that

Ψ ≤Ψ ⊗Ψ ′ WEAKEN

is straightforward, and is done with a single command in Isabelle. For the
rest of this chapter we will reason about sub-calculi of psi-calculi where the
weakening requisite is satisfied, and the results will in general not hold for
calculi without weakening.

The main result that weakening allows, and that the results bellow build
on, is that a transition cannot be blocked by extending its environment.

Lemma 32.1. If WEAKEN holds then

If Ψ� P 7−→ V then Ψ ⊗Ψ ′ � P 7−→ V .

Proof. By induction onΨ� P 7−→ V, where the bound names avoidΨ ′. The
proof then follows from the standard operational semantic rules, where any
condition enabled by Ψ must also be enabled by Ψ ⊗Ψ ′ by WEAKEN.

32.1 Weak transitions
As was discussed in Section 29.1 any weak transition must be mimicked by
the same action with preceding and succeeding τ-chains. Weak transitions
can thus be defined in the same way as for CCS and the early semantics of
the pi-calculus.

Definition 32.2 (weak transition).

Ψ � P
α̂==⇒P ′ def=

(∃P ′′′ P ′′. Ψ � P =⇒ P ′′′∧Ψ � P ′′′ α−→ P ′′∧Ψ � P ′′=⇒ P ′) ∨
(P = P ′∧ α = τ)

We define the following case analysis rule for weak transitions.
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Lemma 32.3.

Ψ � P
α̂==⇒P ′ Prop (τ) P∧

P ′′′ P ′′.
Ψ � P =⇒ P ′′′ Ψ � P ′′′ α−→ P ′′ Ψ � P ′′=⇒ P ′

Prop α P ′

Prop α P ′

Proof. Follows directly from Definition 32.2

32.2 Simple bisimilarity
Simple bisimilarity is defined in the standard way.

Definition 32.4 (simple simulation).

Ψ � P ;̂
smpR

Q
def= ∀αQ ′. Ψ � Q

α−→ Q ′∧ bn α ] Ψ ∧ bn α ] P −→
∃P ′. Ψ � P

α̂==⇒P ′∧ (Ψ, P ′, Q ′) ∈ R

Definition 32.5 (Simple static implication). Ψ � P /
smpR

Q
def=

∃Q ′. Ψ � Q =⇒ Q ′∧ (F P) ⊗Ψ ≤ (F Q ′) ⊗Ψ ∧ (Ψ, P, Q ′) ∈ R

Definition 32.6 (simple bisimilarity). Simple bisimilarity, denoted
.≈

smp
, is de-

fined coinductively as the greatest fixpoint satisfying:

Ψ � P /
smp .≈

smp

Q =⇒Ψ � P /
smp .≈

smp

Q STATIMP

∧Ψ � P ;̂
smp .≈

smp

Q SIMULATION

∧ ∀Ψ ′. Ψ ⊗Ψ ′ � P
.≈

smp
Q EXTENSION

∧Ψ � Q
.≈

smp
P SYMMETRY

32.2.1 Primitive inference rules
Previous introduction rules for simulation have been custom tailored to en-
sure that any bound names appearing in the transition to be sufficiently
fresh. Even though the same is possible for simple simulation, it is not nec-
essary for the results of this chapter.
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Lemma 32.7. Introduction and elimination rules for simple simulation.

∧
α Q ′.

Ψ � Q
α−→ Q ′ bn α ] Ψ bn α ] P

∃P ′. Ψ � P
α̂==⇒P ′∧ (Ψ, P ′, Q ′) ∈ R

Ψ � P ;̂
smpR

Q
;̂
smp

-I

Ψ � P ;̂
smpR

Q Ψ � Q
α−→ Q ′ bn α ] Ψ bn α ] P

∃P ′. Ψ � P
α̂==⇒P ′∧ (Ψ, P ′, Q ′) ∈ R

;̂
smp

-E

Proof. Follows directly from the definition of ;̂
smp

.

Lemma 32.8. Introduction and elimination rules for simple static implica-
tion.

Ψ � Q =⇒ Q ′ (F P) ⊗Ψ ≤ (F Q ′) ⊗Ψ (Ψ, P, Q ′) ∈ R

Ψ � P /
smpR

Q
/

smp

-I

Ψ � P /
smpR

Q

∃Q ′. Ψ � Q =⇒ Q ′∧ (F P) ⊗Ψ ≤ (F Q ′) ⊗Ψ ∧ (Ψ, P, Q ′) ∈ R
/

smp

-E

Proof. Follows directly from the definition of /
smp

.

Lemma 32.9. Elimination rules for simple bisimilarity.

Ψ � P
.≈

smp
Q

Ψ � P /
smp .≈

smp

Q

.≈
smp

-E1
Ψ � P

.≈
smp

Q

Ψ � P ;̂
smp .≈

smp

Q

.≈
smp

-E2

Ψ � P
.≈

smp
Q

Ψ ⊗Ψ ′ � P
.≈

smp
Q

.≈
smp

-E3
Ψ � P

.≈
smp

Q

Ψ � Q
.≈

smp
P

.≈
smp

-E4

Proof. Follows from the coinduction rule which Isabelle generates auto-
matically from Definition 32.6.
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Lemma 32.10. Coinduction rule for simple bisimilarity.

(Ψ, P, Q) ∈ X

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

Ψ ′ � R /
smpX ∪ .≈

smp

S
STATIMP

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

Ψ ′ � R ;̂
smpX ∪ .≈

smp

S
SIMULATION

∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ X

(Ψ ′⊗Ψ ′′ , R, S) ∈ X ∨Ψ ′⊗Ψ ′′ � R
.≈

smp
S

EXTENSION

∧
Ψ ′ R S.

(Ψ ′, R, S) ∈ X

(Ψ ′, S, R) ∈ X ∨Ψ ′ � S
.≈

smp
R

SYMMETRY

Ψ � P
.≈

smp
Q

32.3 Weak and simple bisimilarity coincide
The trailing τ-chain of a weak simulation is extended with an arbitrary as-
sertion, whereas the trailing τ-chain for a simple simulation runs in the
same environment as before. The main difficulty of the proof is to handle
these assertion extensions. To prove that weak bisimilarity includes simple
bisimilarity is reasonably straightforward, as the assertion extensions can
be set to 1, and then discharged using the AID axiom.

The proof in the other direction is more involved, and requires extra lem-
mas on how the WEAKEN axiom affects transitions and simulations.

32.3.1 Weak bisimilarity includes simple bisimilarity
Before proving that weak bisimilarity includes simple bisimilarity, we need
an auxiliary lemma which states that the frame of an agent statically implies
the frame of any τ-chain derivative of that agent. We begin by proving this
result for single τ-actions.

Lemma 32.11. If WEAKEN holds then:

If Ψ � P
τ−→ P ′ then (F P) ⊗Ψ ≤ (F P ′) ⊗Ψ.
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Proof. By ≤-I we must prove that for all ϕ if (F P) ⊗Ψ ` ϕ then (F P ′) ⊗Ψ

` ϕ.
• We pick a frame (νbP )ΨP of P such that bP ] Ψ and bP ] ϕ.

• With Ψ � P
τ−→ P ′ we obtain a bP

′, a ΨP
′, and a Ψ ′ such that F P ′ =

(νbP
′)ΨP

′, bP
′ ] ϕ, bP

′ ] Ψ and ΨP ⊗Ψ ′ 'ΨP
′, by Lemma 27.37.

• From (F P) ⊗Ψ ` ϕ and bP ] ϕ we have that ΨP ⊗Ψ ` ϕ

• Hence (ΨP ⊗Ψ ′ ) ⊗Ψ `ϕ by WEAKEN, ACOMM and AASSOC, and hence
ΨP

′⊗Ψ ` ϕ since ΨP ⊗Ψ ′ 'ΨP
′.

• Finally we have that (F P ′) ⊗Ψ ` ϕ since bP
′ ] ϕ and bP

′ ] Ψ.

We can then proceed to prove the corresponding lemma for τ-chains.

Lemma 32.12. If WEAKEN holds then:

If Ψ � P =⇒ P ′ then (F P) ⊗Ψ ≤ (F P ′) ⊗Ψ.

Proof. By induction on Ψ � P =⇒ P ′

Base case P = P ′: Since ≤ is reflexive we have that (F P) ⊗Ψ ≤ (F P) ⊗Ψ.

Inductive stepΨ � P
τ==⇒P ′′ andΨ � P ′′ τ−→ P ′:

• By the induction hypothesis we have that (F P) ⊗Ψ≤ (F P ′′) ⊗Ψ.

• Moreover from Ψ � P ′′ τ−→ P ′ we have that (F P ′′) ⊗Ψ ≤ (F P ′)
⊗Ψ by Lemma 32.11.

