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Abstract

A range-sum query sums over all selected cells
of an OLAP data cube where the selection
is specified by ranges of contiguous values for
each dimension. An efficient approach to pro-
cess such queries is to precompute a prefix
cube (PC), which is a cube of the same di-
mensionality and size as the original data cube
but with a prefix range-sum stored in each
cell. Using a PC, any range-sum query can
be evaluated at a cost that is independent of
the size of the sub-cube circumscribed by the
query. However, a drawback of PCs is that
they are very costly to maintain. Recently, a
variant of prefix cubes called Relative Prefix
Cubes (RPC) has been proposed to alleviate
this problem.

In this paper, we propose a new class
of cube representations called Hierarchical
Cubes, which is based on a design framework
defined by two orthogonal dimensions. Our
results show that a particular cube design
called the Hierarchical Band Cube (HBC) is
the overall winner: it not only has a signifi-
cantly better query-update tradeoff than pre-
vious approaches, but it can also be more ef-
fectively buffered.

*Partially supported by the National Science Foundation
under Grant IRI-9157368 (PYI Award) and the members of
the Wisconsin database group industrial affiliates program
(http://www.cs.wisc.edu/~raghu/dbaffiliates.html).

fAuthor’s present address: Department of Informatics, Uni-
versity of Athens, Hellas (Greece).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

675

1 Introduction

Aggregation is a common and computation-intensive
operation in on-line analytical processing systems
(OLAP), where the data is usually modeled as a mul-
tidimensional data cube, and queries typically involve
aggregations across various cube dimensions. Concep-
tually, an n-dimensional data cube is derived from a
projection of (n + 1) attributes from some relation R,
where one of these attributes is classified as a measure
attribute and the remaining n attributes are classified
as dimensional attributes. Each dimension of the data
cube corresponds to a dimensional attribute, and the
value in each cube cell is an aggregation of the mea-
sure attribute value of all records in R having the same
dimensional attribute values.

Various forms of precomputation techniques [5, 8,
13] and indexing methods [3, 6, 7, 9, 10, 11, 12]
have been proposed to expedite processing of OLAP
queries. In this paper, we propose a new precompu-
tation technique for a class of OLAP queries called
range-sum queries.

A range-sum query sums over all selected cells
of an OLAP data cube where the selection is specified
by ranges of contiguous values for each dimension. An
example of a range-sum query over a data cube C with
schema (A;, As,..., A,, M) is as follows:

SELECT SUM (C.M)

FROM C

WHERE [ <CA <Mh
and lg S CA2 S h2
and .........
and l,<C.A,<h,

We refer to range-sum queries with [; = 0for1 <i <n
as prefix range-sum queries.

The most direct approach to evaluate a range-sum
query is to use the data cube itself, but the disad-
vantage of this approach is that the number of cells
that need to be accessed is proportional to the size of
the sub-cube defined by the query. Recently, a more
efficient approach to compute range-sum queries was
proposed using a prefix cube (PC) [5] which costs
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(b) Prefix Cube

Figure 1: Example of an 8 x 8 Data Cube C and its Prefix Cube P.

at most 2™ cell accesses to evaluate each range-sum
query, where n is the dimensionality of the data cube.
However, maintaining a prefix cube is very expensive
because a single cell modification in the data cube can
affect a large number of cells in the prefix cube. For
applications where the data cubes are dynamic and
are of very large size, having both fast query response
as well as efficient cube maintenance is critical. More
recently, a variant of the prefix cube approach called
relative prefix cube (RPC) [4] has been proposed to
try to balance the query-update tradeoff between the
data cube and prefix cube approaches.

In addition to the above approaches, which provide
precise answers to range-sum queries, a method that
provides approximate answers for high-dimensional,
sparse data cubes has recently been proposed as well
[14].

In this paper, our focus is on data cube designs that
provide precise answers for range-sum queries. We
make the following contributions:

e We propose a new class of cube representations
called hierarchical cubes. This new class of
cubes is based on a design framework that is de-
fined by two orthogonal dimensions. By varying
the options along each dimension, various cube
designs with different query-update tradeoffs can
be generated. In particular, we present two new
cube designs called hierarchical rectangle cubes
(HRC) and hierarchical band cubes (HBC), which
are generalizations of the existing cube designs.

e We demonstrate analytically that both HRC
and HBC have significantly better query-update
tradeoff than earlier approaches, for both
expected-case as well as worst-case performances.

e We also analyze the effect of buffering on the
tradeoff among the various classes of precomputed
cubes. Our results show that HBC can be more
effectively buffered than the other classes of pre-
computed cubes; by using a moderate amount
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of main-memory for buffering, HBC can become
as query-efficient as the most query-efficient ap-
proach without incurring its high update-cost.

Note that all the techniques developed for range-sum
queries can be applied to any binary operator for
which there exists an inverse operator; other applicable
aggregation operators include COUNT, AVERAGE,
ROLLING-SUM, and ROLLING-AVERAGE [5].

We conclude this section with some preliminar-
ies. Let C' be a n-dimensional data cube of size
Dy x Dy x ---D,,, where D; is the cardinality of
the i** dimension. For simplicity and without loss
of generality, let the domain of the " dimension
be {0,1,---,D; — 1}. We use the generic term pre-
computed cube to refer to a cube belonging to any
of the classes of precomputed cubes (i.e., data cube,
PC, RPC, HRC, and HBC). We denote a range-sum
query by (I1 : hi,lo @ ho,---,l, : h,) and a prefix
range-sum query by (hi,ha,---,h,). Given two cells
z ::($1,$2,"',$n) and-y ::(y13y2a"'ayn)in'an n-
dimensional cube, we say that x precedes y, denoted
by z <y, if and only if z; < y; for 1 <1i < n.

