
CURE for Cubes: Cubing Using a ROLAP Engine *
Konstantinos Morfonios

Dept. of Informatics and Telecom. Univ. of Athens

kmorfo@di.uoa.gr

Yannis Ioannidis
Dept. of Informatics and Telecom. Univ. of Athens

yannis@di.uoa.gr

ABSTRACT
Data cube construction has been the focus of much research due
to its importance in improving efficiency of OLAP. A significant
fraction of this work has been on ROLAP techniques, which are
based on relational technology. Existing ROLAP cubing solutions
mainly focus on “flat” datasets, which do not include hierarchies
in their dimensions. Nevertheless, the nature of hierarchies intro-
duces several complications into cube construction, making ex-
isting techniques essentially inapplicable in a significant number
of real-world applications. In particular, hierarchies raise three
main challenges: (a) The number of nodes in a cube lattice in-
creases dramatically and its shape is more involved. These require
new forms of lattice traversal for efficient execution. (b) The
number of unique values in the higher levels of a dimension hier-
archy may be very small; hence, partitioning data into fragments
that fit in memory and include all entries of a particular value may
often be impossible. This requires new partitioning schemes. (c)
The number of tuples that need to be materialized in the final cube
increases dramatically. This requires new storage schemes that
remove all forms of redundancy for efficient space utilization. In
this paper, we propose CURE, a novel ROLAP cubing method
that addresses these issues and constructs complete data cubes
over very large datasets with arbitrary hierarchies. CURE contrib-
utes a novel lattice traversal scheme, an optimized partitioning
method, and a suite of relational storage schemes for all forms of
redundancy. We demonstrate the effectiveness of CURE through
experiments on both real-world and synthetic datasets. Among the
experimental results, we distinguish those that have made CURE
the first ROLAP technique to complete the construction of the
cube of the highest-density dataset in the APB-1 benchmark (12
GB). CURE was in fact quite efficient on this, showing great
promise with respect to the potential of the technique overall.

1. INTRODUCTION
Modern data analysis “mines” knowledge from data stored in
database systems discovering trends useful for decision making.
To achieve this, analysts pose complex queries that extensively
use aggregation in order to group together “similarly behaving tu-
ples”. The response time of such queries over extremely large fact

tables in modern data warehouses can be prohibitive. This in-
spired Gray et al. [6] to propose the pre-computation of the data
cube, which is a data structure that consists of the results of
group-by aggregate queries on all possible combinations of the di-
mension-attributes over a fact table in a data warehouse.

A common representation of the data cube that captures the com-
putational dependencies among different group-by queries is the
cube lattice [9]. Figure 1 illustrates the cube lattice of a fact table
R with three dimensions (A, B, and C). Every node in the cube
lattice represents a group-by query and is labeled with its group-
ing attributes, which consist of the subset of dimensions that par-
ticipate in the group-by clause of the corresponding query. If we
denote the number of dimensions of a fact table with D, then the
number of all cube lattice nodes is 2D. Hence, a naive
implementation method that computes each node separately and
stores the result has exponential time and space complexity.

Figure 1. Example of a cube lattice
To overcome this problem, implementation of the complete data
cube has been studied using various data structures to construct and
store the cube. On one hand, ROLAP and MOLAP methods use
materialized views and multidimensional arrays, respectively, fo-
cusing mainly on the efficient sharing of computational costs (like
sorting or hashing) during cube construction. On the other hand,
more recent approaches exploit specialized tree-like data structures
in order to compute and store cubes more efficiently. In this paper,
we focus on ROLAP methods and ignore the other categories for
the following reasons: (a) MOLAP methods are poor performers
when data is sparse, which is the case in most real-life
applications. Although challenged by some, this has been
observed by many researchers [2, 18]. (b) Complex tree-like data
structures appear to have superior performance for cube construc-
tion and storage, but are currently not supported by any widely
used product, hence, requiring nontrivial implementation effort.

ROLAP methods appear to strike the right balance on several
fronts. They are based on materialized views and can be incorpo-
rated into any existing relational engine with minimal cost. More-
over, it has been shown that several ROLAP methods behave well
in most kinds of datasets, including sparse ones, and some of them
are capable of condensing the final cube by removing redundancy.

Unfortunately, current ROLAP cubing methods have focused
mainly on supporting “flat” data, while many real-life applica-
tions deal with fact tables with each dimension consisting of sev-
eral attributes organized hierarchically. For example, a dimension

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

 * The project is co-financed within Op. Education by the ESF
(European Social Fund) and National Resources.

ABC

AC BC AB

B C A

∅

379

“Region” may contain values at different levels of detail, forming
the hierarchy “City” → “Country” → “Continent”. Hierarchies
offer greater flexibility to analysts, since they describe the data at
different granularities and form the basis for common operations,
like roll-up and drill-down. On the other hand, hierarchies
introduce several complications into cube construction that cannot
be handled by straightforward extensions of existing techniques.
(a) The number of nodes in a cube lattice increases dramatically
and its shape is more involved. These require new forms of lattice
traversal for efficient execution. (b) The number of unique values
in the higher levels of a dimension hierarchy may be very small;
hence, partitioning data into fragments that fit in memory and
include all entries of a particular value may often be impossible.
This requires new partitioning schemes. (c) The number of tuples
that need to be materialized in the final cube increases dramati-
cally. This requires new storage schemes that remove all forms of
redundancy for efficient space utilization.

In this paper, we propose CURE (Cubing Using a ROLAP En-
gine), a novel ROLAP cubing method that addresses the issues
above and constructs complete data cubes over very large datasets
with arbitrary hierarchies. We demonstrate the effectiveness of
CURE through experiments on both real-world and synthetic
datasets. Among the experimental results, we distinguish those
that have made CURE the first ROLAP technique to complete the
construction of the cube of the highest-density dataset in the
APB-1 benchmark (12 GB) [17]. CURE was in fact quite efficient
on this, showing great promise with respect to the potential of the
technique itself and of ROLAP in general. CURE stretches
ROLAP to its limits, for the first time in the face of hierarchies,
indicating that it may not be inherently inferior.

CURE contributes a novel lattice traversal scheme, an optimized
data partitioning method, and a suite of relational storage schemes
for all forms of redundancy. The last two are useful to “flat” data-
sets as well, but they are mostly necessary in the presence of hier-
archies. In more detail:

• Lattice Traversal with Dimension Hierarchies: To the best
of our knowledge, CURE is essentially the first comprehensive
ROLAP solution capable of constructing a complete cube not
only at the leaf level of each dimension hierarchy, but also at
all higher levels, pre-computing group-by queries at all
granularities. To achieve this, CURE uses an efficient way of
traversing an extended lattice that includes dimension hierar-
chy levels (first proposed elsewhere [9]), which enables great
cost sharing of sorting operations through pipelining.