• Finally we have that (F P) ⊗Ψ ≤ (F P ′) ⊗Ψ since ≤ is transitive.

The only requirement we impose on the candidate relation for the static
implication and simulation proofs is that it is preserved by static equiva-
lence.

Lemma 32.13. If WEAKEN holds then:

Ψ � P / RQ
∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, R, S) ∈ R

Ψ � P /
smpR

Q

Proof. By /
smp

-I we have to prove that there exists an R such that Ψ � Q
τ==⇒

R, (F P) ⊗Ψ ≤ (F R) ⊗Ψ, and (Ψ, P, R) ∈ R.

• From Ψ � P / RQ we obtain a Q ′′ and a Q ′ such that Ψ � Q
τ==⇒ Q ′′,

(F P) ⊗Ψ ≤ (F Q ′′) ⊗Ψ, Ψ ⊗ 1 � Q ′′ τ==⇒Q ′, and (Ψ ⊗ 1 , P, Q ′) ∈ R.
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• From Ψ ⊗ 1 � Q ′′ τ==⇒ Q ′ we have that Ψ � Q ′′ τ==⇒ Q ′ by Lemma 30.8
and IDENTITY.

• Hence (F Q ′′) ⊗Ψ ≤ (F Q ′) ⊗Ψ by Lemma 32.12.

• From Ψ � Q
τ==⇒Q ′′ and Ψ � Q ′′ τ==⇒Q ′ we have that Ψ � Q

τ==⇒Q ′.
• Moreover from (F P) ⊗Ψ ≤ (F Q ′′) ⊗Ψ and (F Q ′′) ⊗Ψ ≤ (F Q ′) ⊗Ψ

we have that (F P) ⊗Ψ ≤ (F Q ′) ⊗Ψ by transitivity of ≤.
• Moreover from (Ψ ⊗ 1 , P, Q ′) ∈ R we have that (Ψ, P, Q ′) ∈ R by

IDENTITY and the assumptions.
• Finally the goal is proven by setting R to Q ′.

Lemma 32.14.

Ψ � P ;̂R Q
∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ R Ψ ′'Ψ ′′

(Ψ ′′, R, S) ∈ R

Ψ � P ;̂
smpR

Q

Proof. By ;̂
smp

-I, we assume Ψ � Q
α−→ Q ′ and we must prove that there

exists a P ′ such that Ψ � P
α̂==⇒P ′ and (Ψ, P ′, Q ′) ∈ R

The proof is by case analisys if α = τ

α = τ: From Ψ � Q
α−→ Q ′ and α = τ we obtain from ;̂-E2 a P ′ such that

Ψ � P
τ==⇒P ′ and (Ψ, P ′, Q ′) ∈ R.

α 6= τ: FromΨ � Q
α−→ Q ′andα 6= τwe obtain from ;̂-E1 a P ′′′, a P ′′, and

a P ′ such that Ψ � P
τ==⇒ P ′′′, Ψ � P ′′′ α−→ P ′′, Ψ ⊗ 1 � P ′′ τ==⇒ P ′,

and (Ψ ⊗ 1 , P ′, Q ′) ∈ R.

• From Ψ ⊗ 1 � P ′′ τ==⇒ P ′ we have that Ψ � P ′′ τ==⇒ P ′ by AID and
Lemma 30.8.

• With Ψ � P
τ==⇒ P ′′′ and Ψ � P ′′′ α−→ P ′′ we have that Ψ

� P
α̂==⇒P ′, proving the transition part of the simulation.

• Finally, from (Ψ⊗ 1 , P ′, Q ′) ∈R we have that (Ψ, P ′, Q ′) ∈R by the
assumptions.

We can now prove that weak bisimilarity includes simple bisimilarity.

Lemma 32.15. If WEAKEN holds then:

If Ψ � P
.≈ Q then Ψ � P

.≈
smp

Q.

Proof. By coinduction with X set to
.≈.
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Static implication: We need to prove that if Ψ � P
.≈ Q then

Ψ � P /
smp .≈

Q.

• From Ψ � P
.≈ Q we have that Ψ � P / .≈Q by

.≈-E1.
• Hence Ψ � P /

smp .≈
Q using lemmas 30.23 and 32.13.

Simulation: We need to prove that if Ψ � P
.≈ Q then Ψ � P ;̂

smp .≈
Q.

• From Ψ � P
.≈ Q we have that Ψ � P ;̂ .≈ Q by

.≈-E2.
• Hence Ψ � P ;̂

smp .≈
Q using lemmas 30.23 and 32.14.

Static extension: Follows immediately from
.≈-E3.

Symmetry: Follows immediately from
.≈-E4.

32.3.2 Simple bisimilarity includes weak bisimilarity
To prove that simple static implication implies weak static implication we
must know that the candidate relation for weak static implication can be
extended by an arbitrary assertion.

Lemma 32.16.

Ψ � P /
smpR

Q
∧
Ψ ′ R S Ψ ′′.

(Ψ ′, R, S) ∈ R

(Ψ ′⊗Ψ ′′ , R, S) ∈ R

Ψ � P / RQ

Proof. From /
smp

-I we have to prove that for all Ψ ′ there exists an R and an S

such that Ψ � Q
τ==⇒ R, (F P) ⊗Ψ ≤ (F R) ⊗Ψ, Ψ ⊗Ψ ′ � R

τ==⇒ S and Ψ
⊗Ψ ′ � P

.≈
smp

S.

• From Ψ � P /
smpR

Q we obtain a Q ′ such that Ψ � Q
τ==⇒ Q ′, (F P) ⊗Ψ

≤ (F Q ′) ⊗Ψ, and Ψ � P
.≈

smp
Q ′.

• We have that Ψ ⊗Ψ ′ � Q ′ τ==⇒Q ′.
• Moreover from (Ψ, P, Q ′) ∈ R we have that (Ψ ⊗ Ψ ′ , P, Q ′) ∈ R by the

assumptions.
• Finally we solve the goal by instantiating R and S to Q ′.
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Before proving that simple simulation includes weak simulation we
prove that we can extend the environment of a τ-chain by an arbitrary
assertion.

Lemma 32.17. If WEAKEN holds then:

If Ψ � P =⇒ P ′ then Ψ ⊗Ψ ′ � P =⇒ P ′.

Proof. By induction on Ψ � P =⇒ P ′

Base case P = P ′: Follows immediately since Ψ ⊗Ψ ′ � P =⇒ P.

Inductive stepΨ � P
τ==⇒P ′′ andΨ � P ′′ τ−→ P ′:

• By the induction hypothesis we have that Ψ ⊗Ψ ′ � P =⇒ P ′′.
• Moreover from Ψ � P ′′ τ−→ P ′ we have that Ψ ⊗Ψ ′ � P ′′=⇒ P ′

by Lemma 32.1.
• Finally we have that Ψ ⊗Ψ ′ � P =⇒ P ′.

The candidate relation for the weak simulation must meet all the require-
ments of a simple bisimilarity.

Lemma 32.18. If WEAKEN holds then:

(Ψ, P, Q) ∈ R
∧
Ψ ′ R S.

(Ψ, R, S) ∈ R

Ψ � R /
smpR

S

∧
Ψ ′ R S.

(Ψ, R, S) ∈ R

Ψ � R ;̂
smpR ′

S

∧
Ψ ′ R S Ψ ′a.

(Ψ, R, S) ∈ R ′

(Ψ ⊗Ψ ′a , R, S) ∈ R ′
∧
Ψ ′ R S.

(Ψ, R, S) ∈ R

(Ψ, S, R) ∈ R

Ψ � P ;̂R ′ Q

Proof. By ;̂-I, we assumeΨ � Q
α−→ Q ′. There are two cases to be proved.

α = τ: We must prove that there exists a P ′ such that Ψ � P
τ==⇒P ′ and (Ψ,

P ′, Q ′) ∈ R

• From (Ψ, P, Q) ∈ R we have from the assumptions that Ψ

� P ;̂
smpR

Q.

• With Ψ � Q
α−→ Q ′ and α = τ we obtain a P ′ such that Ψ

� P
τ̂==⇒P ′ and (Ψ, P ′, Q ′) ∈ R.

α 6= τ: We must prove that for all Ψ ′ there exists a P ′′′, a P ′′, and a P ′ such

that Ψ � P
τ==⇒ P ′′′, (F Q) ⊗Ψ ≤ (F P ′′′) ⊗Ψ, Ψ � P ′′′ α−→ P ′′, Ψ ⊗

Ψ ′ � P ′′ τ==⇒P ′, and (Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R.
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• From (Ψ, P, Q) ∈R and the assumptions we obtain a P ′′′′ such that

Ψ � P
τ==⇒ P ′′′′, (F Q) ⊗Ψ ≤ (F P ′′′′) ⊗Ψ, and (Ψ ⊗Ψ ′ , P ′′′′, Q)

∈ R.
• From (Ψ ⊗ Ψ ′ , P ′′′′, Q) ∈ R and the assumptions we have that Ψ

� P ′′′′ ;̂
smpR ′

Q.

