
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 5, July-August 2009

S.K.Mishra, Dr.D.S.Kushwaha, and Prof.A.K.Misra: “Creating Reusable Software Component
from Object-Oriented Legacy System through Reverse Engineering”, in Journal of Object
Technology, Jan-Feb 2009, pp. 133-152 http://www.jot.fm/issues/issue_2009_07article3/

Creating Reusable Software Component
from Object-Oriented Legacy System
through Reverse Engineering

S.K.Mishra, mishra1982@gmail.com, Department of Computer Science &
Engineering
Motilal Nehru National Institute of Technology, Allahabad, India
D.S.Kushwaha, dsk@mnnit.ac.in, Department of Computer Science &
Engineering
Motilal Nehru National Institute of Technology, Allahabad, India
A.K.Misra, akm@mnnit.ac.in, Department of Computer Science & Engineering
Motilal Nehru National Institute of Technology, Allahabad, India

Abstract
Due to the constant change in technology, lack of standardization, difficulties of
changes and absence of distributed architecture, the business value of legacy systems
have become weaker. We cannot undermine the importance of legacy systems
because some of their functions are too valuable to be discarded and too expensive to
reproduce. The software industry and researchers have recently paid more attention
towards the component based software development to enhance the productivity and
accelerate time to market. Instead of re-implementing the business critical applications
with-in time and resource constraints, the best option is Software Reengineering (SRE)
with effective design and architecture which can make the system better for reusability
and maintainability. The main motive behind the reengineering is integrating the legacy
system with emerging technologies.
To achieve these goals, we have proposed a systematic and concrete model named as
Component Oriented Reverse Engineering (CORE). It aims to identify and develop
reusable software components. By using the reverse engineering techniques; we can
extract architectural information and services from legacy system and later on convert
these services into components
Keywords: legacy system, reverse engineering, component based software
engineering, component oriented reverse engineering, CRUD matrix.

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

1 INTRODUCTION

The legacy software systems are characterized informally as old software systems which
are often poorly designed and documented, but still perform a useful job for the business
critical application that must be supported over the years [Ben94]. The business value of
legacy systems have become weaker due to the constant change in technology, lack of
standardization, difficulties of changes and absence of distributed architecture. In spite of
all these, we cannot undermine the importance of legacy systems because some of their
functions are too valuable to be discarded and too expensive to reproduce [Kim06].

Instead of re-implementing business critical applications with-in time and resource
constraints, the best option is Software Reengineering (SRE) with effective design and
architecture which can make better their system for reusability and maintainability. SRE
attempts to understand the existing software by reverse engineering and redesigning and
scaling it up into new software as per newer demands. The main motive behind the
reengineering is integrating the legacy system with component based technologies. In
component based software engineering, the software systems are developed by
assembling software systems from prebuilt software units or components. The
motivations behind the use of components are faster development, lower cost of
development and better usability. The indispensable part of any component based
development (CBD) methodology is component model, which defines what components
are, how they can be constructed and how they can be assembled and deployed [lai07].

Using these concepts, we present a process model to reengineer an object-oriented
legacy system into a component-based system, named as Component Oriented Reverse
Engineering (CORE), this aims to identify and develop reusable software components.
By using the reverse engineering techniques; we can extract architectural information and
services from legacy system and later on convert these services into components. In
addition, among the component based software development process, the identification of
reusable components is key factor because, it is very important to identify independent
components having low dependency and high reusability. In this paper, we also focuses
on a systematic approach to identify reusable component from object oriented legacy
system through OOAD models namely use case, sequence diagram and class diagrams.
Accordingly, the component identification technique may identify reusable components
more effectively based on facility of CRUD matrix, message-call information and class
clustering. To prove that our model is more effective, we conduct an analysis and
comparison its results with others through our case study exploring Library Management
System.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 135

2 RELATED RESEARCH

Till now, many researches have proposed reengineering of legacy systems. However,
most of the approaches focus on only reverse engineering or reengineering process. There
are very few researches for reengineering approaches of component-based systems,
where reengineering is the systematic transformation of an existing system into a new
form to realize quality improvements in operations, system capability, functionality,
performance or evolvable maintenance at a lower cost and less time. We describe some of
the existing reengineering methodologies for legacy system to built component based
systems and also suggest their strength and limitations.

