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Alternative Models for Conditional Stock Volatility

Adrian R. Pagan and G. William Schwert
1. Introduction

Over the last decade several models of conditiona! volatility in economic time series have been
proposed. Basic to all of these suggestions is the nbtion that volatility can be decomposed into
predictable and unpredictable components, and interest has largely centered on the determinants of
the predictable part. For financial series this concern with the predictable component of volatility
is motivated by the fact that, in many models, the risk premium is a function of it

By definition, the predictable component of volatility in a series is the conditional variance
of that series, o;. The different ways of modeling o reflect different answers to two basic questions.
First. how does ¢’ vary with information available at time t; that is, what is the nature of the
conditioning set F? Second, what does the mapping between information and o look like? Of these
two questions, the first has to be dispensed with summarily. Because of the large range of variables
whose volatility has been measured, it is impossible to be precise about conditioning variables, other
than to say that the history of the series being analyzed is the most popular choice. The debate over
the mapping between o- and conditioning variables can be more fruitfully analyzed out of the context
of particular applications, and it is this question that we concentrate on in this paper.

Suppose we write the series y, to be modeled as y, = x/§ + u,, where x, is a set of variables
affecting the conditional mean of v, while u, is an error term with zero mean and conditional

variance E(u’| F) = ¢.. Then Engle (1982) proposed that

q
o, =c° + I @ uj, (1)
=1

the ARCH (q) model. Bollerslev (1986) generalized this to



the GARCH (p,q) mode!l. and Engle and Bollersiev (1986) extended GARCH to the class of integrated
GARCH (IGARCH) models that have the restriction £8 + Za;, = 1. As Bollerslev (1988) records,
the class of GARCH models has been extensively applied with some success. Several authors have
felt that these models are too restrictive, because of their imposition of a quadratic mapping between
the history of u, and ¢. Nelson (1988) argued that stylized facts associated with Christie (1982)
and Black (1976) imply that o be an asymmetric function of the past data, and he modified the

conditional variance to

0 =, 4 T 4, fnd, oo (04 + 7 (- QAL 3)
=z L

where ), = u/0, By modeling the logarithm of the variance (no?, it is not necessary to worry about
parameter values that imply negative variances as in the ARCH and GARCH models. Hence, this
can be called the exponential GARCH (EGARCH) model. To identify the parameters, = is set to 1.

Hamilton (1988,1989) proposed a bivariate state model in which o} was a linear function of
the conditional probability that the economy was in a state S, = 1, rather than the alternative §, = 0.
Because the conditional probability is a non-linear function of F, , once again this represents a
departure from the GARCH class of volatility measures. The exact mapping between o and F,
induced by his two-state approach depends on the data, and this raises the broader issue of whether
one might allow the data to determine the unknown function.

Pagan and Ullah (1988) argued that non-parametric estimation methods could be used for this
purpose, and Pagan and Hong (1988) gave some examples of where there seemed to be gains in doing
non-parametric estimation rather than following the parametric formulations such as GARCH.
Very little of a comparative nature has emerged about these methodologies. For this reason it is of
interest to apply each technique to the same data set, with the aim of investigating the different
implications each might have for the predictability of volatility, and the following section selects a

series on monthlv stock returns from 1834 to 1925 as the basis for such a comparison.



2. Estimation of Stock Return Volatility

We concentrate on monthly stock returns from 1834-1925, previously analyzed by Schwert
(1989a). He gives details on the construction of the data and places it in an historical context. In
fact, the series extends through 1987 but, because French et al (1987) and Nelson (1988) have
previously worked with the data from 1926 onward, it is useful to concentrate on a sample that has
not received much attention. Furthermore, as explained in the next section, there are technical issues
raised by the behavior of the series after 1926 that bring into question the validity of the assumptions
underlying some of the models mentioned in the introduction,

There is a long history of arguments in the analysis of stock market returns that the mean
return exhibits little predictability from the past. Qualifications to this conclusion are the existence
of a possible moving average error term induced by overlapping data and calendar effects. In the
representation y, = x,8 + u,, v, being stock returns, x, would be monthly dummies and u, would be
an MA(1), e + fe,_,. To account for these effects, we regressed out twelve monthly dummies to get
U, and then U, was regressed against U,,.....0_,, Only lags 1, 2, 3 and 10 seemed to be significant.
The point estimates for the first four lags are .27, -.10, .07, -.02, and the alternating signs and size
suggest that this is compatible with an MA(I) with parameter around .3. It was decided to
approximate this MA effect with an autoregression so that e, was computed as the residuals from
the regression of U, against u,,,...,0,,,, The e, are then the raw data. Central to this procedure is the
belief that there are no dependencies in the conditional mean other than linear ones. Some non-
parametric estimates of conditional mean functions reported later support this argument.

The task is to model the conditional variance of the series &, To do this, a set of conditionin‘g
variables F, must be chosen and a decision made about how ¢ relates to F,. It was decided to keep
F, as a function of the history of returns alone, and this meant that F, could be constructed from
either {u,_) or {¢,}. If an infinite number of conditioning variables was possible there would be no

difference between these, as they are just different linear combinations of y,_, but because we will

[OH]

be forced to restrict the lags to a finite set, differences can arise in results. Normally, we will adopt

(é,_]) as the basis of the conditioning set, as this facilitates comparisons with GARCH models.