• External Partitioning: We propose an efficient algorithm for
partitioning fact tables that store hierarchical data of any size
into memory-fitting segments, while computing a very small
subset of the cube using inexpensive additional resources. Ex-
ploiting this early-computed data, CURE accelerates the con-
struction of the final cube significantly, making it feasible
even when the original fact table is extremely large. Existing
techniques, partition data according to values in a single di-
mension and require that segments of tuples with the same
value in this dimension fit in memory. However, as shown in
Section 4, this is not always possible in cases that include hier-
archies, due to small domain sizes at coarse granularities.

• Efficient Storage: Unlike previous ROLAP methods that rely
only on avoiding redundant-tuple storage for cube size reduc-

tion, we further study alternative schemes for storing non-re-
dundant data efficiently as well. To the best of our knowledge,
CURE is the only ROLAP method that condenses the cube
both by rejecting all kinds of redundancy and by further ex-
ploiting appropriate data representations.

The rest of this paper is organized as follows: After summarizing
related work in Section 2, in Sections 3, 4, and 5, we study the
problem of handling hierarchies and revisit external partitioning
and efficient storage, respectively, under the new perspective. In
Section 6, we combine everything and present CURE in pseudo-
code. In Section 7, we describe the results of our experimental
evaluation and finally, we conclude in Section 8.

2. RELATED WORK
Data cube construction has been the focus of much research due
to its importance in improving the performance of OLAP tools.
After Gray et al. [6] proposed the data cube structure, a plethora
of papers has been published in this area.
There are several ROLAP cubing methods proposed so far [1, 2,
6, 12, 13, 15, 18, 19, 24], which are well-documented in the ex-
isting literature and their detailed description exceeds our
purpose. BUC [2] is the most influential method in the ROLAP
context attributing its success to a very efficient execution plan
that enables sharing sorting costs during construction of different
nodes. Both BU-BST [24] and QC-Tables [13] are BUC-based,
i.e., they use the same execution plan. However, they do not sup-
port hierarchies, they have not been tested over very large data
sets, and they do not store cube tuples efficiently. CURE is BUC-
based as well, while also dealing with all of these problems.
Among ROLAP cubing techniques, only PipeSort and PipeHash [1,
19] have (superficially) discussed supporting hierarchies. Both of
them, however, represent rather straightforward and non-scalable
solutions, they have already been outperformed by all subsequent
ROLAP methods, and neither handles efficient storage. Hence,
CURE appears to be the first ROLAP method that studies the
problem comprehensively and proposes a practical solution.
Furthermore, to the best of our knowledge, all results published so
far for ROLAP cubing assume that the original fact table fits in
memory. Disk-based extensions have been discussed rarely [2, 18],
but only for “flat” data and without any accompanying perform-
ance results. On the contrary, CURE’s partitioning is applicable
over very large hierarchical data, which is also shown experimen-
tally even in cases that data sizes far exceed memory resources.
With respect to cube size reduction in ROLAP, Key [12], BU-
BST [24], and QC-Tables [13] study the effect of removing re-
dundant tuples from the cube. They only focus on what to avoid
storing but not on how to store the data finally materialized. Like
existing methods, CURE removes all kinds of redundancy but
also employs efficient storage schemes that further compress the
final result. Orthogonal to the above is the ability of BUC [2] to
construct iceberg cubes, i.e., cubes that do not store data produced
by aggregation of a small number of tuples. Being BUC-based,
CURE is able to construct iceberg cubes as well.
Regarding MOLAP methods, they use multidimensional arrays
for cube construction and storage [20, 26] as an alternative to
relational materialized views. None of them handles hierarchies or
redundancy, however, hence they are considered impractical.

380

The inability of existing ROLAP and MOLAP methods to solve all
aspects of the cubing problem efficiently has given rise to a third
category of algorithms that use sophisticated, complex tree-like
data structures for cube construction and storage [5, 8, 14, 22, 25].
Among them, Dwarf [22] is the most promising, being able to
deal with hierarchies [21] while removing several kinds of redun-
dancy from cube data, which gives it polynomial scaling [23].
QC-Trees [14] have similar redundancy-reduction capabilities as
well. As we explained earlier, the methods of this category cannot
be directly used currently, since to the best of our knowledge, the
complex data structures they exploit are not supported by any
widely-used product and their implementation is far from straight-
forward. Hence, CURE is the only solution that shares common
properties with such sophisticated methods, including polynomial
storage requirements, while still being ROLAP compatible and,
hence, easily put into an existing server. A comparison among
CURE, Dwarf and QC-Trees would be interesting, since it would
reveal the foundational strengths and weaknesses of the two under-
lying philosophies, but it exceeds the purpose of this paper and is
left for future work. The aim of this paper is to find the best, easy-
to-implement (i.e., ROLAP), comprehensive cubing method that
is a potentially viable competitor of the elite of the existing meth-
ods that exploit more sophisticated (and costly) data structures.
Finally, apart from the methods that construct complete cubes,
there are methods that select subsets of nodes for partial construc-
tion (e.g., [9]) and others that compute a small number of prede-
fined nodes [4, 16]. Clearly, the functionality of such methods is
orthogonal to that of CURE, since selecting what to materialize is
orthogonal to deciding how to materialize it efficiently. Hence,
although they are interesting and their combination with CURE
seems possible, their study exceeds the scope of this paper.

3. HIERARCHICAL EXECUTION PLANS
Consider a fact table with D dimensions. If we denote the number
of levels of the i-th dimension with L i, the number of all cube
nodes is given by the product ()∏ = +D

1i i 1L , which is greater than
or equal to 2D (equality holds when all dimensions are flat, i.e.
when L i = 1, ∀ i ∈ [1, D]). Assume, for example, that the
dimensions of the fact table R (whose lattice appears in Figure 1)
are organized in hierarchies as follows: A0 → A1 → A2, B0 → B1,
and C0. The number of nodes in this example is equal to (3+1) ⋅

(2+1) ⋅ (1+1) = 24 > 23 = 8. Clearly, finding an efficient execution
plan becomes more complex when using hierarchies. Taking the
importance of hierarchies into account [10, 11], we propose below
an efficient in-memory method for the construction of a hierar-
chical cube (a cube whose dimensions form hierarchies).