CORUM II

The CORUM II (Common Object Reengineering Unified Model II) is most widely used
reengineering methodology, defined in SEI CMU (Software Engineering Institute
Carnegie Mellon University). This methodology is used to collects and arranges the
requirements from various standpoints to integrate architecture-based reengineering tools
with code-based reengineering tools. To support the architecture based tool, the
framework is organized around the metaphor of a “horseshoe” model. However, this
method presents neither a detailed work process that is concretely applicable to the
execution of a reengineering project, nor the guidelines and techniques of tasks that are
required for the execution of the process [Woods98].

MORALE

MORALE (Mission ORiented Architecture Legacy Evolution) is another reengineering
methodology developed in Georgia Institute of Technology. The MORALE addresses the
problem of designing and evolving complex software systems. The MORALE acronym
summarizes its goals [Abowd97]:

• Mission ORiented: The legacy system enhancement process to be driven by the
mission to be accomplished rather than by purely technical criteria.

• Architectural: The most time consuming and costly alterations to software are
those that distort architecture, its structure and behavior.

• Legacy Evolution: It also provides a cost effective way of analyzing existing
software, and once analyzed, extracting those parts of it which can be used in the
new version.

L2CBD

The L2CBD (Legacy to Component Based Development) methodology is able to provide
reengineering process including concrete procedures, product-works, guidelines and

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

considerations. The L2CBD can transform legacy systems into new component system
with improved software architecture.

The lists of the features supported by L2CBD are [Kim06]:
• An architecture-based approach to deriving new application structure.
• A reverse engineering technique for extracting architectural information from

exist code and business domain knowledge.
• An approach to component system generation that system’s architectural

components can be reused in the evolved version,
• A specific technique for dealing with the difficulties that arise when extracting

components from legacy system and deciding transformation strategies and
process.

CBD96 [Dodd99]

The CBD96 method adopts a business component identification method that groups
closely related objects. This method does not factor in the concept of reusable system
components and suffers from dependency on the intuitions and experiences of individual
developers and mandatory consideration of the entire domain knowledge.

Cheesman and Daniels [Daniels01]

The method proposed by Cheesman and Daniels is named as Advisor method, which is
the extended version of CBD96 method. It includes a method to identify components
using use cases and business type models. In this method, the authors’ uses inter-class
relationship as the main circumstance for identifying components. The core class treats as
the center of each clustering, and responsibility derived from use cases is used to guide
the process.

Lee et, al [Lee99]

“COMO: A UML-Based Component Development Methodology” is a component
identification method proposed by Lee et, al. It extends Unified Modeling Language
(UML) and Rational’s Unified process with semantics related to component
development. This method measures the inter-class relationships in terms of create,
retrieve, update and delete (CRUD), and uses a clustering algorithm of shifting rows and
columns which is also found in information engineering. In addition, it uses dynamic
coupling metric between objects to measure the potential number of messages exchanged.
It suggests basic techniques to resolve conflicts in clustering. However, this method only
focuses on the data dependency between the classes.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 137

S.D.Kim and S.H.Chang [Kim04]

The method, “A Systematic Method to Identify Software Components” proposed by Kim
and Chang is basically focuses on high cohesion and low coupling while identifying the
reusable components. This approach makes use of clustering algorithms, metrics,
decision rules and a set of heuristics. This method assumes that an object-oriented model
for a target domain is available, including use case model, object model and dynamic
model, by using these artifacts and transforms them into components in a seamless way.
This method is only concentrate on use case dependency not on focuses on structural
relationships among the classes and their message call information.