However, both {étj‘; and {u, ) were alwavs tried and any discrepancies in results will be mentioned
when appropriate. A finite number of lags was selected by considering the regression of €’ against

el

....e2,, This regression yields the partial autocorrelation function of the éX It is important to
recognize that the error terms will be heteroskedastic and to adjust t-statistics with the method of
White (1980). The difference in the ordinary and robust standard errors is dramatic, with t-statistics
of the estimated coefficients of e2,, €2, and e, falling from (6.22, 4.65, 3.12) to (2.16, 1.78 and 1.81),
while that for 2, went from -1.45 to -2.03. Based on this evidence, we concluded that F! = {¢,,,
€. €. €., shouid suffice as the broadest set of conditioning variables, but we also conducted
experiments with F? = {e,,, €,) and F' = {¢,,}. To anticipate later developments, most of the
information is in F, but the expansion to the larger set F' does improve the prediction of €.
Having chosen F,, it only remains to describe the set of methods employed to estimate 7.
Because ten lags were used in constructing U, and a further eight if F* was selected, the sample size
was always Julv 1836 to December 1925, vielding a total of 1086 observations. More cbservations
were available when F or F? are the conditioning sets, but working with a variable sample size

makes it harder to compare the different results.
(i) A Two-Step Estimator

By exploiting the fact that E(e? | F,) = &%, a simple two-step estimator of o7 can be found as
the predictions from the regression of €® against {eZ, ,...,e.,} (see Davidian and Carroll (1987)).

Obviously the underlying model of volatility here is

8

@ =0 + T q e, (4)

t=1

and all one does is replace o® by €2 + (¢? - ?) + (e2 - €2) = e+ v, Itis easy to show that the term
(e - e?) does not affect the limiting distribution of @qs Provided e, has zero skewness, and so v,
behaves like (o7 - 7), which is a martingale difference with respect to the sigma field generated by
F,. Ordinary least squares is therefore a consistent estimator, although not an efficient one.

Efficiency could be improved by doing weighted least squares with o, as weights, but the non-



normality of v, also suggests that some adaptive estimation of a might be preferable. However, the
role of the two-step estimator is really that of a benchmark, and the R? of .090 between o7 and e? sets

a limit to which other models can be compared.
(ii) A Garch Model

The two step estimator is effectively an eighth order ARCH model and an obvious extension
is 1o see if a GARCH specification would be superior. French et al (1987) fitted a GARCH(1,2)
model to y, over the period 1926-1984, although the second ARCH parameter a, was small. We
estimated a GARCH(I,2) mode! for e, for 1835-1925. French et al allowed for an MA(l), u,=¢ +
ge,, and we did the same here, although the fact that e, has been purged of a tenth order
autoregression meant that the MA term was not significant. After estimation, the following model
for o? was found (t-values in parentheses),

~a

& = 000239+ .571 o, + 138 €, + 064 €, (5)
(3.65) (6.11) (4.38) (1.35)

A diagnostic test advocated by Pagan and Sabau (1987), involving the regression of €2 against unity
and &, gave an estimated coefficient on ¢} of .879, with a t-statistic of -1.28 for testing the nul!
that the coefficient is unity (implied by the restriction E(e?| F) = 0?). For this situation, however.
results in Sabau (1988) show that the test is probably rather weak. A point to note for reference in
the next section is that the point estimates are compatible with the idea th;n o’ is generated by a
GARCH rather than IGARCH process. The R?between o2 and € is .067, which is less than the R’

for the two-step method.'
(iii) Exponential Garch Model

The exponential GARCH(1,2) model allows lagged shocks to have an asymmetric effect on

conditional volatility. In particular, the evidence in Black (1976), Christie (1982), French et al

'French et al (1987) also estimate a GARCH-in-mean model, where the conditional mean return is a linear function of
either the standard deviation or variance. We estimated such models for the 1834-1925 data, and the RZ statistics were 076
and .077. Thus, the GARCH-in-mean results are essentially equivalent to the GARCH results reported in the text.



(1987), and Schwert (1989¢c) suggests that negative stock returns lead to larger stock volatility than

equivalent positive returns. We estimate an EGARCH(1,2) model (t-values in parentheses),

e = -1.73 + .747 fno?, + 262 Z,, +.124 Z ,, (6)
(-3.90) (11.62) (5.21) (2.06)
where Z, =[] - /1% - 352§,
(-3.91)

and §, = ¢ /0, The log-likelihood for this model is 2198.2 versus 2191.8 for the GARCH(1,2) model.
Thus, the estimates of Nelson’s EGARCH model confirm the previous evidence that conditional
volatility increases more return shocks are negative. The R? between of and e? is .118, which isa

small improvement over the 2-step method, but well above the GARCH(1,2) model.
(iv) Hamilton's Two-state Regime-switching Model

Hamilton (1989) proposes a switching-regime Markov model for GNP growth rates as a

model for recessions and expansions. Briefly, consider a variable y, that follows an AR(m) process,
Y- B(S) = ¢y [y - S+ ¢ [Yia = B8]+ oo + G [Yem = (S 0)] + 0(S)v,, (7N
where v, is n.1.d.(0,1). The mean, u(S,), and the residual standard deviation, o(S), are functions of
the 'regime’ in period t. The regimes are assumed to follow a two-state first order Markov process.
P(S=1]S,=1)=p
P(S=0|S.=1)=1-p

; (®)
P(S=1 [Sl_1=0) =1l-q
P(S=0]S.,=0) = q,
and the parameters of (7) are modeled as,
/“(S() = ao + al Si
(9)

o(S) =w, + w, S,



Finally, the errors v, are assumed to be independent of all S,. Given this structure, it is
straightforward to use numerical procedures to maximize the likelihood as a function of the
parameters {¢,,...$..P,q.a..@,. w.w,).. In addition to point estimates and asymptotic standard errors,
Hamilton’s algorithm estimates the probability that the variable is in "regime 1" conditional on data

available at date t. The estimates of Hamilton’s model from July 1835 through December 1925 are,

& - B(S) = 3088, - A(S.)] - 116 [€,, - &S] +.047 [&,, - i(5,5)]
(5.60) (-3.57) (1.47)

