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Abstract

Incremental view maintenance is a well-known
topic that has been addressed in the literature
as well as implemented in database products.
Yet, incremental refresh has been studied in
depth only for a subset of the aggregate func-
tions. In this paper we propose a general in-
cremental maintenance mechanism that applies
to all aggregate functions, including those that
are not distributive over all operations. This
class of functions is of great interest, and in-
cludes MIN/MAX, STDDEV, correlation, re-
gression, XML constructor, and user defined
functions. We optimize the maintenance of
such views in two ways. First, by only re-
computing the set of affected groups. Second,
we extend the incremental infrastructure with
work areas to support the maintenance of func-
tions that are algebraic. We further optimize
computation when multiple dissimilar aggre-
gate functions are computed in the same view,
and for special cases such as the maintenance
of MIN/MAX, which are incrementally main-
tainable over insertions. We also address the
important problem of incremental maintenance
of views containing super-aggregates, includ-
ing materialized OLAP cubes. We have imple-
mented our algorithm on a prototype version of
IBM DB2 UDB, and an experimental evaluation
proves the validity of our approach.
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1 Introduction

Materialized views, or Automatic Summary Tables
(ASTs)!, are increasingly being used to facilitate the
analysis of the large amounts of data being collected
in relational databases. The use of ASTs can signifi-
cantly reduce the execution time of a query, often by
orders of magnitude, which is particularly significant
for databases with sizes in the terabyte to petabyte
range, whose queries are designed by Business Intelli-
gence tools or Decision Support Systems. Such queries
tend to be extremely complex, involving a large num-
ber of join and grouping operations. The focus of this
paper is on ASTs defined with aggregate functions, in-
cluding those defined for OLAP cubes. This class of
ASTs is extremely important in practice.

The advantage of ASTs is that they are precom-
puted once and subsequently used multiple times to
quickly answer complex queries. When base relations
are modified, these modifications must be propagated
to the affected ASTs. Using current techniques, the
systems can only incrementally update a restricted
set of ASTs; those only containing distributive ag-
gregate functions. The remainder must be fully re-
computed. Prior work [LHM*86, CGLT96, BLTS6,
QW9I1, Qua96, MQM97, LSPCO00], has studied the
problem of incremental view maintenance in which
all the necessary changes for the AST are computed
based only on the modifications to the base table (and
the corresponding values in the AST). This process is
called incremental view maintenance, and many com-
mercial products support it. Due to the complexity of
the queries and the magnitude of the data, recompu-
tation of ASTs in large-scale databases is prohibitive.
Since the set of updates to the base tables is usually
only some small percentage of those tables, incremen-
tal maintenance of an AST is usually much quicker
than full recomputation. For example, a typical ware-

IThe term “AST” is used in the IBM DB2 database instead
of “materialized view”. For the rest of this paper we will use
the terms materialized view and AST interchangeably.



house can contain up to 6 years of data. Daily inserts
into a fact table in this warehouse may constitute only
about 0.05% of the entire size of the table, while an
associated AST can grow up to a billion rows.

Figure 1 depicts the process of incrementally main-
taining ASTs. When updates occur in the base data,

insert/update/delete .

Figure 1: The AST incremental maintenance process.

the system determines which ASTs are affected and
propagates the changes through the AST definitions
to produce the delta changes. It then applies these
deltas to their respective ASTs. If an AST is auto-
matically refreshed in the same unit of work as the
changes to the underlying base data are applied, then
we say that the maintenance is immediate. Otherwise,
it 1s deferred. In this paper, we consider the problem
of immediate incremental maintenance. A variation of
our solution is applicable to deferred maintenance, but
is beyond the scope of this paper.

1.1 Classes of Aggregate Functions

All previous studies restrict the aggregate functions al-
lowed in incrementally maintained ASTs. Such func-
tions must have the property that when the underlying
tables change, the system can compute the new value
of the aggregate function from its old value and the
changes themselves, for both insertions and deletions
(we can always view updates as a series of deletions
and insertions). We call these aggregate functions
incrementally computable. To understand the above
characterization, we briefly review the classification of
aggregate functions over INSERT and DELETE oper-
ations.

The behavior of an aggregate function with respect
to an operation can be classified into one of three cat-
egories [GBLP96]. A function is distributive for an
operation if the new result of the function can be com-
puted using only the existing value of the aggregate
and the values of the operation (new values for insert,
old values for delete). SUM and COUNT are distribu-
tive for both INSERT and DELETE. MIN and MAX
are distributive for INSERT, but not for DELETE. A
function is algebraic for an operation if the new re-
sult of the function, as a result of the operation, can
be computed using some small, constant size storage
(work area) that accompanies the existing value of the

aggregate. AVG and STDDEV are algebraic for IN-

SERT and DELETE. For AVG, the work-area con-
sists of simply the COUNT. In fact, most products
and studies include AVG in their set of incrementally
computable functions, and for the rest of this paper we
take the same position. A function is holistic for an op-
eration if there is no constant bound on the amount of
storage needed to compute the new result of the func-
tion for any instance of the database. This is the case
for MIN and MAX over DELETE. They may require
revisiting all the records for the affected groups.

Aggregate functions that are distributive over both
INSERT and DELETE (henceforth referred to simply
as distributive aggregate functions) are incrementally
computable. This is not true for algebraic and holis-
tic functions. The class of non-distributive functions
is of great interest, and is commonly used in practice.
It includes MIN, MAX, STDDEV, CORRELATION,
REGRESSION functions, XML constructor functions
[SQL02], and others. However, the problem of effi-
ciently maintaining views with non-distributive aggre-
gate functions has not been sufficiently studied in the
literature.