• With Ψ � Q
α−→ Q ′ we obtain a P ′ such that Ψ � P ′′′′ α̂==⇒P ′ and

(Ψ, P ′, Q ′) ∈ R ′.
• Hence we can obtain a P ′′′ and a P ′′ such that Ψ � P ′′′′ τ==⇒ P ′′′,
Ψ � P ′′′ α−→ P ′′, Ψ � P ′′ τ==⇒P ′.

• From Ψ � P
τ==⇒ P ′′′′ and Ψ � P ′′′′ τ==⇒ P ′′′ we have that Ψ � P

τ==⇒P ′′′.
• Moreover from Ψ � P ′′′′ τ==⇒ P ′′′ we have that (F P ′′′′) ⊗Ψ ≤ (F

P ′′′) ⊗Ψ by Lemma 32.12.
• Hence with (F Q) ⊗ Ψ ≤ (F P ′′′′) ⊗ Ψ we have that (F Q) ⊗ Ψ ≤

(F P ′′′) ⊗Ψ since ≤ is transitive.

• Moreover from Ψ � P ′′ τ==⇒ P ′ we have that Ψ ⊗Ψ ′ � P ′′ τ==⇒ P ′
by Lemma 32.17.

• Moreover from (Ψ, P ′, Q ′) ∈ R ′ we have that (Ψ ⊗Ψ ′ , P ′, Q ′) ∈ R ′
by the assumptions.

• Finally with Ψ � P ′′′ α−→ P ′′ all the existential quantifiers have
been instantiated, and the lemma proved.

Lemma 32.19. If WEAKEN holds then:

If Ψ � P
.≈

smp
Q then Ψ � P

.≈ Q .

Proof. By coinduction using Lemma 30.17 with X set to
.≈

smp
.

Static implication: We need to prove that if Ψ � P
.≈

smp
Q then

Ψ � P / .≈
smp

Q.

• From Ψ � P
.≈

smp
Q we have that Ψ � P /

smp .≈
smp

Q by
.≈

smp
-E1.

• Hence Ψ � P / .≈
smp

Q using
.≈

smp
-E1 and Lemma 32.16.

Simulation: Follows immediately from Lemma 32.18 and the elimination
rules for

.≈
smp
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Static extension: Follows immediately from
.≈-E3.

Symmetry: Follows immediately from
.≈-E4.

32.3.3 Weak and simple bisimilarity coincide
We can now prove the main theorem.

Theorem 32.1.
.≈

smp
= .≈

Proof. Follows directly from lemmas 32.15 and 32.19.
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33. Extending psi-calculi

One way to extend psi-calculi is to encode new operators from already ex-
isting ones. In Chapter 22 we discussed how to encode Sum, which requires
the existence of a universally true >-condition. In Chapter 29 we discussed
how the τ-prefix (Tau) is encoded by communication over a restricted chan-
nel; one way to achieve this is by introducing a term with at least one name
which is channel equivalent to itself only. In this chapter we will show how
the locales in Isabelle can be used to extend the psi-calculi formalisation
to include these two operators. For both, we require additional property of
substitution, i.e., an axiom in the substitution locale:

x̃ ] M

M[x̃ := T̃ ] = M
SUBSTID

This axiom is required in order for substitution to behave in the expected
way – to propagate past the constructs of the encoded term, and affecting
only the agents, and not the constructor itself.

33.1 Encoding Sum
With this infrastructure in place we can extend the psi-calculi locales with
the requisite that there exists a condition > with the following constraints.

Ψ ` > TOP

p · > = > TOPEQVT

The condition > must be derivable from all assertions, and it must be
equivariant. The equivariance of> allows us to derive that it has empty sup-
port, and hence any name must be fresh for it.

Lemma 33.1.
supp (>) = ;
x ]>
x̃ ] >

Proof. Follows from the definition of freshness and support.
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We can now define Sum as a case-expression with two guards using >.

Definition 33.2 (Sum).

P + Q
def= Cases [(>, P), (>, Q)]

From this definition we can derive the standard inference rules for Sum.

Lemma 33.3. Semantic inference rules for Sum

Ψ� P 7−→ V guarded P

Ψ� P + Q 7−→ V
SUM1

Ψ� Q 7−→ V guarded Q

Ψ� P + Q 7−→ V
SUM2

Proof. Follows from the CASE inversion rule and the TOP axiom.

An inversion rule for Sum is also derivable.

Lemma 33.4. Inversion rule for Sum
Ψ� P + Q 7−→ V(
Ψ� P 7−→ V guarded P

)
Prop

(
Ψ� Q 7−→ V guarded Q

)
Prop


Prop

SUM

Proof. Follows from the CASE inversion rule and the TOP axiom.

Finally, we derive a lemma which states that substitutions, both paral-
lel and sequential, propagate over Sum like the other constructors of the
framework.

Lemma 33.5.

If |x̃| = |T̃ | and distinct x̃ then (P + Q)[x̃ := T̃ ] = P[x̃ := T̃ ] + Q[x̃ := T̃ ].

Proof.

• (P + Q)[x̃ := T̃ ] = (Cases [(>, P ), (>, Q)])[x̃ := T̃ ] by Definition 33.2
• Moreover

Cases [(>, P ), (>, Q)][x̃ := T̃ ] =
Cases [(>[x̃ := T̃ ], P [x̃ := T̃ ]), (>[x̃ := T̃ ], Q[x̃ := T̃ ])]

by Definition 24.7.
• Moreover

Cases [(>[x̃ := T̃ ], P [x̃ := T̃ ]), (>[x̃ := T̃ ], Q[x̃ := T̃ ])] =
Cases [(>, P [x̃ := T̃ ]), (>, Q[x̃ := T̃ ])]
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by Lemma 33.1 and the SUBSTID axiom.
• Moreover Cases [(>, P [x̃ := T̃ ]), (>, Q[x̃ := T̃ ])] = P[x̃ := T̃ ] + Q[x̃ := T̃ ]

by Definition 33.2.
• Hence (P + Q)[x̃ := T̃ ] = P[x̃ := T̃ ] + Q[x̃ := T̃ ].

Lemma 33.6. If wellFormedSubst σ then (P +Q)σ = Pσ+Qσ.

Proof. By induction on σ and Lemma 33.5

33.2 Encoding Tau
We encode τ-prefixes in psi-calculi through an instance with a injective
equivariant function nt from names to terms satisfying supp (nt a) = {a}.
We extend the standard set of constraints with following.

p · nt x = (nt p · x) NTEQVT

supp (nt x) = {x} NTSUPP

Ψ ` (nt x)
.↔ M ⇔ M = (nt x) NTEQ

The NTEQ axiom is crucial as it ensures that a term generated by nt is only
channel equivalent to itself. We can now define the τ-prefix in the following
way, where the THE operator is the choice operator – the expression THE x.
Prop x chooses any x such that Prop x holds.

Definition 33.7.

τ.P
def= THE P ′. ∃x. x ] P ∧ P ′= (νx)(nt x(λε)nt x.0 | (nt x)(nt x) .P )

The following lemma can then be derived, which allows us to unfold the
definition of the τ-prefix, such that the bound name x is sufficiently fresh.

Lemma 33.8.

∃x. x ] P ∧ x ] C ∧ τ.P = (νx)(nt x(λε)nt x.0 | (nt x)(nt x) .P )

Proof. A sufficiently fresh name is chosen. Definition 33.7 is then unfolded
and the bound name it provides is alpha-converted to the new name.

This lemma can then be used to derive the following lemmas which
reason about how substitution, permutation, and freshness operate on
τ-prefixed terms. Moreover, we have that any τ-prefixed agent is guarded.
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Lemma 33.9.

p · τ.P = τ.(p · P)

If distinct x̃ and |x̃| = |T̃ | then (τ.P)[x̃ := T̃ ] = τ.P[x̃ := T̃ ].

x̃ ] τ.P = x̃ ] P

guarded (τ.P)

Proof. Follows by unfolding the τ-prefixes using Lemma 33.8 ensuring that
the bound names are fresh for everything in the proof context. The axiom
NTSUBST is used to remove the substitutions of all terms of the form nt x, as
we know that x is sufficiently fresh.

The next step is to derive the semantics of the τ-prefix. Ideally, we would
like a rule similar to the INPUT and OUTPUT rules – a prefixed agent has that
prefix on the label and the agent under the prefix as its derivative. However,
the COMM-rule provides the derivation

Ψ � τ.P
τ−→ (νx)(0 | P) where x ] P

as the trailing 0 and the bound name x of Definition 33.7 remain after the
derivation. The derivative is not P, but (νx)(0 | P), which is structurally
congruent to P as x ] P. More formally, we have the following semantic rule
for τ-prefixes.