For ease of presentation, we use only 2-dimensional
cube examples to illustrate the various classes of pre-
computed cubes, and use the notational convention
(z,y) to denote a cube cell in row z and column y.

The rest of this paper is organized as follows. Sec-
tion 2 presents related work on precomputed cubes for
processing range-sum queries. In Section 3, we present
a new class of precomputed cubes called hierarchical
cubes. Section 4 introduces three metrics for compar-
ing the space, update, and query costs of the various
classes of precomputed cubes, and presents an analyt-
ical comparison of their tradeoffs. In Section 5, we
consider the effect of buffering on the query-update
tradeoff of precomputed cubes. Finally, we summa-
rize our results in Section 6. Due to space constraints,
all analytical results are omitted in this paper but are
available elsewhere [2].
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Figure 2: Example of a Relative Prefix Cube for the Data Cube in Figure 1.

2 Related Work

This section presents two classes of precomputed cubes
for processing range-sum queries, namely, prefix cube
(PC) and relative prefix cube (RPC).

2.1 Prefix Cubes (PC)

The prefix cube of a data cube C, denoted by P,
is a cube of the same dimensionality and size as C'
such that each cell z = (z1,22,---,2Zn) in P stores
the result of the prefix range-sum (x1, 2, -+, %,); i.e.,

P[.’L‘] = i i zzn C[il,iQ,"',in]. The PC ap-

i1=0d2=0 i, =0

proach exploits the property that any range-sum query
can be evaluated in terms of at most 2™ appropriate
prefix range-sum queries. Therefore, by precomputing
all possible prefix range-sums, the evaluation cost of a
range-sum query using a PC is no more than 2™ cell
accesses. However, the update cost of the PC is high
since every modification of a single data cube cell u
affects the set of cells {c: u < ¢} in the PC.

For example, Figure 1 shows an 8 x 8 data cube
and its prefix cube. Evaluating the range-sum query
indicated by the shaded region in Figure 1 using the
data cube C requires 18 cell accesses. On the other
hand, processing the same query using the prefix cube
P is given by P[4,6] — P[4,0] — P[1,6] + P[1, 0] which
accesses only 4 cells. The disadvantage, of course, is
that updating, for example, cell C[1, 2] requires updat-
ing cells P[i,j] for 1 <i < 7,2 < j < 7. Details of the
prefix cube can be found elsewhere [5].

2.2 Relative Prefix Cubes (RPC)

An approach that has recently been proposed to bal-
ance the query-update tradeoff between the data cube
and prefix cube is the relative prefix cube (RPC) [4].
An RPC consists of two components: (1) a relative-
prefiz array A and (2) an overlay box O. The relative-
prefix array A is similar to a prefix cube P except
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that it is partitioned into a number of disjoint sub-
cubes of equal size such that each sub-cube is organized
as a local prefix sub-cube. By structuring the single,
large prefix cube into a collection of smaller prefix sub-
cubes, 4 limits the effect of an update propagation to
a local sub-cube thereby reducing its update-cost.

However, evaluating a prefix range-sum query us-
ing only the relative-prefix array A has a worst-case
cost proportional to the number of sub-cubes in A.
To improve the worst-case query evaluation cost, the
RPC approach also precomputes additional informa-
tion in a second component called the overlay box.
Conceptually, the overlay box O is a cube of the same
dimensionality as A that is partitioned into a num-
ber of sub-boxes (of the same dimensionality as each
sub-cube) such that there is one sub-box in O asso-
ciated with each sub-cube in A containing additional
precomputed values in some cells.

Figure 2 shows an example of a RPC (for the same
data cube in Figure 1) where the relative-prefix ar-
ray is partitioned into four 4 x 4 sub-cubes. The
cost of evaluating a prefix range-sum query using a
RPC is between 1 and (n + 2) cell accesses; specifi-
cally, it requires access to one cell in A and at most
(n+1) cells in O. For example, using the RPC in Fig-
ure 2, the prefix range-sum query (5, 6) is evaluated as
Al5,6] + O4,4] + O[5,4] + O[4, 6].

3 Hierarchical Cubes

In general, we can characterize a precomputed cube X
by the way it maps each of its cells to a collection of
cells in the data cube, i.e., each cell value in X is a
sum over some subset of cell values in the data cube.
We refer to each mapped collection of data cube cells
as a mapped region. For the data cube, the mapped
region for each cell v is simply {v}, while for the prefix
cube, the mapped region for each cell v is {c: ¢ X v}.

In this section, we present a new class of precom-
puted cube designs called hierarchical cubes that re-
quire the same space as the data cube but provide bet-



ter query-update tradeoff than all earlier approaches.
This new class is based on a hierarchical organization
of the precomputed cube cells, and its design space is
characterized by two orthogonal dimensions!:

1. Cube decomposition
This dimension organizes the precomputed cube
cells into a hierarchical structure.

2. Cube mapping
This dimension defines a mapping from each pre-
computed cube cell to a particular subset of cells
in the data cube by taking into account the hi-
erarchical organization of the precomputed cube
cells.

