计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 488-492.
石晓玲, 陈芷, 杨立功, 沈伟
SHI Xiao-ling, CHEN Zhi, YANG Li-gong, SHEN Wei
摘要: 稀疏数据矩阵缺失值估计是一项必要的基础性研究,在推荐系统中尤为重要,针对该问题的一种有效方法便是矩阵分解算法(Matrix Factorization,MF),但传统MF算法仅直接使用回归思想拟合矩阵样本点,并没有考虑样本自身拟合难易程度的差异性。针对该情况,文中分析提出了一种基于自适应样本权重的矩阵分解算法(AWS-MF),在原有MF算法的基础上,针对样本差异性进行有偏向模型拟合,为增加模型回归的准确性与稳定性,加权整合中间算法结果,从而得到最终的拟合数据值。实验结果表明,相比于MF算法和NMF算法,改进后的AWS-MF算法能根据样本差异性自动调整样本权重占比,在充分利用已有数据的前提下,最终得到更好的缺失值估计结果。
中图分类号:
[1]BREESE J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]∥Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.Morgan Kaufmann Publishers Inc.,1998:43-52. [2]HERLOCKER J L,KONSTAN J A,BORCHERS A,et al.An algorithmic framework for performing collaborative filtering[C]∥Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,1999:230-237. [3]LINDEN G,SMITH B,YORK J.Amazon.com recommendations:Item-to-item collaborative filtering.IEEE Internet Computing,2003,7(1):76-80. [4]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]∥Procee-dings of the 10th international conference on World Wide Web.ACM,2001:285-295. [5]KOREN Y,BELL R,VOLINSKY C.Matrix factorization tech-niques for recommender systems.Computer,2009,42(8):30-37. [6]LEE D D,SEUNG H S.Algorithms for non-negative matrix fac-torization[C]∥Advances in Neural Information Processing Systems.2001:556-562. [7]PAATERO P,TAPPER U.Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values.Environmetrics,1994,5(2):111-126. [8]ZHANG S,WANG W,FORD J,et al.Learning from incomplete ratings using non-negative matrix factorization∥Procee-dings of the 2006 SIAM International Conference on Data Mi-ning.Society for Industrial and Applied Mathematics,2006:549-553. [9]李乐,章毓晋.非负矩阵分解算法综述.电子学报,2008,36(4):737-743. [10]李改,李磊.基于矩阵分解的协同过滤算法.计算机工程与应用,2011,47(30):4-7. [11]LUO X,ZHOU M,XIA Y,et al.An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems.IEEE Transactions on Industrial Informatics,2014,10(2):1273-1284. [12]于玲,吴铁军.集成学习:Boosting 算法综述.模式识别与人工智能,2004,17(1):52-59. [13]董乐红,耿国华,高原.Boosting 算法综述.计算机应用与软件,2006,23(8):27-29. [14]SCHAPIRE R E,SINGER Y.Improved boosting algorithms using confidence-rated predictions.Machine Learning,1999,37(3):297-336. [15]曹莹,苗启广,刘家辰,等.AdaBoost 算法研究进展与展望.自动化学报,2013,39(6):745-758. [16]HASITE T,ROSSET S,ZHU J,et al.Multi-class adaboost.Statistics and its Interface,2009,2(3):349-360. [17]RUDER S.An overview of gradient descent optimization algorithms.arXiv preprint arXiv:1609.04747,2016. [18]HARPER F M,Konstan J A.The movielens datasets:History and context.ACM Transactions on Interactive Intelligent Systems (TiiS),2016,5(4):19. |
[1] | 程章桃, 钟婷, 张晟铭, 周帆. 基于图学习的推荐系统研究综述 Survey of Recommender Systems Based on Graph Learning 计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072 |
[2] | 王冠宇, 钟婷, 冯宇, 周帆. 基于矢量量化编码的协同过滤推荐方法 Collaborative Filtering Recommendation Method Based on Vector Quantization Coding 计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109 |
[3] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[4] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[5] | 帅剑波, 王金策, 黄飞虎, 彭舰. 基于神经架构搜索的点击率预测模型 Click-Through Rate Prediction Model Based on Neural Architecture Search 计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009 |
[6] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[7] | 蔡晓娟, 谭文安. 一种改进的融合相似度和信任度的协同过滤算法 Improved Collaborative Filtering Algorithm Combining Similarity and Trust 计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088 |
[8] | 何亦琛, 毛宜军, 谢贤芬, 古万荣. 基于点割集图分割的矩阵变换与分解的推荐算法 Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation 计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159 |
[9] | 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩. 基于注意力机制和门控网络相结合的混合推荐系统 Hybrid Recommender System Based on Attention Mechanisms and Gating Network 计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013 |
[10] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[11] | 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄. 基于遗憾探索的竞争网络强化学习智能推荐方法研究 Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration 计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226 |
[12] | 余皑欣, 冯秀芳, 孙静宇. 结合物品相似性的社交信任推荐算法 Social Trust Recommendation Algorithm Combining Item Similarity 计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217 |
[13] | 陈壮, 邹海涛, 郑尚, 于化龙, 高尚. 基于用户覆盖及评分差异的多样性推荐算法 Diversity Recommendation Algorithm Based on User Coverage and Rating Differences 计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263 |
[14] | 陈晋鹏, 胡哈蕾, 张帆, 曹源, 孙鹏飞. 融合时间特性和用户偏好的卷积序列化推荐 Convolutional Sequential Recommendation with Temporal Feature and User Preference 计算机科学, 2022, 49(1): 115-120. https://doi.org/10.11896/jsjkx.201200192 |
[15] | 董晓梅, 王蕊, 邹欣开. 面向推荐应用的差分隐私方案综述 Survey on Privacy Protection Solutions for Recommended Applications 计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083 |
|