
Journal of Instruction-Level Parallelism 10 (2008) 1-22 Submitted 11/06; published 6/08

On the Nature of Cache Miss Behavior: Is It 2 ?

A. Hartstein AMH@US.IBM.COM
V. Srinivasan VIJI@US.IBM.COM
T. R. Puzak TRPUZAK@US.IBM.COM
P. G. Emma PEMMA@US.IBM.COM
IBM – T. J. Watson Research Center
PO Box 218
Yorktown Heights, NY 10598 USA

Abstract
It has long been empirically observed that the cache miss rate decreased as a power law of

cache size, where the power was approximately -1/2. In this paper, we examine the dependence of
the cache miss rate on cache size both theoretically and through simulation. By combining the
observed time dependence of the cache reference pattern with a statistical treatment of cache entry
replacement, we predict that the cache miss rate should vary with cache size as an inverse power
law for a first level cache. The exponent in the power law is directly related to the time
dependence of cache references, and lies between -0.3 to -0.7. Results are presented for both
direct mapped and set associative caches, and for various levels of the cache hierarchy. Our
results demonstrate that the dependence of cache miss rate on cache size arises from the temporal
dependence of the cache access pattern.

1. Introduction

Most modern processor systems include a cache hierarchy [1-4], and will continue to do so in
future. There are numerous papers [5 - 13] discussing the use of analytical cache models to
predict cache behavior. However there are relatively few papers that deal with the origins of the
dependence of the miss rate of a cache on the corresponding size of the cache. Chow [5, 6]
formulates an analytical cost-performance model for caches in order to derive the optimum cache
hierarchy that maximizes the performance. The model assumes that the miss rate is a power law
function of the cache's capacity. Przybylski et. al. [8, 9], use the observed relationship between
cache miss rate and capacity to size the various levels of the cache hierarchy.

All of these studies have been empirical in nature. It is clear that if a workload is small and
fully fits within the size of a particular cache, the miss rate will be small. However, if the
workload is large, the cache miss rate is observed to decrease as a power law of the cache size,
where the power is approximately -1/2. This is the well known 2 rule, where if the cache size is
doubled, the miss rate drops by the factor 2 . We gave a preliminary account of this work at the
Computing Frontiers Conference.[14]

In this paper we examine this dependency theoretically in order to understand the underlying
cause of the behavior. We also use detailed simulations to test these theoretical ideas. Both first
level caches and second level caches are studied. Results are presented for both direct mapped
and set associative caches. The results can be readily extended to any level of a memory
hierarchy. It is found that the dependence of miss rate on cache size arises from the time
dependence of the cache reference pattern exhibited by a particular workload. In particular, the

2 rule emerges because most large complex workloads display a cache re-reference timing
pattern, which obeys a power law. The power law, observed for the cache references, shows

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

2

exponents ranging from -1.7[b [-1.3. The corresponding power law for the miss rate, the square
root rule, ranges from -0.7[a [-0.3. We show theoretically that these two power laws are
interrelated; that is a = b - 1.

A very different approach to the same problem was taken by Singh, Stone and Thiebaut [15].
In their paper the starting point is the number of unique cache references occurring in a finite time
interval, and the growth of that number as the time interval increases. Next they extract the
dependence of the miss rate on cache size from that function. Their analysis was for a fully
associative first level cache, with an approximate extension to first level set associative caches.
Our approach starts from the temporal dependence of cache references, and applies a statistical
model of cache behavior to obtain the results presented here. It is applicable to both direct
mapped and set associative caches without approximation, and is also applicable to all caches in a
hierarchy and not limited to the first cache level.

2. Simulation Methodology

In order to explore the dependence of cache miss rate on the cache size, we have used a
proprie tary simulator [16]. As input the simulator uses design parameters that describe the
organization of the processor and a trace tape. It produces a very flexible cycle accurate model of
the processor. With this tool we are able to model two levels of cache hierarchy leading to main
memory, numerous pipeline designs, various issue width superscalar designs, in-order execution
processing and out-of-order execution processing. This tool has mainly been used for work on
IBM zSeries processors.

 Even though our simulator accurately models the entire processor pipeline, for this study the
main portion of the model only serves to feed the cache model with an accurate time dependent
reference stream. Many of the details of the simulated model are not important to this study. The
cache hierarchy portion of the model allows for various cache sizes, set associativities, and line
sizes for each level of the hierarchy. Both latencies and trailing edge effects are accurately
modeled for all levels of the memory structure. Busses are accurately modeled, between different
levels of the hierarchy and between the caches and the processor, including all timing and port
contention. For this study the models employed separate instruction and data caches. For the set
associative cache models an LRU replacement algorithm was used.

We also had the availability of 55 traces, encompassing traditional (legacy) workloads,
“modern” workloads, SPEC95 and SPEC2000 workloads. The traditional workloads include
both database and on-line transaction processing (OLTP) applications. The modern workloads
were real, substantial workloads, written in either C++ or Java. These traces were carefully
selected to accurately reflect the instruction mix, module mix and branch prediction
characteristics of the entire application, from which they were derived.