3 COMPONENT ORIENTED REVERSE ENGINEERING

We propose a process model to reengineer an object-oriented legacy system into a
component-based system, named as Component Oriented Reverse Engineering (CORE),
this aims to identify and develop reusable software components.

Looking at the reverse engineering process with software component’s point of view
shows that there is very promising scope to extract services from the object oriented
legacy system. Once we able to extract services from legacy systems, we can convert
these services into reusable software components based on component identification
techniques. Since the components are platform independent and language interoperable,
they may become strong candidates for reuse. These components are not originally
designed according to the modern component paradigm, so they may not be directly
suitable for component-oriented programming. Here, the challenge is to identify the
components in such a way that the resulting components have object orientation. A
component identified from legacy system may not be compatible with other components
at first hand; to achieve this component wrapping would be required. Some GUI features
can be added in identified components. Due to this reason, wrapping of components is
necessary to eliminate the possible architectural mismatches. The software component
creation activity may add the extra effort in the software reverse engineering but finally
reduce the time and cost of the forward engineering and other software developments.
We can store these components in Component Bank after component testing phase so that
any software developer can reuse these components during new development.

“Component Oriented Reverse Engineering (CORE) is a process to use reverse
engineering methodology to expose components from the object oriented legacy system,
to use repository to store and manage the tested components, then restructures the new
system and finally integrate the new system with reusable components and newly
produced components by forward engineering”.

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Fig-1: Component Oriented Reverse Engineering (CORE) Process Model

Component Identification Technique

The reusability of the software component is most popular way to enhance the
productivity and improve the quality and reliability of new software systems by reducing
the development cost. Due to this reason, it is very important to identify independent
components having low dependency and high reusability. However, the existing
component identification techniques do not provide the concrete guideline for component
based development. Therefore, we propose a systematic approach to identify reusable
component from object oriented legacy system through OOAD models namely use case,
communication diagram and class diagrams. Accordingly, the component identification
technique may identify reusable components more effectively based on facility of CRUD
matrix, class clustering.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 139

Fig-2: Component Identification Approach

To break down the system into components, the software developer needs an
understanding of how the object oriented legacy system is built. This task can be
accomplished by selecting certain points within the system and expanding the boundaries
of those points until all related system elements are included within the boundaries. Here,
by using the reverse engineering approach, we are able to extract services points of
legacy system and further restructure this system through OOAD approaches.

OOAD approach is oriented to the tasks and the relevant objects, including their
interactions, generalization and composition are used to represent the related terms in
domain concept model [Larman05]. Here, we represent the OOAD approach from three
points of view, i.e. functional, behavioral and structural corresponding to use case,
sequence diagram and class diagram. We can extract the structural relationships among
the objects from class diagram; the sequence diagram is used to obtain the object usages,
which represent the CRUD Matrix and some additional object information can be
specified by the help of use case when ever it needs.

System Component Identification:

The existing methods for identifying components do not offer any concrete guidelines
and expose components by grouping mechanism. We group the use cases into a use case
when they share in aggregation relationships. The use-cases having the similar
functionalities are grouped together. Finally, by considering the relationships between the
classes are utilized to identify the system components [Sook05].

CRUD Matrix:

CRUD analysis suggests that which object type is Created, Deleted, Read, and Updated
during some scenarios [Sook05]. Each scenario is going to be detailed in UML with one
(or more) of the dynamic design drawings such as sequence diagram as well as structure

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

diagram showing the relationships between the classes and the class attributes and
operations.

Message-call Information:

After the construction of CRUD (Create or Read or Update or Delete) matrix, we propose
Message-call Information to represent both structural relationships between the objects
and use of CRUD matrix. Here, we define a message-call between the classes inside the
system components using sequence diagram to cluster the related classes.

Clustering Classes:

We identify the reusable components by clustering the classes according to their
dependency characteristics by assigning different weight values of corresponding
dependency relationships. According to the domain experts, the value lies between 0 to 1.
Based on this observation, the structural relationship strength is as below:

1 > Aggregation > Generalization > Association > Dependency > 0 [Kim05]. There
are some rules provided for clustering the classes:

• The classes participating in aggregation and generalization relationship must
belong to the same component because the strength of aggregation is large.

