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Abstract

The Chernoff information was originally introduced for bounding the probability of error of the

Bayesian decision rule in binary hypothesis testing. Nowadays, it is often used as a notion of symmetric

distance in statistical signal processing or as a way to define a middle distribution in information fusion.

Computing the Chernoff information requires to solve an optimization problem that is numerically

approximated in practice. We consider the Chernoff distance for distributions belonging to the same

exponential family including the Gaussian and multinomial families. By considering the geometry of

the underlying statistical manifold, we define exactly the solution of the optimization problem as the

unique intersection of a geodesic with a dual hyperplane. Furthermore, we prove analytically that the

Chernoff distance amounts to calculate an equivalent but simpler Bregman divergence defined on the

distribution parameters. It follows a closed-form formula for the singly-parametric distributions, or an

efficient geodesic bisection search for multi-parametric distributions. Finally, based on this information-

geometric characterization, we propose three novel information-theoretic symmetric distances and middle

distributions, from which two of them admit always closed-form expressions.

Index Terms

Copyright (c) 2012 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Nielsen, F.; “An Information-Geometric Characterization of Chernoff Information,” IEEE Signal Processing Letters (SPL), vol.

20, no. 3, pp. 269-272, March 2013,. doi: 10.1109/LSP.2013.2243726

February 19, 2013 DRAFT

pubs-permissions@ieee.org
http://dx.doi.org/10.1109/LSP.2013.2243726


2
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fusion.

I. INTRODUCTION

Let (X , E) be a measurable space with X ⊆ Rd and E a σ-algebra on the set X . The Chernoff

information C(P,Q) between two probability measures P and Q, with p and q denoting their

Radon-Nikodym densities with respect to a dominating measure1 ν, is defined as [2], [3]:

C(P,Q) = − log min
α∈(0,1)

∫
pα(x)q1−α(x)dν(x). (1)

This notion of information was first introduced by Chernoff [2] (1952) for bounding the

probability of error of a binary classification task. Namely, the Chernoff information is well-

known in information theory as the best achievable exponent for a Bayesian probability of error

in binary hypothesis testing (see [3], Chapter 11). Nowadays, the Chernoff information is often

used as a statistical distance for various applications of signal processing ranging from sensor

networks [4] to image processing tasks like image segmentation [5] or edge detection [6]. In fact,

this notion of Chernoff distance can be understood as a generalization of the former Bhattacharrya

distance [7], [8] (1943): Let cα(P : Q) =
∫
pα(x)q1−α(x)dν(x) ∈ [0, 1) denote the α-Chernoff

coefficient of similarity generalizing the Bhattacharrya coefficient (obtained for α = 1
2
). The

α-Chernoff divergence2:

Cα(P : Q) = − log cα(P : Q) (2)

generalizes the symmetric Bhattacharrya distance (α = 1
2
). Thus we can interpret the Chernoff

information as a maximization of the α-Chernoff divergence over the range α ∈ (0, 1):

C(P,Q) = maxα∈(0,1)Cα(P : Q). By construction, the Chernoff distance is symmetric:

C(P,Q) = maxα∈(0,1)Cα(P : Q) = maxα∈(0,1)C1−α(Q : P ) = maxβ∈(0,1)Cβ(Q : P ) =

C(Q,P ) making it attractive for information retrieval (IR). In information fusion [4], the Chernoff

1We use the measure-theoretic framework [1] to handle both continuous distributions (eg., Gaussians, Beta, etc.) and discrete

distributions (eg., Bernoulli, Poisson, multinomial, etc.).
2In information geometry [9], the α-Chernoff divergence is related also to Amari α-divergence: Aα(P : Q) = 4

α(1−α)
(1 −∫

pα(x)q1−α(x)dν(x)) = 4
α(1−α)

(1− cα(P : Q)) or Rényi divergences.
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information C(P,Q) = Cα∗(P : Q) (where α∗ denotes the optimal value) is used to define a

middle distribution m∗ with density m∗(x) = pα
∗

(x)q1−α∗ (x)
cα(P :Q)

. Merging probability distributions

allows one to efficiently “compress” statistical models (e.g., simplify mixtures [10]).