By varying the options along each dimension, various
precomputed cube designs with different query-update
tradeoffs can be generated.

3.1 Cube Decomposition

The cells in a cube can be organized into a hierarchical
structure by decomposing each dimension of the cube.
Such decomposition has previously been applied to the
design of bitmap indexes [1]. We first introduce the no-
tion of decomposition and then explain how it defines
a hierarchical structure on the cube cells.

3.1.1 Decomposition Technique

Consider an attribute A with cardinality D (i.e.,
domain(A) = {0,1,---,D — 1}). Given a sequence
of m positive integers B =< by, bm—1,--,b2,b1 >

(where b, = [D/ Hf;l b,--l ), an integer v €
Domain(A) can be decomposed into a sequence of m
component values V =< v,,,,Vp_1,--,02,v1 > as
follows:
m—1 i—1
V= Un Hbj +...4; Hbj +...4wvb1 + 1.
j=1 j=1

Each component value v; is a base-b; digit (i-e., 0 <
v; < b;). We refer to B as a base-sequence and V as
the B-decomposition of v.

For example, consider D = 24 and v = 22. Since
22 = 3(6)+4 = 1(3)(4) +2(4) +2, therefore, < 3,4 > is
the < 4,6 >-decomposition of v, and < 1,2,2 > is the
< 2,3,4 >-decomposition of v. Thus, by varying the
base-sequence, different decompositions of an attribute
value can be obtained.

1We note that the design framework defined here for data
cubes is similar to that defined for the design space of bitmap
indexes [1]. In fact, both design spaces can be abstracted into a
more general framework, but a discussion of this is beyond the
scope of this paper.
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3.1.2 Hierarchical Organization of Cube Cells

We now explain how the cells in an n-dimensional data
cube can be organized into a hierarchical structure by
applying a (possibly different) base-sequence to each
dimensional attribute of the cube. Let m denote the
length of the longest base-sequence among the n base-
sequences. Base-sequences that are shorter than m are
padded with base numbers of value 1 so that all the
n base-sequences have the same length of m. Given
this, let B; =< b; m, bi;m—1, -, b;,1 > denote the base-
sequence that is used to decompose the i** dimensional
J
attribute, for 1 < ¢ < n; and p; ; denote H b; i for
k=1

1 <i<mnandl<j<m. For notational convenience,
let p;o = 1. A data cube that is decomposed using
length-m base-sequences has height m.

The set of n base-sequences {B1, Ba, - - -, By} recur-
sively partitions the data cube, organizing its cells in
a forest as follows:

n
1. The data cube is first partitioned into H bi,m sub-

=1

cubes each of size Hpi,m—l- The rank of each
=1

sub-cube is equal to m. The smallest cell in each

sub-cube? is made a root in the forest at level m.

2. Each rank-k sub-cube S (1 < k < m) is par-

titioned into t = Hbi,k,l rank-(k-1) sub-cubes

i=1
n

each of size H Di.k—2. The smallest cell in one of
=1

these ¢ sub-cubes is the same as the smallest cell

(denoted by ¢) in the sub-cube S and is already in

the forest under construction. The smallest cell in

each of the remaining (¢ — 1) sub-cubes becomes

a child of ¢ in the forest at level £ — 1.

3. Each rank-1 sub-cube consists of only one cell
which is a leaf in the forest at level 1.

We denote the parent of a cell v by parent(v).
If ¢ = (c1,¢2,--,cn) is a level-k cell with k& < m,
then parent(c) = (p1,p2,---,Pn), Where p; = ¢; —
(¢; mod b;y), for 1 < 4 < n. The level of a cell v
is denoted by level(v), where 1 < level(v) < m.

Figure 3 shows an example of cube decomposition
for an 8 x 8 data cube. In Figure 3(a), the data cube
is decomposed with the base-sequence < 2,2,2 > for
each dimension, which partitions the data cube into
four 4 x 4 rank-3 sub-cubes. Each rank-3 sub-cube is
further partitioned into four 2 x 2 rank-2 sub-cubes

2The smallest cell in a sub-cube S refers to the cell in S that
precedes all other cells in S; the smallest cell is unique due to
the rectangular structure of the sub-cube.
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Figure 3: Example of Cube Decomposition.

Cell Cube Mappings
v Hierarchical Rectangle (HR) | Hierarchical Band (HB)
Root cell {v} {c:c=<v}
Non-root cell {c: parent(v) < ¢ Z v} {c:c <X v}—{c:c < parent(v)}

Table 1: Two Cube Mappings based on Hierarchical Organization of Cube Cells.

each of which consists of 4 cells. Figure 3(b) shows
the hierarchical organization for the upper-left rank-3
sub-cube in Figure 3(a). The root cell is (0, 0) which is
the parent cell of three level-2 cells ((0,2), (2,0), and
(2,2)) and three level-1 cells ((0,1), (1,0), and (1,1));
and each level-2 cell is the parent cell of three level-1
cells (e.g., (2,2) is the parent cell of cells (2,3), (3,2),
and (3, 3)).

Given a cell ¢ in a cube X, let A(c) denote the
“largest” descendant cell® of ¢ in X; i.e., for any de-
scendant cell ¢’ of ¢ in X, ¢ < A(¢). For example, in
Figure 3(a), A((0,0)) = (3,3), A((4,2)) = (5,3), and
A((6,3)) = (6,3).