1.2 Maintaining Non-Distributive Aggregate
Functions

In this work we extend the current framework to effi-
ciently support the incremental maintenance of ASTs
defined with non-distributive aggregate functions. We
present a method for selectively recomputing only
the affected groups as well as supporting incremental
maintenance of distributive aggregate functions that
occur in the same view definition as non-distributive
aggregate functions. The recomputation step is indis-
pensable since the new value for the non-distributive
aggregate functions cannot be derived from the old
value and the changes to the base relations alone. We
also describe the maintenance of work-areas that make
algebraic functions incrementally computable. The al-
gorithm we propose is an efficient way to perform selec-
tive recomputation, and to the best of our knowledge,
is the first such algorithm proposed in the literature
that deals with the intricacies of this problem and ac-
counts for super-aggregates.

Our work focuses on identifying the affected groups
of the AST, and efficiently recomputing them. In order
to improve performance we apply a series of optimiza-
tions on the query plan generated for the maintenance
of the affected ASTs, and we make sure that only the
non-distributive aggregate functions for the affected
groups are recomputed. The rest of the aggregate
functions are incrementally maintained and not recom-
puted. The aforementioned optimizations are specific
to the problem at hand, and therefore, could not have
been applied by the optimizer module of the database
system. We also optimize separately for some special
cases, which enables us to save much computational
effort. Note that our approach i1s not confined to any



particular set of functions, but works for arbitrary ag-
gregate functions as well. Our contributions can be
summarized as follows.

e We enhance the incremental view maintenance
framework with a selective recomputation step
that significantly expands the set of supported
aggregate functions. The newly supported ag-
gregate functions are non-distributive, and in-
clude MIN, MAX, STDDEV, CORRELATION,
REGRESSION functions, XML constructor func-
tions, and others. The framework can also accom-
modate any user-defined aggregate functions.

e We present several optimizations incorporated in
the algorithm, which lead to an efficient solu-
tion of the problem. We describe the necessary
rewrites that improve the execution of the main-
tenance expression, and we augment the query
rewrite rules to handle materialized views with
super-aggregates.

e For the aggregate functions that are algebraic for
INSERT and DELETE we extend the incremen-
tal infrastructure to support materialization and
maintenance of sub aggregates.

o We discuss in detail a practical algorithm that can
handle a large variety of real-life scenarios. We
implemented our method in a prototype version of
IBM DB2 UDB, and the experimental evaluation
proves the validity of our approach.

The rest of the paper is organized as follows. In
Section 2 we give some background necessary for the
rest of the paper. In Section 3 we present a detailed
discussion of our technique, and in Section 4 we elabo-
rate on the use of work areas for algebraic aggregates.
We present an experimental evaluation of our method
in Section 5, in Section 6 we review the related work,
and finally we conclude in Section 7.

2 Background
2.1 Notation

The notation we are going to use to illustrate how an
SQL query changes in each step of the algorithm is
based on the Query Graph Model (QGM) [HFLP89],
which 1s a structural representation of SQL state-
ments. The choice of QGM only helps in the presen-
tation of the material and in no case does it affect the
generality of our solutions.

At a high level description, a QGM graph consists
of (rectangular) boxes, and edges between the boxes.
Each box implements one or more relational opera-
tors on its input columns, and also specifies the out-
put columns. The edges merely denote the flow of
tuples from the output columns of one box to the in-
put columns of another. For the rest of this paper we
will use the term "QGM?” to refer both to the model
and a given instance graph of the model.

For illustration purposes in this paper we use a sim-
plified form of the QGM representation. We are only
interested in the way SQL Update, Delete, and Insert
statements (UDI statements) are transformed along
the various steps of the incremental maintenance com-
pilation algorithm. Therefore, we ignore the detailed
representation of the operators inside each QGM box.
For clarity of presentation, we substitute an entire sub-
graph of the UDI statement QGM graph with a trape-
zoid box. Finally, we use the cylinder to depict materi-
alized tables (either base relations, or ASTs), whereas
a rectangular or trapezoid box for an AST refers to
the QGM graph of its definition query.

2.2 Incremental Maintenance for Distributive
Aggregate Functions

The work of this paper has been implemented as an
extension to the compilation algorithm in IBM DB2
UDB for the incremental maintenance of ASTs. We
present an overview of this algorithm here as back-
ground to our extensions. It is important to note how-
ever, that the techniques we describe in this paper are
not specific to a particular database product, but are
applicable to any database management system.

The algorithm supports incremental maintenance
for a wide range of aggregation queries. It supports
aggregation over any combination of select, project,
inner join (including correlated joins and self-joins)
and union. The super-aggregation operators CUBE,
ROLLUP and GROUPING SETS are also supported
[LSPCO00], as are the distributive aggregate functions
SUM and COUNT. The base objects that are refer-
enced by the AST (after view expansion) may be either
the underlying tables of the AST query or determinis-
tic table functions.

The restrictions on the queries that define the ASTs
are: (a) a unique key must be derivable (i.e. the AST
cannot contain duplicate rows), (b) only one level of
aggregation is permitted (GROUP BY on GROUP BY
is not supported), and (c) the AST query must contain
a COUNT(*) function.

The algorithm supports all possible SQL update
statements, including those that modify more than one
of the underlying tables via cascading referential in-
tegrity constraint or trigger actions. The algorithm
implements immediate AST maintenance by compil-
ing the constructions needed to maintain the affected
ASTs into the QGM graphs of the UDI statements.
These constructions employ standard relational oper-
ations whose inputs are: (a) the changes to the under-
lying tables, (b) the post-update images of the under-
lying tables, and (c) the AST.