This letter is organized as follows: Section II considers distributions belonging to the same

exponential family, reports a closed-form formula for the α-Chernoff divergences, and shows

that Chernoff information amounts to compute an equivalent Bregman divergence. Section III

gives a geometric interpretation of the Chernoff distribution (achieving the Chernoff information)

as the intersection of a primal geodesic with a dual hyperplane. Section IV presents three other

types of Chernoff information and Chernoff middle distributions, with two of them admitting

closed-form expressions. Finally, Section V concludes this work.

II. CHERNOFF INFORMATION AS A BREGMAN DIVERGENCE

A. Basics of exponential families

Let 〈x, y〉 denote the inner product for x, y ∈ X that is taken as the scalar product for

vector spaces X : 〈x, y〉 = x>y. An exponential family [1] FF is a set of probability measures

FF = {Pθ}θ dominated by a measure ν having their Radon-Nikodym densities pθ expressed

canonically as:

pθ(x) = exp(〈t(x), θ〉 − F (θ) + k(x)), (3)

for θ belonging to the natural parameter space: Θ =
{
θ ∈ RD

∣∣∫ pθ(x)dν(x) = 1
}

. Since

log
∫
x∈X pθ(x)dν(x) = log 1 = 0, it follows that:

F (θ) = − log

∫
exp(〈t(x), θ〉+ k(x))dν(x). (4)

For full regular families [1], it can be proved that function F is strictly convex and

differentiable over the open convex set Θ. Function F characterizes the family, and bears different

names in the literature (partition function, log-normalizer or cumulant function) and parameter

θ (natural parameter) defines the member Pθ of the family FF . Let D = dim(Θ) denote the

dimension of Θ, the order of the family. The map k(x) : X → R is an auxiliary function defining

a carrier measure ξ with dξ(x) = ek(x)dν(x). In practice, we often consider the Lebesgue

measure νL defined over the Borel σ-algebra E = B(Rd) of Rd for continuous distributions
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(e.g., Gaussian), or the counting measure νC defined on the power set σ-algebra E = 2X

for discrete distributions (e.g., Poisson or multinomial families). The term t(x) is a measure

mapping called the sufficient statistic [1]. Many usual families of distributions {Pλ | λ ∈ Λ}

are exponential families [1] in disguise once an invertible mapping θ(λ) : Λ→ Θ is elucidated

and the density written in the canonical form of Eq. 3. We refer to [1] for such decompositions

for the Poisson, Gaussian, multinomial, ... distributions. Besides those well-known distributions,

exponential families provide a generic framework in statistics. Indeed, any smooth density can

be arbitrary approximated by a member of an exponential family [11], although the cumulant

function F may be defined implicitly only (using Eq. 4).

B. Chernoff α-distance for exponential family members

For distributions P1 and P2 of the same exponential family FF , indexed with respective natural

parameter θ1 and θ2, the α-Chernoff coefficient can be expressed analytically [12] as:

cα(P1 : P2) =

∫
pα1 (x)p1−α

2 (x)dν(x) = exp(−J (α)
F (θ1 : θ2)), (5)

where J (α)
F (θ1 : θ2) is a skew Jensen divergence defined for F on the natural parameter space

as:

J
(α)
F (θ1 : θ2) = αF (θ1) + (1− α)F (θ2)− F (θ

(α)
12 ), (6)

where θ(α)
12 = αθ1 + (1− α)θ2 = θ2 − α∆θ, with ∆θ = θ2 − θ1.