3.1 Comparison of Alternative Plans
Cubing algorithms that compute the cube using only the most
detailed level of every dimension are not viable in practice, since
then, for common roll-up and drill-down operations, the
underlying system must further aggregate materialized aggregates
on the fly, which is computationally expensive. Moreover,
executing the cubing operation several times, once for every
possible combination of the hierarchy levels of the cube’s
dimensions, is not practical either. Efficiency of all cubing
methods depends on their ability to share computational costs
among as many cube nodes as possible. Hence, independent
construction of different sub-cubes can never be optimal overall.

The arguments above make it clear that the ideal cubing method
must construct all nodes of the hierarchical data cube in a pipe-
lined fashion using as few data passes as possible. Hence, a cube
lattice that includes hierarchies must be found, together with an
efficient way to traverse it and prune it into a tree that shows the
order of execution, i.e., creating the so-called execution plan of
the corresponding cubing method.

With respect to pruning a lattice into a tree, BUC [2] has been
found to be the winner among all ROLAP cubing algorithms that
compute complete and flat cubes. Its efficiency is primarily due to
the way it traverses the cube lattice, namely bottom-up and depth-
first. Such a traversal is ideal for flat cubes and can easily be
extended properly to efficiently handle hierarchies as well.

With respect to identifying an appropriate lattice that incorporates
hierarchies, there are two main alternatives: A straightforward
solution is to consider every level of each dimension as a separate
dimension and construct the lattice as if it were flat. In this case,
nodes including more than one levels of the same dimension (e.g.,
A1A2 or A0B0B1) should be omitted, since they repeat trivial infor-
mation. The second alternative is the lattice introduced for hierar-
chies in the context of view selection [9], which natively reflects
relationships between different levels of the same dimension.

Figure 2. The “flat” execution plan of BUC (P1)

Figure 3. A straightforward hierarchical execution plan (P2)

Figure 4. CURE’s hierarchical execution plan (P3)
To compare the two alternatives, consider the example of R,
which is a flat fact table whose lattice appears in Figure 1 and one
BUC-based execution plan (called P1) appears in Figure 2. For R
with hierarchies, a BUC-based traversal over the first and second
types of lattices produces execution plans P2 and P3, illustrated in
Figure 3 and Figure 4, respectively. Note that P2 is actually the
shortest possible extension of P1 (height remains equal to 3),
while P3 is the tallest possible (its height is equal to 6), since it
pushes the computation of any node as high as possible.

To compare the quality of P2 vs. P3 let us first study P1, the execu-
tion plan of the standard BUC algorithm. According to it, BUC

A0B0 A0B1 A0C0 B0C0 B1C0

∅

A0 B0 B1 C0

A0B0C0 A0B1C0

A1B0 A1B1 A1C0

A1

A1B0C0 A1B1C0

A2B0 A2B1 A2C0

A2

A2B0C0 A2B1C0

ABC

AC BC AB

B C A

∅

A2B1

A2B0

A2C0 B1C0

B0C0

∅

A2 B1

B0

C0

A2B1C0

A2B0C0

A1B1

A1B0

A1C0

A1

A1B0C0

A1B1C0 A0B1

A0B0

A0C0

A0

A0B1C0

A0B0C0

381

first scans through all tuples of R and computes the ALL node at
the bottom (marked as “∅” in Figure 2), which consists of only
one tuple. Then, it sorts R according to A and isolates the first set
of tuples SA1 that share the same value in A (note that |SA1| ≤ |R|).
It aggregates the measures of these tuples, outputs the result, and
proceeds recursively to node AB passing SA1 as input. In that call,
it re-sorts SA1 according to B (all values in A are the same) and
isolates the first set of tuples SA1B1 that share the same value in
(both A and) B (note again that |SA1B1| ≤ |SA1|). Then, it aggregates
the measures of these tuples, outputs the result, and proceeds re-
cursively to node ABC, passing SA1B1 as input. Subsequently, it
re-sorts SA1B1 according to C and so on. After finishing the proc-
essing of SA1, BUC repeats the same steps for all the remaining
sets of tuples in R (SA2, SA3, …), each of which consists of tuples
that have the same value in A. After constructing all nodes that
contain A in their grouping attributes, BUC proceeds with B,
which induces a new sorting operation on the original data of R
(this time according to B). For every set of tuples that share the
same value in B the measures are aggregated and execution pro-
ceeds to BC and so on. Finally, the same is repeated for node C.

A close look reveals that recursive calls at the top of P1 (and
similarly of P2 and P3) tend to be cheaper than recursive calls at
the bottom, since the size of the tuple sets that are passed to them
as input tends to decrease (recall that |R| ≥ |SA1| ≥ |SA1B1|)
incurring smaller sorting costs. Hence, in a “taller” plan,
expensive sorting costs are pushed to the bottom and are better
shared among more nodes, making cube construction cheaper
overall. As mentioned above, P3 is the tallest extension of P1 and
hence the solution that better shares sorting costs.

The reason for this behavior is that having separated tuples at a
coarse-grained level according to their dimension values, it is
cheaper to separate them further at finer levels than to do so from
scratch. For example, having found all tuples with value “Europe”
at level “Continent” of dimension “Region”, we can isolate all
tuples with value “England” at level “Country”, and among them
all tuples with value “London” at level “City” in a computation-
ally cheaper way than by searching the original data. The opposite
is clearly impossible. Hence, the execution plan that makes a
smarter use of pipelining is P3 (Figure 4).

CURE uses execution plans like P3, which have been formally
defined as the result of BUC-based pruning of cube lattices that
capture relationships between different levels of dimensional
hierarchies natively. These can also be constructed more directly
by using the following two rules:

Rule 1: A solid edge connects a node N1 to N2 (N1→N2), if N2
has the same grouping attributes at the same hierarchy levels with
N1 plus one more, which must be at the top, least detailed level
(e.g., A2 is connected via solid edges with A2B1 and A2C0).

Rule 2: A dashed edge connects a node N1 to N2, if their grouping
attributes differ only in the rightmost dimension, whose hierarchy
level in N2 must be at one level below that of N1 (e.g., A2 is con-
nected via a dashed edge with A1, while A0B1 with A0B0).

In general, solid edges pass the execution towards nodes with
more grouping attributes, while dashed edges towards nodes at
lower hierarchy levels. In both cases, execution proceeds from
less detailed nodes towards more detailed ones.

3.2 Handling Complex Hierarchies
Up to this point, we have deliberately used examples of only sim-
ple (i.e., linear) hierarchies for the sake of simplicity. However,
there are also cases that dimensions form complex (i.e., nonlinear)
hierarchies. A common example of such a case is illustrated in
Figure 5a, in which dimension “time” forms a complex hierarchy.