As in previous incremental maintenance algorithms
[MQMOT7], this algorithm decomposes incremental
computation into two steps, namely propagate and ap-
ply. At execution time, propagate computes the set of
changes (the final delta) that must be made to an AST



given the changes to its underlying tables (the under-
lying table deltas), and apply updates the AST with
the results from propagate. The propagate phase gen-
erated by the algorithm uses only the changes to the
underlying tables and the post-update images of the
underlying tables. Conversely, the apply phase uses
only the results of propagate and the AST. This com-
pilation algorithm collects the set of ASTs that depend
on the tables that are the targets of the modification
operations in the UDI QGM graph. For each depen-
dent AST it then constructs the propagate phase and
the apply phase (see Figure 2), for which we provide
further details in the following sections.

Apply

combine
phase

old and
new values

Propagate /
phase 4

insert/update/delete

Figure 2: Current incremental maintenance framework.

2.2.1 Propagate Phase Compilation

The algorithm performs a depth-first traversal of the
AST QGM graph, and employs compilation rules spe-
cific to each box in the graph. The result of each of
these rules is a modified QGM for the operation that
computes the delta for that portion of the AST query.
The propagate phase has rules for underlying table
references, select-project, union, inner-join and group-
by operations. In the remainder of this section, we
describe rules for underlying table references, select-
project and union to give the flavor of the algorithm.

Underlying table reference rule: On encoun-
tering a reference to an underlying table, we create
a union operation of all of the UDI operations in the
UDI statement QGM that affect this table reference. If
there is exactly one UDI operation that affects the ta-
ble reference, then a selection operation is constructed
instead of a union.

When a union is required, the union may compute a
mixture of update, delete and insert rows. The delete
rows contain old values, insert rows contain new values
and update rows contain both. To distinguish between
these rows a tag column is added to the union oper-
ation with values -1, +1, and 0, for deletes, inserts
and updates respectively. If there is a combination
of update operations with delete/insert operations in
the resulting union, the delete and insert operands are
padded with NULL-valued columns for union compat-
ibility with the update operands, which may contain

twice as many columns (since they carry both the old
and new values). Table 1 shows the general form of a
delta for an operation (or underlying table reference)
that returns n columns C1,Cs, ..., C,.

action
inserted row

delta (with tag column)
(newC1, ..., newCl,, +1, null, ..., null)
(oldC1, ..., 0ldCy, -1, null, ..., null)
(oldC7q, ..., oldCy, 0, newCy, ..., newCy)

Table 1: Delta format.

deleted row
updated row

Select-Project Rule: If there is a delta for the in-
put operand, then the select-project operation is mod-
ified to propagate the tag column and if applicable, the
extra columns for updates. Otherwise, the operation
is unchanged.

Union Rule: If none of the operands have deltas,
then the union is unchanged. Otherwise, the operands
without deltas (union is an n-ary operation in QGM)
are pruned from the union. If only one operand re-
mains after pruning, then the operation is transformed
into a select-project operation (without predicates)
and the corresponding rule is applied. When more
than one operand remains, the output tag column is
derived from the tag column of all of the operands.

The result of applying each rule to an operation
is the modified QGM for the operation and a number
of properties characterizing the result of the operation.
The properties are required to construct the propagate
phase for subsequent operations and to communicate
requirements for constructing the apply phase.

2.2.2 Apply Phase Compilation

Apply phase constructs a join between the propagate
graph and the AST, on the unique key of the AST (de-
rived by propagate). The join computes the rows of the
AST that must be modified. If an insert operation is
required to apply the final delta, then a left outer join
is constructed, where the left operand is the propagate
graph. The left outer join is required to preserve rows
of the final delta that do not exist in the AST (i.e.,
rows for new groups). Otherwise, only update and/or
delete operations are required to apply the final delta,
and an inner join is constructed. When an update
is required, expressions are built in the result of the
join to compute the new values of the affected aggre-
gate functions by combining the old values from the
AST with the corresponding values of the final delta.
Finally, the needed AST update, delete and insert op-
erations are constructed above the join. A predicate 1s
built for each one, that defines which UDI operation
applies to any given row.

Figure 3 is a high level depiction of the QGM af-
ter the construction of propagate and apply. The box
marked ”prop” encapsulates the results of propagate.
The join built by apply is marked "L.OJ” (a Left Outer
Join in general) and the box marked ”UDI” shows the
UDI operations on the AST constructed by apply.
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Figure 3: The QGM representation of the augmented UDI
statement.

3 Selective Recomputation for Non-
Distributive Aggregate Functions

We now present our algorithm for incrementally main-
taining ASTs whose definition includes any non-
distributive aggregate functions (even user defined
functions), which is based on selective recomputation.
The algorithm we propose is an efficient way to re-
compute only the affected groups, and is the first such
general algorithm proposed in the literature that deals
with the intricacies of this problem and takes into ac-
count ASTs with super-aggregates.

The new method we propose for supporting incre-
mental AST maintenance is depicted in Figure 4. Step

Propagate
phase

insert/update/delete

Figure 4: The new incremental maintenance framework.

3 in the figure (arrows labeled with “3”), represent
the change in the propagate phase that handles the
non-distributive aggregate functions. The delta for the
distributive functions is computed as before in step 2.
Thus, the propagate phase computes the new values
for all aggregate functions. The changes in the apply
phase simply involve the construction and manipula-
tion of predicates for the new aggregate functions.
Our approach can be decomposed into five steps.
Each step is a refinement of the previous one, in the
sense that it cuts back on the amount of computational
effort needed to achieve our goal. Note that this is the
description of the algorithm at the logical level, and
does not reflect the exact order in which actions are
taken when the algorithm is executing. The five steps
of our method are the following.
1. Construct a graph, Gumgint, that computes the
new values for each group (i.e., the values after
the changes have been applied to the underlying

tables) both for the distributive and for the non-
distributive functions.