Since our aim was to study cache behavior, most of the workloads available were not
suitable. Any workload, which fits entirely within the second level cache, was discarded.
Therefore, most of the SPEC benchmarks were not used for this study. Instead we focus on the
behavior of large complex workloads, which adequately stress the memory structure. The
workloads used were largely on-line transaction processing (OLTP) and a processor simulator.
An exception to this protocol was made in order to understand workload dependences. Here we
included all of the workloads, but only L1 cache studies could be performed.

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

3

3. Origin of the Square Root Rule

The dependence of the cache miss rate on cache size (Eq. 1), the square root rule, is well known
[6, 11 - 13].

 M = M0A−a (1)

Here, A is the cache size and the exponent, a, typically takes on values between 0.3 and 0.7.
However, the rule is only empirical and therefore is not necessarily accurate in all situations. In
particular, if the memory footprint of a particular workload is smaller than the cache size, so that
the data set fits within the cache, there will be no cache misses after the initial loading of the
caches. The much more interesting case is for large workloads which are much larger than the
cache size. For many of these large workloads, we show that the square root rule is a natural
consequence of the time dependence of cache requests along with the probability of finding an
item in the cache when requested.

A cache entry is only useful if it is re-referenced before it is evicted from the cache. An
important parameter governing this process is the time interval between these references. This
time interval is workload dependent and can in principle take on any functional form. We have
modified our simulator to determine the time interval between each cache line reference and its
next reference. It is found that most workloads have a similar dependence, shown in Fig. 1a.

Each data point in this graph shows the number of occasions in which the time interval
between subsequent references to any cache line takes on specific values, e.g. the time interval of
200 cycles occurs 214 times for data references and 508 times for instruction references. Note
these re-reference patterns are only dependent on the workload and the cache line size. The same

0 100 200 300 400 500

t (Cycles)

0

200

400

600

800

1000

C
ac

he
 A

cc
es

se
s

Instructions

Data

Figure 1a: Re-reference pattern for both data and instructions in the OLTP-3 program fit with a

power law dependence.

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

4

.

0 100 200 300 400 500

t (Cycles)

0

200

400

600

800

1000

C
ac

he
 A

cc
es

se
s

Instructions

Data

Figure 1b: Re-reference pattern for both data and instructions in the OLTP-3 program fit with an

exponential dependence.

functional form is found for both instruction cache and data cache references. In general the re-
reference interval follows a power law with additional structure, indicative of specific workload
features, superimposed on the general behavior.

We initially thought that the re-reference pattern would follow a decaying exponential rather
than the power law shown in Fig. 1a. In Fig. 1b the identical data (Fig. 1a) is plotted along with
the best fits to an exponential decay. It is abundantly evident that an exponential decay does not
fit the data nearly as well as the power law fit shown in Fig. 1a. The same results obtain for all of
the workloads, studied. Therefore, our analysis for the remainder of this paper derives from the
observed power law dependence

The rate of re-referencing a specific cache line is given by

 R(t) = Ro t−b . (2)

The rate of re-references, as a function of the time interval, is a decaying function of time. The
decay constant, b, is found to take on values ranging from 1.3 to 1.7. The data shown in the
figure are average rates for all cache lines, rather than for any specific line. However, a program,
which contains a large loop revisiting the same code time after time, will show very different
behavior. We will return to this point in a later section.

In order to determine the cache miss rate we need to determine the probability that a re-
referenced cache line is still resident in the cache. For simplicity we will first consider the
problem of a direct mapped cache and later extend the analysis to set associative caches. We

consider a cache with tota l capacity, A, and a line size, A l. For the direct mapped cache the

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

5

number of cache lines is simply given by N = A/A l. Whenever a reference to the cache misses, it
removes an entry from the cache. If the usage of the cache is uniform, the probability that a
particular cache line is ejected is P = 1/N after one miss. The probability that a particular cache
line will still be in the cache after n misses is

 P = (1 − 1/N)n , (3)

and the probability that a particular cache line will have been ejected after n misses is

 P = 1 − (1 − 1/N)n . (4)

We can change this formulation of the probability in terms of discreet events, cache misses, into
continuous values of the parameters. This approximation is valid as long as the number of events
is large. It has the advantage that the mathematics for continuous variables is much easier. Eq. 4
then takes on the form

 P(t) = 1 − e−
Mave

N t, (5)

where we have expressed the number of misses, n, as an average miss rate, Mave, multiplied by a
time, t, in cycles. We only utilize this average miss rate as a scaling factor between the number of
misses and time. Note that Eqs. 4 and 5 are mathematically equivalent for large n.

The cache miss rate, essentially the probability that a cache reference at time, t, will miss in
the cache, is given by the product of Eqs. 2 and 5.

 M(t) = Ro t−b (1 − e−
Mave

N t) (6)

Eq. 6 gives the miss rate as a function of the reference time. In order to obtain the total miss rate,
Eq. 6 must be integrated over all time.

