
Compression and Data Mining

Dan A. Simovici, Ping Chen, Tong Wang, and Dan Pletea
Univ. of Massachusetts Boston, Boston, USA

Email: {dsim, dpletea}@cs.umb.edu; Ping.Chen@umb.edu; tongwang0001@gmail.com

Abstract—Data compression plays an important role in data

mining in assessing the minability of data and a modality of

evaluating similarities between complex objects. We discuss

various mining applications ranging from compressibility of

strings of symbols and of languages, graph compressibility,

compression of market basket data. Also, we examine the role

of compression in computing similarity in text corpora and we

propose a novel approach for assessing the quality of text

summarization.

Index Terms—Compression ratio, Thue-Morse sequence,

lossless compression, stemming, lemmatizing

I. INTRODUCTION

We intend to show that data compression is an

essential tool for data mining that can be used both to

assess data minability and also, as a mining tool itself.

Indeed, as observed by Heikki Mannila [1], data mining

itself can be regarded as a form of data compression since

the goal of the data mining is to “compress data by

finding some structure in it”.

Two broad classes of compression algorithms exist:

lossy compression, that reduces significantly data but

does not allow the full inverse transformation, from

compressed data to the original data, and lossless

compression, that achieves data reduction and can be

completely reversed. In this paper we focus on using

lossless compression in data mining.

Compression can be used as a tool to evaluate the

potential of a data set of producing interesting results in a

data mining process. The basic idea that data that

contains patterns that occur with a certain regularity will

be compressed more efficiently compared to data that has

no such characteristics. Thus, a pre-processing phase of

the mining process should allow to decide whether a data

set is worth mining, or compare the interestingness of

applying mining algorithms to several data sets.

Since compression is generally inexpensive (and

certainly less expensive than mining algorithms), and

compression methods are well-studied and understood,

pre-mining using compression will help data mining

analysts to focus their efforts on mining resources that

can provide a highest payout without an exorbitant cost.

The role of compression developing parameter-free

data mining algorithms in anomaly detection,

classification and clustering was examined in [2]. Further

advances in this direction were developed in [3], [4] and

Manuscript received April 10, 2015; revised Septermber 15, 2015.

doi:10.12720/jcm.10.9.677-684

[5]. A Kolmogorov complexity-based dissimilarity was

successfully used to texture matching problems in [6]

which have a broad spectrum of applications in areas like

bioinformatics, natural languages, and music.

Compression algorithms are used in the actual mining

process to handle data mining explorations that return

huge sets of results by extracting those results that

actually are representative of the data set (see, for

example [7], [8]).

Our goal is to show that compression can be used for

assessing the interestingness of applying an actual data

mining process, and to use compression as a tool for

evaluating similarity between complex objects.

The lossless compression algorithm mostly used in this

paper is the LZW (Lempel-Ziv-Welch) algorithm,

introduced in 1984 by T. Welch in [9]. The algorithm

does not need to check all the data before starting the

compression and the performance is based on the number

of the repetitions and the lengths of the strings and the

ratio of 0s/1s or true/false at the bit level. There are

several versions of the LZW algorithm. Popular programs

(such as Winzip or the zip function of MATLAB) use

variations of the LZW compression. These algorithms

work both at the bit level and at the character level.

After examining compressibility of binary strings in

Section II we explore several experimental settings that

provide strong empirical evidence of the correlation

between compression ratio and the existence of hidden

patterns in data. Section III discusses the compressibility

of sequences of symbols produced by various generative

mechanisms. Section IV is dedicated to using

compression in text mining. Finally, in Section V, we

examine the compressibility of files that contain market

basket data sets. This paper is an extension of our

contribution [10].

II. PATTERNS IN STRINGS AND COMPRESSION

An alphabet is a finite and non-empty set whose

elements are referred to as symbols. Let be the set of

sequences on the alphabet A. We refer to these sequences

as words or strings. The length of a string is denoted

by . The null string on A is denoted by and we

define as . The subsets of A_ are

referred to as languages over A.