3.2 Cube Mappings

Based on the hierarchical organization of cube cells, we
present two cube mappings, hierarchical rectangle
(HR) mapping and hierarchical band (HB) map-
ping, defined in Table 1. Each mapping is defined in
terms of two cases depending on whether the cell being
mapped is a root cell or not. Figure 4 illustrates these
two cube mappings on an 8 X8 cube that is decomposed
with the base-sequence < 2,4 > for each dimension.
For HR mapping, the mapped region for a root cell
r contains only r itself, and the mapped region for a
non-root cell ¢ is the “rectangle” of cells defined by
parent(c) and ¢. For HB mapping, the mapped region
for a root cell r contains all the cells preceding r and
including r itself, and the mapped region for a non-
root cell ¢ is an “angular band” of cells defined by the
difference between two regions: (1) the cells preced-

3A cell £ is an ancestor cell of a cell y (or equivalently, y is
a descendant cell of z) if either z is a parent cell of y; or z is
a parent cell of some cell z, and z is an ancestor cell of y.

ing ¢ and including c itself, and (2) the cells preceding
parent(c) and including parent(c) itself.

We refer to precomputed cubes based on the HR
mapping as hierarchical rectangle cubes (HRC),
and to those based on the HB mapping as hierarchi-
cal band cubes (HBC). Figure 2(a) shows an ex-
ample of an HRC decomposed with < 2,4 > for each
dimension, and Figure 5 shows an example of an HBC
decomposed with < 2,2,2 > for each dimension.

3.3 Design Space

Figure 6 shows the design space of precomputed cubes
defined by the two dimensions. Along the cube de-
composition dimension, we have the various base-
sequences to decompose the dimensional attributes of
the precomputed cube. Note that each dimensional
attribute can be decomposed with a different base-
sequence. Along the cube mapping dimension, we have
the two mappings, HR and HB. By combining differ-
ent options along these two dimensions, various data
cube designs with different query-update tradeoffs can
be obtained.

Interestingly, both data cubes and prefix cubes turn
out to be special cases of HRC and HBC, respectively;
this occurs when each dimensional attribute A; of the
cube is decomposed with the base-sequence < D; > so
that all the cube cells are root cells (see Table 1 also).
Furthermore, the relative-prefix array component of
RPC (i.e., RPA) is just a HRC with a height of 2.

3.4 Hierarchical Rectangle Cubes (HRC)

In this section, we present algorithms for constructing,
querying, and updating an n-dimensional HRC # for
the case when H is not a data cube.
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Figure 4: Example of Cube Mappings on an 8 x 8 cube decomposed with < 2,4 > for each dimension.

Cells r and p are root and p = parent(c).
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Figure 5: Example of a HBC for the Data Cube
in Figure 1.

3.4.1 Construction Algorithm

The construction algorithm for an HRC H is similar to
that for PC except that the prefix range-sum in each
cell of H is computed locally with respect to the cell’s
parent rather than with respect to the cell (0,0,---,0)

[5]-

3.4.2 Query Algorithm

Figure 7 shows the algorithms for evaluating a range-
sum query using an HRC H. Algorithm Rewrite-
LocalRSQ rewrites a range-sum query () into a col-
lection of local range-sum queries, with one local
range-sum query for each rank-2 sub-cube in A that
overlaps with ). Algorithm RewriteLocalPRSQ
rewrites a range-sum query () into a collection of local
prefix range-sum queries by first invoking Algorithm
RewriteLocalRSQ to obtain a set of local range-sum
queries (step 1), and then further rewriting each local
range-sum query into a collection of local prefix range-
sum queries (steps 2 to 4); QT (Q~) contains all the
local prefix range-sum queries whose results are to be
added (subtracted) for the answer to (). The details

Cube Mapping

HR HB
< b >| Data Prefix
Cube ! Cube | Cube
Decomposition < bz ’ bl > RPA
<b3 , b2 , b1 >

Figure 6: Design Space for Precomputed Cubes.

for step 4 can be found elsewhere [5].

Algorithm HRC-Query is the main algorithm to
evaluate a range-sum query () using H. In step 1,
it invokes Algorithm RewriteLocalPRSQ to rewrite
Q@ into a collection of local prefix range-sum queries
QY U Q. For each g € Q* U Q, if q corresponds
to a root or leaf cell in H, then ¢ can be evaluated
by accessing the cell H[q]. Otherwise, ¢ needs to be
evaluated in terms of a collection of local prefix range-
sum queries; the additional rewriting for ¢ is performed
in steps 2 to 9. Note that if H has a height of 2, then
steps 2 to 9 are omitted.

3.4.3 Update Algorithm

Figure 8 shows the algorithm to maintain an HRC H
in response to a single-cell update in the data cube
C. By definition of HRC, the update of a single data
cube cell u can affect only the cells in the rank-m sub-
cube S in H that contains u. The root cell in S is
identified in step 1, and it needs to be updated only if
it corresponds to cell u (steps 2 and 3). Steps 4 to 7 of
the algorithm handle updates to the non-root cells in
S and are based on the property that a non-root cell
cin S is affected by the update of cell u if and only if
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parent(c) 2u <c

3.5 Hierarchical Band Cubes (HBC)

In this section, we present algorithms for constructing,
querying, and updating an n-dimensional HBC H.