Lemma 33.10. Semantic rule for the τ-prefix.

∃P ′. Ψ � τ.P
τ−→ P ′∧Ψ � P .∼ P ′

TAU

Proof. The τ-prefix is unfolded using Lemma 33.8 and the existential quan-
tifier P ′ is set to (νx)(0 | P), which is strongly bisimilar to P by Lemma 28.21.

We also need an elimination rule for τ-prefixes.

Lemma 33.11.

Ψ � τ.P
τ−→ P ′

Ψ � P .∼ P ′ TAUE1
Ψ � τ.P

τ−→ P ′

supp P ′= supp P
TAUE2

The τ-prefix is unfolded using Lemma 33.8. The SCOPE, PAR, INPUT, and
OUTPUT inversion rules are used to derive the derivative that P ′ must be
equal to (νx)(0 | P) where x ] P, which is bisimilar to P by Lemma 28.21,
and also has the same support.

These rules ensure that any derivative of a τ-prefixed agent is bisimilar to
the agent under the prefix and has equal support.
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Moreover, we need to prove that a τ-prefixed agent cannot do any other
actions than a τ-action.

Lemma 33.12. A τ-prefix can never generate an input or an output action.

If Ψ � τ.P
M N−−−→ P ′ then False. If Ψ � τ.P

M (νx̃)N−−−−−−→ P ′ then False.

Proof. Follows by unfolding the τ-prefixes using Lemma 33.8. The SCOPE,
PAR, INPUT and OUTPUT inversion rules then ensure that there are no pos-
sible transitions.

33.3 Proving the τ-laws
In this section we will prove the standard τ-laws from the pi-calculus.

1. P
.≈ τ .P in psi-calculi with weakening.

2. P +τ .P ≈ τ .P .
3. α .τ .P ≈α .P in psi-calculi with weakening.
4. α .P +α . (τ .P +Q) ≈α . (τ .P +Q).

It is immediately clear that all τ-laws require the τ-prefix, and that τ-laws
2 and 4 require Sum. Moreover, as was discussed in the beginning of Chap-
ter 29 it is required that weakening holds for τ-law 1 to be satisfied. The
same is true for law 3 to hold, as whenever theα-prefix has been discharged,
the derivatives P and τ .P must be weakly bisimilar.

33.3.1 Encoding prefixes
The τ-laws 3 and 4 quantify all possible prefixes over α, in a similar way as
is done for the labels of the transition system. In order to encode this into
Isabelle we use a similar technique as in Section 25.1.

Definition 33.13. An agent prefix, denoted α can either be an input, an out-
put, or a τ-prefix.

nominal_datatypeβ prefix = pInputβ "name list"β

| pOutputββ

| pTau

We define a function which takes a prefix and an agent and creates an
agent with that prefix. In the case that the prefix is an input-prefix, the se-
quence of names is bound into the agent.
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Definition 33.14. The bindprefix function takes a prefix and an agent and
appends that prefix to that agent.

bindPrefix (pInput M x̃ N) P = M(λx̃)N .P

bindPrefix (pOutput M N) P = M N .P

bindPrefix pTau P = τ.P

We will use the notationα .P for bindPrefix α P. We will also use the stan-
dard notation for prefixes, rather than using the pInput, pOutput, and pTau
constructors.

This function allows us to reason uniformly about arbitrary prefixes on
agents, and hence lemmas which refer to prefixes need only be declared
once, and not once for each prefix type. The semantics of the prefixes do
differ, and an inversion rule for prefixes is required for some proofs.

Lemma 33.15. Inversion rule for prefixed agents.

Ψ � α .P
β−→ P ′

∧
M x̃ N K T̃ .

(
Ψ ` M

.↔ K set x̃ ⊆ supp N
|x̃| = |T̃ | distinct x̃

)
Prop (M(λx̃)N ) (K N [x̃ := T̃ ]) (P[x̃ := T̃ ])

∧
M N K .

(
Ψ ` M

.↔ K
)

Prop (M N ) (K N ) P

(
Ψ � P .∼ P ′)

Prop (τ) (τ) P ′


Prop α β P ′ PREFIX

With these lemmas in place, we can prove the τ-laws from the
pi-calculus.

Theorem 33.1. The following τ-laws hold:

1. P
.≈ τ .P in psi-calculi with weakening.

2. P +τ .P ≈ τ .P.
3. α .τ .P ≈α .P in psi-calculi with weakening.
4. α .P +α . (τ .P +Q) ≈α . (τ .P +Q).

Proof. The proofs are done in the standard way – simulation and static im-
plication lemmas are proved using the required inversion and semantic
rules; a candidate relation is chosen for the bisimilarity proofs which use
bisimulation up-to techniques as the derivative of the τ-prefix is bisimilar
but not identical to the agent under the prefix; finally the lemmas are closed
under substitution to obtain the congruence results.
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The τ-laws which require weakening are laws 1 and 3, and the only place
where the WEAKEN axiom from Chapter 32 is required is when proving one
of the weak static implication lemmas for τ-law 1.

Lemma 33.16. If (Ψ, τ.P, P) ∈ R then Ψ � τ.P /
smpR

P

Proof.

• We have that (F (τ.P)) ⊗ Ψ ≤ ((νε)Ψ) since τ-prefixed agents are
guarded, and thus have empty frames.

• Moreover we have that ((νε)Ψ) ≤ (F P) ⊗Ψ by WEAKEN.
• Finally we have that (F (τ.P)) ⊗ Ψ ≤ (F P) ⊗ Ψ by transitivity of static

implication.
• Since Ψ � P =⇒ P and (Ψ, τ.P, P) ∈ R we have that Ψ � τ.P /

smpR

P by

Definition 32.5.

This lemma is the only one which explicitly uses the WEAKEN axiom,
hence τ-law 1 requires weakening, and also τ-law 3 since its proof depends
on τ-law 1.
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34. Conclusions

In this part of the thesis we introduced and formalised psi-calculi, a general
framework which captures a wide variety of existing calculi. A few exam-
ples are the applied pi-calculus, by Abadi and Fournet [7], the spi-calculus
by Abadi and Gordon [8], the explicit fusion calculus by Wischik and Gard-
ner [40], CC-Pi by Buscemi and Montanari [28], and extended pi-calculi by
ourselves [48]. For a more detailed exposition, see [17]. The formalisation is
substantially more complex than for CCS or the pi-calculus, which is a price
for the high expressiveness of the framework.

A fully formalised framework has several benefits. The most obvious is
that we know with absolute certainty that our theorems are correct. This
claim is not to be taken lightly since there is a clear need for robust theories.
As the complexity of the calculi increases, so does the complexity of their
proofs, and during our formalisation efforts we found bugs in the meta-
theory of several process calculi. Another benefit is that formalised theo-
ries are extensible – the ramification of changes made to the theories are
instantly apparent, making it completely safe to modify the theories with-
out risking inconsistencies.

34.1 Inconsistent process calculi
Previous attempts to create uniform frameworks are most notably the ap-
plied pi-calculus, CC-Pi, and the extended pi-calculus. All of these have
turned out to have mistakes in their meta-theory.

34.1.1 The Applied pi-calculus
The applied pi-calculus is an extension of the pi-calculus parametrised by
a signature Σ for data terms and an equational theory `Σ over Σ, and in-
troduces active substitutions {M/x } of data terms for variables. These can be
introduced by the inferred structural rule (νx)({M/x } | A) ≡ A[x := M ]. There
are names a,b,c distinct from variables x, y, z where only variables can be
substituted, and a simple type system to distinguish names and variables
of channel type from other terms of base type. Only names of channel type
can be used as communication channels.
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The labeled semantics for the applied pi-calculus turns out to be non-
compositional. Consider the closed (extended) applied pi-calculus agents

A = (νa)({a/x } | x.b.0) B = (νa)({a/x } | 0)

where we omit the objects of the prefixes. They have the same frame and
no transitions, and are thus semantically equivalent. But a context can con-
tain x and can therefore use the active substitution to communicate with
A. Formally, let R = x.0 and ⇓ b the usual weak observation or barb. We
have by scope extension that A|R ≡ (νa)({a/x } | x.b.0 | x.0) ⇓ b, but it is not
the case that B |R ⇓ b. Therefore, no observational equivalence that is pre-
served by all contexts and satisfies scope extension can be captured by the
labeled semantics. In this, Theorem 1 of [7] is incorrect; the labeled and ob-
servational equivalences do in fact not coincide, nor is labeled equivalence
a congruence. This is relevant for other papers that use or develop the la-
beled semantics, e.g. [43, 51, 34, 32].