If can be written as , where

 and t , we say that the pair is

an occurrence of t in , where m is the length of .

677

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

The number of occurrences of a string in a string

is denoted by . Clearly, we have

 for any symbol .

The prevalence of x in w is the number

 which gives the ratio of the

characters contained in the occurrences of t relative to the

total number of characters in the string.

The result of applying a compression algorithm C to a

string is denoted by C(w) and the compression

ratio is the number

Fig. 1. Baseline behavior

We shall use the binary alphabet and

the LZW algorithm, the compression algorithm of the

package java.util.zip, or the zip function of MATLAB.

We generated random strings of bits (0s and 1s) and

computed the compression ratio for strings with a variety

of symbol distributions. A string that contains only 0s

(or only 1s) achieves a very good compression ratio of

 for 100K bits and

for 500K bits, where denotes the compression

algorithm from the package java.util.zip. Fig. 1 shows, as

expected, that the worst compression ratio is achieved

when 0s and 1s occur with equal frequencies.

For strings of small length (less than 104
 bits) the

compression ratio may exceed 1 because of the overhead

introduced by the algorithm. However, when the size of

the random string exceeds 106
 bits this phenomenon

disappears and the compression ratio depends only on the

prevalence of the bits and is relatively independent on the

size of the file. Thus, in Fig. 1, the curves that correspond

to files of size 100K bits and 500K bits overlap. We refer

to the compression ratio of a random string that

contains zeros and ones as the baseline

compression ratio for this distribution of bits.

We created a series of binary strings which

have a minimum guaranteed number m of occurrences of

patterns , where . The

compression baselines for files containing the patterns 01,

001,0010, and 00010 are shown in Table I.

TABLE I: BASELINE COMPRESSION RATIO FOR FILES CONTAINING A

MINIMUM GUARANTEED NUMBER OF PATTERNS

Specifically, we created 101 files for the

pattern 001, each containing 100K bits and we generated

similar series for . In the case

of the 001 pattern the baseline is established at 0.934, and

after the prevalence exceeds 20% the compression ratio

drops dramatically. Results of the experiment for 001 are

shown in Table II. In Fig. 2 we show that similar results

hold for all patterns mentioned above.

Fig. 2. Dependency of compression ratio on pattern prevalence

TABLE II: PATTERN ’001’ PREVALENCE VERSUS THE COMPRESSION

RATIO

III. COMPRESSIBILITY OF LANGUAGES AND SEQUENCES

Sequences or sets of sequences of symbols are often

subjected to data mining processes and identifying those

sequences that contain interesting patterns before the

actual mining process may be computationally significant.

We begin by examining the well-known sequence

called the Thue-Morse sequence [11] that has many

applications ranging from crystal physics [12], counter

synchronization [13], metrology [14], [15], and chess

playing [16], as well as in game theory, fractals and turtle

graphics, chaotic dynamical systems, etc.

This sequence contains patterns but not repetitions.

678

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

Definition 3.1: Let be a natural number. The

Thue-Morse sequence is a word over

the alphabet defined as:

for .

TABLE III: THE COMPRESSION RATIO FOR THUE-

MORSE SEQUENCES

For example, we have

It is clear that if and , is a

prefix of . Thus, the successive Thue-Morse sequences

define an infinite sequence.

An equivalent method for defining the Thue-Morse

sequence is by starting with 0 and concatenating the

complement of the sequence obtained so far. This

procedure yields 0, then 01, 0110, 01101001, and so on.

It is known (see [17], for example) that the Thue-Morse

sequence is a cube-free sequence, that is, the sequence

does not contain substrings of the form .

We generated the Thue-Morse sequences and stored

this sequence of 0s and 1s at the bit level. By using the

zip compression utility from the java.util.zip package the

compression ratios shown in Table III were obtained.

For small values of k, the sequence is incompressible

due to the overhead produced by the compression process.