2. Modify Gaine to recompute only the non-
distributive functions.

3. Modify Gaint to recompute only those groups
that are affected by the changes.

4. Eliminate any unnecessary operations in Gogint.

5. Optimize Gonain: for special cases.

In the next sections we elaborate on each of the above
steps, out of which the first four relate to the propagate
phase, and only the last one refers to the apply phase.

For the rest of this paper we will refer to the current
approach, namely, incremental maintenance of dis-
tributive aggregate functions, as the “old” approach,
and to the new method as the “new”.

3.1 Compute New Values

In the old setting, it is sufficient to compute the delta
and then apply those changes to the AST by match-
ing the corresponding tuples (in the delta and the
AST). The new framework must do additional work
before applying the changes, because the delta does
not provide all the information needed to compute the
new values for the non-distributive functions. This is
achieved using the definition of the AST, as illustrated
in Figure 5 with the lower AST box, which neverthe-
less, results in recomputing all the groups of the AST.
Clearly, this is not desirable and we show how to re-

Figure 5: The Gimain: graph that computes the new ag-
gregate values.

move this constraint later on.

After the recomputation of the groups, we are only
interested in keeping the new values for those groups
that are affected by the changes to the base relations.
It is these values that will produce the new delta. To
that effect, we inject a join operation on the unique key
columns of the AST query that joins the top of the old
propagate phase with the top of the AST graph, so as
to get the new values only for the affected groups. We
can efficiently 1dentify these groups, because the prop-
agate phase carries all the necessary information, i.e.,
the changes that took place and which groups they
affected. It may be the case that the changes cause
some groups to be deleted from the AST. To handle
this situation, the join that we construct here is a left
outer join, where the result of the propagate phase
is the left operand. As we use the post-update 1im-
age of the underlying tables there will be no matching



group in the right operand for a group that is to be
deleted. The left outer join preserves these groups in
its result. We will refer to this operation as the “new
join”. Figure 5 depicts the Gmgin: graph after the
above modifications.

3.2 Change Column Derivation

As a result of the previous step of the algorithm, the
new values for the distributive aggregate functions are
computed twice. Once during the computation of the
propagate delta, and a second time during the recom-
putation of the AST. To eliminate this inefficiency we
choose to obtain the new aggregate values from the
delta, since the computation of the values for the dis-
tributive aggregate functions in the AST is based on
the entire set of relevant data in the base relations, and
is significantly less efficient than computing the values
based only on the changes, which is the case with the
delta. Thus, we selectively set the column derivation
for each one of the columns in the new join box to
come from the AST computation leg if the column is
non-distributive, and from the propagate phase leg for
all the other cases, as shown in Figure 6.

distributive
functions only
non-distributive
functions only

Figure 6: The Gmain: graph after changing the column
derivations.

At this point we have modified the join operation to
choose one operand as the source for each of the aggre-
gate function columns in its result. The remaining un-
referenced aggregate function columns of each operand
will be removed later during the normal course of
query optimization.

Example 1 Consider AST-1 defined as follows.

SELECT dept_id, COUNT(emp_id), MAX(age), STDDEV(salary)

FROM employees

GROUP BY dept_id
The result of the COUNT(emp_id) function (distributive)
will be determined from the old propagate phase, while
MAX(age) and STDDEV(salary) (non-distributive) will be
computed from the AST definition. But none of them
will be computed twice.

3.3 Recompute Only Affected Groups

So far we do not avoid recomputing the entire AST
(minus the evaluation of the distributive aggregate
functions, because of the previous step). This step

pushes the new join predicate down to the lowest op-
erations of the AST query graph. Note that the pushed
down join need only be an inner join. We employ the
query rewrite engine of the DBMS to push down the
predicate. If this pushdown is successful then the join
will be applied between the top of the old propagate
phase and the underlying tables of the AST. We are
now able to select from the AST’s underlying tables
only those values that contribute to the affected groups
(because at the top of the propagate phase we already
know which groups are affected), and consequently, it
is only the affected groups that will be recomputed.
The Gigint graph after the pushdown is depicted in
Figure 7. In this figure, we use 77, ..., Ty to represent

non-distributive
functions only

distributive
functions only

Figure 7: The Gmain: that will selectively recompute only
the affected groups.

the base relations over which the AST is defined. By
“AST*” we denote the QGM graph of the AST af-
ter removing the references to the underlying tables
Ty, .. Tg.

The functionality described above is a prime com-
ponent of the incremental maintenance procedure we
propose, and defines the class of ASTs that our method
supports. First, we require that there exists a key
that uniquely identifies the tuples in the AST. Sec-
ond, given a predicate on the aforementioned unique
key, we require that it is possible to push this predi-
cate down through the AST QGM graph to the under-
lying tables of the AST. If these two requirements are
met then the AST is accepted as incrementally main-
tainable, since the selective recomputation step can be
efficiently supported.

The basic predicate pushdown engine does not sup-
port predicate pushdown through super-aggregates. In
the next section we present extensions that support
this important class of warehouse ASTs.