34.1.2 The concurrent constraints pi-calculus
The concurrent constraint pi-calculus (CC-Pi) [29] can be seen as a pro-
cess calculus with ask and tell statements, parametrised by a constraint
system in the form of a named c-semiring. Such a constraint system con-
tains names, name fusion constraints and a name hiding operator ν, and
supports general constraint semirings, e.g. Herbrand constraints. The se-
mantics is given by a structural congruence and a reduction relation. There
is also a labeled operational semantics, but it is in fact not compositional.
Consider the CC-Pi agents

P = (νb, x)(x = b | ax .b .c) Q = (νb, x)(x = b | ax)

(where insignificant objects are omitted). They have the same constraint
store, x = b, and the same transitions in all constraint contexts. However,
they do not have the same transitions in all process contexts: a parallel con-
text R = a(y).y tells the difference:

P | R
τ−→ τ−→ (νb)(x = b | x = y | c)

c−→

while Q | R of course has no such c transition. Thus Theorem 1 of [29] is
incorrect: open bisimilarity is not a congruence.

34.1.3 Extended pi-calculi
Our earlier work includes the extended pi-calculi – a framework similar
to the applied pi-calculus, but simpler and more expressive [48]. The ap-
plied pi-calculus has two levels of agents (pure and extended), two types of
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binders (variables and names), and a semantics which makes use of struc-
tural congruence. Extended pi-calculi has only one level of agents, only use
names as binders, and has a semantics which does not use structural con-
gruence. Like the applied pi-calculus extended pi-calculi has the notion of
an alias, written {M/x }, which can syntactically appear in the agent.

As in the applied pi-calculus, the frame of an agent is all of its aliases
and binders not under a prefix. Frames can be used to derive equivalence
of terms. Exactly how equivalence is derived must be specified when an in-
stance of extended pi-calculi is formulated – a ternary relation, called an
EF-relation, of frames and two terms must be supplied (just as the relation
` must be supplied in a psi-calculus instance) where F ` M = N states that
the frame F implies that M and N are equivalent. This EF-relation must
meet a certain set of constraints, such as idempotence of frames. For a com-
plete list see Section 4 of [48].

As it turns out, the constraints required for the EF-relation are not
enough. This fact was discovered after the publication of [48]. Here is
an example to demonstrate that scope extension does not hold. Define
an EF-relation ` such that { f (a)/a} ` f (a) = a for all a. Moreover, let
{ f (a)/a}∪ { f (b)/b} ` a = b. By closing this relation under the requirements of
EF-relations, we obtain a valid instance of extended pi-calculi.

Let N be any term such that a ] N and b ] N, and consider the agent P
defined as:

P
def= (νa, b)({ f (a)/a} | { f (b)/b} | aN .0 | b(N ).0)

The agent P can do a τ-action since the derivation

{ f (a)/a}∪ { f (b)/b} � aN .0 | b(N ).0 τ−→ 0 | 0

can be derived.
Theorem 1 from [48] states that all structurally congruent agents are also

bisimilar; hence the agent

Q
def= (νa)({ f (a)/a} | aN .0) | (νb)({ f (b)/b} | b(N ).0)

is strongly congruent to P by the laws of scope extension and associativity
and commutativity of Parallel. However, the agent Q cannot do a τ-action,
there is no way for the names a and b to be equated as they are blocked by
the binders, and hence Theorem 1 from [48] is incorrect. Theorem 2, which
states that bisimilarity is a congruence, builds on results from Theorem 1
and is most likely also incorrect.

A solution to this problem is to add an additional requirement on EF-
relations.
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Suppose that a ]M , F and b ]N , G and F ∪G ` M = N . Then there
exists a K such that a, b ]K and F ∪G ` M = K .

This requisite is called interpolation, and it states that if a frame which
equates two terms M and N can be split into two parts F and G , the name a
fresh for F and M , and the name b fresh for G and N , then there must exist
a term K equal to both M and N , but which contains neither a or b.

With this fix, the counterexample above does not hold – a τ-action can
be derived from Q by communicating over K . Theorems 1 and 2 of [48] with
interpolation have been verified in Isabelle.

Even though this patches the calculus, it does not make it easy to work
with. Determining whether or not a relation is an EF-relation turns out to be
very difficult even for simple cases. Simple properties such as frame idem-
potence are difficult to prove as the same frame has different alpha-variants
of its aliases which can interact in unexpected ways. Also, the interpolation
requisite turns out to be difficult to establish for candidate instances.

Psi-calculi also impose requisites on its logical entailment relation, but
these requisites only reason about the assertions of the frames and not their
binders; entailments are formulated on the assertions, which correspond to
aliases in extended pi-calculi. This design decision pays off – in psi-calculi
we end up with an abelian monoid parametrised with static equivalence
and assertion composition. This makes the requisites for psi-calculi much
easier to prove for any given instance. Moreover, psi-calculi can express
all of extended pi-calculi, and more. For these reasons development of ex-
tended pi-calculi has been abandoned.

34.2 The Psi-calculi formalisation
The formalisation of psi-calculi took nearly two years, starting with the for-
malisation of extended pi-calculi. What sets this formalisation apart from
the ones for CCS and the pi-calculus is that the theories for psi-calculi were
developed simultaneously with the formalisation. This has advantages and
disadvantages.

Machine checking proofs take time, and the theories being developed on
paper will invariably be further into the development stage than their ma-
chine checked counterparts. Any bugs found in the theories, either as a part
of the formalisation efforts or as a result of the standard development cycle,
must be corrected and this can potentially lead to large amounts of work
being thrown away, and large amounts of work to reimplement the theo-
ries. However, the chances of finding bugs early in the theoretical devel-
opments increase with the use of a theorem prover, as the proofs are con-
stantly being verified. In this there is a similarity to rapid prototyping in
software development, where design bugs are weeded out by experiments

466



Part Lines of code

Agents 1336

Frames 2180

Semantics 9373

Strong bisimilarity 2733

Structural congruence 3032

Weak bisimilarity 7111

Weak Congruence 2395

Weakening 754

Total 28914

Figure 34.1: The size of the different parts of the Isabelle formalisation of the psi-
calculi meta-theory.

as early as possible. The amount of backtracks required for psi-calculi were
not too numerous. One backtrack was severe. We had finished our formal-
isation; all proofs were done; strong bisimilarity was proven to be a con-
gruence. At the time, requisites on entailment were formulated in terms of
frames rather than assertions, and for the same reasons as for extended pi-
calculi, it turned out to be too difficult to develop instances of the frame-
work. This led to the design change that the requirements on the entail-
ment relation are formulated on assertions, and not frames, which led to a
complete rewrite of the semantics and all of the Isabelle theories. The les-
son learned is that a theorem prover will only prove theorems correct, it will
not help determining their relevance.

Machine checked formalisations encourage developers to keep theories
simple – the simpler the theories, the simpler they are to formalise, and the
simpler they are to use. A good example of this is how extended pi-calculi
and psi-calculi treat the entailments of their conditions. Another example
is that we prefer calculi without structural congruence in the semantics. All
of the bugs described in Section 34.1 involve structural congruence in one
way or other.

The size of the psi-calculi formalisation is on par with the size for the pi-
calculus, but for the pi-calculus we formalised two semantics – the late and
the early versions, and for psi-calculi we have only formalised an early se-
mantics. The size of the different parts of the formalisation can be found in
Figure 34.1. In particular, the formalisation of the operational semantics is
significantly larger than for the previous formalisations. The reason is that
all of the extra infrastructure for induction and inversion rules, which Is-
abelle derives automatically for the simpler calculi, must be done manually
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for psi-calculi. Another observation is that the formalisation for weak con-
gruence is not as large as for weak bisimilarity, which strengthens our claim
that weak congruence allows for more reuse of the results than in our for-
malisation of the pi-calculus and CCS.

The time spent on the formalisation was roughly two years, including
the work with extended pi-calculi, the psi-calculi attempt where we had the
wrong equivalence, and early attempts to reason about binding sequences.
An estimate of the time required to develop the psi-calculi formalisation we
have today is about a year.

34.2.1 Example of a variant
There is an alternative way to define bisimilarity for psi-calculi as a binary
relation preserved by parallel contexts.

Definition 34.1 (Context bisimilarity). A context bisimilarity R is a binary
relation on agents such that R(P,Q) implies all of

1. Static equivalence: F (P ) 'F (Q)
2. Symmetry: R(Q,P )
3. Extension of contextual assertion:
∀Ψ. R((|Ψ|) | P, (|Ψ|) |Q)

4. Simulation: for all α,P ′ such that bn(α) ]Q there exists a Q ′ such that

1 � P
α−→ P ′ =⇒ 1 � Q

α−→ Q ′ ∧ R(P ′,Q ′)

We define P .∼
ctx

Q to mean that there exists a context bisimulation R such that

R(P,Q).