2002 [ - H(S.] + H(SIVe (10)
(-.07)

a(S) = 0068 - .0050 S,
(5.08) (-1.00)

5(S) = .0251 + 0262,
(28.12) (8.64)

with t-statistics in parentheses. The estimates of the Markov probabilities are q = .9646 (with a
standard error of .0114) and p = .8994 (with a standard error of .0351). Thus, these estimates imply
that the high variance regime is less likely than the low variance regime, although both regimes are
likely to persist once they occur.® Schwert (1989a) shows how to compute the conditional variance
from this model. Briefly, if the variable was in regime | at t-1, the variance of the squared forecast
error for period t is,
E{*(S)IS,. =1} + Var{u(S)IS,=1)

= [E(a(S)IS,=1)) + Var{a(S)IS,,=1) + E{[u(S)) - E(u(S))3S.,=1}

= [w, + w,p)’ + &} p(1-p) + & p(1-p). (an
If the variable was in regime O at t-1, the variance of the squared forecast error for period t is,

E{d°(S)S,,=0) + Var{u(5)IS,,=0}

Hamilton [1988,1989] provides additional information about the statistical model and the related estimation procedures.
We are grateful to Jim Hamilton for providing the FORTRAN source code used to estimate these models.

3The expected durations of the regimes are (1-]5)'l = 9.9 months and (1-q)"! = 28.2 months.



= [E{o(S,)S,,=0})" + Var{a(S))IS,,;=0) + E{{u(S) - E(u(S)11S.=0)

= [w, + w(1-Q)) + v q(1-9)+ a? q(1-q). (12)
Multiplying (11) and (12) by the estimates of the conditional probabilities of being in each regime
given data through t-1, P(S =1]eé,,..) and P(S_;=0|¢,,,...), gives the estimate of the conditional

variance of the forecast error at time t, . The R? between € and o? is .057, which is the smallest

among all of the techniques we consider.
(v) Non-parameiric Kernel Estimation

Broadly there are two major philosophies in non-parametric estimation. The first is
essentially a weighted average, that is
~2 T 2 T
o = I w, e, L w=1, (13)
=1. j=1
where T is the sample size. The weights w are made to depend on F and F, in such a way that, if

F, and F, are "far apart,” w is close to zero. What this does is make o7 equivalent to the sample

s
variance of éJ using only those observations that are close to F,. Since it is these observations that
have variance o7, the method is just a simple application of the use of sample moments to estimate
population moments. Many weighting schemes are possible. Letting z, be the rx1 vector containing

the elements in F, Nadaraya (1964) and Watson (1964) set

-

w, =K(z -z Y/ él K(z, -z2) (14)
where the kernel K(-) has the properties that it is non-zero, integrates to unity and is symmetric.
The kernel used in this paper was the Gaussian one,

K(z, - z) =Qn)" [H" exp[-(z, - z) H(z, - 2)]. (15)
H = diag(h,..h)) contains the bandwidths, that were set to o, T/*", where 0, is the sample standard

deviation of z,, k=1I,....,r. No experimentation with the kernel or bandwidth was done, and we did

not look at any other weighting schemes. One important modification that was employed was to leave



out the t™ observation when computing @,

Q.
[}
1

(16)

[

At

[N
#+ 11

i=1
t
Generally, it is important to adopt the "leave-one-out” estimator to avoid the situation where
"outliers” in the data force w, to be unity while all other w; are close to zero. In these circumstances, €}
becomes the estimator of o if all observations are used. While there is a sense in which this is the
best estimate of o7, it tends to overstate the predictability of volatility by making a perfect prediction
at time t, Based on F/! the R? between &’ and o7 is .109 if (¢,,) is the conditioning variable. There
is a major improvement over the GARCH and Hamilton models, but only a small improvement over
the EGARCH model. The R? between ¢ and &’ is lower for F? and F*. This difference is partly
due to the fact that some of the observations on é? for which o} was not computed were very large.

It is not easy to summarize the mapping between o’ and (é‘_j) when the conditioning set isA |
Some insight is available by computing the variance of e, when the conditioning set is F!. Figure !
displays the mapping of o} into a grid of fifty values of e, located within the range set by the
minimum to the maximum values of e, found in the sample. An outstanding characteristic of figure
1 is the difference in implied volatility for negative and positive values of €., a stylized fact alluded
to in the introduction. Figure 1 is also similar to the equivalent mapping found by Pagan and Hong
(1988) in their analysis of monthly equity vields from 1953 t0 1984. Also in figure 1 is the of implied
by the GARCH (1,2) model if one just took the lead term in the distributed lag connecting ¢* and
éf_J. Comparing the GARCH and kernel functions it is clear that the GARCH model is likely to
exhibit different volatility patterns whenever je. | is large. For small values of le.)l, the two
predictions should be close. Unfortunately, this fact makes it hard to discriminate between the two
methods, as large values of le.,| are only a small fraction of the sample.

As well as the conditional variance, one could compute the mean of e, conditional on e, to
see if there are any non-linearities present. Figure 2 presents this for both the kernel and Fourier
series estimators discussed later. Drawn around these are the 95% confidence intervals computed

from the asymptotic distribution (the lighter dashed lines), and it is noticeable that there is very little



dependence of the mean on e, This outcome js to be contrasted with the situation for the
conditional variance. Figure 3 shows the Fourier estimate documented in the next section, along with
its confidence intervals (lighter dashed lines), and there is an obvious difference between ¢? for small

and large e,
(vi) Non-parametric Flexible Fourier Form Estimator

An alternative non-parametric scheme involves a global approximation using some series
expansion, followed by an evaluation of ¢? using F,. Many series expansions exist in the numerical
approximation literature and could be adopted here, but the most extensively used one in economics
has been the Flexible Fourier Form (FFF), Gallant (1981), in which of is represented as the sum of
a low order polynomial and some trigonometric terms constructed from the elements of F,, z, = é[_;.