As Table III and Fig. 3 show, for k big enough

() the sequence becomes compressible and the

compression ratio reaches a low value (of less than 1%)

for Thue-Morse sequences longer than 4; 000; 000

characters. Since the Thue-Morse sequence has equal

number of 0s and 1s for any value of k and its

compression ratio is well below the baseline compression

ratio established for sequences of bits in Section II, we

can conclude that even in the absence of repetitions,

compression can be used for the detections of patterns.

In a series of experiments involving generative

grammars we examined the compressibility of language

fragments generated by these grammars. A generative

grammar, or in short, a grammar is defined as a 4-tuple

, where and are non-empty,

finite and disjoint sets referred to as the non-terminal and

the terminal alphabet, respectively, is the initial

symbol of the grammar G, and P is a finite set of pairs of

the form , where and

. A pair is a production

of the grammar G. Productions are used for rewriting

words over . Namely, if

, and

for some production , we write . The

reflexive and transitive closure of the binary relation

is denoted by “ ”. The language generated by G is the

set .

Fig. 3. Compression ratio behavior of thue-morse sequence

Grammars are used as generative devices that produce

languages over their terminal alphabet. Chomsky’s

hierarchy (see [18] or [19]) defines four classes of

grammars based on the complexity of their productions.

In turn, these classes of grammars, define a strict

hierarchy of classes of languages

, where is the class of

regular languages, is the class of context-free

languages, is the class of context-sensitive languages,

and is the class of recursively enumerable languages.

It is worth noting that the classes and collapse on

languages over one-symbol alphabet. In other words, if L

is a language over an one-symbol alphabet, then

implies .

We evaluate the compressibility of a language L over

an alphabet A by considering the increasing sequence of

finite languages , where

 consists of the first n words of L in lexicographic

order, computing the compression ratios ,

and examining the dependency of this ratio on n.

We examine comparatively the compressibility of the

languages (a context-

sensitive language) versus the compressibility of a similar

language (a context-

free language) which has a simpler structure. Here, the

word is the reversal of the word w and is defined as

 and .

679

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

Fig. 4. Compression ratio behavior of the language

Fig. 5. Compression ratio behavior of the language

Fig. 6. Compression ratios of languages and

The results presented in Fig. 4 and Fig. 5 show that L2,

the less complex language has a better (lower)

compression ratio, and therefore, higher compressibility.

Similar results are obtained when comparing the

compressibility of the context-sensitive languages

and over the one-symbol alphabet defined

by

The reference [18] (see Chapter 1, section 2) contains

specific grammars developed for both languages. Namely,

the grammar for has 6 productions, while the

second grammar that generates has 42

productions. As expected, experiments summarized in

Fig. 6 show that the is more compressible than

 which has a rather complex generating process.

These results suggest that the compressibility of

languages is related to the complexity of the generative

process that produce them. This will be the object of

further investigations.

IV. COMPRESSION AND TEXT-MINING

Compression offers a simple but efficient tool for text

mining, in general [20]-[24] and, in particular, for biology

and medicine [25] by suggesting a simple document

dissimilarity computation and, also, a tool for evaluating

the quality of summarization efforts.

We began with a series of experiments intended to

show that compression is useful in document

classification. We used java.util.zip package to compress

text files.

For a document x let C(x) be the size of the

compressed document. This allows us to define a

dissimilarity between documents that belong to a corpus

 as

for . Note that is at least

because any compression algorithm will take advantage

of the fact that the two halves of xx are identical. Further,

the more similar the documents are the closer the value of

d(x, y) is to 0.5.

Given two corpora and such that

 we will define the similarity matrix

between and as

for .

All documents used in experiments were downloaded

from PubMed and we retained only the title and abstract

of each document. There are totally four groups of

documents and each group has 15 documents. Two

groups (ML1 and ML2) are on machine learning topics;

the topic of the remaining two groups (ADHD1 and

ADHD2) is the attention deficit hyperactivity disorder.

Various forms of preprocessing of the documents are

considered; in each case we computed the dissimilarity

matrices of various corpora.