Figure 5. Example of a complex hierarchy
Note that, in the case of simple hierarchies, rule 2 defined above
guarantees that at most one dashed edge may start from (respec-
tively, end at) each node. The proof of this is straightforward. On
the contrary, in the case of complex hierarchies, it is also possible
to have multiple dashed edges starting from (respectively, ending
at) the same node representing branches like the ones in Figure
5a. The former side-effect is desirable, since it passes execution to
more detailed nodes and guarantees that the final execution plan
covers all nodes. However, the latter side-effect turns the execu-
tion plan into a graph (not a tree), which is unacceptable. To
overcome this, we propose a modified version for the second rule:

Rule 2 (modified): A dashed edge connects a node N1 to N2, if
their grouping attributes differ only in the rightmost dimension
RD, whose hierarchy level in N2 must be at one level below that
of N1, provided that the cardinality of the specific level of RD
in N1 is the maximum among the cardinalities of all its sibling
levels in the complex hierarchy.

Using the heuristic of maximum cardinality, we resolve tie breaks
in favor of edges that start from more detailed nodes, which incur
smaller additional sorting costs. For example, the 1-dimensional
cube whose only dimension is “time” (Figure 5a) appears in
Figure 5b. In this example, according to the original version of
rule 2, node day should be connected to both node week and node
month. According to the modified version of rule 2, however, the
month→day edge is discarded, since the cardinality of month is
lower than that of week. In this way, CURE can also handle com-
plex hierarchies. In the rest of this paper, we will not study com-
plex hierarchies any further due to space limitations.

3.3 Node Enumeration
Before closing this section, we find it useful to describe the enu-
meration scheme we have used in our implementation for
uniquely identifying every node in the execution plan of CURE.
We do this through an example that enumerates all nodes in
Figure 4. Recall the dimension hierarchies: A0 → A1 → A2, B0 →

B1, and C0. Extending them with an extra level ALL, which we
omitted before due to its simplicity (it only contains a single
value), we take: A0 → A1 → A2 → ALL, B0 → B1 → ALL, and C0 →

ALL. Renaming level ALL to A3, B2, and C1, respectively, we
finally take: A0 → A1 → A2 → A3, B0 → B1 → B2, and C0 → C1.
Hence, if we denote with L i the number of levels of the i-th di-
mension, including this time the level ALL, we get: L 1 = 4, L 2 =
3, and L 3 = 2. Ordering the dimensions in the order ABC, we can
define for each a factor Fi (i ∈ [1, D]), according to formula (1)
below. Then, the identifier of any node N whose i-th dimension is
at level Li (Li ∈ [0, L i-1]) is given by formula (2).

(a) Dimension time (b) 1-dimensional cube

week month

day

year day

month week

year

∅

382

∑ = ⋅= D
1i ii LF)N(id

In our example, we get F1 = 1, F2 = 4, and F3 = 12. The unique
identifiers of all 24 nodes appear in Figure 6.
It is also interesting that an identifier generated by formula (2)
presented above can be easily decoded using modulo operations
to give the levels Li of all dimensions in the corresponding node.
In our example, identifier 21 gives L3 = (21 mod F3) = 1, L2=(21
div F3) mod F2=2, and L1=((21 div F3) div F2) mod F1=1, which
denotes node A1, since B2 and C1 are synonyms to ALL.

Node L1 L2 L3 id Node L1 L2 L3 id Node L1 L2 L3 id
A0B0C0 0 0 0 0 A0C0 0 2 0 8 A0B1 0 1 1 16
A1B0C0 1 0 0 1 A1C0 1 2 0 9 A1B1 1 1 1 17
A2B0C0 2 0 0 2 A2C0 2 2 0 10 A2B1 2 1 1 18

B0C0 3 0 0 3 C0 3 2 0 11 B1 3 1 1 19
A0B1C0 0 1 0 4 A0B0 0 0 1 12 A0 0 2 1 20
A1B1C0 1 1 0 5 A1B0 1 0 1 13 A1 1 2 1 21
A2B1C0 2 1 0 6 A2B0 2 0 1 14 A2 2 2 1 22

B1C0 3 1 0 7 B0 3 0 1 15 ∅ 3 2 1 23

Figure 6. Example of node enumeration

4. EXTERNAL PARTITIONING
In the previous section, we presented an efficient execution plan
for in-memory construction of hierarchical cubes. In this section,
we introduce an efficient external partitioning algorithm espe-
cially suited for such plans, which makes CURE disk-based. As
shown below, existing techniques are inadequate. We consider
this as a significant drawback, since using efficient in-memory
aggregation is not enough when the data does not fit in memory.
Our main motivation has been the challenge of making CURE
able to construct a complete hierarchical cube for the fact table of
the APB-1 benchmark [17] in its highest density, which consists
of about 496 million tuples occupying 12 GB. To the best of our
knowledge, no other ROLAP method has accomplished this task.
In general, partitioning a large fact table on some subset of di-
mensions SD separates its tuples into smaller disjoint segments
(hereafter called partitions) that fit in memory. The separation
process must guarantee that tuples with common values in the
dimensions of SD must be assigned into the same partition; oth-
erwise the results of the independent aggregations over the dis-
joint partitions would have to be merged, which is expensive. We
call the partitions that obey this rule sound on SD. A partition
sound on SD is also called sound on the node whose grouping
attribute set is equal to SD. Clearly, a partition sound on some
node N is also sound on all the ancestors of N in the cube lattice.
Taking a look at the execution plan of CURE (Figure 4), we ob-
serve that there are always D nodes directly constructed from data
in the original fact table R, where D is the number of dimensions.
In the example of Figure 4, these nodes are A2, B1, and C0. As
mentioned above, partitioning R on the values of any of these
nodes generates partitions sound on that node and its ancestors in
the cube lattice. Hence, a straightforward implementation must
perform D partitioning operations, one for each dimension at the
first level of CURE’s execution plan. This incurs at least D+1
reads (one read for partitioning and one read per dimension for
loading the partitions during construction) and D writes of R,
which can be very costly taking into account that R is usually
very large. A possible optimization projects out the dimensions
already partitioned, which are not necessary in cube construction,
e.g. when partitioning on B we do not need to store A. This incurs
(D+3)/2 reads and (D+1)/2 writes, which is still proportional to D.