Such a definition is more in line with standard contextual bisimulations,
and also the way bisimilarity is defined in the applied pi-calculus.
The drawback is that it relies on the Parallel operator of the calculus
for its definition. For conducting formal proofs our experience is that
Definition 22.10 is preferable. We have shown that these bisimilarities
coincide, i.e., the definitions result in the same bisimulation equivalence:

Theorem 34.1 (Bisimilarity and context bisimulation coincide). .∼= .∼
ctx

We assigned one person to the paper proof, and another to formalise it
in Isabelle. The paper proof is around 70 lines of text and took around two
hours to write. It is a thorough proof, but contains hand waving remarks
such as “follows trivially from the definitions”, or “proof by intimidation :)”.
The Isabelle proof took around eight hours to write. One main advantage
of having completely formalised theories is that additions such as these do
not require a particularly large effort – the ground work has already been
done.
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From this it would appear that using Isabelle requires an increased effort
by a factor of four. In reality, for different proofs this factor varies wildly.
In some cases the paper proof took a very long time. An example is the
preservation property for strong congruence where the precise formulation
of Lemmas like 27.36 turned out to be elusive. Also, the main effort of the
development have been on other things than proofs of any kind. Overall
we estimate that the Isabelle formalisation has required roughly the same
effort as the non-Isabelle development, in other words, the price to have
completely formal theories was to double the development effort.

34.2.2 Weak equivalences
The weak equivalences for psi-calculi were difficult to get right. On several
occasions we thought we had a good definition of weak bisimilarity which
turned out either to be non compositional or non transitive. Most of the
motivating examples in Section 29.2 were found as a result of an unsuccess-
ful formalisation attempt, motivating the search for a counter-example.

It is important to remember that even though theorem provers provide
absolute certainty that a proof is correct, they do not guarantee that the
right thing is being proven. After a few months, we had arrived at a weak
bisimulation relation which is a congruence. To check that it relates pre-
cisely the right agents we provided an independent definition in the form of
barbed congruence. As it turned out the equivalences did not coincide, and
the last example of Section 29.2 was found. The proof that barbed bisimilar-
ity coincides with the final definition of weak bisimilarity has not yet been
machine checked.

34.3 Extensibility
One of the main advantages of having fully mechanised theories is that the
effects of any changes to the formalisation is instantly apparent. This sec-
tion will discuss a few changes that have been made to the formalisation
after all theorems were proven.

34.3.1 Case
In a previous version of psi-calculi, the CASE rule looked as follows:

OLD-CASE
Ψ`ϕi

Ψ� case ϕ̃ : P̃
τ−→ Pi

469



In this rule, the choice of which branch to take in a case statement
yields an internal action, after which the process P evaluates as usual. An
implication is that the requirement that P is guarded can be omitted. We
initially adopted this rule since it admits simpler induction proofs. At a
quite late stage we decided to change it to the present rule in Figure 22.1,
since this more closely resembles what is used in similar calculi. The
change prompted a rework of the entire proof tree from the semantics and
up. The total effort was approximately eight hours, after which we had
complete certainty that the new rule does not cause any problems.

34.3.2 The empty process
In the original paper on psi-calculi we defined the deadlocked agent to be
the unit assertion, i.e.

0
def= (|1|)

An unintuitive side effect of this definition is that the empty agent is not
guarded, as guarded agents must not have top level assertions which are
not under a prefix. Two possible fixes are to either add the empty agent to
the primitive psi-calculi agents, or to encode the empty agent as a case with
no choices. We chose the former.

Again, this is a change at the top of the proof tree, and hence all proofs
have to be rechecked. This took about an hour to implement, and a coffee
break while Isabelle rechecked the proofs.

34.3.3 Axioms for substitution
The substitution axioms are presented in Section 24.2.1 have been subject
to change. Originally there were four additional axioms, which we today
know are not required. The four axioms were the following:

1. If a ] X [x̃ := T̃ ] and a ] x̃ then a ] X
2. If a ] X and a ] T̃ then a ] X [x̃ := T̃ ]
3. If x̃ ] X then X [x̃ := T̃ ] = X
4. If x̃ ] ỹ and ỹ ] T̃ then X [x̃ ỹ := T̃Ũ ] = (X [x̃ := T̃ ])[ỹ := Ũ ]

In all cases, the lengths of the name vector and the term vector are re-
quired to be the same, and the name vector distinct.

Axiom 1 represents a lower bound of the support of the substitution func-
tion – it says that substitution may not remove names which are not affected
by the substitution. This axiom is used to determine that names are fresh for
the object and the derivative in derivations using the INPUT rule.
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Axiom 2 represents an upper bound of the support of the substitution –
the result of a substitution may not have greater support than the originat-
ing term and the terms being substituted into it. This axiom turned out to be
derivable since substitution is equivariant, as is proved in Lemma 24.5. This
lemma states that the upper bound includes the names being substituted
away, but this is unproblematic. We can always assume that the names x̃
of any substitution X[x̃ := T̃ ] are sufficiently fresh, as they always originate
from the bound names of an input prefix.

Axioms 3 and 4 were needed for a previous definition of strong
equivalence and weak congruence. Strong equivalence was defined as
strong bisimilarity closed under a single parallel substitution, and not a
sequence as in Definition 27.48. The proof of Lemma 27.51 then requires
Axiom 4 – the definition of strong equivalence requires that bisimilarity is
closed under a single substitution. In order for bisimilarity to be preserved
by Input it must be preserved by an additional substitution, and these
must be joined into a single substitution. Axiom 4 ensures this. With the
current definition of sequential substitution, Definition 27.43, we have this
property by definition.

Axiom 3 was required to ensure that strongly equivalent agents are also
strongly bisimilar – without it, we cannot prove that an empty substitution
has no effect. Again, this is a property we get for free with the current defini-
tion of strong equivalence. This axiom is still needed when we encode Sum
or the τ-prefix, as described in Chapter 33, to allow substitution to propa-
gate past the new constructors.

From the original seven axioms for substitution, there following three re-
main:

p · X[x̃ := T̃ ] = (p · X)[p · x̃ := p · T̃ ] SUBSTEQVT

|x̃| = |T̃ | distinct x̃
set x̃ ⊆ supp X y ] X[x̃ := T̃ ]

y ] T̃
SUBSTFRESH

|x̃| = |T̃ | distinctPerm p
set p ⊆ set x̃ × set (p · x̃) (p · x̃) ] X

X[x̃ := T̃ ] = (p · X)[p · x̃ := T̃ ]
SUBSTALPHA

The requirement of the SUBSTEQVT axiom is clear – all constructors in a
nominal formalism must be equivariant, or permutations would not prop-
agate past them. The SUBSTALPHA axiom is required to allow arguments
about input prefixes up to alpha-equivalence – if the bound names of a pre-
fix are alpha-converted, then the corresponding conversion must be possi-
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ble to apply to the substitutions of the INPUT rule as well. The final axiom
is the SUBSTFRESH axiom. It turns out that without it, bisimilarity in psi-
calculi would not satisfy scope extension. Consider the agent

M(λx)N . x

where names are terms and can be used as channels, and the agent x ab-
breviates x(λε)K .0 One possible transition for this agent is

M(λx)N . x
M N [x:=b]−−−−−−−→ x[x := b]

where b is any name. We know from the INPUT rule that x must be in the
support of N. Let N ′= N[x := b]. Assuming that SUBSTFRESH does not hold,
it is possible that b is fresh for N ′, even though b appears in the derivative
of the transition as x[x := b] = b.

Now consider the agents:

P
def= M(λx)N . x | (νb)b

Q
def= (νb)(M(λx)N . x | b)

Clearly P and Q should be bisimilar, since bisimilarity should satisfy scope
extension. However, we have that

Q
M N ′−−−→ (νb)(b | b)

τ−→ (νb)(0 | 0),

where the first transitions is inferred by the INPUT and the SCOPE rules, and
the second transition by the COMM and the SCOPE rules.

P
M N ′−−−→ b | (νb)b

which has no further tau action. Therefore P and Q cannot be bisimilar,
and scope extension fails. If the SUBSTFRESH axiom holds, then we know
that b must occur in N ′, and hence because of the side condition in SCOPE,
Q cannot do the input action without first alpha-converting its restricted
name b. The agent Q ′, which is the agent Q with b alpha-converted for c,
then has the transition

Q ′ M N ′−−−→ (νc)(b | c),

and from here, there are no further τ-actions, and P, Q, and Q ′are bisimilar.
The realisation that the four axioms mentioned at the beginning of this

section are superfluous dawned on us three days prior to the printing of this
thesis. Axioms 1 and 2 were unproblematic to remove, whereas Axioms 3
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and 4 required a slight adjustment of the definition of strong equivalence
and weak congruence. The total amount of work to make these changes
was about six hours. If our formalism had just existed on paper, we would
never have dared make this change so close to the deadline, once again the
machine checked proofs ensure that we can make these types of changes
and be completely certain that our results still hold.