Transplanting this idea to our context gives a model for volatility of the form
] 2
o =c" + T {(a, z, + 8, zi, )+ L [7,co0s(kz) + §, sin (kz)]}, (17)
’ k=1

where L = [, 2 or 4 depending on whether F}, F? or F* was used. In theory, the number of
trigonometric terms must tend to infinity, but in terms of significance it did not seem worthwhile
going above order two.

A disadvantage of the FFF is the possibility that estimates of ¢? can become negative, and
indeed this happens for a few points in the sample. However it has the advantage that it produces
estimates for o at points that the kernel estimator did not. An explanation for why this is so is that,
when no observations are available in a region of the sample space, the FFF will interpolate the
function from other data points. One must be ambivalent about this property. On the one hand, if
*difficult" points are concentrated around the origin, there is no "extrapolation outside the sample,"
and the results should be reasonable. On the other hand, it is important to know that what we are
seeing s just an interpolation, and the kernel points to a potential problem. Joint viewing of output
from both estimators is a prerequisite for an understanding of the behavior of non-parametric
volatility measures. Low values of e, in figure 2 illustrates the interpolation feature mentioned

above.



Figure 3 shows the FFF estimates of & as a function of €,,. The story of the mapping is much
the same as for the kernel, except there is a larger estimate of volatility for large positive e,,. In this
respect the FFF is closer to the GARCH estimate. Notice that across most of the range of €., 00 is
constant, and it is only for large positive and negative values of e., that any discrimination between
the different ways of measuring o’ is possible. As there is only a small fraction of the sample
featuring large |6, one must be sanguine about the possibility of differentiating between the
techniques. Nevertheless, the F statistic that the coefficients of the trigonometric terms in the FFF
equal 0 is 6.47, compared to the 5% critical value of F 5, = 1.67 (the actual degrees of freedom are
16 and 1061). Hence, the non-linearities accounted for by the Fourier terms are important in
explaining volatility. The R? between €’ and &° are .125 (F/), .185 (F}), and .205 (F ). Because the
EGARCH model effectively has a conditioning set more like F? than F, it seems more appropriate
to compare the fit of the different models with those R?, and here the non-parametric estimator does
seem to represent a substantial improvement. Thus, it may be useful to consider extending the

EGARCH model by the addition of Fourier terms in Z_, and Z,,.
3. Analysis of Important Episodes of Stock Volatility

One way to contrast the behavior of the alternative variance estimators is to analyze their
behavior during important subperiods in the sample. As shown in figure 1, the main difference
between the GARCH(1,2) model and the kernel estimator occurs for large negative returns. These
data also explain the difference between Nelson’s EGARCH model and the GARCH model. Thus,
it is worthwhile to plot some of the variance estimates around major drops in stock prices during the
1834-1925 period. Schwert (1989a) notes that many of the stock market 'crashes’ during the 19%
century occurred at about the same time as banking panics. Therefore, we will use the dates of the

bank panics and other major events to evaluate the different predictions of stock return volatility.
(i) The Banking Crisis of 1837

There was a major banking crisis in May 1837. This is one of the cases where many banks

refused to redeem demand deposits for currency. Stock prices fell in early 1837 as investors seeking



liquidity sold stocks (see Sobel (1988, Chapter 2) for an interesting history of this episode). Figure
4a plots the unexpected stock return ¢, (E)‘ along with the one-step Fourier (F) and kernel (K},
Hamilton (H), EGARCH(1,2) (EG) and GARCH(1,2) (G) estimates of the conditional standard
deviation for 1837. Stock prices fell during early 1837, with monthly returns of -2, -5, -8 and -8
percent in February through May. On the other hand, the rise in stock prices in July 1837 over 12
percent is the third largest monthly return in the sample. This is characteristic of conditional
heteroskedasticity -- large returns follow large returns, with random signs. Among the volatility
estimates, the Fourier estimate moves the least. The kernel estimate and the GARCH estimate
increase in August 1837, following the erratic pattern of returns earlier in the year. The kernel
estimate drops back to its previous level in September 1837, while the GARCH estimates gradually

decay.
(ii) 1843

Figure 4b plots the unexpected stock return e, (E) along with the various conditional standard
deviation estimates for 1843, Stock prices rose dramatically in May 1843 and again at the end of the
year, with monthly returns over 10 percent per month in May and December. There were no major
drops in stock prices, so this episode dbes not qualify as a’crash.” The GARCH estimate of volatility
increases the most following the large return in May, and the Fourier estimate actually drops from
May to June. This emphasizes the different reactions of these methods to positive versus negative

return shocks.
(iii) 1846

Figure 4¢ plots the unexpected stock return ¢, (E) along with the various conditional standard
deviation estimates for 1846. Stock prices fell by over 10 percent in January and April, 1846. There

were positive returns over 5 percent in February and June. Again, this is characteristic of a period

“The unexpected stock returns e, {E) in figures 4a-4i are multiplied by .10 they do not dominate the plots of the standard

deviations. Thus, when E iz -.01 in one of these plots, the unexpected stock return was - 10 percent that month.
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of high volatility. The Fourier estimate of volatility is most sensitive to this pattern, rising sharply
in February and May, but falling in March and June. The kernel estimate is relatively constant
throughout the vear, and the other methods produce estimates that show moderate increases early in

the vear that decay toward the end of the year.
(iv) The Banking Panic of 1857

There was a major banking crisis in the Fall of 1857 (see Sobel (1988, Chapter 3)). Several
major firms went bankrupt and there was a similar financial crisis in Europe. Figure 4d plots the
unexpected stock return e, (E) along with the various conditional standard deviation estimates for the
last half of 1857 and the first half of 1858. Stock prices fell 6, 14 and 13 percent in August,
September and October, 1857. Then, in November 1857, prices rose by more than 16 percent. The
returns for September-November, 1857 are three of the four largest in absolute value for the 1834-
1925 period. This episode is the best experiment to differentiate among the alternative variance
estimators. Both the kernel and the Fourier estimates rise dramatically in October 1857, and they
decline sharply in December 1837, In contrast, the GARCH and EGARCH estimates rise gradually,
peaking in December 1857 and gradually decaying after that. Hamilton's estimate rises and falls
much less. Thus, the non-parametric estimates adapt more quickly to the fast increase in volatility

and to its decrease when the panic subsided.
(v) The Start of the Civil War. 1860