Such solutions are not only expensive but may also be infeasible.
Note that at the first level of CURE’s execution plan appear nodes
with a single dimension at its top hierarchy level, which has there-
fore low cardinality (cardinality decreases, since higher levels are
less detailed). A low cardinality in combination with a large num-
ber of tuples in R may have as result the inability of the parti-
tioning algorithm to generate memory-sized sound partitions.
Assume that in the example of Figure 4 R’s size is |R| = 10 GB,
the memory size is |M| = 1 GB, and the cardinality of A2 is |A2| =
5. Assuming a uniform data distribution, the partitioning algo-
rithm has to generate at least |R|/|M| = 10 (sound) partitions to
make them fit in memory. This is though impossible since the
number of partitions is limited by |A2| (we cannot generate more
sound partitions than the number of different values). Clearly, the
aforementioned partitioning method is not viable. In the rest of
this section, we describe CURE’s solution that not only makes
partitioning always feasible, but also makes cube construction
faster. The solution is based on the following observations:
Observation 1: Although generating partitions sound on the top
level (LT) of the first dimension (say A) may be infeasible, the
same task becomes feasible with greater probability if performed
on some level L<LT. This is true, since cardinalities tend to in-
crease at lower hierarchy levels making the creation of memory-
sized sound partitions possible. Such partitions are sound on node
AL and all of its ancestors in the cube lattice.
Observation 2: The cube node N that has D grouping attributes
(like R) all at the base hierarchy level, except for the first one (say
A) that is at level L+1 (L is the level on which partitioning was
based before) is approximately |A0|/|AL+1| times smaller than R.
As L increases, this factor becomes considerable and, in practice,
N is several orders of magnitude smaller than R, which makes it
fit in memory with great probability. In the previous example, if
|A0B0C0| = 10 GB, |M| = 1 GB, |A0| = 5,000, |A1| = 500, and |A2| =
5, then L = 1, N = A2B0C0, and |N | ≈ 10 MB << |M|.

Observation 3: We can use node N to construct all nodes that in-
clude Ai in their grouping attributes ∀ i ∈ [L+1, LT] along with
all nodes that do not include A at all. The proof is based on that
we can use a detailed node to construct less detailed ones (at least
for non-holistic [6] aggregate functions).

Based on these, CURE selects the maximum level L ∈ [0, LT] in
the hierarchy of the first dimension A of R such that partitioning
on AL generates memory-sized sound partitions on AL and N =
AL+1B0C0… fits in memory (if L = LT, then ALT+1 ≡ ALL and A is
projected out in N). Such an L exists in all situations we have seen
in practice. However, in the rare case that it does not exist, the
partitioning algorithm can be extended properly to work on pairs
of dimensions. We omit this extension due to space limitations.
After selecting L, CURE partitions R on AL and during partition-
ing constructs N in memory (using hashing, which enables con-
struction with one pass). It then uses the generated partitions to
construct all nodes that include Ai (i ∈ [0, L]) in their grouping
attributes (according to observation 1) and N to construct all the
rest (according to observation 3). In this way, CURE performs
partitioning with only 2 reads, 1 write, and an inexpensive con-
struction of N, which is many times smaller than R.

Note that BUC uses the heuristic of ordering the dimensions of R
in decreasing cardinality to improve its efficiency, which also
makes CURE’s partitioning more efficient and the existence of a

1, if i = 1
Fi-1· L i-1, otherwise

Fi = (1) (2)

383

proper L more probable due to the following reasons. Bringing a
dimension with many unique values in the first position increases
|A0|. Furthermore, such a dimension generates many tuples that
may be hard to scan through and interpret. Hence, it is likely that
an analyst defines several hierarchy levels with lower cardinalities
on this dimension to create coarser-grained views that are easier
to interpret, thus decreasing |AL+1|. Both facts increase factor
|A0|/|AL+1|, which makes the existence of a proper L more prob-
able (according to observation 2). Assume for example that a fact
table SALES includes dimension Product organized in three lev-
els barcode → brand → economic_strength with the following car-
dinalities 10,000 → 1,000 → 10, and that |M|=1 GB. Then Table 1
shows that CURE can partition SALES even if its size is 1 TB.

Table 1. Example of CURE’s partitioning efficiency
|R| L # of Partitions Partition Size |A0|/|AL+1| |N |

10 GB 2 10 1 GB 10,000 1 MB
100 GB 1 100 1 GB 1,000 100 MB
1 TB 1 1,000 1 GB 1,000 1 GB

5. EFFICIENT CUBE STORAGE
First Kotsis and McGregor [12] and then several other researchers
[5, 13, 14, 22, 24] have realized that a great portion of the data in
a cube is redundant. They have used terms like prefix/ suf-
fix/partial/total redundancy, equivalent tuples, or BSTs. A de-
tailed description of these terms exceeds our purpose. Alterna-
tively, in an attempt to express all these terms under a global
definition, we state that: A value that is stored in a data cube is
called redundant if it is repeated in the same attribute elsewhere
in the cube as well. According to this, we can generally recognize
two types of redundancy: Dimensional redundancy appears
whenever a specific dimension value is repeated in different tu-
ples. Aggregational redundancy appears whenever a specific ag-
gregate value is repeated in different tuples.

Clearly, removing redundant data produces a smaller cube and
benefits computational efficiency as well, since smaller cubes re-
quire fewer aggregations and induce smaller output costs. How-
ever, avoiding redundancy is not the only factor that affects cube
size. Another equally important factor concerns the storage format
of non-redundant data. Existing ROLAP methods that avoid re-
dundancy store the entire cube as a monolithic relation of fix-
sized tuples, which is far from compact. Unlike such methods,
CURE strikes on both factors simultaneously, avoiding the stor-
age of redundancy, while storing non-redundant data in a very
compact relational form. Note that storing tuples efficiently is
more critical in hierarchical cubes, since they consist of more
nodes and of denser areas at coarse-grained levels, which generate
large numbers of non-redundant tuples. In the following subsec-
tions, we describe CURE’s efficient storage format of non-redun-
dant data and then an algorithm that classifies cube tuples ac-
cording to the type of redundancy they contain.

5.1 Storage Format
Existing ROLAP methods that identify redundancy use a single
D-dimensional relation for storing non-redundant data, which in-
troduces a large number of NULL values for tuples that belong to
nodes of lower dimensionality. Instead, we propose storing tuples
separately, according to the node they belong to. Every such tuple
t stored in a cube node N has been produced by the aggregation of
a tuple set S in the original fact table (say R). Hence, without
further optimizations, t should be stored as shown in Figure 7,

assuming that it consists of X dimensions and Y aggregates.