 M = ¶0

∞

 Ro t−b(1 − e−
Mave

N t)dt (7)

This equation can be evaluated by making a change of variables T = M av e
N t , where N = A/A l .

Substituting this expression into Eq. 7 and pulling those parameters, independent of T, out of the
integral gives:

 M = Ro
A

A lM ave

1−b ¶0

∞
 T −b (1 − e −T)dT (8)

The important point shown in equation 8 is that the miss rate is dependent on the cache size,

A, and that the integral is simply a constant. In fact the integral is well known as the gamma

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

6

function, G?(1-b?) with tabulated values readily available. Therefore our final expression for the
miss rate is

 M = R o

(A lMave) 1−b G(b − 1)A1−b
 , (9)

where the miss rate is given by the cache size to the power 1-b multiplied by a particular set of
constants. Eq. 9 predicts that the miss rate will vary with cache size by the “ 2 ” rule, with the
exponent, varying between -0.3 and -0.7 with workload. When 1-b =-0.5, an exact 2 rule is
observed.

0.1 1 10 100 1000

Cache Size (kB)

0.01

0.1

1

M
is

se
s/

In
st

ru
ct

io
n

Figure 2: The cache miss rate as a function of cache size for the OLTP-1 workload.

Figure 2 shows the cache miss rate for a first level cache as a function of cache size on a log-
log plot. The best fit to the form of Eq. 9 is also shown. In this and subsequent figures
simulation data are shown as individual points, whereas theory is shown a continuous lines. For
many workloads, those whose re-reference pattern is given by Eq. 2, the predicted dependence
gives a good fit. Table 1 shows a comparison of 1-b values obtained from the re-reference
pattern by fitting those data to Eq. 2, with the 1-b values obtained from fitting the miss rate
versus cache size dependence to Eq. 9.

As is clearly evident, there is good agreement. This gives us a clear understanding of the
origin of the miss rate dependence on cache size. It arises from the temporal dependence of the
cache reference pattern.

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

7

4. Workload Differences

At this point we wish to consider the power law exponents (b − 1) obtained for different
workloads. Table 1 enumerates some of these values, but the values of the exponent from data
re-references for all of the workloads have been collected in the bar chart shown in Fig. 3.

f rom
Re- re fe rence Data

 f rom
C a c h e M i s s D a t a

O L T P - 1 0.3 0 .378

O L T P - 2 0.39 0 .361

O L T P - 3 0.34 0.4

Craft y 0.71 0 .713

GZIP 0.61 0 .636

Table 1: Values of (b-1) determined by the two different methods.

0.4 0.6 0.8 1.0

Power Law Exponent

0

1

2

3

4

5

6

7

N
um

be
r

of
 W

or
kl

oa
ds

Legacy

SPEC In t

Modern Floating Point

Figure 3: A compilation of the observed power law exponents for different classes of workloads.

Similar results obtain for instruction references. The workloads have been divided up into 4
categories: legacy workloads, modern workloads, SPEC Int workloads and floating point

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

8

workloads. The legacy workloads are large server workloads, mainly written in assembly
language. The modern workloads are also large server workloads, but written in either C++ or
Java. The floating point workloads tend to be scientific calculations, some of which are from the
SPEC suite, and some from other sources. All of the observed exponents have been divided up
into bins of width 0.1. The bars show the number of workloads of each type that fall into
particular bins. All exponents greater than 1.0 have been included in the 1.0 bin.

It is clear that the temporal re-reference patterns for different classes of workloads differ. In
particular the re-reference interval for the SPEC Int workloads tends to be of shorter duration, the
larger exponent means that the probability of re-referencing these cache lines fall off rapidly with
time. This, coupled with the smaller working sets for most of these workloads, leads to the
relatively small cache requirements for them.

Since the values of the power law exponent vary with workload and show variations
dependent on the class of workload, one is led to search for an underlying reason for the observed
variation. In this vein we speculate that workloads with smaller working sets will in general
display larger exponents. The essence of the argument is that for small workloads it is
statistically necessary to re-reference a cache line after a smaller time interval than for larger
workloads. The argument is simply that for the smaller workloads there simply are not enough
other cache lines to reference, so that one is forced to return to recently used ones rather quickly.
For larger workloads this does not need to occur because there are more than enough other cache
lines to reference. This naturally leads to larger values of b − 1 for smaller workloads.

In order to see if this argument has any validity we searched for a metric to account for the
effective working set size of a workload. We settled on the total number of unique instruction or
data references as a measure of the total working set size. Since it was hard for us to determine
this directly, we determined the number of unique cache line references for instructions and data.
For each workload we determined the number of cache misses for both data and instructions
using very large (64 MB) L1 caches.

We note that even the total working set size of a workload is not a good measure of the
effective working set size. Let’s consider a workload that consists of numerous small modules
that need to be executed. There are 2 very different ways in which this can be done. One
workload may spend a large amount of time in one particula r module, and then move on to the
next module. This workload will behave as if it is a small workload since it spends most of its
time in one particular module at a time. On the other hand a different workload may be the same
size, but the program flow takes it from module to module in a fairly rapid manner. It would then
come back to repeat a similar or different pattern of using the modules. This type of behavior
will effectively look like a much larger workload since a much larger portion of the code is
visited, on average, before returning to a particular module.