• Especially, the abstract classes among the classes in generalization relationships
do not need to be included in one component.

• The classes participating in an association relationship whose method call types is
either create or delete, must belong to the same component.

• The classes participating in an association relationship, whose method call type is
read, can be members of different components to maintain their independence
from each other due to weak dependency relationship.

• The classes participating in an association relationship whose method call type is
update can belong to the same component or spread into multiple components.

4 CASE STUDY AND EVALUATION

In order to validate the proposed approach, a case study has been performed on Library
Management System (LMS). The requirement scenario for this case study is taken from
the object oriented legacy system, named Library Management.

Phases of proposed approach for case study:

The steps through which the case study has been done are as follows:
1. Analysis phase of legacy system through Reverse Engineering
2. Restructuring the legacy system through OOAD approach

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 141

3. Applying component identification phase
4. Implementation of Reusable Components
5. Component Testing

Analysis phase of legacy system through Reverse Engineering:
By using the reverse engineering tool, named Rational Rose, we analyze the services
from the legacy system. It means that the legacy code is used as input to this tool and
generating the class diagram through reverse engineering. By using this class diagram as
shown in fig-3, we are able to restructure our legacy system if needed.

Fig-3: Legacy System

Restructuring the legacy system through OOAD approach:
In this phase, we are considering above class diagram for requirement analysis to build
the component based system. Here, we have identified following use cases to find out the
functional dependencies, sequence diagram for behavioral relationship and finally design
class diagram to predict structural relationships. The identified use cases are: Manage
Student Records, Organize Book Details, View Book Details, View Student Records,
Issue Books, and Return Books.

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

The use case diagram and their description are shown below:

Fig-4: Use Case Diagram for LMS

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 143

Fig-5: Partial Sequence Diagram for LMS

Fig 6: Design Class Diagram

Applying component identification phase:
This phase focused on system component identification, CRUD matrix, message-call
information, component architecture and finally component interfaces.

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

System Component Identification:

Fig 7: System Component Identification

The identified system components and their classes are shown below:

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 145

Table-1: system components and their classes

S.N System
Component

Classes

SC-1 StudentRecords
Management

AddStudentRecords, DeleteStudentRecords
,ModifyStudentRecords, StudentRecords ,
ViewStudentRecords

SC-2 BookDetails
Management

AddBookDetails, DeleteBookDetails
,ModifyBookDetails, BookDetails,
ViewBookDetails, IssueBooks, ReturnBooks

CRUD MATRIX:

Table-2: CRUD Matrix

Use-Case

Class Manage
Student
Records

Organize
Book
Details

View
Book
Details

View
Student
Records

Issue
Books

Return
Books

AddStudent
Records C

DeleteStudent
Records RD

ModifyStudent
Records RU

AddBook
Details C

DeleteBook
Details RD

ModifyBook
Details RU

ViewStudent
Records R C

ViewBooks R C
IssueBooks CRU

ReturnBooks RU

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Message-call Information:

Fig 8: Message call Information between the Classes

Identified Reusable Components:
According to the Message-call Information Graph and Clustering Classes approaches, we
identified the following reusable components: StudentRecords, BookDetails, IssueBooks,
ReturnBooks, ViewBooks and ViewStudentRecords.

System Component Architecture:

Fig 9: System Component Architecture

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 147

Component Interface:

Fig 10: Component Interface Diagram

ASR – AddStudentRecords # DSR – DeleteStudentRecords
MSR – ModifyStudentRecords #ABD – AddBookDetails
#DBD – DeleteBookDetails #MBD – ModifyBookDetails
VSR – ViewStudentRecords
Implementation of reusable components:
There are various component technologies (EJB, CORBA, COM+, .Net etc.) in which we
can implement our components. Among these, we have developed our components in
most recent component technology; .Net. We use visual studio .Net 2005 for the
implementation of components [Brand02].
Component Testing:
Component-based development and software reuse places new demands on software
testing and quality assurance. Testing a software component is basically done to resolve
the following issues:

• Check whether the component meets its specification and fulfill its functional
requirements.