C. Chernoff distance for exponential family members

It follows that maximizing the α-Chernoff divergence amounts equivalently to maximizing the

skew Jensen divergence with respect to α. The directional derivative of F at x with direction u is

defined (see [13], page 213) as dF (x;u) = limτ→0
F (x+τu)−F (x)

τ
. Since by definition F (θ) <∞

for all θ ∈ Θ, the limit always exist and F is Gâteaux differentiable with:

dF (x;u) = 〈∇F (x), u〉. (7)

Therefore, we have:

dJ
(α)
F (θ1 : θ2)

dα
= F (θ1)− F (θ2)− dF (θ

(α)
12 ; θ1 − θ2),

= F (θ1)− F (θ2)− 〈∇F (θ
(α)
12 ), θ1 − θ2〉
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Thus we need to find α∗ such that:

F (θ1)− F (θ2)− 〈∇F (θ
(α∗)
12 ), θ1 − θ2〉 = 0 (8)

Since the Hessian of the cumulant function is positive definite [1] (∇2F � 0), it follows that

the second derivative of the skew Jensen divergence −〈∆θ>∇2F (θ
(α)
12 ),∆θ〉 is always negative

for θ1 6= θ2. Therefore there is a unique solution for α∗ provided members are distinct (if not,

the Chernoff distance is obviously 0).

D. Chernoff distance as a Bregman divergence

Our first result states that the Chernoff information between any two distributions belonging

to the same exponential family amounts to calculate equivalently a Bregman divergence defined

on the natural parameter space, where the Bregman divergence [14] between θ and θ′ is defined

by setting the generator F to the log-normalizer of the exponential family as:

BF (θ : θ′) = F (θ)− F (θ′)− 〈θ − θ′,∇F (θ′)〉 (9)

Theorem 1: The Chernoff distance between two distinct distributions P1 and P2 of the

same exponential family, with respective natural parameters θ1 and θ2, amounts to calculate

a Bregman divergence: C(P1, P2) = BF (θ1 : θ
(α∗)
12 ), where α∗ is the unique value satisfying

〈∇F (θ
(α)
12 ), θ1 − θ2〉 = F (θ1)− F (θ2), and θ(α)

12 = αθ1 + (1− α)θ2.

a) Proof:: Once the optimal value α∗ has been computed, we calculate the Chernoff

distance using Eq. 2 that reduces for exponential families to a skew Jensen divergence

C(P1, P2) = − log
∫
cα∗(P1 : P2) = J

(α∗)
F (θ1 : θ2). This skew Jensen divergence for the optimal

value of α∗ yields, in turn, a Bregman divergence:

J
(α∗)
F (θ1 : θ2) = BF (θ1 : θ

(α∗)
12 ) = BF (θ2 : θ

(α∗)
12 ), (10)

Indeed, from the definition of the Bregman divergence and the fact that θ1−θ(α∗)
12 = (1−α∗)(θ1−

θ2), it follows that BF (θ1 : θ
(α∗)
12 ) = F (θ1)−F (θ

(α∗)
12 )−(1−α∗)〈θ1 − θ2,∇F (θ

(α∗)
12 )〉. Furthermore,

since 〈∇F (θ
(α∗)
12 ), θ1 − θ2〉 = F (θ1)−F (θ2), it follows that BF (θ1 : θ

(α∗)
12 ) = F (θ1)−F (θ

(α∗)
12 )−

(1− α∗)F (θ1) + (1− α∗)F (θ2) = α∗F (θ1) + (1− α∗)F (θ2)− F (θ
(α∗)
12 ) = J

(α∗)
F (θ1 : θ2). �

Note that for singly-parametric distributions, we get a closed-form expression of the Chernoff

distance since α∗ =
(F ′)−1

(
F (θ1)−F (θ2)

θ1−θ2

)
−θ2

θ1−θ2 . To illustrate the formula, consider the Poisson
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exponential family with probability mass functions pλ(x) = λxe−λ

x!
that can be decomposed

canonically following Eq. 3 with θ(λ) = log λ, F (θ) = eθ = λ, F ′(θ) = eθ, and F ′−1(θ) = log θ

(and t(x) = x, k(x) = − log x! and ν = νC the counting measure). The generic closed-form

formula agrees3 with the specific Poisson Chernoff information reported in [15]:

C(P1, P2) = BF (θ1 : θ
(α∗)
12 ) = λ1

(r − 1)(log r−1
log r
− 1) + log r

log r
,

where r = λ2

λ1
.