3.4 Super-Aggregate Predicate Pushdown

When the AST involves a super-aggregate, we must
devise special predicate pushdown rules to avoid er-
roneous results. In order to describe the issues and
our algorithm, we first give a brief overview of super-
aggregates. A super-aggregate is a SQL language ex-
tension to the group-by clause [GBLP96] that supports
the computation of measures for different levels of a



hierarchy. The language extensions are very versatile,
and allow the specification of all of the following cases:
e Rollup of Dimension Hierarchies:

GROUP BY ROLLUP(year ,month,day)
e Simple Cubes: GROUP BY CUBE(year,product,region)
e OLAP-cubes:GROUP BY year,month,ROLLUP(prodline,

prodgroup ,product) ,ROLLUP (country,state,city)
This example specifies a hierarchical cube per

month.
e Sparse Cubes: GROUP BY GROUPING SETS((year,

prodline), (year,country), (year))

The result of a super-aggregate is a table that con-
tains the union of many simple group-by operations,
not all of which contain the same set of grouping
columns. In the resulting table one can identify which
rows belong to each simple group-by. We refer to a
column in the group-by clause of a super-aggregate as
a dimension column. If the dimension column is not
nullable, then a NULL value for this column indicates
that it is not one of the grouping columns for a given
row. For nullable columns, SQL provides a > GROUP-
ING” function whose value is 0 when the dimension is
one of the grouping columns and 1 when it is not.

To satisfy our unique key requirement for incre-
mental maintenance, a dimension column in a super-
aggregate AST must either be non-nullable or contain
a corresponding indicator column that computes the
GROUPING function for the dimension. In the fol-
lowing description, we will assume that all dimension
attributes are nullable, and rely solely on the existence
of the corresponding indicator columns. Note that all
of the expressions can be simplified with ”IS NULL”
tests when the column is non-nullable.

When the AST involves a super-aggregate opera-
tion we alter the predicate pushdown procedure as fol-
lows. First, recall that the predicate formed between
the propagate phase and the AST query is a join on the
unique key. In the case of super-aggregates, the unique
key contains indicator columns. Prior to pushing this
join predicate down, we remove terms containing these
indicator columns since they are manufactured during
the computation of the super-aggregate and are not
available from the base tables.

The second alteration is more fundamental and part
of the pushdown procedure itself. We must take care
to appropriately recompute all of the higher-level ag-
gregations. Like the super-aggregate itself, the prop-
agate phase contains deltas for many simple group-
by operations. It contains a row for each affected
row of the AST. Consider the OLAP-cube: GROUP
BY year, month, ROLLUP(prodline, prodgroup, prod-
uct), ROLLUP(country, state, city), and a modifica-
tion that inserts sales data for Waynesboro, VA for
June, 2002. The propagate phase contains deltas for
all groups that must be updated in the AST: these
are the June, 2002 aggregates per each level of the
product-dimension for the city of Waynesboro, the
state of VA, the entire country, and for all countries.

Pushing predicates through a grouping expression
that contains a super-aggregate must alter the predi-
cate in such a way as to appropriately recompute the
aggregate values for each of the affected groups. If the
super-aggregate computes values for different levels in
a dimension hierarchy (e.g. state and country subto-
tals), the results of propagate will contain rows for each
level in the hierarchy that must be modified. The pred-
icate pushdown must ensure that subtotals for higher
levels in the hierarchy do not double count the contri-
butions from the lower levels. For example, insertions
of rows for Waynesboro, VA and Staunton, VA could
inadvertently cause a duplication of the values for VA.
Furthermore, we must ensure that subtotals for higher
levels of the hierarchy revisit all contributing rows from
the base tables when necessary.

To this effect, a pushdown through a super-
aggregate will mark the predicate as a super-aggregate
predicate. When such a predicate encounters a simple
group-by operation, we construct a new predicate as
shown in Figure 8.

Let A be a dimension column, and g(4) the corresponding
indicator column.
for each A in the simple group-by:
preserve all terms in the predicate containing A
add term g(A) = O to the predicate
for each A not in the simple group-by:
remove all terms in the predicate containing A
add term g(A) = 1 to the predicate

Figure 8: New predicate construction.

Example 2 Consider the sparse cube:

GROUP BY GROUPING SETS((year,prodline),(year,country),
(year)). It contains the union of three simple group-
bys. Let D represent the results of the propagate, and
t be the input to the super-aggregate group-by opera-
tion. The predicate pushdown will break down into 3
predicates, one for each group-by as shown in Table 2.

Recall that we are working with non-distributive
functions, and in general, computations of sub-totals
cannot be combined to compute higher-level aggre-
gates. Although our approach requires recomputing
higher-level aggregates from scratch, it eliminates the
computation of the subgroups that are unaffected.
These savings can be significant in the case of non-
distributive aggregate functions. In our example, we
need only recompute the aggregates for the cities of
Waynesboro and Staunton, the state of VA, and for
USA. Aggregate results for other cities, states and
countries are not recomputed.

3.5 Eliminate Unnecessary Operations

We identify two distinct categories of changes to the
base data. The first category includes changes that
involve deletions. Deletions occur not only when the
changes explicitly specify some tuples deleted, but also
when values in the base relations are updated. For the



Group-by Altered predicate

(year, prodline)

g(D.year) = 0 AND g(D.prodline) = 0 AND g(D.country) = 1 AND D.year = t.year AND D.prodline = t.prodline

(year, country)

g(D.year) = 0 AND g(D.prodline) = 1 AND g(D.country) = 0 AND D.year = t.year AND D.country = t.country

(year)

g(D.year) = 0 AND g(D.prodline) = 1 AND g(D.country) = 1 AND D.year = t.year

Table 2: Predicates resulting from pushdown through super-aggregate.

latter scenario to be true, assume an AST with an
aggregate group consisting of a single tuple. Then, an
update statement that changes the grouping values of
this tuple will result in the deletion of the group from
the AST. The second category includes changes that
involve no deletions from the AST, either explicit or
implicit. This translates to either allowing insertions
to the underlying tables, or updates that do not affect
the grouping expressions. When the changes fall under
this category we call them deletion-free. The deletion-
free case is an important class of changes. It is very
common in real life applications, where 1t represents
the accumulation of new data in data warehouses.