Nevertheless, in figure 4a we plot the observed values of the power law exponent as a
function of the total working set size for instructions, and in figure 4b we do the same for data.
Each point in one of the figures represents a different workload. By aggregating the data in
this way it is possible for an individual workloads to behave as small for the instruction
stream, while behaving as large for the data stream, and vice versa. Note that these are
log- log plots and the best fits to the data are power laws.

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

9

10 100 1000 10000 100000

Unique Instruction Misses

0.2

3

P
ow

er
 L

aw
 E

xp
on

en
t

1

Figure 4a: The power law exponent (b-1) as a function of the number of unique instruction misses

on a log - log plot. The line is a power law fit.

100 1000 10000 100000

Unique Data Misses

0.2

2

P
o

w
er

 L
aw

 E
xp

o
n

en
t

1

Figure 4b: The power law exponent (b-1) as a function of the number of unique data cache misses

on a log - log plot. The line is a power law fit.

It is clear from the figures, that even though there is a large scatter in the behavior of the
numerous workloads, there is indeed a correlation between the number of unique cache misses,
and hence working set size, and the power law exponent. The correlation is stronger for the
instruction stream and weaker for the data stream. The best fit lines, shown in the figures,
represent power law dependences of the power law exponents on effective workload size. The

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

10

correlation validates the speculations that were made above. We do not understand the exact
functional form observed, but assume that it is grounded in the statistics of the problem.

5. Temporal Dependence of Cache Misses

Along with the prediction of the cache miss rate on cache size, Eq. 9, we have also obtained a
prediction of the temporal dependence of cache misses, Eq. 6. This contains even more detail
about the functioning of the first level cache. In our simulator we are able to obtain this cache
miss timing distribution using much the same protocol that was used to obtain the original cache
re-reference pattern. The data for one workload is shown in figure 5. Also shown in the figure are
2 theoretical curves. The upper one, which is not expected to fit the data, is Eq. 2, the original
re-reference pattern for the cache. The lower curve, which fits the data quite well with no
adjustable parameters, is a modified form of Eq. 6.

Figure 5: Cache misses as a function of the re-reference time for a direct mapped cache and the
OLTP-1 workload.

In order to obtain Eq. 6 one assumption had been made, which turns out not to be accurate.
In writing down Eq. 3 we assumed that cache lines were utilized uniformly, a quite reasonable,
but incorrect, assumption. Figure 6 shows the actual distribution of cache misses to the various
cache lines in a 4 kB direct mapped cache for the workload shown in figure 3. As is clear the
usage is far from uniform. This modifies the statistics incorporated into Eq. 3. The statistics are
changed in two ways. We had assumed that any cache miss was equally likely to occur for any
line, hence the 1/N factor in Eq. 3. With non-uniform access the probability that any one line is
ejected from the cache is Mi/Mtot, the fraction of misses attributed to line i. Additionally, one
needs to form the weighted average of this probability over all lines in the cache. The more
heavily used lines are more heavily weighted in this average. The 1/N factor is then replaced by

0 500 1000 1500 2000

t (Cycles)

0

2

4

6

8

10

C
ac

he
 M

is
se

s
 (X

10
00

)

Re-References

Theory

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

11

 1/N d
S
i

M i
2

M tot
2 , (10)

where Mi are the number of misses for each cache line, and Mtot is the total number of

Figure 6: Distribution of Cache Misses for a direct mapped cache and OLTP-1.

cache misses to all lines. These non-uniform usage statistics result in a 25% change in the 1/N
probability and have been incorporated into figure 3.

Several comments on figure 3 are in order. The upper curve in figure 3 is just the re-
reference pattern of the workload, Eq. 2. The lower curve is the cache miss pattern of the cache,
Eq. 6. The difference between these 2 curves represents cache hits. As we would expect, cache
hits predominantly occur for short re-reference times. For long times the cache entry has almost
always aged out and the cache miss pattern and the re-reference pattern converge. Anticipating
our analysis for a second level cache, we note that the miss rate pattern from the first level cache
becomes the reference pattern for the second level cache. The first level cache filters out a very
specific portion of the cache references, which hit in that cache.

6. Set Associative Caches

The above analysis needs to be modified for set associative caches. The reference pattern is
unchanged, but the probability of finding the referenced line in the cache is modified. It is
modified because s separate references to the same cache congruence class need to occur prior to
the particular re-reference that causes a cache miss, if s is the number of sets (ways) in the cache.

Cache Line Number

0

5

10

15

20

25

C
ac

he
 M

is
se

s
 (

X
10

00
)

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

12

with each subsequent new cache reference the entry in question is pushed into a new set in the
cache, until it is finally ejected from the cache.