Axioms 3 and 4 are intuitive, and any reasonable substitution function
should satisfy them. It is possible to think of a substitution function which
in addition to substituting the names also rewrite the agents to some nor-
mal form using the laws of structural congruence, but such substitutions
are non-standard. If the substitution functions for an instance of psi-calculi
satisfies Axioms 3 and 4, then strong equivalence and weak congruence can
de defined by closing their respective bisimulation relations under a single
parallel substitution, rather than a sequential one. The proof that they are
congruences still holds.

34.4 Future work
There are two main areas for future work, the first is to extend the theories
of psi-calculi, and mechanise the remaining parts, the other is to create au-
tomatic support for bisimilarity checking and instance verification.

34.4.1 Barbed congruence
In [47] we defined weak barbed bisimilarity and proved that it coincides
with weak bisimilarity. Barbed bisimilarity has not been formalised for any
of the calculi presented in this thesis.

The reduction semantics of barbed bisimilarity contains structural con-
gruence – a construction which we go to great lengths to avoid for the cal-
culi we formalise, but for barbed equivalences it is necessary. Formalising
the proof that barbed bisimilarity and weak bisimilarity coincide would re-
quire that the reduction semantics is defined in Isabelle.

34.4.2 Automatic instance verification
When creating a psi-calculus instance, a user has to provide terms, asser-
tions, and conditions; define substitution functions for each of these which
meet the requirements presented in Section 24.2.1; the three equivariant
nominal morphisms presented in Section 24.3 must be provided, and the
entailment relation and static equivalence meet the requisites listed in Sec-
tion 24.6. We are currently working on having Isabelle automatically verify
if a candidate instance is a psi-calculus instance or not. The generality of
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the framework naturally makes this undecidable, but Isabelle should try to
prove as much as possible, and leave the unproved subgoals for the user
to handle manually. The proofs for the substitution functions in particular
require quite simple heuristics, as long as the terms, assertions, and condi-
tions are inductively defined or nominal datatypes.

34.4.3 Types
All process calculi covered in this thesis are untyped. Type systems are very
useful for writing specifications or programs in process calculi. One area of
concurrency which has had a significant benefit from types is security. The
idea of using types to verify security properties of protocols was first intro-
duced by Abadi [6] and subsequent work has verified a variety of protocols.
The idea is that if a program type checks, it fulfills the desired security prop-
erties.

We have begun work on typing psi-calculi. Our goal is that the type sys-
tem should be as general as psi-calculi themselves – in the same way as
for terms, assertions, and conditions, types should be members of nominal
sets, a typing judgment should be provided, which similarly to the entail-
ment relation must have a set of constraints imposed on it. This set should
be kept as small as possible such that the typing system meets the typical
properties, e.g. subject reduction.
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Part V:

Conclusions





35. Conclusions

This thesis presents the most extensive formalisations of process calculi
ever done in a theorem prover. Related approaches were discussed in Chap-
ter 3, but these are small in comparison.

The formalisations of CCS and the pi-calculus means that we have com-
plete confidence in their meta-theories. We did not prove any new results
or find any bugs in existing proofs, but having their meta-theory checked by
a theorem prover ensures that nothing has been missed. We did find parts
of the theories where the proofs are vague in the sence that it is not obvious
how to make them completely rigorous.

Formalising the proofs for psi-calculi in parallel with the development
has turned out to be invaluable, and we would most likely not have fin-
ished successfully without it. Throughout the development we have un-
countable times stumbled over slightly incorrect definitions and not quite
correct lemmas, prompting frequent changes in the framework. For exam-
ple, our mistake in [48] mentioned in Section 34.1.3 was found during proof
mechanisation and would probably not have been found at all without it; at
that time we had completed a manual “proof" which turned out incorrect.

This chapter concludes the thesis. We will discuss the impact of our work,
and elaborate on what features we would like to see in the theorem provers
of tomorrow to facilitate the types of formalisations presented in this thesis.

35.1 Nominal Isabelle
All of the theories in this thesis have been formalised using the nominal
datatype package of Isabelle/HOL. When we started our formalisation of
the pi-calculus, Nominal Isabelle existed only as a handful of theory files,
created by Urban, demonstrating a proof of concept by formalising the
Church-Rosser theorem of the lambda-calculus. At the time there were no
notions of nominal datatypes, nominal functions, or nominal induction
or inversion rules. Our original formalisation of the pi-calculus encoded
all of these from the bottom up using the techniques provided in Urban’s
theories.

The automatic tactics of Nominal Isabelle gradually became better, and
with each release we discarded thousands of lines of proof code, as the lat-
est release could prove them automatically. With psi-calculi we find our-
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selves in a similar situation as when we started on the pi-calculus; a lot of
the proofs for the theoretical infrastructure currently have to be proven by
hand, but we expect developments of Isabelle to prove more parts automat-
ically.

35.1.1 The future of binders
Nominal Isabelle does not currently have support for binding sequences.
These must be coded by hand, as discussed in Chapter 23. Moreover, pro-
viding support for binding sequences is not enough in the general case. A
simple example is if we were to add types to psi-calculi. An input prefix
would then have the form

M(λ x̃i : T̃i )N .P

where x̃i : T̃i is a sequence of pairs of names and types, where the names
bind into N and P as usual, but possibly also into the types. Another ex-
ample is residuals, which are formally defined in Definition 25.3. Residuals
are paired with a wrapper function in Definition 25.5 to allow us to reason
about them without splitting the actions into the types with binders and
those without. These two examples demonstrate that we need something
more general than binding sequences. A framework should allow a nomi-
nal datatype with an input prefix to be coded along the lines of

Input α ′′(«name»×psiType) list′′ α (α, β, γ) psi

where name binds into the types, the object and the agent. The bound out-
put residual could be coded like

BoundOutput α ′′«name» list′′ α (α, β, γ) psi

where name binds into the object and the agent. Isabelle can then provide
notation to reason about the prefixes or the actions as separate objects,
as described in Section 25.1. A function like the bn function for residuals
must be created, and an alpha-equivalence lemma like Lemma 25.8 must
be derived. Neither of these are complicated, and the techniques to gen-
erate Lemma 25.8 do not require the structure of the terms to be of a par-
ticular form – all that is required is that the bound names can be retrieved
using a bn function, and that these bound names do not appear outside
their scope.
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35.1.2 Induction and inversion rules
Isabelle has support for deriving induction rules for calculi with more
advanced binding schemes than just single bindders. When the induction
rules are derived the user must specify which names should be allowed
to be alpha-converted, and prove a set of proof obligations provided by
Isabelle ensuring that these names can actually be alpha-converted.

Isabelle does not currently derive inversion rules for terms with arbi-
trary binding schemes; only inversion over terms with single binders is sup-
ported and more advanced inversion rules must currently be derived man-
ually. In Chapter 26 is described how to create nominal inversion rules for
calculi with arbitrary binding schemes. The requirements to derive the rule
are modest; it must be possible to alpha-convert the terms, to obtain their
bound names, and to calculate the number of binders present in a struc-
ture. We believe our techniques to be general enough to be applied for cal-
culi with arbitrary binding schemes.

35.1.3 Current developments
A new version of Nominal Isabelle is currently being developed, which will
have support for general binding schemes [74]. It allows the user to create
datatypes and supply a bn function to tell where in the datatype the binders
are. Moreover, three types of binding schemes are supported, and all three
of them are useful when writing a formalism such as the one for psi-calculi.

The first binding scheme is what we have in this thesis – names are bound
sequentially, their order matters, and two terms are alpha-equivalent if they
are structurally equivalent, their binding sequences have the same length,
and there is an alpha-converting permutation which equates the two.

The second type of binding scheme uses binding sets – i.e. the order of
the sequence does not matter. For our purposes, this would be ideal for
modeling bound output transitions as we want the equality

Ψ� P
M (νx y z)N−−−−−−−→ P ′ =Ψ� P

M (νzx y)N−−−−−−−→ P ′

to hold. The intuition for psi-calculi is that the binders for bound output
actions should be sets – that is the reason the OPEN rule inserts the opened
binder at an arbitrary place in the binding sequence. This is one of the most
awkward part of our formalisation, as demonstrated in the proof in Sec-
tion 28.1.5 which states that agents with commuting binders are bisimilar.