It is not surprising that the beginning of the Civil War increased the volatility of stock returns.
Figure 4e plots the unexpected stock return €, (E) along with the various conditional standard
deviation estimates for the last half of 1860 and the first half of 1861. Stock prices fell 4, 10 and 5
percent in the last three months of 1860, rising about 10 percent in January 1861, only to fall 9 and
6 percent in April and May, 1861. Again, the Fourier estimate of the conditional standard deviation
rises the most in December 1860 and May 1861, returning to more normal levels in the next month.

The other methods show a smaller increase in volatility in December 1860, and slight decay from that



point.
(vi) The Banking Crisis of 1873

There was another major banking crisis in the Fall of 1873 (see Sobel (1988, Chapter 5)).
Figure 4f plots the unexpected stock return €, (E) along with the various conditional standard
deviation estimates for the last half of 1873 and the first half of 1874. Stock prices fell 7 and 6
percent in September and October, 1873. They rose about 10 percent in December 1873 after the
panic ended. Aii of the conditionat standard deviation estimates rose in October 1873. The kernel
estimate drops to more normal levels in December 1873, and the Fourier estimate drops in February
1874. The other estimates gradually decay from a peak in January 1874, with the GARCH estimate

being the highest.
(vii) The Banking Crisis of 1893

There was another major banking crisis beginning in May and lasting through September
1893 (see Sobel (1988, Chapter 7)). Figure 4g plots the unexpected stock return e, (E) along with the
various conditional standard deviation estimates for 1893. Stock prices fell 9, 3 and 8 percent in
May, June and July, 1893. They rose almost 7 percent in September. All of the conditional standard
deviation estimates rise in June 1893, but the kernel and Fourier estimates drop in September 1893

while the GARCH, EGARCH and Hamilton estimates decay slowly back to normal levels.
(viii) The Northern Pacific Panic of 1901

In early 1901 two groups led by E. H. Harriman and J. P. Morgan tried to gain control of the
Northern Pacific Railroad. According to Sobel (1988, Chapter 8), the actions of these coﬁpeting
groups drove up prices for Northern Pacific and for other railroad stocks through April. In May,
the efforts of short-sellers in Northern Pacific stock to cover their positions, and the unwillingness
of either of the groups seeking control of the company to sell, caused Northern’s price to rise, but
many other stock prices fell. Asshown in figure 4h, this erratic behavior caused stock prices to rise

almost 8 percent in April, fall § percent in May, rise 12 percent in June and fall 11 percent in July.
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Most of the volatility estimates rise through June. In July, the GARCH estimate is the largest. The
Fourjer estimate catches up to the GARCH estimate in August, then drops to tie the kernel estimate

as the lowest in September. Hamilton's estimate moves up the least and decays slowest.
(ix) The Banking Crisis of 1907

The banking crisis of 1907 is often credited with leading to the creation of the Federal
Reserve System in 1914. As shown in figure 4i, stock prices fell by almost 9 percent in March,
August and October, 1907. All the estimates of conditional standard deviations rose in April 1907,
with the kernel and Fourier estimates dropping in May. The Fourier estimate jumps from October
to November, then falls back to its previous level in December. The GARCH, EGARCH and

Hamilton estimates remain high throughout the second half of 1907.
(x) Summary

The plots in figures 4a-4i show that the non-parametric estimates of conditional volatility

(kernel and Fourier) are different from the parametric estimates (GARCH, EGARCH and Hamilton)
/

in periods when stock prices fall. In particular, volatility rises fast after large negative unexpected

returns. The parametric estimates all show slow adjustment to large volatility shocks, but the effects

of these shocks persist after the crises subside.
4. Volatility: 1834-1987

It was mentioned earlier that there were certain difficulties in analyzing the complete sample.
These stem from the fact that many of the models and estimators used in the analysis of the preceding

section impose covariance stationarity on the data, and this section argues that the stock return series

cannot plausibly be regarded as that over the complete time frame available. If this is true, models
such as Hamilton's can be immediately rejected as inappropriate. Moreover, the assumptions
underlying non-parametric estimators would also be violated, and one could not justify their usage
on the basis of asymptotic theory. Some assessment of whether the data are covariance stationary is

therefore mandatory.



Because covariance stationarity implies that the unconditional variance of the data is a
constant over time, a simple graphical view of the likelihood of such constancy is available from a
plot of the recursive estimates of the variance of the series against time. Again assuming that there
is a negligible mean effect,

t
ply=t' £ 0, (18)
k=1

is the recursive estimate of the unconditional variance at time t. Figure 5 displays the plot of this
against t for 1834 to 1987. There are three distinct phases. In the first, ending around 1866, the
unconditional variance estimate is quite erratic. The estimate is very stable until it makes a dramatic
jump to a new plateau around 1930. It is this latter jump that is the most striking feature of the data
and it suggests that data before 1930 has a different variance from that after 1930. One might argue
that the pre and post-1866 data are also different, although the switch from the Macaulay (1938) to
the Cowles (1939) data occurring near that time could explain part of the aberrant behavior.