A useful approximation for this entire statistical process can be obtained by noting that the
probability of an entry being ejected from set 1 and put into set 2 is given by Eqs. 4 or 5, the
same as ejection from a direct mapped cache. The same probability obtains for transfer from set
2 to 3, etc. In this way one obtains a new expression for the probability of a cache miss. Misses
only occur if the entry misses in all of the sets of the cache. Therefore, we need to calculate the
joint probability of missing all of the sets,

 P(t) = (1 − e−
Mave

N t)s =(1 − (1 − 1/N)n)s, (11)

where we have shown both the continuous and discreet forms of the probability. The number of
cache congruence classes, N, now depends on the set associativity as well as on the cache size
and the line size, N = A/sA l. We note that Eq. 11 is an approximation in that it does not
adequately take into account the sequential nature of the cache entry replacement problem. It also
does not address the rearrangement of the entries into different sets following cache hits, an LRU
replacement algorithm.

0 500 1000 1500 2000

t (Cycles)

0

1

2

3

4

5

C
ac

he
 M

is
se

s
(X

10
00

)

Re-references

Direct Mapped

2-way Set Associative

4-way Set Associative

Figure 7: The time dependence of cache misses for set associative caches with OLTP-1.

Nevertheless, as can be seen in figure 7, this analysis captures the essential features of the

time dependent miss curve for a set associative cache. In the figure data from one workload is

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

13

shown for 4 kB caches, which are direct mapped, 2-way set associative and 4-way set associative.
In addition we show the theoretical curves for the re-reference pattern and the miss patterns for
each of the caches obtained by modifying Eq. 6 to incorporate the set associativity as expressed in
Eq. 11.

 M(t) = Ro t−b (1 − e−
Mave

N t)s (12)

It is clear that our analysis accurately accounts for the data. By increasing the set

associativity one does a better job of retaining useful information in the cache and the area
between the curves, associated with cache hits, expands.

There is another way of qualitatively looking at the shape of these curves for the set

associative case. Before a cache miss may occur, one must wait for some delay time, to , before
the cache entry is in the last set (LRU set) of the cache. At this point the problem looks like the
problem for a direct mapped cache. Qualitatively, one would expect a curve shaped like the
direct mapped case, but offset by this average delay time. This essentially leads to zero
probability of a miss for times shorter than to . Now in a real system this delay time will vary for
each cache congruence class and for each occurrence of a cache miss. Therefore, the average
behavior will smooth off the abrupt onset of the curves. This causes the type of peaked structure
observed.

In order to obtain the dependence of the miss rate on cache size for the set associative case
we need to integrate Eq. 12 over all time. This gives

 M = R o

(sAlMave) 1−b A1−b
 ¶0

∞
T−b(1 − e−T)sdT, (13)

after using the same substitution and procedure that was used to obtain Eq. 8. Again, the integral
does not depend on the cache size. Therefore, the miss rate dependence on cache size has the
same form as for the direct mapped cache, only the prefactor is changed. The value of the
integral can be calculated as f(s,b)G(1 − b), where f(s,b) is a complex function of the set
associativity and b. This only contributes a numerical factor.

In figure 8 we plot the dependence of the miss rate on the cache size of a first level cache for
three different values of the set associativity. The uppermost curve is for the direct mapped
cache. We also show the fit to the theory. As is clearly seen, the exponent, 1 − b, remains the
same for all set associativities, as predicted. Only the scale factor changes. This further explains
the rather ubiquitous observation of the approximate “ 2 ” rule.

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

14

0.1 1 10 100 1000

Cache Size (kB)

0.01

0.1

1

M
is

se
s/

In
st

ru
ct

io
n Direct Mapped

2-way Set Associative

4-way Set Associative

Figure 8: The dependence of the cache miss rate on cache size for difference set associativities
using OLTP-3.

7. Second Level Caches

The behavior of second level caches is complicated by several factors. First, our assumption, that
the working set size of the workload is much larger than the cache size, is harder to realize for the
larger second level caches. Second is the fact that the input reference pattern is first filtered
through the first level cache structure, prior to being passed on to the second level cache. The
time dependent miss rate of the first level cache, Eq. 6 for a direct mapped cache or Eq. 11 for a
set associative cache, becomes the reference pattern for the second level cache. Now the
probability of finding an entry in the second level cache after being re-referenced can be
calculated in a similar manner to our analysis for the first level cache. For a direct mapped cache
the time dependent miss rate is

 M2(t) = Ro t−b(1 − e−
Mave1

N1
t)(1 − e−

Mave2
N2

t), (14)

where the number of cache lines, Nm , and the average miss rate, Mavem, are explicitly shown as
different for each cache level, m. Again, the number of cache lines is given in terms of the cache
size and line size, Nm = Am /A lm , for each level of the cache hierarchy.