Clearly, t has the same dimension values with every tuple tS ∈ S
projected on the grouping attributes of N, hence every cube tuple
is dimensionally redundant. To overcome this, we propose (Figure
8a) replacing all dimension values of t with a row-id reference (R-
rowid) pointing to any tS ∈ S. In our implementation, R-rowid
stores the minimum row-id of the tuples in S. Note that replacing
dimension values by a row-id is useful only if the size of the for-
mer is smaller than the size of the latter. This may not be true for
tuples that belong to nodes of one or two dimensions. Such nodes,
however, are few and relatively small compared to more detailed
nodes at higher lattice levels. Hence, although CURE can decide
dynamically which format is preferable, the cases when the stor-
age of redundant data is beneficial are so rare and the benefits so
small, that we treat them uniformly with the others.

Dim1 … DimX Aggr1 … AggrY
Figure 7. Basic tuple format

(a) R-rowid Aggr1 … AggrY (b) R-rowid
Figure 8. Normal and trivial tuple formats

A B C M
1 1 1 10
1 1 2 20
2 2 3 40
3 2 1 45
3 3 3 45

A B C M
1 1 1 10
1 1 2 20
2 2 3 40
3 2 1 45
3 3 3 45

A B M A C M B C M
1 1 30 1 1 10 1 1 10
2 2 40 1 2 20 1 2 20
3 2 45 2 3 40 2 3 40
3 3 45 3 1 45 2 1 45
 3 3 45 3 3 45

A M B M C M
1 30 1 30 1 55
2 40 2 85 2 20
3 90 3 45 3 85

M
160

Figure 9. Fact table R and its data cube

Having dealt with dimensionally redundant data, we can further
focus on aggregational redundancy in order to apply additional
optimizations. As described below, we can classify cube tuples
into three categories, according to the type of aggregational re-
dundancy they contain. CURE uses (at most) three tables per
node, one for each category. Their schema is described below.

Normal Tuples (NTs): If t is only dimensionally but not aggre-
gationally redundant, we call it normal. The most compact format
for NTs is the one of Figure 8a, since we cannot avoid storing the
aggregates. For example, if Figure 9a shows the tuples stored in R
(whose lattice appears in Figure 1) and Figure 9b shows the corre-
sponding cube (in an uncompressed form), then tuple <3, 90> in
node A (pointed by the white arrow) is NT, since there is no other
tuple in the entire cube with an aggregate value equal to 90.

Trivial Tuples (TTs): If t comes from a singleton set S (|S| = 1),
no aggregation is necessary for its computation, but just a simple
projection of the sole tS ∈ S on N’s grouping attributes. In this
case, we call t trivial. Note that, if t is trivial, its aggregate values
are equal to the measures of tS, hence TTs are aggregationally re-
dundant and their aggregates can be retrieved from the original
tuple they come from. Hence, TTs can be minimally stored using
just row-ids and discarding all aggregate values (Figure 8b).

Interestingly, it can be proven that a TT that belongs to N belongs
also to all the ancestor nodes of N in the cube lattice, since it
comes from the simple projection of a single tuple that has not

(a) Fact table

(b) Cube

384

matched with any other tuples in the original fact table and hence
cannot match either for the generation of a more detailed tuple.
This property holds for hierarchical cube lattices as well, hence
also for CURE’s execution plan (Figure 4), which is a pruned
lattice. This is beneficial, since it means that any TT can be stored
once, only in the least detailed node NLD it belongs to, and be
shared among this node and its ancestors that form an entire sub-
tree rooted at NLD. This remark gives another advantage to taller
execution plans (Figure 4) against shorter ones (Figure 3), since
the former maximize the size of such sub-trees resulting into
greater storage savings. In the example of Figure 9b, all cube tu-
ples with value A = 2 (pointed by black arrows) are TTs, since
they have been produced by a simple projection of the single tu-
ple <2, 2, 3, 40> in R. Storing only one TT in node A (the least
detailed one) is enough to represent them all, due to the property
mentioned above. This tuple can then be considered as shared
among nodes A, AB, AC, and ABC (that form an entire sub-tree
rooted at A) and can be easily retrieved on demand. Note that TTs
are similar to BSTs [24] but are stored far more efficiently.

Common Aggregate Tuples (CATs): If t is aggregationally re-
dundant and non-trivial (|S| > 1) we call it CAT. By definition,
there must be at least one more CAT t’ such that t and t’ have
common aggregate values. The existence of CATs can be attrib-
uted to two reasons, namely common source and coincidence:

• Common source CATs attribute equality of their aggregates
to the fact that they have been produced by the same set of tu-
ples of R. In Figure 9b, tuples <1, 1, 30> in AB, <1, 30> in A,
and <1, 30> in B (pointed by striped arrows) are common
source CATs, since they have been produced by the same tuple
set S = {<1, 1, 1, 10>, <1, 1, 2, 20>} of R.

• Coincidental CATs are the CATs that have the same aggre-
gates, although they have been produced by different tuple sets
of R. In Figure 9b, tuples <2, 85> in B and <3, 85> in C
(pointed by gray arrows) are examples of coincidental CATs.

AGGREGATES

R-rowid Aggr1 … AggrY

A-rowid A-rowid

AGGREGATES

Aggr1 … AggrY

R-rowid1 A-rowid R-rowid2 A-rowid

Figure 10. Alternative CAT formats

AGGR/TES

 1

 2

…

 m

A-rowid

1

2

…

m

AGGR/TES

1
2

…
m

R-rowid A-rowid

 1

 2

 …

 m

Figure 11. Cost estimation of the two alternative formats
To avoid storing the aggregate values of CATs redundantly, we
propose the use of an additional relation AGGREGATES to store
such common values only once and the replacement of all aggre-
gate values in CATs with a row-id (A-rowid) pointing at the cor-
responding tuple in AGGREGATES (below we investigate the
conditions under which such storage is beneficial). However, the
decision of a specific schema for AGGREGATES depends on the
type of CATs that prevails. As shown below, format (a) (Figure

10a) produces a more compact cube, if common source CATs
prevail. Otherwise, format (b) (Figure 10b) is better, provided that
Y > 1. The difference is in the storage of R-rowid, which points at
the first tuple tS ∈ S that has contributed to the generation of the
corresponding CAT. If two CATs have common source then their
R-rowids are equal and can be stored only once in relation
AGGREGATES (Figure 10a). Otherwise, their R-rowids differ
and format (b) is more compact, since format (a) would induce the
storage of a second tuple in relation AGGREGATES, which is
long and mainly redundant.