Table IV shows the result of the first four experiments

and contains the number of pairs that occur in the

intervals specified in the header of the table. For example,

in the first row of experiment 1, 42 means there are 42

values in the compression distance matrix

d(ADHD1;ADHD2) in the interval [0.85, 0.865). The

cumulative counts are shown in parentheses. cumulative

total from the beginning interval.

680

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

The mean values of d(ADHD2, ML1) and d(ADHD2,

ML2) are larger than d(ADHD1, ADHD2) and d(ML1,

ML2) in all four experiments, but the difference is not

large.

In the first experiment the original documents were

used to compute the distance matrix. After removing a

short list of stop words (in the second experiment) and

removing a long list stop words (in the third experiment),

mean values decrease comparing to previous experiments.

The difference between mean values of d(ADHD2, ML2)

and d(ML1, ML2) becomes 0.00481 and 0.00563, which

are a little better. If looking at values less than 0.88, there

are more values in d(ADHD1, ADHD2) and d(ML1,

ML2) less than 0.88 comparing to d(ADHD2, ML1) and

d(ADHD2, ML2).

In the fourth experiment, all non-alphabetic characters

were removed. The mean values decrease in all four

matrix. The difference between mean value of d(ADHD2,

ML2) and d(ML1, ML2) becomes 0.00514.

The next three experiments make use of the documents

which only contain letters (obtained for the previous

fourth experiment).

In experiments 5-7, words in each document were

sorted in alphabetic order. The distance values decrease a

lot comparing to the first 4 experiments. And if choosing

0.825 as threshold, we can find out there are more values

in d(ADHD1, ADHD2) and d(ML1, ML2) less than

0.825.

In the fifth experiment, if still taking the difference

between mean value of d(ADHD2, ML2) and d(ML1,

ML2) as example, we get 0.01045, it is much better than

the first four experiments.

In the sixth experiment words were lemmatized before

being sorted. Lemmatization is a more complex approach

to stemming that involves first determining the part of

speech of a word, and applying different stemming rules

for each part of speech. Plural noun will lemmatize to

singular, for example, ’cats’ would be ’cat’. The

vocabulary for the 60 documents that only contain letters

is 2398 words. After lemmatizing, the vocabulary reduces

to 2172. The difference between mean values of

d(ADHD2, ML2) and d(ML1, ML2) show a small

increase.

In the seventh experiment stemming was used instead

of lemmatizing. Stemming is similar to lemmatizing, to

keep the basic form of a word. The difference is it chops

the affix and only keeps the stem. For

example, ’include’, ’including’, ’included’ will be

stemming to ’includ’. The vocabulary reduces to 1733

after stemming all words. The difference between mean

values of d(ADHD2, ML2) and d(ML1, ML2) increases

to 0.01266.

Cosine similarity is widely used for measuring

similarity between two vectors. It can also be applied to

compute the similarity between two document vectors. In

traditional Vector Space Model, a document can be

681

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

TABLE IV: FIRST FOUR EXPERIMENTS. IN THE FIRST EXPERIMENT WE USED THE ORIGINAL DOCUMENT; IN THE SECOND, WE REMOVED THE STOP

WORDS ON A SHORT LIST; IN THE THIRD EXPERIMENT, STOP WORDS FROM A LONG LIST WERE REMOVED; FINALLY, IN THE FOURTH EXPERIMENT

WE REMOVED STOP WORDS FROM ALONG LIST, NUMBERS, AND PUNCTUATION.

TABLE V: THREE EXPERIMENTS WITH DOCUMENTS THAT ONLY CONTAIN LETTERS. IN THE FIFTH EXPERIMENT EACH DOCUMENT WAS SORTED; IN

THE SIXTH EXPERIMENTS WORDS WERE LEMMATIZED AND THEN SORTED; IN THE SEVENTH EXPERIMENTS WORDS WERE STEMMED AND THEN

SORTED.

represented by a k-dimensional vector, where k is the size

of the vocabulary in corpus. Cosine similarity is defined

as

In Table VI we show the cosine similarity using the

documents from the sixth experiment, the documents

with sorting and lemmatizing words, and the seventh

experiment, the documents with sorting and stemming

words.