We follow a similar procedure to obtain the total miss rate for the second level cache, as we

did for the first level cache. One takes Eq. 14, makes the substitution T =
Mave2

N2
t, where

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

15

N2 = A2 /A l2 , and integrates over all time from 0 to ∞. This time, after substitution, the integral
is still not independent of the cache sizes. However, it is still solvable. The result is

M = R o

(A l2Mave 2)1−b bG(−b) 1 − (1 + A 2
A 1

A l1
A l2

Mave1
Mave2

)b−1 + (A 2
A 1

A l1
A l2

Mave 1
Mave 2

)b−1 A2
1−b

. (15)

In looking at this equation it is important to note that the dominant dependence on cache size is

the last term, A2
1−b

. This is the same dependence as for the first level cache. The large
expression in brackets is a correction term that depends on the ratio of the cache sizes for the first
and second levels. All of the initial terms are simply constants, which set the scale.

For a typical design case the second level cache is considerably larger than the first level
cache, A2 p A1 . In addition that means that Mave1 p Mave2 . The large expression in brackets
in Eq. 15, the correction factor for a second level direct mapped cache, becomes approximately
unity. Therefore, the dependence of cache miss rate as a function of cache size for the second
level cache, while not strictly a power law any longer, comes very close to the same power law as
for a first level cache.

A set associative second level cache can be handled in much the same way as the first level
set associative cache was handled. If we designate the set associativities of a cache level as sm ,
Eq. 14 generalizes to

 M2(t) = Ro t−b(1 − e−
Mave 1

N1
t)s1(1 − e−

M ave2
N2

t)s2. (16)

The only differences are the set associativity exponents. Using the same procedures discussed for
the first level set associative cache and the second level direct mapped cache, Eq. 16 can be
integrated over time to give the miss rate as a function of cache size. The result is

M = Ro

(s2Al2Mave 2)1−b bG(−b)f(A 2
A 1

,
A l1
A l2

,
Mave 1
Mave 2

, b, s1 , s2)A2
1−b

, (17)

where f is a very complex function of the parameters listed. It is only practical to evaluate f
numerically. Note that the dominant dependence of the miss rate on cache size is still the last

term, A2
1−b

, for the second level set associative cache. Again, it turns out that as long as the
second level cache is much larger than the first level cache, the correction factor, f, simply
becomes a constant, largely independent of the cache sizes.

Figure 9 shows the miss rate for a second level 4-way set associative cache as a function of
the cache size along with similar data to that shown in Fig. 8 for the L1 cache. For the L2 data
the first level cache was 4 kB direct mapped. Also shown is a plot of Eq. 17. The curves are still

straight lines because the correction term, f, in Eq. 17 is effectively a constant. The fit between

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

16

10 1200

Cache Size (kB)

0.01

0.1

M
is

se
s/

In
st

ru
ct

io
n

L2

2-way Set Associative

4-way Set Associative

Direct Mapped

L1

0.02

0.03

0.05

0.07

100 100010

Figure 9: The cache miss rate as a function of cache size for direct mapped and set associative L1

caches and a set associative L2 cache for OLTP-1.

0.01 0.1 1 10 100 1000

Cache Size (MB)

0.01

0.1

1

10

C
ac

h
e

M
is

s
R

at
e

Data
Cache

Instruction
Cache

Figure 10: The cache miss rate as a function of cache size for a set associative L2 cache,

separating out the data and instruction misses for a database workload.

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

17

our theory and the measured curves is quite good. This also highlights the prediction that the
curves for all levels of cache, as well as all associativities have the same slope, 1 − b.

In order to show just how ubiquitous this power law dependence can be, we show data
obtained from hardware in Fig. 10. These are data for an L2 cache for a database workload. It is
clear that for data references, the power law dependence is observed for more than 3 orders of
magnitude in the cache size. The saturating effects for very large caches are artificial and due to
the finite size of the data sample. On the instruction side there is a deviation from the simple
power law dependence for cache sizes above 10 MB, due to the smaller working set size of
instructions.

8. Special Cache Reference Patterns (Cyclical Programs)

All of the results shown so far have been applicable to large complex programs running on the
processor. These programs show a power law dependence for the cache re-reference pattern. As
we have already discussed, small programs, which fit in a particular cache size have a very
different dependence. In that case as long as the cache is larger than the footprint of the
workload, the miss rate will be very small. In effect curves of miss rate versus cache size show a
saturating behavior. Figure 11 shows several workload for which this behavior is evident. The
cache miss rate decreases with cache size, as before, until the workload fits within the cache, and
the miss rate saturates.

10 100 1000 10000

Cache Size (kB)

0.0001

0.001

0.01

0.1

M
is

se
s/

In
st

ru
ct

io
n GZIP (D)

MCF (I)

Crafty (D)

Crafty (I)

Figure 11: The variation of cache miss rate with cache size for some SPEC workloads. Saturation

for large caches is clearly observed.

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

18

A far more interesting case involves cyclical programs, that is programs which are basically
one big execution loop. Figure 12 shows the cache re-reference patterns for both the instructions
and data for such a workload. The workload is actually a cycle accurate simulator and the loop is
the repetition of each execution cycle as instructions are passed through the modeled processor.
The large peaks in the re-reference pattern near t = 50000 cycles are due to the cyclical nature of
the program. The peak is much larger for the instruction cache than for the data cache as might
be expected. Instructions are completely repetitious, whereas only some fraction of the data
accesses will be repeated exactly.