Up to this point we have decided the optimal formats for NTs and
TTs and the question that arises is how to choose the most com-
pact between the alternative formats (a) and (b) of CATs. The
answer to this question depends on the data. Assume that there are
m different combinations of aggregate values of the form <Aggr1,
…, AggrY> stored in AGGREGATES (Figure 11), and that each
combination is pointed on average by k CATs produced by n dif-
ferent tuple sets in the fact table. Let r denote the size of a row-id
and α the size of a combination of aggregates. If Ca and Cb denote
the storage space occupied by format (a) and (b), respectively,
then format (a) is preferable when the following inequality holds:

Ca < Cb ⇔ (n(r+α)+kr)m < (α+2kr)m ⇔ (k-n)r > (n-1)α

Setting n-1 ≈ n and α = Yr (Y is the number of aggregates), we get:

(k-n)r > nYr ⇔ 1Y
n
kY

n
nk

+>⇔>
−

The last inequality indicates that format (a) is a better choice
when k is several (Y+1) times larger than n, i.e., when the major-
ity of CATs are common source. Otherwise, if coincidental CATs
prevail, as also intuitively expected, format (b) is the right choice.
Using similar reasoning, we can also prove that the storage of all
CATs in the NT format is better than using format (a) when

Y
1Y

n
k +

< and preferable to format (b) when .Y
1k

k
>

−
Since k

and n are integers and k ≥ n the former can be true only when k =
n, i.e., when all CATs are coincidental, while the latter holds
when either Y = 1 (we store only one aggregate) or k = 1 (there
are no CATs). The rule below summarizes the above results. Inter-
estingly, as shown in the following subsection, CURE can gather
statistics during cube construction that enable it to test these
criteria and decide dynamically the most efficient storage format.

if common source CATs prevail store them in format (a)
else if Y = 1 store CATs as NTs
else store CATs in format (b)

5.2 Tuple Classification Algorithm
As already mentioned, the storage format used to condense the
cube is critical, since it decides the amount of storage savings and
thus the practicability of a solution. Nevertheless, the use of any
sophisticated format is useless if the cubing method cannot clas-
sify tuples into the proper class (NT, TT, or CAT), according to
the type of redundancy they originally contained. In this subsec-
tion, we describe the algorithms CURE uses to identify all types
of redundancy in order to classify tuples to a proper type.

As also described elsewhere [24], identification of TTs is easy for
BUC-based algorithms. Recall that such algorithms are recursive.
The input of each recursive call that produces a tuple t of node N
consists of a set of tuples of the original fact table that have the
same values in the grouping attributes of N and must be aggre-

(a) (b)

α

n

n

n

α

r

k

k

k

k

k

k
r r r

(a) (b)

385

gated to produce t. Whenever the input of such a call consists of
only a single tuple tS, then the resulting tuple t is TT and can be
produced by simply projecting tS on N’s grouping attributes. Fur-
thermore, the bottom-up lattice traversal guarantees that N is the
least detailed node to which t belongs. Hence, CURE can simply
output the row-id of tS in the corresponding TT relation of N (re-
lation that stores TTs using the format in Figure 8b) and prune
recursion to avoid redundant storage of the same TT in N’s an-
cestors. Pruning saves both storage and computational costs.

Having handled all TTs with the previous algorithm, what re-
mains is the separation of NTs from CATs (which is not neces-
sary in the rare case that coincidental CATs prevail and Y = 1,
since in this case CATs are stored as NTs, as explained above).
Recall that both NTs and CATs are produced by the aggregation
of a tuple set S of the original fact table consisting of multiple
tuples (|S| > 1), hence the size of S is not a correct criterion, as is
in the case of TTs. Our solution is given below.

Aggr1 … AggrY R-rowid NodeId

Figure 12. The signature structure
The task of separating NTs from CATs can be performed with the
use of some meta-data kept during aggregation. We organize the
meta-data accompanying each aggregated tuple in a structure
called signature (Figure 12). The signature is a minimal represen-
tation of an aggregated tuple holding information which is neces-
sary for the separation of NTs from CATs. Assuming that a tuple t
of node N is produced by the aggregation of a tuple set S of the
original fact table, then Aggr-y (y ∈ [1, Y]) denotes the y-th ag-
gregate value produced by the aggregation of the tuples in S, R-
rowid is the minimum row-id of the tuples in S, and NodeId is the
unique identifier of N produced as described in Section 3.3. Actu-
ally, studying CURE’s storage schema described in the previous
subsection, we can argue that the meta-data in a tuple’s signature
is enough for storing the corresponding tuple in the proper format.
Hence, CURE actually needs only the meta-data and not the data
itself, which would increase memory requirements.

Assume for the moment that CURE has unlimited resources to hold
all signatures of all aggregated (non-trivial) tuples in a large in-
memory temporary relation, called signature pool. Then, during
cube computation it outputs to disk only TTs and for all the other
tuples it outputs nothing; instead, it keeps their signatures in the
pool. In this way, upon return from all recursive calls, CURE has
gathered in the pool all signatures of all non-trivial tuples. What
remains is a final step to separate them into NTs and CATs.
CURE performs this task using signature sorting in order to bring
in adjacent memory places signatures of tuples with the same ag-
gregates (and optionally produced by the same tuple set if format
(a) of Figure 10a is used). This means that all signatures must be
sorted according to the fields <Aggr1, …, AggrY> (and option-
ally R-rowid). During sorting, CURE can also calculate inexpen-
sive and accurate statistics that enable it to choose the most effi-
cient storage format for CATs, using the criteria described above.
After the sorting operation has finished, CURE scans through the
sorted pool comparing adjacent signatures and identifies every set
of signatures SSIG that have the same aggregate values (and
optionally the same R-rowid). Clearly, there are two possibilities:

• If |SSIG| = 1, the sole signature in SSIG represents an NT and
CURE stores a new tuple tNT = <R-rowid, Aggr1, …, AggrY>
in the NT relation of the node indicated by the field NodeId of

the signature. Note that tNT can be produced by the signature
itself, which proves that only the meta-data is enough.

• If |SSIG| > 1, the signatures in SSIG represent CATs whose inde-
pendent storage would be redundant. To avoid this, CURE
uses one of the formats mentioned above. If the statistics have
indicated that the majority of CATs are common source, it
stores a new tuple tAG = <R-rowid, Aggr1, …, AggrY> in the
common relation AGGREGATES and tAG-rowid in all rela-
tions CAT of the corresponding nodes indicated by the field
NodeId of the signatures. Otherwise, if the majority of CATs
has been found coincidental (and Y>1), it stores a tuple tAG =
<Aggr1, …, AggrY> in AGGREGATES and a pair <R-rowid,
tAG-rowid> in the proper CAT relations. Note that the decision
on the format can be made once and used globally afterwards.