To examine the relationship between cosine similarity

matrix and the compression dissimilarity matrix we used

the matrices from the sixth and the eight experiments,

considering each column in the matrix as a vector. We

show the correlations between the 15 columns of these

tables in Table VII.

TABLE VII: CORRELATION BETWEEN COMPRESSION DISSIMILARITY

AND COSINE SIMILARITY

As more preprocessing is applied, the mean value of

the compression dissimilarity decreases, and the

difference be tween mean values of d(ADHD2, ML1),

d(ADHD2, ML2), d(ADHD1, ADHD2), and d(ML1,

ML2) keeps growing.

Various preprocessing techniques such as removing

stop words, removing non-letter characters, sorting words

in alphabetic order, lemmatizing, and stemming improve

performance.

In every one of the seven experiments about

compression, d(ADHD1, ADHD2) is less than d(ML1,

ML2). One reason might be machine learning is a more

general topic than ADHD and therefore, the documents

are more diverse.

Most of the correlation between compression and

cosine are negative, as the similarity of documents

increases as compression distance value decreases.

Compression does not outperform cosine similarity.

However, it is inexpensive and easy to implement

comparing to cosine similarity and it saves a lot of work

required in computing in cosine similarity like building

vocabulary, creating document vector, computing dot

product with vectors (document vector usually has a high

dimension). Thus, clustering documents based on

compression dissimilarity can serve as a useful

preprocessing tool in document clustering.

Compression also allows the evaluation of the

faithfulness of abstract construction for paper corpora.

The idea is that a good abstraction process for a corpus of

papers yields abstracts whose dissimilarity has a high

degree of correlation with the dissimilarity between the

papers themselves.

Two more corpura (ADHD3 and ML3) were

downloaded from PubMed and we retained the full text of

each document. Then, each document was split into two

parts: abstract and text resulting in two groups of

abstracts and two groups of full text documents:

ADHD3(a), ML3(a), and ADHD3(d), ML3(d),

respectively. Figures, tables, and sections like

acknowledgement, references, supplements were

removed from the full text corpora ADHD3(d) and

ML3(d).

The resulting corpora were preprocessed by removing

stop words, non-letter characters, lemmatizing and

sorting words in alphabetic order. The mean values of

resulting dissimilarity matrices are shown in Table VIII.

TABLE VIII: THE MEANS FOR MATRICES FOR ADHD3(A), ADHD3(D),

ML3(A), ML3(D)

We estimate that the summarization processes for the

articles nin corpora ADHD3 and ML3 are of good quality

since the correlations between the elements of the

distance matrices of the abstracts and papers are close to

1 (as shown in Table IX).

TABLE IX: CORRELATION BETWEEN ABSTRACTS AND TEXTS IN ADHD3

AND ML3

V. FREQUENT ITEMS SETS AND COMPRESSION RATIO

A market basket data set consists of a multiset of

transactions. Each transaction T is a subset of a set of

items . The multiplicity of a

transaction T in the multiset is denoted by m(T).

A transaction is described by its characteristic N-tuple t

= (t1,…,tN), where

for . The length of a transaction T is

, while the average size of transactions is

.

The support of a set of items K of the data set is the

number

The set of items K is s-frequent if supp(K) > s.

682

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

683

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

The study of market basket data sets is concerned with

the identification of association rules. A pair of item sets

(X, Y) is an association rule, denoted by X Y. Its

support, supp(X Y) equals supp(X) and its confidence

conf(X Y) is defined as

Using the artificial transaction ARMiner generator

described in [26], we created a basket data set.

Transactions are represented by sequences of bits (t1,…,

tN). The multiset of M transactions was represented as a

binary string of length MN obtained by concatenating the

strings that represent transactions.

We generated files with 1000 transactions, with 100

items available in the basket, adding up to 100K bits.