3.5.1 Construction Algorithm

Figure 9 shows a 2-stage algorithm for constructing
a HBC from a data cube C. In the first stage (step
1), the prefix cube of C' is constructed (an algorithm
for this can be found in Section 3.3 in [5]). In the
second stage (steps 2 to 5), the HBC is derived from
the constructed prefix cube by adjusting the values of
the non-root cells. On an implementation note, the
order in which the cells are modified should exploit
the physical clustering of the cells to minimize I/O.

3.5.2 Query Algorithm

Figure 10 shows the algorithms for evaluating a range-
sum query using an HBC. Algorithm EvaluatePRS-
Query evaluates a prefix range-sum query  using an
HBC H. By the definition of HB mapping (Table 1),
the answer is a summation of at most m cell values.
Algorithm HBC-Query is the main algorithm to eval-
uate a range-sum query using an HBC. Similarly to PC
and HRC, the range-sum query is first rewritten into a
collection of prefix range-sum queries Q* U Q= (step
2).

3.5.3 Update Algorithm

An update of a data cube cell u affects a cell ¢ in an
HBC H if and only if the value in cell ¢ is derived using
the value in cell u. The following two properties are
true for HBC H:

(P1) The update of u affects ¢ if and only if (1) none of
the ancestor cells of ¢ are affected by the update
of u, and (2) u < c.

(P2) If u £ A(c), then none of the descendant cells of ¢
(including c) are affected by the update of cell u.

Property (P1) follows from the definition of HB map-
ping (Table 1), and property (P2) is a corollary of
property (P1). Their proofs are given elsewhere [2].
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Algorithm RewriteLocalRSQ (H, 3, Q)
Input:H is an n-dimensional HRC with height m.

B ={Bi1,B2,---,Bn} is a set of base-
sequences; each B; =< b;m, *,b;2,bi1 >.
Qz(ll:h1,l2:h2,---,ln:hn) is a

range-sum query.
Output: T is a set of local range-sum queries
such that Q = quT q.
1) Let S ={S1,S2, -+, Sk} be the set of all the rank-2
sub-cubes in H that overlap with Q.

2) T={}
3) for each sub-cube S; € S do
4) Qi =(x1:Y1,T2: Y2, ,Tn : Yn), Where

x; = max{lj,a;}, y; = min{h;,a; + b;1 — 1}
and a = (a1,a2, -+, ax,) is the smallest cell in Sj;
5) T=T U {Qi};
6) return T}

Algorithm RewriteLocalPRSQ (H, 3, Q)
Input:H is an n-dimensional HRC with height m.

B ={B1,B2,---,Bn} is a set of base-
sequences; each B; =< b; m, -, bi2,b;,1 >.
Q= (l1:hi,la: hay,---,ln : hy) is a range-sum

query.

Output: Q7 U Q7 is a collection of local prefix
range-sum queries such that
Q Z qeQ+ q— Z qeEQ— q.

1) T = RewmteLocalRSQ('H B, Q);

2) QF={}Q = {}

3) for each g € T do

4) Rewrite ¢ into a combination of local prefix
range-sum queries, and update Q* and Q~;

5) return (Q*,Q7);

Algorithm HRC-Query (H, 8, Q)
Input: % is an n-dimensional HRC with height m.

B ={B1,Bs,---,B,} is a set of base-
sequences; each B; =< b; m, -, bi,2,bi,1 >.
QZ (l1 Zhl,l22h2,---,lnlhn) is a

range-sum query.
Output: The answer to Q.

1) (QT,Q ) = RewriteLocalPRSQ(#, 8, Q);
2) for each ¢ € QT do
3) if (1 < level(q) < m) then
4) p = parent(q);
5) Q' =(pr1:q1,p2:q, ", Pn  n);
6) T = RewriteLocalRSQ(H, 3, Q');
7 Q =Q U T-{g}
8) Repeat steps (2) to (7) with Q1 & Q~ interchanged;
9 S=Q"NQ; Q"=Q"-5 QT =Q" -5;
10) return Z Hlq] — Z H[q);

9€QT 9€Q~

Figure 7: Algorithms to Evaluate a Range-Sum Query
using an HRC.



Figure 11 shows the algorithm to maintain an HBC
in response to a single-cell update in the data cube C;
its correctness is based on properties (P1) and (P2).
Property (P2) is used in step 1 (step 6) to select root
cells (child cells) that are either affected by the update
of u, or whose descendant cells are affected by the
update of u. Property (P1) is used in step 3 to decide
whether or not a cell in H is affected by the update of
u. An implementation of this update algorithm should
exploit the physical clustering of the cells in ‘H to order
the sequence of cell updates so as to minimize I/0.

Algorithm HRC-Update (H, u,d)

Input: 7 is an HRC to be updated.
u is a cell in the data cube that has been
modified.
¢ is the difference between the new and old values
of cell u.

Output: 7, an updated HRC.

1) let r be the root cell in H such that r < u < A(r);

2) if (r = u) then

3) Update cell r with J;

4) S ={c|r =parent(c), r 2 u=<c}

5) for each p € S do

6) Update cell p with §;

7) §=S U {c|p=parent(c), p 2 u=c}—{p}

8) return H;

Figure 8: Algorithm to Update an HRC.