When the changes are deletion-free there is no rea-
son for the new join to be an outerjoin, whose only
purpose is to capture the cases where some groups of
the AST are deleted. Therefore, we transform the new
join into an inner join operation in order to speedup
the process. In addition, we observe that even an
inner join operation does not serve a real purpose,
other than propagating the incrementally maintain-
able columns (coming from the old propagate phase)
up in the Gpgint graph. This is apparent by looking
at Figure 7, and substituting the lower outerjoin oper-
ator by an inner join. It turns out that we are able to

all columns

distributive
functions only

Figure 9: The Gumaint graph after removing the new join
operation.

reroute all the columns going from the old propagate
phase to the new join through the pushed down join,
up the AST QGM graph, and finally back into the new
join box, as depicted in Figure 9. By doing that we
completely eliminate the need for the new join. Thus,
we remove it from the QGM graph, saving an expen-
sive operation. Note that by rerouting the columns we
are not introducing additional grouping columns for
the aggregations computed in the AST, because the
rerouted columns are functionally determined by the
grouping expressions. Therefore, no extra computa-

tion will take place for them when they go through
the grouping operators. Note that this optimization
applies to super-aggregates as well.

Another interesting scenario that we optimize are
updates to the underlying tables that do not affect
the group-by columns or predicates of the AST. In
this case there 1s no need to decompose the update
operations into deletions and insertions. The apply
phase detects that only updates are in the data flow,
and consequently builds clauses that update only those
aggregate functions of the AST which are affected by
the changes to the underlying tables. The remaining
aggregate function columns that are unaffected, and
not referenced in the apply phase, will be removed
from the query plan later during query optimization,
and will not be recomputed.

Example 3 Consider AST-1 defined in Example 1.
Then, the following modification to the employees ta-
ble will not cause the outerjoin operation to be built.
UPDATE employees SET salary = 10 WHERE age > 40

This is because the update operation will not be de-
composed into deletions and insertions, since the up-
date does not refer to the grouping expression (dept_id)
and no predicate in AST-1 refers to the updated col-
umn (salary). Therefore it falls under the category of
deletion-free changes. Furthermore, only the function
STDDEV(salary) will be recomputed, since the specified
changes do not affect the other aggregate functions.

3.6 Optimize for Special Cases

We now describe two special cases, for which we are
able to avoid the selective recomputation step alto-
gether. We notice that when the changes are only
insertions, and the AST involves only the MIN/MAX
functions from the class of non-distributive aggregate
functions, then there is no reason to recompute the af-
fected groups. Indeed, in this case it suffices to build
a predicate that at the apply phase time will check
whether the new MIN/MAX value should replace the
old one. The rules for building this predicate are
straightforward and are given in Table 3. Under these
circumstances the Gpqint graph becomes very simple
as shown in Figure 10. In fact the graph is virtually
identical to the case when there are no non-distributive
aggregate functions present (Figure 3). The only dif-
ference i1s the additional predicate in the apply phase
that updates the values for the MIN/MAX functions.

The second case handles changes that are only dele-
tions, and furthermore, the delete predicates only refer
to the grouping expressions of the AST. Clearly, this




conditions for MIN

conditions for MAX

if (oldMIN is NULL) then

new Value

elseif (newValue<oldMIN) then

new Value

else oldMIN

if (oldMAX is NULL) then

new Value

elseif (newValue>oldMAX) then
new Value

else oldMAX

Table 3: Apply phase predicates for MIN and MAX.

Check for minfmax

LOJ

Figure 10: The Gumain: graph for updates involving inser-
tions and the MIN/MAX aggregate functions.

situation can only result in one or more of the groups
of the AST to be deleted in their entirety. Thus, there
is no need to recompute any of the aggregate functions
for these groups. The selective recomputation step is
once again not necessary, and we do not construct it
at all. As we show in the experimental evaluation, this
optimization can have tremendous performance bene-

fits.

Example 4 Consider AST-1 defined in Example 1.
The following modification will not cause the selective
recomputation step to be constructed.

DELETE FROM employees WHERE dept_id > 40
This is because the above operation will result in en-
tire groups to be deleted from AST-1 (those with
dept_id>40), and will not change any other group.

4 Using Work Areas

Our focus in this paper thus far has been on the in-
cremental maintenance of materialized views, using
selective recomputation for queries containing non-
distributive aggregate functions. This technique is ap-
plicable to all aggregate functions, and we have ex-
plored how to apply it efficiently.

However, there is a class of non-distributive func-
tions that can be further optimized by maintaining a
summary of sub-aggregation in the materialized view
that is distributive, and hence incrementally maintain-
able. Such functions are classified as algebraic, and
many important aggregate functions fall into this cat-
egory. We refer to the maintained sub-aggregates as
work areas. The maintenance of algebraic functions
is optimized by incrementally maintaining the infor-
mation in the work area and computing the result-
ing aggregate function of the query from the work
area. Some standard SQL functions that are algebraic

are AVG, CORRELATION, COVARIANCE, the RE-
GRESSION functions, STDDEV and VARIANCE.

Note that MIN and MAX are not algebraic. How-
ever, it is possible to reduce the frequency of recompu-
tation using work areas, by recording the bottom (top)
N values in the work area each time the recomputa-
tion is performed. Deleting tuples from the material-
ized view may cause some of these values stored in the
work area to be removed as well. When the last value
is deleted from the work area for a group, the function
must be recomputed for that group. Such work areas
must also be maintained for insertions, which can be
done by computing the delta for the work area from
the insertions and merging with the existing value for
the work area in the materialized view.

Queries containing the aforementioned functions
can be evaluated in parallel using work areas [SN95],
which is precisely what is done in the DB2 MPP
(shared nothing parallelism) system. A computation
is performed per data partition in parallel to produce
a work area. The work areas from each partition are
then combined into a final work area, and the aggre-
gate function is computed from the final work area.