For data sets having the same number of items and

transactions, the efficiency of the compression increases

when the number of patterns is lower (causing more

repetitions). In an experiment with an average size of a

frequent item set equal to 10, the average size of a

transaction equal to 15, and the number of frequent item

sets varying in the set {5, 10, 20, 30, 50, 75, 100, 200,

500, 1000,} the compression ratio had a significant

variation ranging between 0.20 and 0.75, as shown in

Table X. The correlation between the number of patterns

and the compression ratio was 0.544. Although the

frequency of 1s and baseline compression ratio were

roughly constant (at 0.75), the number of patterns and

compression ratio were correlated.

TABLE X: NUMBER OF ASSOCIATION RULES AT 0.05 SUPPORT LEVEL

AND 0.9 CONFIDENCE

Further, there was a strong negative correlation (-0.92)

between the compression ratio and the number of

association

rules indicating that market basket data sets

that satisfy many

association rules are very compressible.

VI.

CONCLUDING REMARKS

Compression ratio of a file can be computed fast and

easy,

and in many cases offers a cheap way of predicting

the existence

of embedded patterns in data. Thus, it

becomes possible

to obtain an approximative estimation

of the usefulness of an

in-depth exploration of a data set

using more sophisticated and

expensive algorithms.

The presence of patterns in strings leads to a high

degree of

compression (that is, to low compression ratios).

Thus, a low

compression ratio for a file indicates that the

mining process

may produce interesting results.

Compressibility however, does not guarantee that a

sequence contains repetitions. Strings that are free of

repetitions but contain patterns can display a high degree

of compressibility as shown by the well-known Thue-

Morse binary string.

The use of compression as a measure of minability is

illustrated on a variety of paradigms: text data, market

basket data, etc. Compression has been applied in

bioinformatics as a tool for reducing the size of immense

data sets that are generated in the genomic studies.

Furthermore, specialized algorithms were developed to

mine data in compressed form [27].

Our current work shows that identifying compressible

areas of human DNA by comparing the compressibility

of certain genomic regions is a useful tool for detecting

areas where the gene replication mechanisms are

disturbed (a phenomenon that occurs in certain

genetically based diseases).

REFERENCES

[1] H. Mannila, “Theoretical frameworks for data mining,” SIGKDD

Exploration, vol. 1, pp. 30–32, 2000.

[2] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards

parameter free data mining,” in Proc. 10th ACM SIGKDD Intnl

Conf. Knowledge Discovery and Data Mining, 2004, pp. 206–215.

[3] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S. Lee, and

J. Handley, “Compression-based data mining of sequential data,”

Data Mining and Knowledge Discovery, vol. 14, pp. 99–129, 2007.

[4] E. J. Keogh, L. Keogh, and J. Handley, “Compression-based data

mining,” in Encyclopedia of Data Warehousing and Mining, 2009,

pp. 278–285.

[5] L. Wei, J. Handley, N. Martin, T. Sun, and E. J. Keogh,

“Clustering workflow requirements using compression

dissimilarity measure,” in Proc. ICDM Workshops, 2006, pp. 50–

54.

[6] B. J. L. Campana and E. J. Keogh, “A compression based distance

measure for texture,” in SDM, 2010, pp. 850–861.

[7] A. Siebes, J. Vreeken, and M. van Leeuwen, “Items sets that

compress,” in Proc. SIAM International Conference on Data

Mining, 2006, pp. 393–404.

[8] J. Vreeken, M. van Leeuwen, and A. Siebes, “KRIMP: Mining

items that compress,” Data Mining and Knowledge Discovery, vol.

23, pp. 169–214, 2011.

[9] T. Welch, “A technique for high performance data compression,”

IEEE Computer, vol. 17, pp. 8–19, 1984.

[10] D. A. Simovici, S. Baraty, and D. Pletea, “Evaluating data

minability through compression – an experimental study,”

International Journal on Advances in Software, vol. 6, no. 3-4, pp.

237–245, 2013.

[11] J. P. Allouche and J. Shallit, “The ubiquitous Prouhet-Thue-Morse

sequence,” in Sequences and their Applications, Springer London,

1999, pp. 1–16.