Although we do not have an analytic expression of the Chernoff distance for higher-order

exponential families (D > 1), we can nevertheless characterize it exactly using information

geometry [9], as described in the following section.

III. CHERNOFF DISTRIBUTION AND CHERNOFF POINT

Consider the parametric family of probability distributions FF as a smooth manifold M =

{Pθ | θ ∈ Θ}. This section concisely reviews the dually flat geometry of the statistical manifold

induced by an exponential family. We refer to the textbook [9] for further details. A point P ∈M

denotes a distribution with parameter θ(P ) in the natural coordinate system. It follows from the

Legendre transformation4 F ∗(η) = maxθ∈Θ〈η, θ〉 − F (θ) that point P can also be indexed as

η(P ) using a dual coordinate system, called the expectation parameter, with η = ∇F (θ) (and

θ = ∇F ∗(η)). Let H = {η = ∇F (θ) | θ ∈ Θ} denote the expectation parameter space. Thus,

P ∈ M = Pθ(P ) = Pη(P ). In the θ-coordinate system, we have
∫
pθdν(x) = 1, and in the

dual η-coordinate system, we have for a random variable X ∼ Pθ, E[t(X)] = η = ∇F (θ)

(with
∫
ti(x)pθdν(x) = ηi for 1 ≤ i ≤ D), hence its name (expectation parameter). Two points

P1, P2 ∈ M can be connected using two kinds of geodesics: The linear mixture geodesic (or

m-geodesic) yielding the mixture family:

Gm(P1, P2) = {M (λ)
12 | η(M

(λ)
12 ) = (1− λ)η1 + λη2, λ ∈ [0, 1]}, (11)

3http://www.informationgeometry.org/ChernoffInformation/ for Java codes.
4In convex analysis [13], each strictly convex and differentiable function F is associated with a dual convex conjugate F ∗ by

the Legendre-Fenchel transformation: F ∗(η) = maxθ∈Θ〈η, θ〉−F (θ). The maximum is obtained for η = ∇F (θ) (and is unique

since ∇2F � 0). The transformation is an involution (F ∗)∗ = F , and the gradients are reciprocally inverse: ∇F ∗ = (∇F )−1.
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(linear interpolation in the expectation parameter), and the exponential mixture geodesic (or

e-geodesic) yielding:

Ge(P1, P2) = {E(λ)
12 | θ(E

(λ)
12 ) = (1− λ)θ1 + λθ2, λ ∈ [0, 1]}, (12)

(linear interpolation in the natural parameters), with distribution of the form e
(λ)
12 =

pλ1p
1−λ
2

cλ(P1:P2)
,

where cλ(P1 : P2) plays the role of the normalizing coefficient so that
∫
x∈X e

(λ)
12 dν(x) = 1.

The Chernoff distribution is the distribution E
(α∗)
12 (with density e

(α∗)
12 ) belonging to the e-

geodesic for λ = 1−α∗. This distribution corresponds on the statistical manifold to the Chernoff

point with coordinates θ∗12 = α∗θ1 + (1 − α∗)θ2. Since the Kullback-Leibler (KL) divergence

KL(P1 : P2) =
∫
x∈X p1(x) log p1(x)

p2(x)
dν(x) for members P1 and P2 of the same exponential family

amounts to compute a Bregman divergence BF (θ2 : θ1) on the swapped natural parameters [14],

it follows from Eq. 10 that we have:

BF (θ1 : θ
(α∗)
12 ) = BF (θ2 : θ

(α∗)
12 ), (13)

KL(E
(α∗)
12 : P1) = KL(E

(α∗)
12 : P2). (14)

This shows that Chernoff distribution belongs to a bisector. The Chernoff distribution is

commonly used in information fusion [4] for defining an average (or mean) distributions.