The third and final binding scheme binds sets, and ignore binders where
the bound name does not occur. For example, consider an instance of psi-
calculi where assertions are sets. We want the frame equality

(νx y){x} = (νx){x}
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as y does not appear in the assertion {x} at all, and can be removed.
Possible future work includes adapting the current formalisation to the

next version of Nominal Isabelle. We expect that significant simplifications
can be made. The infrastructure to reason about binding sequences, induc-
tion, and inversion in our formalisation well exceeds ten thousand lines of
code. The new version of Nominal Isabelle still does not support inversion
rules; we think that the strategy presented in Chapter 26 is applicable at
least to the binding schemes which do not use binding sets.

35.2 Impact
In this thesis we have demonstrated techniques to formalise process alge-
bras in a theorem prover. We have used nominal logic to represent binders,
and Isabelle to to verify our proofs, but our methods are general enough to
be used with other theorem provers, and to use other formalisms to repre-
sent binders.

We have formalised strong and weak equivalences of three major
process calculi, from CCS which was the first process calculus, to the
pi-calculus which introduced modeling of mobility in concurrent systems,
to psi-calculi which represents the current state of the art. To the best of
our knowledge, weak equivalences for process calculi have never before
been formalised in a theorem prover. The techniques we use, by lifting
strong semantics to a weak level, effectively reduces the complexity of
disregarding the internal actions of agents. In short, the presence of
τ-chains and weak transitions does not increase the complexity of the
formalisation. The techniques have been used to formalise all calculi in
this thesis, and we believe them to be general enough for the process
calculi of tomorrow as well.

The psi-calculi framework is the most advanced process calculus frame-
work to date. It is expressive, it is general, and it has a simple semantics. The
meta-theory has been proven correct in Isabelle. The next step will be to de-
velop tools to allow the verification of programs and protocols. Preferably
the output of these tools should be verified by a theorem prover.

For our formalisation efforts nominal logic has worked exceptionally
well. One of its main benefits is that it provides reasoning about binders
without referring to any particular structures of the data types. The
arbitrary binding schemes which we touched on in the previous sections
also follow this notion since alpha-equivalence and alpha-conversion
lemmas can be established independently of the exact structure of the
nominal datatypes. Reasoning about alpha-equivalence with single
binders is reasonably well understood – there are de Bruijn indices, higher
order abstract syntax, nominal logic, and recently the locally nameless
framework [10], but for future calculi the abstraction must go one step
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higher and reason about how to alpha-convert terms with arbitrary
binding schemes. We have shown that nominal logic and Nominal Isabelle
are exceptionally well suited for this task. Ultimately reasoning about
binders should not add to the complexity of the proofs. There is still work
to be done, but we believe our formalisation to be a proof of concept of
how these goals can be attained.
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Summary in Swedish

Att formalisera processalgebror
Vi är vana vid att datorer inte fungerar. Att en dator hänger sig, kraschar,

tappar bort filer eller bara beter sig konstigt är något som inte gör oss
särskilt förvånade. Ganska ofta är felen användarrelaterade, men inte
sällan är det fel på programvaran. Vad vi ofta inte tänker på när vi motvilligt
accepterar att datorn inte fungerar är att förhållandevis få datorer är
sådana vi hittar på skrivbord. De allra flesta datorer sitter i bilar, tåg,
flygplan, medicinsk utrustning eller andra inbyggda system – de är små,
förhållandevis enkla, och ser till att servostyrningen på bilen funkar, att
växlarna på spåren aldrig kommer att vara ställda så att tågen krockar,
att autopiloten på flygplanen landar på banan med några centimeters
felmarginal. Att ens arbetsdator kraschar och tappar bort några filer må
vara hänt, men om krockkudden på ens bil fälls ut efter fem sekunder
istället för fem hundradels sekunder så blir konsekvenserna mycket värre.
Det är helt enkelt inte acceptabelt att vissa datorer inte fungerar.

Hur kan vi då garantera att ett program fungerar? Svaret är att det kan
vi inte göra. Inte helt och hållet. Vi saknar de verktyg som behövs för att
matematiskt kunna bevisa att ett program gör exakt vad det är tänkt att göra
och ingenting annat. Vi vet hur man kontrollerar enstaka egenskaper hos
program, som att en viss kodsekvens kommer att exekvera inom en viss tid,
eller att vissa förutbestämda olämpliga saker inte kommer att hända, men
ingen av dessa garanterar avsaknaden av fel i programmen. Det blir inte
lättare av att moderna operativsystem möjliggör att flera program kör par-
allelt med varandra – mängden sätt som program kan växelvärka på är helt
enkelt för stor för att kunna få en samlad överblick av. Den här avhandlin-
gen behandlar hur man skaffar sig den överblicken genom att konstruera
matematisk modeller av program som kör parallelt med varandra. Vi ska-
par språk för att resonera om den typen av system, och vi bevisar att dessa
språk är korrekta – det vill säga att alla grammatiskt korrekta program kom-
mer att exekvera på ett förutsägbart sätt.

Den typ av språk vi använder oss av kallas processalgebror. En processal-
gebra är en matematisk modell som analyserar system genom deras kom-
munikationer med omvärlden – eventuella interna beräkningar som varje
enskilt program gör tas ingen hänsyn till. Processalgebror introducerades
åren runt 1980 och deras fokus har i huvudsak legat i att analysera protokoll
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som datorer använder för att kommunicera med varandra. De frågor man
har ställt sig har varit om protokollen fungerar, vilket oftast innebär att de
meddelanden som skickas kommer fram och att de inblandande program-
men beter sig som de ska. På senare tid har processalgebror också använts
för att säkerställa att de meddelanden som skickas enbart kan läsas av den
tilltänkte mottagaren. Det ska inte vara möjligt för någon att snappa upp
privat kommunikation, till exempel mellan en kund och dess bank.

I takt med att komplexiteten av programmen ökar har också
komplexiteten hos processalgebror ökat – den typ av egenskaper vi vill
kontrollera går inte att formulera på ett enkelt sätt med de gamla språken.
Detta har lett till att mängden dialekter av processalgebror har ökat
dramatiskt. Fördelen är att vi får kraftfullare språk som är mer lämpade
att lösa de nya uppgifterna, men det finns några nackdelar. Till att börja
med är många av dessa språk väldigt snarlika varandra, och en rimlig fråga
är om man inte kan hitta ett genemsamt ramverk för processalgebror.
Desustom, ju mer komplicerade språken blir, desto svårare blir det att
bevisa att språken beskriver det de ska – att grammatiken är korrekt,
och att programmen skrivna i språket gör det vi har tänkt oss. Ytterligare
ett problem är att när man gör en ändring i ett språk måste alla bevis
som säkerställer att språket verkligen fungerar göras om, och även små
ändringar kan ha svåröverskådliga konsekvenser.

Den här avhandlingen är ett steg på vägen att lösa dessa problem. Vi
introducerar ett ramverk för processalgebror som vi kallar för psi-kalkyl.
Detta ramverk är generellt nog att lösa samma problem som en stor del av
redan existerande processalgebrorna, men den gör det på ett enkelt och in-
tuitivt sätt. Vi bevisar att kalkylen är korrekt, det vill säga att alla program
har ett förutsägbart beteende.

För att förvissa oss om att våra bevis verkligen är korrekta använder vi
oss av den interaktiva teorembevisaren Isabelle. Isabelle är ett datorpro-
gram som kontrollerar matematiska bevis. Bevis som görs med papper och
penna brukar ofta innehålla oprecisa argument som “vi inser lätt från def-
initionen av X att Y är sant”, eller “följer direkt genom induktion över de
naturliga talen”. Den här typen av resonemang är inte nödvändigtvis fel,
men det finns gott om fall där matematiska bevis har gjorts, som senare
visat sig vara inkorrekta. Teorembevisare hjälper oss eftersom de tvingar
oss att vara tydliga – en dator inser ingenting lätt, och ingenting är uppen-
bart. Allting måste förklaras i mycket tydliga och konkreta termer. Nack-
delen med att använda teorembevisare är att en hel del jobb går åt till att
skriva beviset på ett sådant sätt att datorn förstår det. Fördelarna är många.
Vi vet när vi har formaliserat våra bevis att de faktiskt är korrekta. Vi har inte
missat några fall, vi har inte gjort en felaktig förenkling någonstans, och alla
våra bevisstrategier är korrekta. Vi kan dessutom ändra i våra formalismer
när som helst och direkt se vilka effekter detta får för våra bevis. Effekten
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av alla ändringar blir direkt uppenbar, och vi kan stämma av våra bevis och
göra ändringar där så behövs.

Psi-kalkyl är det mest avancerade ramverket för processalberor idag.
Grammatiken är enkel, kraftfull, och den fångar beteendet hos ett stort
antal redan existerande processalgebror.
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