Algorithm HBC-Construct (C, )
Input: C is an n-dimensional data cube.
B ={B1, B>, --,B,} is a set of base-
sequences; each B; =< bjm;, **,bi 2,01 >.
Output: H, a hierarchical band cube of C.
1) Construct the prefix cube of C and call it H;

2) L =max{mi,ma, -, mn};

3) fori=1to L-1do

4) for each level-i cell v € H do

5) Hv] = H[v] — H[parent(v)];

6) return H;

Algorithm EvaluatePRSQuery (#, Q)
Input: % is an HBC.
Q is a prefix range-sum query.
Output: sum, the answer to Q.
1) sum = H[Q];
2) while (Q is a non-root cell) do
3) Q = parent(Q);
4) sum = sum + H[Q];

5) return sum;

Algorithm HBC-Query (H, Q)
Input: % is an HBC.
Q is a range-sum query.

Output: sum, the answer to Q.
1) Q= {5Q" = {k
2) Rewrite Q into a combination of prefix
range-sum queries, and update Q" and Q~;
sum = 0;
for each ¢ € Q" do

sum = sum + EvaluatePRSQuery (H,q);
for each g € Q™ do

sum = sum — EvaluatePRSQuery (H, q);
return sum;

00 ~J O Uk W
NN RSN

Figure 10: Algorithms to Evaluate a Range-Sum
Query using an HBC.

in X that are accessed to answer a range-sum query.
The expected update-cost (worst update-cost)
of X, denoted by Eypdate(X) (Wupdate(X)), is the ex-
pected (highest) number of cells in X that need to
be updated in response to a single cell modification
in the data cube. Egyery(X) (Eupdate (X)) assumes a
uniform distribution over the collection of all possi-
ble range-sum queries (single-cell updates in the data
cube).

4.2 Comparison of Query-Update Tradeoff

In this section, we compare the performance of RPC,
HRC, and HBC based on analytical results for the
space-, query-, and update-cost metrics defined in the

Figure 9: Algorithm to Construct an HBC from a Data
Cube.

4 Precomputed Cube Comparison
4.1 Performance Metrics

This section presents three performance metrics,
namely, space-cost, query-cost, and update-cost, for
comparing the tradeoffs among the various classes of
precomputed cubes.

Let X denote a precomputed cube. The space-
cost of X, denoted by Space(X), is the total number
of cells (i.e., values) in X. The expected query-
cost (worst query-cost) of X, denoted by Egyery (X)
(Wyuery (X)), is the expected (highest) number of cells
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Algorithm HBC-Update (H,u, d)

Input: H is an HBC to be updated.
u is a cell in the raw data cube that has been
modified.
¢ is the difference between the new and old values
of cell u.

Output: #, an updated HBC.

1) S={c|cisarootcell in H, u <X A(c)};

2) for each p € S do

3) if (u < p) then

4) Update cell p with §;

5) else

6) S=5S U {c|p=nparent(c), u <X Ac)};
7 S=S-{prh

8) return H;

Figure 11: Algorithm to Update an HBC.
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Figure 12: Comparison of Average- and Worst-Case Query-Update Tradeoff.

previous section. Analytical formulae for these metrics
are given elsewhere [2]. In terms of space cost, both
HRC and HBC have the same space requirement as
the data cube C, while RPC requires more space than
these (for the cells in the overlay box).

We focus on comparing just the query-update trade-
off among the various classes of precomputed cubes
using optimal query-update tradeoff graphs (for both
expected-case as well as worst-case) defined as fol-
lows. Let S denote the set of all precomputed cubes
that belong to the same class, say X, and have the
same values for n and D. A cube s € S has optimal
expected-case query-update tradeoff if there does not
exist another cube s’ € S that satisfies all of the fol-
lowing conditions: (1) Eguery(s') < Eguery(s), and (2)
Eypdate(s') < Eypaate(s), and (3) at least one of the
above inequalities is strict. The corresponding points
in a query-cost/update-cost diagram constitute the op-
timal expected-case query-update tradeoff graph for X.
The optimal worst-case query-update tradeoff cubes for
X and their graphs are defined similarly in terms of
Wouery() and Wiypdate(). A cube of class X that has
optimal tradeoff, whether in the expected case or the
worst case, is called optimal X for short, when no
confusion arises.

We generated precomputed cubes for the various
classes (i.e., RPC, HRC, and HBC) by varying the
number of cube dimensions (2 < n < 7), and the
size of each cube dimension. For simplicity, we con-
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sider data cubes with equal sized dimensions; i.e.,
data cubes with D; = D (for 1 < ¢ < n) with
D =128,512,1024. For a given n and D, all possible
RPCs are generated by enumerating all combinations
for the dimensions of the sub-cube/overlay box. For
HBCs, we consider only cubes for which each base-
sequence B; =< b;m,bim—1,---,b;1 > satisfies the
property that b;m > b;m—1 > --- > b;1 because ini-
tial experiments with D = 128 showed that only these
are optimal.

For HRCs, we consider only HRCs with height equal
to 2. The analysis for the more general class of HRCs
is more complex and is part of our future work. Note
that for every HRC X with a height of k, & > 2, there
exists an HRC Y with a height of 2 that has the same
dimensionality and size for its rank-2 sub-cubes as X.
In terms of update-cost, Y is more efficient than X:
although the mapped regions for their leaf cells are
equivalent, the mapped regions for the non-leaf-and-
non-root cells in X are larger, while the mapped re-
gions for each of the non-leaf cells in Y (i.e., root cells)
consists of only a single value. In terms of query-cost,
the comparison is less clear since neither X nor Y is a
clear winner.

Figure 12 compares both the expected-case and
worst-case query-update tradeoff for three cases: (a)
n=4and D =128, (b) n =7 and D = 128, and (c)
n =4 and D = 1024. The top leftmost point in each
graph (i.e., the most query-efficient and least update-



efficient cube design) corresponds to the prefix cube
which is a special case of both RPC and HBC.