• Check whether the correct and complete structural and interaction requirements,
specified before the development of the component, are reflected in the
implemented software system.

Here, we use NUnit as a testing framework for all .Net languages. NUnit provides a class
library which includes some classes and methods to help us to write test scripts. NUnit
provides graphical user interface application to execute all the test scripts and show the

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

result as a success/failure report. NUnit does not create any test scripts by itself but NUnit
allows us to use its tools and classes to make the unit testing easier [Kim05].

Fig-11: Component Testing using NUnit Framework

5 COMPONENT REGISTERING & COMPARISION

To add the serviced components in assembly to a COM+ application, we need to register
that assembly with COM+. To register the component manually, use the RegSvcs.exe
command-line utility. RegSvcs accepts as a parameter the name of the file containing our
assembly's metadata.

Now, we have to make sure that the code has a strong name. What this means is that
the code has to be signed with a cryptographic key. The process is as follow [nunit]:

• In our .NET command window, navigate to the root directory of the solution.
• Run the command sn -k <keyname>. This will create a key file called

<keyname>.snk which contains a pair of cryptographic keys.
• Open the AssemblyInfo.cs file, and at the bottom, insert the full path to the key

against the AssemblyKeyFile entry.
The bottom of the AssemblyInfo.cs file should look similar to this:

[assembly: AssemblyKeyFile(@"C:\Component Test\StudentRecords.snk")]
Here, by using the RegSvcs.exe command-line utility we can register our

components.
C:\Component Test>regsvcs StudentRecords.dll
Finally, we can view our registered component by using component services.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 149

Fig-12: Component Services

Result Comparison:

The table 3 shows the results of comparison between our approach and the existing
methods in terms of the different ways for component identification techniques. Hence,
the results obtained by using our approaches matched what our intuition indicated.

Table-3: Result Comparison

Approaches
Circumstances

Cool
Joe

Cheesman &
Daniels

KIM
&Chang

Lee Our
Approach

Identifying System Component p P P S S

Applying CRUD Matrix p P S S S
Message call between classes P P P P S
Clustering Classes N N N N S
High Cohesion and Coupling P P P P S

S -- Supports p ---partially supports N---Not Used

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

6 CONCLUSION AND FUTURE WORK

We have proposed a model named Component Oriented Reverse Engineering (CORE)
for identifying and creating reusable software component. It encompasses reverse
engineering methodology to expose components from the object oriented legacy system.
It makes use of repository to store and manage the tested components and restructures the
new system that finally integrates the new system with the reusable components.

The reusability of the software component is most popular way to enhance the
productivity and improve the quality and reliability of the new software systems by
reducing the development costs. Due to these reasons, it is very important to identify
independent components having low coupling and high cohesion. We have also proposed
a systematic approach to identify reusable component from object oriented legacy system
through OOAD models namely use case, communication diagram and class diagrams.
Accordingly, the component identification technique may identify reusable components
more effectively based on facility of CRUD matrix, class clustering.

We have validated our approach by using a case-study named Library Management
System and also test our components for reusability and the result shows that our
approach supports all the 5 major functionalities illustrated in table 3.

In future, if we can automate this proposed methodology by an automatic tool then it
could be more effective and less time consuming.

REFERENCES

[Ben94].K. Bennett, “Legacy Systems: coping with success”, IEEE Software, 1994.

[Kim06] H.K.Kim, Y.K.Chung, “Transforming a Legacy System into Components”,
Springer-Verlag Berlin Heidelberg, 2006.

[lai07] S. Mahmood, R.Lai and Y.S. Kim, “Survey of Component-based software
development”, IET Softw, Vol. 1, No. 2, April 2007.

