计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 264-267.
张瑞1, 湛永松2, 杨明浩3
ZHANG Rui1, ZHAN Yong-song2, YANG Ming-hao3
摘要: 针对汉字手写体的笔画动态序列恢复问题,文中提出了一种基于端点顺序预测的手写体笔画顺序恢复模型。首先对经过数字化处理后的手写体图像进行细化、笔画片段分割、图像坐标提取和规整等预处理,然后利用预处理后的图像和对应的书写坐标序列生成网络训练的样本,样本由静态手写体图像和包含字体书写顺序的热力图标签组成,该模型采用一种端到端的卷积神经网络结构,最后使用训练好的网络模型对静态手写体图像进行预测,从而得到字体原先的书写顺序。实验结果表明,该方法能够有效地对5笔以内的手写字体进行书写顺序的恢复,具有较高的准确率和处理速度。
中图分类号:
[1]金连文,钟卓耀,杨钊,等.深度学习在手写汉字识别中的应用综述[J].自动化学报,2016,42(8):1125-1141. [2]CORDELLA L P,STEFANO C D,MARCELLI A,et al.Writing Order Recovery from Off-Line Handwriting by Graph Traversal[J].IEEE International Conference on Pattern Recognition 2010:1896-1899. [3]DINH M,YANG H J,LEE G S,et al.Recovery of drawing order from multi-stroke English handwritten images based on graph models and ambiguous zone analysis[J].Expert Systems with Applications,2016(64):352-364. [4]LEMAIGNAN S,JACQ A,Hood D,et al.Learning by Teaching a Robot:The Case of Handwriting[J].IEEE Robotics & Automation Magazine,2016,23(2):56-66. [5]YANG M H,ZHANG K,ZHAO BQ,et al.A Robotic Writing System with Intelligent Interactive Learning Ability[C]∥CHCI2017,2017. [6]QIAO Y,NISHIARA M,YASUHARA M.A framework to-ward restoration of writing order from single-stroked handwriting image[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006(28):1724-1737. [7]BOCCIGNONE G,CHIANESE A,CORDELLA L P,et al.Recovering dynamic information from static handwriting[J].Pattern Recognition,1993,26(3):409-418. [8]QIAO Y,YASUHARA M.Recovering Drawing Order from Offline Handwritten Image Using Direction Context and Optimal Euler Path[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.2006:II-II. [9]NAGOYA T,FUJIOKA H.Recovering Human-Like Drawing Order from Static Handwritten Images with Double-Traced Lines[J].Lecture Notes in Electrical Engineering,2013(253):941-948. [10]NGUYEN V,BLUMENSTEIN M.Techniques for static handwriting trajectory recovery:a survey[J].International Workshop on Document Analysis Systems,2010:463-470. [11]曹忠升,苏哲文,王元珍.一种脱机手写汉字书写顺序恢复模型[J].中国图象图形学报,2009,14(10):2074-2081. [12]SHARMA A.Recovery of drawing order in handwritten digit images[C]∥IEEE Second International Conference on Image Information Processing.IEEE,2014:437-441. [13]NAKAI M,SHIMODAIRA H,SAGAYAMA S.Generation of hierarchical dictionary for stroke-order free Kanji handwriting recognition based on substroke HMM[C]∥International Conference on Document Analysis and Recognition.IEEE,2003(1):514-518. [14]ZHANG X Y,YIN F,ZHANG Y M,et al.Drawing and Recognizing Chinese Characters with Recurrent Neural Network[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2018(99):1-1. [15]BHUNIA A K,BHOWMICK A,BHUNIA A K,et al.Handwriting Trajectory Recovery using End-to-End Deep Encoder-Decoder Network[C]∥2018 24th International Conference on Pattern Recognition (ICPR).Beijing,China:IEEE,2018. [16]LECUN Y L,BOTTOU L,BENGIO Y,et al.Gradient- Based Learning Applied to Document Recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [17]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]∥Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.2016:770-778. [18]LECUN Y,BOSER B E,DENKER J S,et al.Handwritten digit recognition with a back-propagation network[C]∥Advances in Neural Information Processing Systems.SanFrancisco,CA,USA,1990:396-404. |
[1] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[4] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[5] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[6] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[7] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[8] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[9] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[10] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[11] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[12] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[13] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[14] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[15] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
|