In terms of the expected-case query-update perfor-
mance, both HRC and HBC have comparable tradeof,
and they significantly outperform RPC by up to a fac-
tor of 10. In terms of the worst-case query-update
performance, both HRC and HBC again have better
tradeoff than RPC, with HBC being clearly the win-
ner.

With respect to how query cost is traded off for
update cost by each cube design, we have observed
the following. For RPCs, the update-cost decreases
but the query-cost increases as the number of cells in
the overlay box decreases. For HRCs, this happens as
the number of rank-2 subcubes increases. For HBCs,
things are more complicated. Let N;(H) denote the
total number of level-i cells in a HBC H. For the
expected-case, an optimal HBC X with a height of =
is more query-efficient but less update-efficient than an
optimal HBC Y with a height of y if either (1) z < y,
or (2) z =y, and Ni(X) < Ng(Y) for some k& > 1,
and N;(X) = N;(Y) for 1 < i < k. For the worst-case,
there is exactly one optimal HBC with a height of i
for 1 < i < loga(D) such that the optimal HBC with
a height of k is more query-efficient but less update-
efficient than the optimal HBC with a height of (k+1)
for 1 < k < logz(D).

5 Effect of Buffering
5.1 Performance Metrics

One important result from the previous section (Fig-
ure 12) is that PC is the most query-efficient but also
the least update-efficient precomputed cube. In par-
ticular, the query-cost is one cell access per prefix
range-sum query evaluation, which implies a worst-
case evaluation cost of 2™ cell accesses per range-sum
query evaluation, where n is the number of dimen-
sions in the data cube. In this section, we explore the
effect of buffering on the performance of the various
precomputed cubes; specifically, we examine how each
class of precomputed cubes can achieve, with appro-
priate buffering, the same worst-case query-efficiency
as PC but without incurring the high update cost of
PC. We compare the memory-update tradeoff of the
various classes of precomputed cubes, which involves
the following two metrics for each class X:

1. Memory: the minimum number of cells in X that
need to be buffered so that X achieves the same
worst-case query-cost as PC (i.e., access at most
2™ non-buffered cells per range-sum query evalu-
ation). We denote this metric by MinCell(X).

2. Update: the expected number of non-buffered
cells in X that need to be updated in response to
a single cell modification in the data cube, assum-
ing a uniform distribution over the collection of all
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[T}, D; potential single-cell updates. We refer to
this metric as the expected buffered update-cost of
X and denote it by Bypdate (X).

In other words, for each precomputed cube X, we are
interested in determining both the cost (in terms of
buffer space) as well as the benefit (in terms of the
improved update cost) of buffering X for it to become
as query-efficient as PC.

5.2 Buffering Strategies

We briefly explain the buffering strategy for each class
of precomputed cubes X for the metric MinCell(X).
Let @ denote a range-sum query. For an RPC R, each
prefix range-sum query evaluation accesses exactly one
cell in 4 and at most (n+1) cells in O. It follows that
for RPC to have the same worst-case query efficiency
as PC, at least all the cells in O need to be buffered.

For an HRC H, @ is rewritten into o local range-
sum queries, where o is the number of rank-2 sub-
cubes that overlapped with @); each local range-sum
query is in turn evaluated in terms of at most 2" local
prefix range-sum queries. Thus, in the worst case, at
most 2™ cells are accessed, of which at most 2" of
them are non-outer cells*. Therefore, at least all the
outer cells in H need to be buffered for it to be equally
query-efficient as PC.

For an HBC H, each prefix range-sum query evalua-
tion accesses exactly one root-level cell and at most one
cell for each non-root level. Since HBC has the prop-
erty that the number of level-i cells decreases with i,
buffering all the non-leaf cells incurs the least amount
of buffer space for H to achieve the same worst-case
query-efficiency as PC.

In addition to comparing the cost and benefit of
buffering each class of precomputed cubes for it to
attain the same query-efficiency as PC, we are also
interested in examining how buffering benefits PC in
terms of reducing its update-cost. Since each cell in a
PC is equally likely to be accessed, a good buffering
scheme is to buffer those cells that are more likely to be
updated so as to reduce the update-cost of PC. A rea-
sonably good buffering strategy for PC is to buffer it
in units of layers. Consider a prefix cube P with each
dimension of size D. The cells in P can be partitioned
into D disjoint layers such that a cell (c1,¢2,---,cn)
belongs to layer k of P, 0 < k < D, if and only if
max{ci, ¢z, +,cn} = k. A cell in layer k is generally
more likely to be updated than a cell in layer (k — 1).
We consider the effect of buffering P in terms of k out-
ermost layers®, 1 < k < D. Let Lgpsce(P, k) denote
the total number of cells in the k& outermost layers of
P, and Lypgate(P, k) denote the expected number of

4A cell ¢ = (c1,¢2,- -, Cn) in a rank-2 subcube S of an HRC
H is an outer cell if 31 < j < n, such that ¢; = max{s;|s €
S,s = (81,82, ", 5n)}; otherwise, ¢ is an non-outer cell.