[Woods98] R. Kazman, S.G.Woods, S.J.Carrii,"Requirements for Integrating Software
Architecture and Reengineering Models: CORUM II", IEEE, 1998

[Abowd97] Abowd G, Goel A, Jerding D.F., McCracken M., Moore M., Murdock J.W.,
Potts C., Rugaber S. Wills L., “MORALE. Mission Oriented Architectural
Legacy Evolution” International Conference on Software Maintenance,
ITALY, October, 1997,

[Dodd99] John Dodd: “Identifying & Scoping CBD96 Components”, Texas Instruments
Inc., 1999.

[Daniels01] J. Cheesman and J. Daniels, UML Components: A Simple Process for
Specifying Component-Based Software, Addison Wesley, 2001.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 151

[Lee99] S.D.Lee, Y.J.Yang, E.S.Cho, S.D.Kim, S.Y.Rhew, “COMO: A UML- Based
Component Development Methodology”, IEEE, 1999.

[Kim04] S.D.Kim, S.H.Chang, “A Systematic Method to Identify Software
Components”, Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC’04), IEEE Computer Society.

[Martin] Ludger Martin, “Visual Component Integration and Regression Test”,
Darmstadt University of Technology, Dept. of Computer Science, Germany

[Wu03] Ye Wu, Mei-Hwa Chen, and Jeff Offutt, “UML-Based Integration Testing for
Component-Based Software”, George Mason University, State University of
New York Springer-Verlag Berlin Heidelberg 2003

[Larman05] Craig Larman, “Applying UML and Pattens”, 3rd Edition, Copyright © 2005
by Pearson Education, Inc.

[Sook05] M. Sook and E.S. Cho, “A Component Identification Technique from Object-
Oriented Model”, Springer-Verlag Berlin Heidelberg, 2005.

[Brand02] Daniel Brandon, “CRUD Matrices for detailed object oriented design”,
Copyright © 2002 CCSC: Southeastern Conference.

[Negal05] C. Nagel, B.Evjen, J.Glynn, M.Skinner, K.Watson, A.Jones, “Professional C#
2005”, Copyright © 2006 by Wiley Dreamtech India (p) Ltd.

[Kim05] Haeng-Kon Kim and Oh-Hyun Kwon, “SCTE: Software Component Testing
Environments”, Copyright ©Springer-V.B Heidelberg, 2005

[nunit] www.nunit.org

[Code04] http://www.codeproject.com/csharp/simplecompluscache.asp, April 2004.

CREATING REUSABLE SOFTWARE COMPONENT FROM OBJECT-ORIENTED LEGACY

SYSTEM THROUGH RESERVE ENGINEERING

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

About the authors
Mr S.K.Mishra received his M.Tech Degree In Computer Science &
Engineering from Motilal Nehru National Institute of Technology,
Allahabad, India in the year 2008 under the guidance of Dr.A.K.Misra.

Dr. D.S.Kushwaha received his Doctorate Degree In Computer
Science & Engineering from Motilal Nehru National Institute of
Technology, Allahabad, India in the year 2007 under the guidance of
Dr.A.K.Misra. He is presently working with the same Institute as
Assistant Professor in the department of Computer Science &
Engineering. His research interests include areas in Software

Engineering, Distributed Systems, Data Mining, Cognitive Sciences, Object Oriented
Technologies and Data Structures. He has over 30 International publications in various
Conferences & Journals.

Dr.A.K.Misra received his Doctorate Degree In Computer Science &
Engineering from Motilal Nehru National Institute of Technology,
Allahabad, India in the year [Ben94]990. He is presently working with
the same Institute as Professor in the department of Computer Science
& Engineering. His research interests include areas in Software
Engineering, Programming Methodology, Artificial Intelligence, Data

Mining, Cognitive Sciences, Object Oriented Technologies and Data Structures. He has
over 60 International publications in various Conferences & Journals.