It is useful to compare this plot with what we would get by recursively estimating the variance
from data simulated from either Hamilton’s model, using the parameters in Schwert (1989a, Table
3), or a GARCH(1,1) with coefficients 8, = .7 and a, = .1 (see eq. (2)). Figure 6 has these, and the
convergence of f,(t) to a constant is very striking. Nothing like the behavior exhibited in figure §
is in evidence. This makes a very strong case against the utility of those models for application to
this long series of stock returns. As an aside, we should mention that figure 5 is representative of
many financial asset prices that we have examined, and this must create serious doubts about the
application of such models to interest rates, etc.

It seems desirable to have some formal statistical test of the constancy of the unconditional
variance. One possibility is to split the sample into two parts and to compare the sample variance g,
and p, of each sample. Let the sample be split such that T = T, + T,, T, = kT,, and consider testing
the hypothesis that

T T
E[T' T ul]=ET,' T ul] (19)
j=1 j=T+1

We also did all the tests described below with 2. There were only small differences in the results.
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A suitable test statistic is 7 = 2, - 2, and one can think of this as a member of the class of "post
sample prediction tests" studied by Ghysels and Hall (1987) and Hoffman and Pagan (1988). Setting

k=1, it follows from those papers that
. a g
T 7 —= N0, 23, + 22 1) (20)
j=1

if 0is a covariance stationary process with autocorrelation coefficients 7, that obeys certain mixing

conditions and k is a constant. The essential fact for establishing the limiting distribution is that

T
(T,™ u!) and (T, £ u?), (21)

1 j=T;+1

W=

j
are asymptotically uncorrelated, while 4, and g,” have the same probability limits when u? is
covariance stationary. Since

oc
v=_(y +2 I 7. ) (22)
k=1
is proportional to the spectral density of 0? at the origin one could consistently estimate it this way.

Instead, we follow Phillips [1987] and estimate it by

8
T+ 2 21 v, (- G/9), (23)
=

where 7, are the estimated serial correlation coefficients of uf calculated over the whole sample. For

the complete sample of 1834-1987, g, = .0013, 2, = .0028 and the "t-statistic”
T (1/v/2v) = -3.00, 24)

showing a lack of homogeneity in the variance. Using data from 1834-1925, 4,® = 0014 and 2,% =
.0011, giving a "t-statistic" of 1.82, suggesting the possibility of a break. Given the sample size,
however, one would probably require a much larger value for this statistic to reject the null
hypothesis of covariance stationarity.

Because the recursive variance computation of figure 5 seems a useful diagnostic device for

locating potential shifts in u,. a test based on the information it conveys would be useful. There



does not seem to be a direct way of doing this, but something close to it is to examine the cumulative

sums of (u? - ), where f. is the variance estimated over the whole period. Consequently, define
13 P2 - >)

o
Pry = (T)" '21 (u? - p,), (25)
j=
where O<r<] and [e] is the "integer part of” (this notation is from Phillips (1987)). Now it is not hard

to show that §(r) - $(r) is o,(1) where

e}
W) = (T T -5y, (26)
j=1
and
. T
A =T T Wl (27)

t=1

and we therefore need to find the limiting distribution of ¥(r) if we are to find pr(¢(r)>c). Suppose
that u, were n.i.d.(0,1). Then v=2 and we could find the c,(r) such that pr(¥(r)>c,(r)) = .01 by
computer simulation. That is, we would generate values for u; and empirically determine the ¢, (r)
that has 1% of the replications exhibiting a [(r)| larger than it. Treating this as a two-tail test, upper
and lower critical values, ¢™o,(r) and ¢, (r) can be found by assigning % to each. This decision is
somewhat arbitrary as the test statistic is not symmetrically distributed, but more precise calculations

are rarely justified.

Our aim is to show that these critical values are appropriate even if the u, are not n.1.d.(0,1).
First, relaxing this to n.i.d.(0,0%) poses no difficulties as the v/* term in the denominator means that
the test statistic is invariant to ¢>. Second, there is the problem of a lack of independence between
the u. Suppose that the u, are a covariance stationary process satisfying the mixing conditions

detailed in Phillips (1987). Then, we can decompose (r) as follows

[Tr]
) =T (D - B)
j=
{Tr) T
=(Tv)” { ) (ul - py) +[Tr(T? _El(#z - u}))
= =



s {Trl T
=(Tv)” { Z ¢J-r Z ¢ -r po [

j=1 k=1 m={Tr]+1
where ¢ = u} - p,
[Tr) T
=(1-n(Ty)y* £ ¢J -r(Tvy* T 4. . (28)
=1 k={Tr]+1

Under the mixing conditions of Phillips (1987), the first term tends in distribution to (1-1)B(r) while
the second is rB(1-r), where B(e) is Brownian motion on [0,1]. Moreover, asymptotically these two
terms are uncorrelated and, because they behave like Brownian motion, are independent. Thus, the
limiting distribution of ¥(r) is invariant to the degree of dependence in u? (subject of course to the
mixing conditions being satisfied), and we use the critical values from the simulation experiment
described above to determine if 12'(1')‘ is too large to have come from a covariance stationary process.
Lo (1987) gives a formal proof that ¢(r) converges to a Brownian bridge under the mixing conditions
set out in Phillips (1987).