One can approximate the re-reference pattern as a sum of contributions from the peaks and
from the background. The cache behavior arising from the background references will mirror the
large complex system behavior, that has been our focus until now. We can analyze the
consequences of the re-reference peaks by approximating the peaks as delta functions, Rpd(tp).

0 10 20 30 40 50 60 70

t (x1000 Cycles)

0

2

4

6

8

10

12

C
ac

he
 A

cc
es

se
s Instructions

Data

Figure 12: The cache re-reference pattern for the simulator workload. The large peak for both

data and instructions is clearly evident.

We have assumed that the integrated size of the peak is Rp , and that the repeat time is tp . We
pick this delta function approximation for mathematical simplicity; it is easily handled in an
integral. Another approximation, which might be used, is a Gaussian, but the mathematics are
much more difficult.

Using this approximation in Eq. 7 gives the following result

 M = ¶0

∞

 [Ro t−b + Rp d(t p)](1 − e− Mave
N t)dt. (18)

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

19

The equation now contains 2 terms in the re-reference time, which can be separated, that is we
can rewrite Eq. 18 as

 M = ¶0

∞

 Ro t−b (1 − e− Mave
N t)dt + ¶0

∞
Rp d(t p)(1 − e− M ave

N t)dt. (19)

We already know how to handle the first integral, it was done in Section 3. The second integral is
easily handled because of the properties of the delta function; the integral of any function times
the delta function is simply ¶ f(t)d(x)dt = f(x). The overall miss rate is then given by

 M = R o

(A lMave)1−b G(b − 1)A1−b +Rp (1 − e−
MaveA l

A tp), (20)

where we have substituted N = A/A l. The second term gives a sudden dropoff in the miss rate

for a cache size, A = MaveA ltp . That is when the entire loop fits within the cache, the miss rate
drops precipitously. This dependence is evident in the miss rates for both the instruction and data
caches as shown in figure 13, where a drop off of more than a factor of 10 is observed. On the

0.1 1 10 100 1000 10000

Cache Size (kB)

0.0001

0.001

0.01

0.1

1

M
is

se
s/

In
st

ru
ct

io
n

Instructions

Data

Figure 13: The variation of cache miss rate with cache size for the simulator workload.

instruction side the first term in Eq. 20 is small and the second term dominates the dependence.
On the data side both terms are important, so the straight line dependence, which arises from the
first term, is more clearly evident on the small cache size limit of the curve. The dropoff for the

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

20

middle range is dominated by the second term. The saturating behavior for large cache sizes may
be artificial, due to the finite size of the trace analyzed.

9. Discussion

Our most important result was obtained in section 3. In it we show that by combining the typical
re-reference time pattern for cache accesses along with a simple probabilistic analysis of cache
entry replacement, we obtain the inverse square root law for cache miss rate as a function of
cache size. The important point is that the inverse square root law is a consequence of the
temporal reference pattern of large complex workloads. The value of the exponent for a first
level cache only depends on the nature of the workload. It is independent of the
microarchitecture of the processor. The prefactor depends on the microarchitecture.

Since the input to a second level cache depends on both the temporal reference pattern of a
workload and the filtering properties of the first level cache, the inverse square root law becomes
only an approximation. That is, the power law dependence is approximate and no single
exponent is obtained. The specifics of the curves then depend on both the workload and the
microarchitecture. These have been detailed in terms of cache sizes, associativities and cache line
sizes. For the cases we have discussed, the deviations from the simple power law are small and
the results can be treated as an inverse square root law with the appropriate exponent.

It is important to note that the predicted, and observed, exponents for the power law for cache
misses as a function of cache size are only dependent on the temporal reference pattern of the
workload. The exponent, and hence the slopes of the curves on the log-log plots, are equal for
each level of the cache hierarchy, as well as for both direct mapped and set associative caches.
Those architectural features only affect the magnitude of the cache misses.

One should further note that the magnitude of the cache miss rate depends only on the
temporal reference pattern of the workload and a statistical treatment of cache entry replacement,
which in turn is dependent on the cache architecture. Therefore, for a given workload, after the
temporal dependence of the references has been determined, the miss rates for all of the caches in
the hierarchy are completely determined. We accurately predict both the magnitude of the cache
miss rates, as well as the functional dependence on cache size. In this paper we have focused on
the dependence on cache size, but we also predict the dependence on the degree of set
associativity and the relative miss rates for each cache level in the hierarchy.

Now let us consider a more fundamental question. We have observed that the re-reference
pattern for cache references obeys a power law. In thinking about the problem, one would
assume that the probability of referencing an entry is highest for short time intervals and falls off
for large times. One may well have expected that the dependence would have been a decaying
exponential. In fact, that was our initial assumption. Since our results depend directly on the
form of this drop-off, the fact that a power law governs the time dependence is crucial to our
results; and the whole observation of an approximate inverse square root law. It is clear from
data as shown in figure 1, that the power law dependence indeed governs this behavior. It is a
much better fit than an exponential dependence.