[12] L. Youran R. Ricklund, and S. Mattias, “The Thue-Morse

aperiodic crystal, a link between the Fibonacci quasicrystal and

the periodic crystal,” International Journal of Modern Physics B,

vol. 1, pp. 121–132, 1987.

[13] R. Yarlagadda and J. Hershey, “Counter synchronization using the

Thue-Morse sequence and psk,” IEEE Transactions on

Communications, vol. 32, pp. 947–977, 1984.

[14] T. Kuyel D. Chen L. Jin, K. Parthasarathy, and R. Geiger,

“Accurate testing of analog-to-digital converters using low

linearity signals with stimulus error identification and removal,”

684

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

IEEE Transactions on Instrumentation and Measurement, vol. 54,

pp. 1188–1199, 2005.

[15] L. Jin, K. L. Parthasarathy, T. Kuyel, R. L. Geiger, and D. Chen,

“High-performance adc linearity test using low-precision signals

in nonstationary environments,” in Proc. IEEE International Test

Conference, 2005, pp. 1182–1191.

[16] M. Morse and G. A. Hedlund, “Unending chess, symbolic

dynamics, and a problem in semigroups,” Duke Mathematical

Journal, vol. 11, pp. 1–7, 1944.

[17] A. Salomaa, Jewels of Formal Language Theory, Rockville,

Maryland: Computer Science Press, 1981.

[18] A. Salomaa, Formal Languages, New York: Academic Press,

1973.

[19] D. A. Simovici and R. L. Tenney, Formal Language Theory with

Applications, World Scientific, Singapore, 1999.

[20] C. Manning and H. Schutze, Foundations of Statistical Natural

Language Processing, Cambridge, MA: MIT Press, 1999.

[21] A. Srivastava and M. Sahami, Text Mining: Classification,

Clustering, and Applications, Boca Raton: CRC Press, 2009.

[22] N. Indurkhya and F. Damerau, Handbook of Natural Language

Processing, Second ed., Boca Raton: CRC Press, 2010.

[23] R. Feldman and J. Sanger, The Text Mining Handbook, Cambridge:

Cambridge University Press, 2006.

[24] R. Bilisoly, Practical Text Mining with Perl, New York: John

Wiley and Sons, 2008.

[25] S. Ananiadou and J. McNaught, Text Mining for Biology and

Biomedicine, Norwood MA, Artech House, 2006.

[26] L. Cristofor. (2000). The ARMiner Project, Univ. of

Massachusetts Boston. [Online]. Available:

http://www.cs.umb.edu/ _laur/ARMiner

[27] P. R. Loh, M. Baym, and B. Berger, “Compressive genomics,”

Nature Biotechnology, vol. 30, pp. 627–630, 2012.

Dan Simovici Dr. Dan Simovici is a

professor of Computer Science at University

of Massachusetts Boston and an associate

member of Dana-Farber Cancer Institute. His

main research interests are in Data Mining

and in the algebraic aspects of multiple-valued

logic. Dr. Simovici is the author or coauthor

of more than 160 research papers and he co-

authored several books. His latest book”

Mathematical Tools for Data Mining” appeared this year in its second

edition at Springer.

Ping Chen Dr. Ping Chen is an Associate

Professor of Computer Engineering and the

Director of Artificial Intelligence Lab at the

University of Massachusetts Boston. His

research interests include Bioinformatics,

Data Mining, and Computational Semantics.

Dr. Chen has received five NSF grants and

published over 50 papers in major Data

Mining, Artificial Intelligence, and

Bioinformatics conferences and journals. Dr. Ping Chen received his BS

degree on Information Science and Technology from Xi’an Jiao Tong

University, MS degree on Computer Science from Chinese Academy of

Sciences, and Ph.D degree on Information Technology at George

Mason University.

Tong Wang Tong Wang is a second year

PhD student of Computer Science at the

University of Massachusetts Boston advised

by Dr. Ping Chen. His research interests

include Data Mining, Machine Learning and

Natural Language Processing. Tong received

his BS degree on Information and Computing

Science at Huazhong Agricultural University

in China, MS degree on Computer Systems

Engineering from Northeastern University in US.