We apply the same algorithms to incrementally
maintain these functions for insertions, and similar al-
gorithms can also be used for deletions. The final work
area for each of these functions must be kept in the
materialized view as an additional, hidden attribute.
Given any function from the above list, the incremen-
tal maintenance proceeds as follows. The propagate
phase of incremental maintenance computes two work
areas for the function per affected group: one for inser-
tions and the other for deletions. Parallelism is fully
exploited in this phase. For each affected group, the
apply phase first combines the work area computed
from the insertions with the work area in the mate-
rialized view for the corresponding group, in order to
compute an intermediate result work area. Then, the
work area computed from the deletions is combined
with this intermediate result work area to compute
the final new work area and new function value to be
stored in the materialized view.

5 Experimental Evaluation

In order to evaluate our framework for selective recom-
putation, we implemented our technique in a proto-
type version of the IBM DB2 UDB DBMS. The hard-
ware platform is an RS/6000 44P model 270, with 2-
way 64bit Power-3 processors, and 1GB of RAM.

In the following experiments we use a star schema
(see Figure 11) data warehouse that stores information
about products and sales for a period of 5 years. In the
figure we only show the part of the schema relevant to
our experiments. The fact table (transitems) contains
10 million rows of sales data. This data was generated
randomly over the products, product groups, and lo-
cations. The product dimension contains 5 product



groups and 2,000 products, of which 1,000 were sold
in this 5 year time period. The location dimension
contains data for 1,000 stores. The transitems table
includes attributes describing the product sold, the lo-
cation of the sale, the quantity and price, and the time
of the sale.

. transitems

location M product

. transitemid
locid \ prodid ! prodid productgroup
locid id

qy PI% N paid

. price

time ordermonth
D/ orderyear

Figure 11: The schema of the database.

We create two ASTs (see Table 4), one with dis-
tributive aggregate functions and one with a non-
distributive aggregate function. The first, AST-d, is
a summary of sales. It contains aggregate functions
that are distributive over insertions and deletions. The
second, AST-nd, determines the relationship of sales
quantity to product price. It computes the linear re-
gression slope for a 2-dimensional set of points, which
is computed by a non-distributive aggregate function.
Both ASTs summarize data by product group, loca-
tion, year and month. They have a cardinality on the
order of 240,000 tuples. In our experiments, the first
AST is maintained purely incrementally, whereas the
second utilizes selective recomputation.

AST-d: distributive AST
CREATE TABLE sales_summary AS
(SELECT p.pgid, t.locid, t.orderyear AS year,
t.ordermonth AS month, COUNT(*) AS count
SUM(t.qty * t.price) AS sales,
FROM transitems AS t, product AS p
WHERE t.prodid = p.prodid
GROUP BY pgid, locid, orderyear, ordermonth)
AST-nd: non-distributive AST
CREATE TABLE sales_summary AS
(SELECT p.pgid, t.locid, t.orderyear AS year,
t.ordermonth AS month, COUNT(*) AS count
REGR_SLOPE(t.qty, t.price) AS gtyonprice,
FROM transitems AS t, product AS p
WHERE t.prodid = p.prodid
GROUP BY pgid, locid, orderyear, ordermonth)

Table 4: The definitions of the two ASTs.

In the experiments we measure the cost of maintain-
ing the two ASTs. Incremental maintenance (with and
without selective recomputation) is compared with full
refresh of the ASTs. In all cases we report only the
elapsed time (in seconds) required for the maintenance
of the ASTs, excluding the time needed for the update
of the underlying tables.

Our performance scenarios model nightly updates
to the warehouse. The cost of adding and deleting one
day’s worth of sales data to the fact table is evaluated
using two different scenarios. The first scenario corre-
sponds to adding data for the first day of the month,

which results in adding groups for the new month to
the ASTs. Conversely, deleting this day’s worth of
data results in deleting all such groups. The second
scenario adds and deletes sales data for the second
day of the month, resulting primarily in updates of
existing groups with possible insertion of new groups.
Finally, we experiment with the addition and deletion
of a full month of sales data.

Sales data is added using set-oriented insertions.
Each day’s worth of data is collected in a staging ta-
ble transitems_delta and applied using an insert state-
ment (ins workload). We also test two different delete
workloads that demonstrate our delete optimization
described in Section 3.6. The two queries, which are
shown in Table 5, perform exactly the same modifica-
tions. The second query, del-opt, contains a predicate
on year and month, from which we are able to prove
that full groups will be deleted from the ASTs. The
first query, del, does not have such a predicate. In-
stead the transitems_delta table in this case contains
only the data for the aforementioned year and month,
implicitly satisfying the same predicates.

example for del workload
DELETE FROM transitems WHERE transitemid IN
(SELECT transitemid FROM transitems_delta)

example for del-opt workload
DELETE FROM transitems
WHERE orderyear = 2002 AND ordermonth = 1

Table 5: Examples for the deletion workloads.

