Computer Science ›› 2018, Vol. 45 ›› Issue (6): 36-40.doi: 10.11896/j.issn.1002-137X.2018.06.006
• WISA2018 • Previous Articles Next Articles
CUI Yi-hui, SONG Wei, PENG Zhi-yong, YANG Xian-di
CLC Number:
[1]AGRAWAL R,SRIKANT R.Privacy-preserving data mining[C]//ACM Sigmod International Conference on Management of Data.ACM,2000:439-450. [2]CHANDRAMOULI B,GOLDSTEIN J,QUAMAR A.Scalable progressive analytics on big data in the cloud[J].Proceedings of the VLDB Endowment,2013,6(14):1726-1737. [3]CHANDRAMOULI B,GOLDSTEIN J,DUANS.Temporal analytics on big data for web advertising[C]//International Confe-rence on Data Engineering.IEEE Computer Socieyt,2013:90-101. [4]LI B,MAZUR E,DIAO Y,et al.A platform for scalable one-pass analytics using mapreduce[C]//ACM SIGMOD International Conference on Management of Data.ACM,2011:985-996. [5]JOHNSON A,SHMATIKOV V.Privacy-preserving data exploration in genome-wide association studies[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2013:1079-1087. [6]BONOMI L,XIONG L.Mining frequent patterns with differential privacy[J].Proceedings of the VLDB Endowment,2013,6(12):1422-1427. [7]XU S,SU S,CHENG X,et al.Differentially private frequent sequence mining via sampling-based candidate pruning[C]//2015 IEEE 31st International Conference on Data Engineering (ICDE).IEEE,2015:1035-1046. [8]LI N,QARDAJI W,SU D,et al.Privbasis:Frequent itemset mining with differential privacy[J].Proceedings of the VLDB Endowment,2012,5(11):1340-1351. [9]ZENG C,NAUGHTON J F,CAI J Y.On differentially private frequent itemsetmining[J].Proceedings of the VLDB Endowment,2012,6(1):25-36. [10]BHASKAR R,LAXMAN S,SMITH A,et al.Discovering frequent patterns in sensitive data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2010:503-512. [11]WONG K S,KIM M H.Privacy-preserving frequent itemsets mining via secure collaborative framework[J].Security and Communication Networks,2012,5(3):263-272. [12]NANAVATI N R,JINWALA D C.A novel privacy‐preserving scheme for collaborative frequent itemset mining across vertically partitioned data[J].Security and Communication Networks,2015,8(18):4407-4420. [13]DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends in Theoretical Compu-ter Science,2014,9(3/4):211-407. [14]DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C]//Theory of Cryptography Conference.Springer Berlin Heidelberg,2006:265-284. [15]GIANNOTTI F,LAKSHMANAN L V S,MONREALE A,et al.Privacy-preserving mining of association rules from outsourced transaction databases[J].IEEE Systems Journal,2013,7(3):385-395. [16]MCSHERRY F D.Privacy integrated queries:an extensible platform for privacy-preserving data analysis[C]//Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data.ACM,2009:19-30. [17]ROY I,SETTY S T V,KILZER A,et al.Airavat:Security and Privacy for MapReduce[C]//Usenix Symposium on Networked Systems Design and Implementation(NSDI 2010).San Jose,CA,USA,2010:297-312. [18]HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[C]//ACM SIGMOD International Conference on Management of data.ACM,2000:1-12. [19]XIONG P,ZHU T Q,WANG X F.A survey on differential privacy and applications[J].Chinese Journal of Computers,2014,37(1):101-122.(in Chinese) 熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-122. [20]BLAKE C L,MERZ C J.UCI Repository of machine learning databases [OL].http://www.ics.uci.edu/~mlearn/MLReposi-tory.html. |
[1] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[2] | HUANG Jue, ZHOU Chun-lai. Frequency Feature Extraction Based on Localized Differential Privacy [J]. Computer Science, 2022, 49(7): 350-356. |
[3] | WANG Mei-shan, YAO Lan, GAO Fu-xiang, XU Jun-can. Study on Differential Privacy Protection for Medical Set-Valued Data [J]. Computer Science, 2022, 49(4): 362-368. |
[4] | KONG Yu-ting, TAN Fu-xiang, ZHAO Xin, ZHANG Zheng-hang, BAI Lu, QIAN Yu-rong. Review of K-means Algorithm Optimization Based on Differential Privacy [J]. Computer Science, 2022, 49(2): 162-173. |
[5] | DONG Xiao-mei, WANG Rui, ZOU Xin-kai. Survey on Privacy Protection Solutions for Recommended Applications [J]. Computer Science, 2021, 48(9): 21-35. |
[6] | SUN Lin, PING Guo-lou, YE Xiao-jun. Correlation Analysis for Key-Value Data with Local Differential Privacy [J]. Computer Science, 2021, 48(8): 278-283. |
[7] | ZHANG Xue-jun, YANG Hao-ying, LI Zhen, HE Fu-cun, GAI Ji-yang, BAO Jun-da. Differentially Private Location Privacy-preserving Scheme withSemantic Location [J]. Computer Science, 2021, 48(8): 300-308. |
[8] | CHEN Tian-rong, LING Jie. Differential Privacy Protection Machine Learning Method Based on Features Mapping [J]. Computer Science, 2021, 48(7): 33-39. |
[9] | WANG Le-ye. Geographic Local Differential Privacy in Crowdsensing:Current States and Future Opportunities [J]. Computer Science, 2021, 48(6): 301-305. |
[10] | PENG Chun-chun, CHEN Yan-li, XUN Yan-mei. k-modes Clustering Guaranteeing Local Differential Privacy [J]. Computer Science, 2021, 48(2): 105-113. |
[11] | WANG Mao-ni, PENG Chang-gen, HE Wen-zhu, DING Xing, DING Hong-fa. Privacy Metric Model of Differential Privacy via Graph Theory and Mutual Information [J]. Computer Science, 2020, 47(4): 270-277. |
[12] | WU Ying-jie, HUANG Xin, GE Chen, SUN Lan. Adaptive Parameter Optimization for Real-time Differential Privacy Streaming Data Publication [J]. Computer Science, 2019, 46(9): 99-105. |
[13] | LI Lan, YANG Chen, WANG An-fu. Study on Selection of Privacy Parameters ε in Differential Privacy Model [J]. Computer Science, 2019, 46(8): 201-205. |
[14] | HU Chuang, YANG Geng, BAI Yun-lu. Clustering Algorithm in Differential Privacy Preserving [J]. Computer Science, 2019, 46(2): 120-126. |
[15] | LI Sen-you, JI Xin-sheng, YOU Wei, ZHAO Xing. Hierarchical Control Strategy for Data Querying Based on Differential Privacy [J]. Computer Science, 2019, 46(11): 130-136. |
|