This leads us to speculate as to why the power law is observed. Exponential dependencies
typically result from random processes. Random processes are events like the probability of coin
tosses and radioactive decay. Any of these types of processes tend to give exponential behavior.
In fact that is why the probability of a cache entry being removed from the cache results in an
exponential. However, the behavior of a large complex program is not random but rather is

ON THE NATURE OF CACHE MISS BEHAVIOR: IS IT 2 ?

21

deterministic but very complex. The complex nature of a program means that, among other
things, small changes during the execution can lead to a completely different program flow. This
has all of the earmarks of chaotic behavior in large complex nonlinear systems. We note that
chaos theory results in quantities that tend to obey power law dependencies. It might just be that
this is the ultimate explanation of both the re-reference pattern observed and, therefore, the
approximate inverse square root law.

One such model has been proposed to produce synthetic traces [17]. The model employs a
“hyperbolic random walk” through memory address space. This model generates addresses,
which are generally local in nature, but have a finite probability of large deviations. It uses a
probability function, which is a power law, and hence nonlinear. This a particular nonlinear
model, which produces a synthetic memory trace that mirrors the statistics of real traces, and the
same approximate inverse square root law for the miss rate as a function of cache size as is
observed for actual traces.

10. Summary

We have examined the typical behavior of caches in a processor. By combining the temporal
dependence of the cache re-reference pattern with a statistical treatment of the cache replacement
algorithm, we predict the inverse square root power law dependence of the cache miss rate on the
cache size. Therefore, the observed dependence of miss rate on cache size arises from the
temporal dependence of cache references from a workload. This is not an intuitive result.

Acknowledgements

We would like to thank Hanno Ulrich for many stimulating and helpful discussions.

References

[1] R. Kalla, B.Sinharoy, and J. Tendler. “IBM Power5 Chip: A dual-core multi-threaded
processor”, IEEE Micro, vol. 24(2), pp. 40-47, 2004.

[2] D. Boggs et al. “The microarchitecture of the Intel Pentium 4 processor on 90 nm
technology”, Intel Technology Journal, vol. 8, Issue 1, 1997.

[3] http://www.amd.com, Technical Documentation. “AMD Opteron Product Data Sheet”,
Publication number 23932, 2004.

[4] http://www.sun.com/processors/manuals/USIV_v1.0.pdf. “UltraSPARC IV Processor”,
User's Manual Supplement, Version 1.0, 2004.

[5] C. K. Chow. “On Optimization of Storage Hierarchies”, IBM Journal of R & D, vol. 18, pp.
194 - 203, 1974.

[6] C. K. Chow. “Determination of Cache's Capacity and its Matching Storage Hierarchy”,
IEEE Transactions on Computers, vol. c-25, pp. 157 - 164, 1976.

HARTSTEIN, SRINIVASAN, PUZAK AND EMMA

22

[7] J. S. Harper, D. J. Kerbyson and G. R. Nudd. "Efficient Analytical Modelling of Multi-
Level Set-Associative Caches", Proceedings of the International Conference HPCN Europe
'99’, vol. 1593, pp. 473 - 482, 1999.

[8] S. Przybylski, M. Horowitz and J. Hennessy. “Performance Tradeoffs in Cache Design”,
Proceedings of the 15th Annual International Symposium on Computer Architecture, pp.
290 - 298, 1988.

[9] S. Przybylski, M. Horowitz and J. Hennessy. “Characteristics of Performance-Optimal
Multi-Level Cache Hie rarchies”, Proceedings of the 16th Annual International Symposium
on Computer Architecture, pp. 114 - 121, 1989.

[10] G. S. Rao. “Performance Analysis of Cache Memories”, JACM, vol. 25, pp. 378 - 395,
1978.

[11] J. H. Saltzer. “A Simple Linear Model of Demand Paging Performance”, CACM, vol. 17,
pp. 181 - 186, 1974.

[12] A. J. Smith. “Cache Memories”, Computing Surveys, vol. 14, 473 - 528, 1982.

[13] M. H. Macdougall. “Instruction-level Program and Processor Modeling”, Computer, vol. 7,
pp. 14 - 24, 1984.

[14] A. Hartstein, T. R. Puzak, V. Srinivasan and P. G. Emma. “Cache Miss Behavior: Is It
2 ?”, Proc. of the ACM International Conference on Computing Frontiers, pp. 313 - 320,

2006.

[15] J. P. Singh, H. S. Stone and D. F. Thiebaut. “A Model of Workloads and Its Use in Miss-
Rate Prediction for Fully Associative Caches”, IEEE Transactions on Computers, vol. 41,
pp. 811 - 825, 1992.

[16] A. Hartstein and T. R. Puzak. “Optimum Power/Performance Pipeline Depth”, Proc. of the
36th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 117 - 125,
2003.

[17] D. Thiebaut, J. L. Wolf and H. S. Stone. “Synthetic Traces for Trace-Driven Simulation of
Cache Memories”, IEEE Transactions on Computers, vol. 41, pp. 388 - 410, 1992.