Table 6 depicts the results for the first day work-
load, which results in 5,481 new/deleted rows in the
transitems table (0.05%), 2,348 new/deleted groups in
the ASTs, and no updates to existing groups. Note

ins del | del-opt
incr. AST-nd | 151 | 286 3
full AST-nd 702 699
incr. AST-d 2 2 | 3
full AST-d 779 757

Table 6: Elapsed time for the 1st day workload (secs).

that our algorithm is able to produce an optimized
plan for the del-opt workload, which leads to signifi-
cant performance improvements. In Table 7 we show
the results for the second day workload, which re-
sults in 5,481 new/deleted rows in the transitems ta-
ble (0.05%), no new/deleted groups in the ASTs, and
2,348 updates to existing groups. In this case the del-

ins del | del-opt
incr. AST-nd | 158 | 294 N/A

full AST-nd 702 702
incr. AST-d 4 2 | N/A
full AST-d 783 780

Table 7: Elapsed time for the 2nd day workload (secs).

opt workload is not applicable since 1t is not possible



to optimize the deletion of only the second day of the
month if the AST contains only year and month. Ta-
ble 8 presents the results for the full month workload,
which results in 166,667 new/deleted rows in the tran-
sitems table (1.7%), 3,994 new/deleted groups in the
ASTs, and no updates to existing groups. In all cases

ins del | del-opt
incr. AST-nd | 180 | 420 31
full AST-nd 721 692
incr. AST-d 7 200 | 31
full AST-d 809 762

Table 8: Elapsed time for the month workload (secs).

of the AST-nd maintenance, the performance for the
del workload 1s noticeably worse than that of the ins.
This 1s due to the outerjoin operation that is necessary
in order to identify the deleted groups, which is only
built when deletions are present (see Section 3.5). Note
that the numbers for AST-d are presented to provide a
baseline. These numbers should not be compared with
the AST-nd numbers, as AST-d is for distributive ag-
gregate functions and AST-nd is for non-distributive
ones.

The experiments show that our method runs in
20%-60% of the time required by full refresh, which
is the only available alternative. Note that for the in-
sertion workloads, which are more common in real-life
situations, the corresponding numbers are 20%-25%,
or 4-5 times faster than full refresh. In addition, there
are still cases which our method identifies and opti-
mizes by avoiding the selective recomputation step.
This holds for changes in the underlying tables that
result in the deletion of entire groups. The above sit-
uation, represented by the del-opt workload, results
in running times 1%-4% of the time required by full
refresh. The performance for maintaining ASTs with
distributive and ASTs with non-distributive aggregate
functions is in this case identical. The same is also true
for the maintenance of MIN/MAX over insertions.

6 Related Work

Much research has been devoted to the problem of
incremental view maintenance. A differential refresh
algorithm is described by Lindsay et al. [LHM*86] for
views restricted to selection and projection of a single
base table. Colby et al. [CGL%96] discuss an algo-
rithm for deferred incremental maintenance. Salem et
al. [SBCL00] propose a technique that allows the sys-
tem to control the resources dedicated to view mainte-
nance. The study of Blakeley et al. [BCL86] presents
sufficient and necessary conditions for detecting when
an update of a base table cannot affect a materialized
view, and when a view can be incrementally main-
tained, for SPJ views. The affected views can then be
updated using a differential algorithm [BLT86, QW91].
Mumick et al. [MQM97] describe the summary-delta

table method, which first computes a summary of all
the changes, and then applies the summarized changes
to the view. The same model is followed in a subse-
quent study [LSPCO00].

Ceri and Widom [CW91] propose the use of the trig-
ger mechanism of the database system for the main-
tenance of the views, but do not handle aggregates.
Griffin and Libkin [GL95] describe an algorithm for
deriving incremental view maintenance expressions for
views with duplicates, but do not consider aggregate
operators. Gupta et al. [GMS93] consider a more gen-
eral class of views. However, the algorithms do not
handle updates that cause new tuples to be inserted
in, or deleted from the result of the aggregate oper-
ators. Moreover, they do not handle non-distributive
aggregate functions either. A work that generalizes
the maintenance expressions to additionally handle
views with a GROUP BY operator, as well as the
MIN and MAX aggregate functions, is presented by
Quass [Qua96]. In a sense, our work is taking the
aforementioned approach a step further by exploring
the characteristics and the intricacies of the selective
recomputation procedure, and by providing a general
and efficient solution.

In some cases, given a materialized view V| it is
beneficial to materialize an additional set of views,
called auziliary views, that will help in the incremen-
tal maintenance of V [RSS96, QGGMW96, SKM99]. A
subsequent study [MKO00] extends the above work by
considering any view definition based on relational al-
gebraic operators and the aggregate operators. Never-
theless, this approach becomes inefficient for the non-
distributive aggregate functions.

Other related work includes rendering the opti-
mizer aware of the incremental view maintenance
process [Vis98, MRSRO1], dealing with the case
where the views and the base data are decoupled
[ZGMHWO95], and maintaining views under structural
changes [GMRRO1].

7 Conclusions

Incremental view maintenance is an extremely impor-
tant aspect of the modern database management sys-
tems. It enables the fast execution of complex queries
without sacrificing the freshness of the data. However,
the maintenance of views defined with non-distributive
aggregate functions was not sufficiently explored.

In this paper we describe an efficient method for
maintaining materialized views with non-distributive
aggregate functions, even in the presence of super-
aggregates. This class of functions is of great inter-
est, and includes MIN, MAX, STDDEV, CORRE-
LATION, REGRESSION functions, XML constructor
functions, as well as any user-defined functions. In or-
der to support the aforementioned functions we need
to recompute some portions of the materialized views,
and our work provides an efficient way for achieving



this goal. We perform a series of optimizations on the
query plan generated for the maintenance of the af-
fected views, which result in better performance. We
also optimize separately for some special cases, which
enables us to avoid applying some steps of the algo-
rithm, thus saving much computational effort. Note
that our algorithm applies naturally to deferred incre-
mental maintenance as well, since the propagate phase
does not access the AST and the apply phase does not
access any underlying tables or the deltas.

We experimentally evaluated our technique by sim-
ulating a data warehouse environment. The experi-
ments show that incremental maintenance of views de-
fined with non-distributive aggregate functions using
selective recomputation is a viable and promising so-
lution, offering significant performance improvements
compared to full refresh.
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