5Note that the k outermost layers refer to layers (D — k),
(Dik+1)7 Y (Dil)'



2e+07 5e+09 7e+10 ——— e —
6e+10 2 EEE .
4e+09 1 HBC ——s—
= 1.5e+07 1 . » 5e+10 ]
38 38 38
@ @ 3e+09 1 @ 4e+10 4
s 1e+07 | s s
5 S 26409 1 5 3e+10 4
g g g
< 5e+06 1 < Z 2e+10 1
1e+09 1
1e+10 3,
S R B
0 T T T - 0 B e 0 T T T T
0 20 40 60 80 100 0 100 300 400 500 0 20 40 60 80 100
Buffer Space (MB) Buffer Space (MB) Buffer Space (MB)
a) D =128.
(a) (b) D = 512. (c) D = 1024.
Figure 13: Comparison of Average-Case Memory-Update Tradeoff, n = 4.
1.2+09 8e+10 pC o Se+12 PC o
¥ ———————— RPC —— | . RPC ——
1e+09 1 7e+10 HRC —o— 45er12 HRC -
_ _ 6e+10 ] HBC -—— _ dev2 ] HBC -——
1%} + ] 1%} 1%}
g Bee S 5e+10 ] S 35e+12 ]
o o o
s 6e+08 1 8 4e+10 s 3e+12 1
=) =) =)
. . +10 + . 2.5e+12 1§
©  4e+08 { % 3e+10 S Se 4
< < 2e+10 < 2e412 )
2e+08 1 N kN
€ 1+10 | e 15412 { e,
0 0 btz 40—
0 10000 0 10000 0

5000
Buffer Space (MB)

(a) n =5.

5000
Buffer Space (MB)

(b) n = 6.

5000
Buffer Space (MB)

(c)n="T.

Figure 14: Comparison of Average-Case Memory-Update Tradeoff, D = 128.

non-buffered cells in P that need to be updated in re-
sponse to a single cell update in the data cube when
the k outermost layers of P are buffered. Analytical
results for Bypdate(X), MinCell(X), Lepace(P, k), and
Lupdate(P, k) are given elsewhere [2].

5.3 Comparison of Memory-Update Tradeoff

In this section, we compare the various classes of pre-
computed cubes using optimal expected-case memory-
update tradeoff graphs, which are defined similarly
as the optimal expected-case query-update tradeoff
graphs in Section 4.2, but in terms of MinCell()
and Buypdate(). For a PC P, the optimal expected-
case memory-update tradeoff graph is defined in terms
of Lopace(P, k) and Lypdate(P, k) with k being varied
from 1 to D. Both MinCell(X) and Lgp,ce(P, k) are
expressed in units of MB of buffer space by assuming
that each cell takes 4 bytes of memory.

As in Section 4.2, precomputed cubes are gen-
erated by varying the number of cube dimensions
(2 < n < 7) and the size of each cube dimension
(D = 128,512,1024). We consider all possible RPCs
and the subclass of HRCs with height 2. Recall from
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the previous section that the buffering strategy for
HBC buffers all the non-leaf cells. Since the num-
ber of leaf cells in an HBC and the update cost for
them are dependent on the size of the rank-2 subcube
but independent of the total number of levels in the
HBC, it suffices to consider only the subclass of HBCs
with height 2 as well for the memory-update tradeoff
comparison in this section.

Figure 13 compares the optimal expected-case
memory-update tradeoff for n = 4 and D €
{128, 512,1024}; the graphs for D =128 and 5 <n <
7 are shown in Figure 14. They indicate that HBC has
a significantly better memory-update tradeoff than the
other classes of precomputed cubes, particularly for
large values of n or D. For example, when n = 4 and
D = 128 (Figure 13(a)), the expected update-cost
of PC (without buffering) is about 17 x 10%. Using
a buffer space of 8 KB, HBC reduces this cost by a
factor of 2.5 to 8 x 108; by increasing the buffer space
to 1 MB, the expected update cost is improved by a
factor of almost 7 to 2.5 x 10%. Thus, with a moderate
amount of buffer space, HBC can become as query-
efficient as PC but with a significant improvement over




its update-cost.

For RPCs, as the size of sub-cube decreases, the
number of overlay box cells increases, and so the buffer
space requirement increases and the expected update
cost decreases. For HRCs, as the size of the rank-2
sub-cube decreases, the number of outer cells increases,
and so the buffer space requirement increases and the
expected update cost decreases. For HBCs, as the size
of the rank-2 subcube decreases, the number of leaf
cells decreases, and so the buffer space requirement
increases and the expected update cost decreases.

Note that some of the graphs for PC and HRPC did
not appear in Figures 13 and 14 because their points
correspond to large values of buffer space that are be-
yond the range of values shown on the x-axis.

6 Conclusions

Aggregation computation is an important operation
in OLAP systems, and several precomputation and
indexing techniques have been developed to expedite
processing of such OLAP queries. In this paper,
we consider precomputation techniques for processing
range-sum queries, and propose a new class of pre-
computed cubes that is based on a design framework
defined by two orthogonal dimensions. In particular,
we present two new designs in this class of alterna-
tives: HRC and HBC. Our results show that HBC is
the overall winner. HBC has not only significantly bet-
ter query-update tradeoff than previous cube designs
(for both expected- and worst-case performances), but
it also can be more effectively buffered; in partic-
ular, by using a moderate amount of buffer space,
HBC can achieve the same query-efficiency as the most
query-efficient solution, but with a significantly re-
duced update-cost.

As part of our future work, we plan to verify our
analytical results experimentally, and also to charac-
terize the optimal tradeoff points (e.g., the graph knee)
for HBC.
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