The testing strategy is similar to that in Brown, Durbin and Evans (1975) except that recursive
residuals are not used and we have centered the test statistic to use an fnvariance principle. Because
this test might be useful in a wider context, Table Al in the appendix contains several fractiles ¢™(r)
and ¢(r) forr = .1,.2,.3,...,.9, and T = 100, 200, 500, 1000 and 2000. At this stage it is unclear how
accurate it is to ignore dependence in u’.’ Schwert’s (1989b) demonstration that the tests in Phillips
and Perron (1988), which employ this invariance result, are very sensitive to certain types of
dependence when T < 1000, could well apply here, although we do not think it would to the same
extent. The reason is that the sensitivity of the Phillips-Perron test arises because the first order
autoregressive coefficient exhibits a "small sample bias” when there is negative dependence, and the
test statistic is formed by multiplying this by T. Nevertheless, for small and large values of r the
asymptotic theory may be unreliable, because independence is unlikely unless T is very large. Notice

that 9(1) = 0 by definition, even if the series is not covariance stationary, emphasizing that the power

SLimited evidence from simulations with GARCH(1,1) models suggests that the upper fractiles of the distribution ¢ (r)
are somewhat larger than the results in table Al when §, = .7 and a, = .1.
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of the test is likely to be weak when r is close to unity. Luckily, the likely break points in our sample
occur for r between .35 and .65, which should be the region in which the test is most powerful.

Figures 7 and 8 show ¢(t) plotted against t for 1834-1987 and 1834-1925, respectively. Also
on both graphs is an interpolation of the quadratic in r for nine values of either ¢, (r) (figure 7) or
Co () (figure 8), to give a better picture of how c,(r) varies continuously with r. The R? from the
quadratic regression exceeded .988 in both cases. There is little doubt about a lack of covariance
stationarity over the complete sample. The minimum value of $(t) is -2.51, which is smaller than
any of the values irom simulations of the statistic. For 1834-1925 there seems to be a break around
1866, with the maximum value of §(t) being 1.63. Simulations produced a value of this size roughly
three times out of one thousand. These results cast some shadow over the work reported in Section
2, although re-computation of figure 1 showed that the results were not sensitive to whatever lack
of homogeneity there was in the series. One possibility was that the dependence in u? seen from the
GARCH results in (5) could account for ¥(r) exceeding c,,*(r), i.e., there is a failure of the
asymptotic theory. Simulations of c,, (r) when u, was generated by a GARCH(I,1) with §, = .7,
a, = .1 did not change the conclusion however.

Another possible test statistic for homogeneity is to compare max $(r) with min ¢(r), O<r<l.

The statistic

R = max ¢(r) - min §(r), (29)

O<r<l O<r<l N

is termed the modified scaled range statistic by Haubrich and Lo (1988), in recognition of its origin
in the scaled range statistic of Mandelbrot (1972). For 1834-1987, R = 2.36, while it is 1.66 for
1834-1925. From Table la of Haubrich and Lo (1988), Pr[R > 2.36] <.00S5, and Pr[R > 1.66] ~ .075,
reinforcing our previous conclusion that there is strong evidence of a lack of covariance stationarity
over the complete sample, but only marginal evidence over the shorter sample.

If we conclude that there is a lack of covariance stationarity in the long sample, it is natural
to ask if there are models available that could replicate the behavior of figure 5. There are two

possible candidates. The IGARCH model proposed by Engle and Bollerslev (1986) is not covariance

stationary, and recently Hansen (1988) has suggested that u, be modeled as ze, , where z, is (1) and



e, is I{0). If e; is independent of z, 2 =0 2. Simulations of an IGARCH(I,1) with B, =.7 and
a, = .3 reveal that a sharp jump in the recursive variance estimate is a characteristic of this type of
process. This occurred in each of dozens of simulations. Hansen’s model is more difficult to simulate
as one needs to choose the variance of e, and it is also possible that z, need not be independent of e,
Simulations showed that it could produce sharp jumps, although this was the exception rather than
the rule. There is one important difference between the models. For both processes E(u?) is O(t),
while E(u!) is O(t) for Hansen and grows exponentially fast for IGARCH (provided ¢’ ¢ 0 in (2)).
This difference is important in determining the asymptotic behavior of the non-parametric estimators
used in section 2. Take the Fourier method. The error term in this regression is effectively uf -
E(u?), so its variance is directly a function of E(u!). When E(u}) can be represented as a polynomial
trend, as in Hansen’s model, it may be possible to derive a limiting distribution for &° along the lines
of Wooldridge and White (1988). But no such possibility exists if o’ follows an IGARCH. In this
situation, Hong (1987) has argued that the MLE of the GARCH parameters is asymptotically normal,
and it seems necessary that non-parametric extensions for IGARCH need to maximize a likelihood.
An experiment was made with this idea. First, a GARCH(l,1) was fitted to data on returns
(y,) over the period 1834-1987 with the restriction that the error term followed a MA(1). The
resulting estimates of 3, and &, were .841 and .132 with corresponding t-statistics of 47.1 and 4.5.
This is close to an IGARCH process. To include a non-parametric element into the modeling of o;,

and yet keep the IGARCH structu}e, we expanded (2), p=q=1, to
‘72: =0+ B Uf-l + o Uf_l + 7 cos(y.) + 12 sin(y..) » (30)

and applied MLE to this model. We chose to enter y,, into the Fourier terms since the data y, could
be transformed to lie in (0,2r). Since u,, depends on the estimate of #,, it would not be possible to
be sure that u,, always lay in the required region during the iterations. Exactly how the methodology
can be generalized, and what the properties of the MLE of v, and ~, are, must remain a subject for

future research. In this instance, y, = .0056 and 7, = .0163 with t-statistics of 1.91 and 3.85, showing



that there is structure to o° not explained by the GARCH process.® This agrees with our conclusion

in section 2.
5. Conclusions and Suggestions for Future Work

Our aim was to compare various measures of stock volatility. Taking the 1834-1925 period
as the sample, it emerged that the non-parametric procedures tended to give a better explanation of
the squared returns than any of the parametric models. Both Hamilton’s and the GARCH model
produced weak explanations of the data. Nelson's EGARCH model came closest to the explanatory
power of the non-parametric models. There seems to be some scope for combining the ideas of the
EGARCH and the non-parametric approaches. One might try to allow for a more general functional
form in the driving variables than the variants adopted by Nelson.