A. Geometric characterization of the Chernoff distribution

We prove that although the Chernoff distribution P ∗ may not be available analytically, it can

always be exactly characterized geometrically as a unique intersection point:

Theorem 2: The Chernoff distribution P ∗ of two distributions P1 and P2 belonging to the

same exponential family is the unique point on the exponential family manifold that belongs to

both the e-geodesic and the m-bisector: P ∗ = Ge(P1, P2) ∩ Bim(P1, P2).

b) Proof:: Since maximizing the α-Chernoff coefficient amounts to maximize the equivalent

skew Jensen divergence defined on the natural parameters using linear interpolation θ
(α)
12 , we

deduce that the Chernoff distribution P ∗ belongs to the exponential geodesic Ge(P1, P2). Further-

more, the Bregman equi-divergence constraint of Eq. 13 indicates that the Chernoff point should

also belong to a Bregman bisector Bim(P1, P2) (that was implicitly revealed in Eq. 8), where

February 19, 2013 DRAFT
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Bim(P1, P2) is defined as: Bim(P1, P2) : {P | F (θ1)−F (θ2) + 〈η(P ),∆θ〉 = 0}, or equivalently

using the θ-coordinate system as Bim(P1, P2) : {P | F (θ1) − F (θ2) + 〈∇F (θ(P )),∆θ〉 = 0}.

This bisector is a hyperplane in the η = ∇F (θ) coordinate system [16] (but a hypersurface

in the θ-coordinate system), hence its name m-bisector Bim(P1, P2). It follows that P ∗ =

Ge(P1, P2) ∩ Bim(P1, P2). �

Recall that in information fusion [4], the Chernoff distribution P ∗ defines the middle

distribution obtained after merging the two distributions P1 and P2.

B. A simple geodesic bisection search

To approximate the Chernoff distribution P ∗ = E
(α∗)
12 , we bisect the exponential mixture

geodesic Ge(P,Q). Using the θ-coordinate system, let initially α ∈ [α−, α+] with α− = 0 and

α+ = 1. Compute the θ-midpoint θ = θ1 +α′(θ2−θ1) with α′ = α−+α+

2
. If BF (θ1 : θ) < BF (θ2 :

θ) recurse on interval [α′, α+], otherwise recurse on interval [α−, α
′]. At each stage we split the

α-range in the θ-coordinate system thus yielding convergence to α∗. The bisection search can

also be implemented using the dual η-coordinate system. Let initially β ∈ [β−, β+] with β− = 0

and β+ = 1. We compute the η-midpoint β′ = β−+β+

2
and let θ = ∇F ∗((1 − β)η1 + βη2).

If BF (θ1 : θ) < BF (θ2 : θ) recurse on interval [β′, β+], otherwise recurse on interval [β−, β
′].

We can also alternate between those dual coordinate systems, yielding a primal-dual-coordinate

exponential mixture geodesic bisection search.

IV. THREE NOVEL POINTS AND DIVERGENCES

The Chernoff point P ∗ (or Chernoff distribution) can also be interpreted as defining the

“middle” of the e-geodesic:

max
θ
(α∗)
12 ∈Θ

min{KL(P
θ
(α∗)
12

: P1),KL(P
θ
(α∗)
12

: P2)}, (15)

where the notion of middle is defined as the point that realizes the equi-divergence from the

midpoint to the extremities. A different notion of half-way can be obtained by taking the equi-

divergence from the extremities to the midpoint:

max
θ
(β)
12 ∈Θ

min{KL(P1 : P
θ
(β)
12

),KL(P2 : P
θ
(β)
12

)}. (16)
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This half-way distribution P
θ
(β∗)
12

is geometrically interpreted as the unique intersection point

P ∗2 = Ge(P1, P2) ∩ Bie(P1, P2) of the e-geodesic with the e-bisector:

Bie(P1, P2) : {P ∈M| KL(P1 : P ) = KL(P2 : P )}, (17)

that is expressed in the θ-coordinate system as:

{θ |〈θ, η2 − η1〉+ F (θ2)− F (θ1) + 〈η1, θ1〉 − 〈η2, θ2〉 = 0} (18)

In the θ-coordinate system, this Chernoff point P ∗2 = P
θ
(β∗)
12

of type II is the intersection of a

line segment with a hyperplane, and can therefore be computed exactly. Similarly, we can also

cut the m-geodesic with the equi-divergence principle, yielding thus a total of four particular

points:

P ∗1 = Ge(P1, P2) ∩ Bim(P1, P2) = P
θ
(α∗)
12

, (19)

P ∗2 = Ge(P1, P2) ∩ Bie(P1, P2) = P
θ
(β∗)
12

, (20)

P ∗3 = Gm(P1, P2) ∩ Bim(P1, P2) = P
η

(γ∗)
12

, (21)

P ∗4 = Gm(P1, P2) ∩ Bie(P1, P2) = P
η

(δ∗)
12
. (22)

The following theorem states that two of those points (and associated symmetric distance) can

always be calculated in closed-form:

Theorem 3: Let P1 = Pθ1 and P2 = Pθ2 be two distributions of the same exponential family.

Chernoff distributions P ∗2 = P
θ
(β∗)
12

(type II) and P ∗3 = P
η

(γ∗)
12

(type III) can be exactly computed,

with β∗ = BF (θ2:θ1)
〈∆θ,∆η〉 and γ∗ = BF (θ1:θ2)

〈∆θ,∆η〉 , where ∆θ = θ2 − θ1 and ∆η = η2 − η1.

c) Proof:: Points P ∗2 and P ∗3 (Chernoff middle distributions of type II and III) are

intersection ( of a straight line geodesic with a hyperplane either in the θ-coordinate or η-

coordinate systems) , and thus admit closed-form expressions.5 Wlog., consider P ∗2 ∈ Ge(P1, P2)

parameterized by θ
(β)
12 = θ2 − β∆θ. Plugging 〈θ,∆η〉 = 〈θ2,∆η〉 − β〈∆θ,∆η〉 in bisector

equation 18, we find that −β∗〈∆θ,∆η〉 + F (θ2) − F (θ1) − 〈θ2 − θ1, η1〉 = 0. That is,

β∗ = BF (θ2:θ1)
〈∆θ,∆η〉 . Note that β∗ ≤ 1 since BF (θ2 : θ1) ≤ BF (θ1 : θ2) +BF (θ2 : θ1) = 〈∆θ,∆η〉. �

5http://www.informationgeometry.org/ChernoffInformation/ for Java codes.
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Chernoff distributions of type I and IV can be arbitrarily approximated using geodesic bisection

searches (Section III-B). For 1D exponential families, since geodesics Ge and Gm coincide, we

have only two distinct Chernoff points (P ∗1 = P ∗3 and P ∗2 = P ∗4 ). Note that for the special case

of the isotropic Gaussian family (i.e., fixed covariance matrix with F (x) = 1
2
〈x, x〉), those four

Chernoff points coincide since the θ-coordinate and η-coordinate systems are equivalent.

V. CONCLUSION

We characterized geometrically the optimal Chernoff distribution (inducing the Chernoff

distance between two members of the same exponential family) in the statistical manifold as the

unique intersection point of the exponential mixture geodesic with the mixture bisector. It follows

an exact analytic expression for the Chernoff distance for singly-parametric distributions, or an

efficient geodesic bisection algorithm for higher-order exponential families. Furthermore, we

defined three novel “Chernoff points” as the intersection of exponential/mixture geodesics with

exponential/mixture bisectors. Interestingly, two of those points can always be exactly calculated

using closed-form formula.
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