A secondary concern of the paper, which grew out of the data analysis, is that data taken over
long periods cannot be assumed to be covariance stationary. Much work in this area ignores this
question entirely, although the models proposed to fit the data imply covariance stationarity. Several
tests for covariance stationarity were proposed, each of which indicated that the data could not be
thought of as homogeneous before and after the Great Depression, and there were also questions
raised about the 1834-1925 sample. Further investigation of the usefulness of these tests seems called
for, as well as their application to a wider set of financial data. If covariance non-stationarity is
found to be a feature of many financial series, it forces us to examine what are likely to be good
models of such data. Some of the questions to be addressed then were briefly taken up at the end

of the paper, but much more work needs to be done.

SThe MA(1) parameter was constrained to -.215, the point estimate from estimating the GARCH(1,1) model alone.

B, = B4, ‘;1 = .13 with t-values of 57.9 and 8.4 respectively.
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Table Al -- Fractiles of the Simulated Distribution of Cusum Test Statistic ¥(r)
for Various Fractions r of the Total Sample

Fraction
of T, r .005 025 .05 .95 975 995
T =100
1 -621 -511 - 455 606 725 950
2 -.878 -.721 -.635 747 BES 1.105
3 -1.004 -.835 -.740 811 042 1.173
4 -1.119 -.924 -797 842 977 1.215
5 -1.162 -.963 -.842 .B45 963 1.162
6 -1.183 -.962 -.839 .807 931 1.1835
7 -1.152 -.930 -.802 751 855 1.032
.8 -1.066 -.859 -742 630 722 869
9 -.876 -.695 -.587 451 510 617
T = 200
1 -.629 - -518 -.452 577 701 218
2 -.891 -733 -.640 715 848 1.135
3 -1.088 -.854 -.735 801 944 1.198
4 -1.161 -.943 -.814 842 972 1.233
5 -1.227 -.985 -.850 845 981 1.245
6 -1.222 -.976 -.834 816 958 1.176
7 -1.197 -.941 -.808 756 875 1.069
.8 -1.035 -.843 -.720 638 787 .909
K -.871 -673 -.559 A56 519 644
T = 500
1 -.695 -.545 -471 525 628 859
2 -.965 -.747 -.641 675 821 1.087
3 -1.131 -.886 -741 772 892 1.173
4 -1.234 -.963 -.794 .803 973 1.250
5 -1.258 -.971 -.827 .818 969 1.274
.6 -1.257 -.980 -.836 792 954 1.221
7 -1.214 -.934 -791 746 .881 1.108
8 -1.078 -.828 -.690 638 750 932
2 -.860 - 644 -.526 457 .526 646
T= 1000
1 -716 -.553 -473 513 609 796
2 -1.012 -.766 -.646 .686 811 1.079
3 -1.166 -.885 -.747 770 920 1.239
4 -1.255 -.971 -.815 .821 975 1.294
5 -1.330 -.989 -.820 819 984 1.334
6 -1.240 -.942 -.808 803 949 1.275
ki -1.218 -.902 -.754 743 875 1.154
8 -1.070 -.809 -.680 650 767 980
9 -.830 -.612 -.520 A79 551 688
T = 2000
1 -718 -.584 -.500 .491 .583 77
2 -1.027 -.813 -.684 652 787 1.043
3 -1.177 -.928 -.796 733 883 1.158
4 -1.260 -.988 -.851 769 919 1.210
5 -1.324 -1.028 -.867 781 933 1.237
6 -1.315 -.985 -.847 790 935 1.247
7 -1.241 -.930 -.791 745 .896 1.167
8 -1.067 -.818 -.685 661 785 1.045
9 -.792 -611 -.512 478 .563 728

Note: These estimated fractiles are based on 10,000 replications of the simulation experiments. For example, the

005 and .995 fractiles are the lower and upper limits for a 1 percent level test, ¢ o, "(r) and ¢ o, (r).
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Figure 4a -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1837
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Figure 4b -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1843
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Figure 4c -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1846 :
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Figure 4d -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1857-58
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Figure de -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1860-61
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Figure 4f -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1873-74
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Figure 4g -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1893
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Figure 4h -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Models, 1901
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Figure 4i -- Unexpected Stock Returns, e, and Estimates of Conditional Standard
Deviations from Fourier (F), Kernel (K), Hamilton (H), EGARCH (EG) and
GARCH (G) Modecls, 1907

0.08

Return / Standard Deviation per Month

o P TN
—~——— \/
-0.02 T p T v T
190701 190703 190708 190707 190709 190711
Monthly Returns, 1907
—E " F ° k *HXE "¢



Recursive Estimates of Stock Variance
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‘igure 5§ -- Recursive Estimates of the Monthly Stock Return Variance, 1834-1987




0.012

0.01 -

]
v
c
o
o 0.008
>
X
v
9
n
o 0.006 A
"
hJ
o
E
@  0.004 -
°
>
v
|
3
4 (RN
o g . Tt e ~
& 0.002 v . e - U -

[ f

] ::.

|

0 v v v v — v v v v v " — - y
1835 1845 1855 1865 1875 1885 1895 1905 1915 1925 1935 1945 1955 1965 1975 1985
Simulated Data, 1835 — 1987
~ Hamillon GARCH(1,1)

Figure 6 --

Recursive Variances for Returns Data Simulated by Hamilton’s and GARCH(1,1) Models, 1835-1987



Cusum Test for Stationary Variance
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Figurc 7 -- Cusum Test for Stationarity of Stock Return Variance, 1834-1987
{with 005 fractile from the sampling distribution)



Cusum Test for Stationary Variance
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Figure 8 -- Cusum Test for Stationarity of m:xan:.:_ Variance, 1834-1925
(with 995 fractile from the sampling distribution)