Up to this point, we have assumed that the entire signature pool
fits in memory. This is “cheaper” than holding the entire cube, but
it is still non-realistic. A naive solution to this problem would be
to flush the pool on the disk and perform external operations.
However, this would incur great I/O costs harming CURE’s effi-
ciency. An efficient heuristic solution can be based on the obser-
vation that CURE’s recursive calls are “well instrumented” due to
its execution plan (Figure 4) that enables pipelining, which means
that cube tuples generated by the same data are constructed in
recursive calls near in time with great probability. Hence, we ac-
tually need not hold all signatures in memory, but only a proper
“working set”. The devised CURE algorithm uses a limited signa-
ture pool. As long as this pool is not full, CURE keeps adding sig-
natures, as described above. When it becomes full, it sorts all sig-
natures available and flushes to disk cube tuples classified as NTs
or CATs, based only on information resident in memory. In this
way, the pool becomes empty again waiting for the following
signatures. This heuristic makes CURE efficient at the expense of
possibly storing redundantly some repeated data. However, our
experimental evaluation has shown that the size of the signature
working set is relatively small and that using a pool of only
1,000,000 signatures occupying approximately (Y+2)*4 MB can
generate a cube whose size is very close to the optimal, which
would be generated by the original version of the algorithm. Hence,
the pool size can be thought of as an input parameter. The trade-
off is obvious; a zero-length pool prohibits the identification of
CATs, while an unlimited pool enables CURE identify them all.

5.3 Extensions and Improvements
To further enhance CURE’s efficiency we can use several imple-
mentation variations. For example, if the underlying ROLAP en-
gine supports bitmap indexing, which is true in many widely used
servers, we can change the format of relation TT (and probably
CAT if it uses format (a)) without affecting their ROLAP com-
patibility. Instead of storing each row-id (which consumes several
bytes) separately, we can use such a bitmap to index the tuples
that need to be retrieved for answering queries on the corre-
sponding node N. A potential problem in this case is that we have
to waste some space for the storage of zero bits for all tuples that
do not belong to N. Hence, this variation makes sense only if the
number of row-ids stored originally is large enough.
Furthermore, we have seen that it is beneficial to sort all row-ids
in TT relations (in a post-processing step) according to the order
of the tuples they point at. This produces sequential scans during
query answering. Our experiments have shown that such a post-

386

processing step is inexpensive compared to the cube construction
time and results into great savings during cube usage. Note that
the use of bitmap indices achieves such a sorting indirectly.
Another option is to trade off some storage space for faster query
response times. This can be achieved by changing the schema of
the NT relations to physically store the actual dimension values of
NTs instead of the row-ids of the corresponding tuples.
Finally, we have noticed that the bottleneck in query answering is
actually in the access of two relations, the original fact table and
the relation AGGREGATES, since all cube nodes point at tuples
stored in them. Hence, it is beneficial during query answering to
cache as many tuples from them as possible. This property is
unique in CURE, since in other ROLAP methods there is no sim-
ple rule to indicate which relations to cache in order to enhance
efficiency overall. Similarly, instead of indexing the entire cube,
which is expensive, we can index just the original fact table con-
suming much cheaper resources. Further investigation of caching
and indexing exceeds the purpose of this paper.

6. THE CURE ALGORITHM
In the previous sections, we described independently the most
important parts of CURE, focusing mainly on our contributions to
ROLAP cubing when dealing with hierarchies. In this section, we
gather everything together and present CURE and some auxiliary
functions in pseudo-code (Figure 13). We omit details, which
have been elaborated above.
Algorithm CURE(inputRelation)
1: for (d = dim; d < numOfDims; d++)
2: topLevel[d] = GetHierarchyMetaData(d);
3: baseLevel[d] = 0;
4: levels[d] = topLevel[d];
5: end for
6: if (inputRelation.size() < memorySize)
7: input = Load(inputRelation);
8: ExecutePlan(input, 0, levels);
9: else
10: L = SelectPartitionLevel();
11: [partRelations,numOfParts,nodeRelation]=Partition(inputRelation,L);
12: levels[0] = L; // Start from level L of the first dim
13: for (i = 0; i < numOfParts; i++)
14: partition = Load(partRelations[i]);
15: FollowEdge(partition, 0, levels);
16: end for
17: levels[0] = topLevel[0]; // Start from the top level of the first dim
18: baseLevel[0]=L+1; // and do not proceed below level L+1
19: N = Load(nodeRelation);
20: ExecutePlan(N, 0, levels);
21: end if
22: FlushSignatures(signaturePool);

Algorithm ExecutePlan(input, dim, levels)
1: if (input.count() == 1)
2: WriteTT(input[0], dim, levels[dim]);
3: return;
4: end if
5: Aggregate(input); //Places result in outputRec
6: if (signaturePool.full()) FlushSignatures(signaturePool); end if
7: AddNewSignature(signaturePool, outputRec);
8: for (d = dim; d < numOfDims; d++)
9: FollowEdge(input, d, levels); // Follow all solid edges
10: end for
11: if (dim >= 1 && levels[dim-1] > baseLevel[dim-1])
12: levels[dim-1]--;
13: FollowEdge(input, dim-1, levels); // Follow a dashed edge
14: levels[dim-1]++;
15: end if

Algorithm FollowEdge(input, dim, levels)
1: start = 0;
2: Sort(input, dim, levels[dim]); // Re-sort the current segment
3: while((count = GetNextSegment(input, dim, levels[dim], start)) > 0)
4: outputRec.dim[dim] = input[start].dim[dim][levels[dim]];
5: ExecutePlan(input[start ... start+count], dim+1, levels);
6: start += count;
7: end while
8: outputRec.dim[dim] = ALL;

Figure 13. Algorithm CURE and auxiliary functions

Algorithm CURE initializes some global arrays that contain meta-
data about hierarchy levels and sets all dimensions to their top
levels (lines 1-5), which complies with its execution plan (Figure
4). Then, it checks if the input fact table fits in memory (line 6),
in which case it loads it and calls ExecutePlan to construct the
entire cube (lines 7-8). Otherwise, it selects the partitioning level
L of the first dimension (line 10), as described in Section 4, and
partitions the input relation on L (line 11). Function Partition
returns the relation names of the partitions created (partRela-
tions), their number (numOfParts), and the relation name of
node N (nodeRelation), which is the node constructed in mem-
ory. Upon return from Partition CURE sets the initial level of the
first dimension to L (line 12) to construct only the nodes dictated
by observation 1 (Section 4) and proceeds with the computation
of the sub-cubes of all partitions (lines 13-16). Afterwards, based
on observation 3, it constructs all remaining nodes using N (lines
17-20). Finally, it flushes to disk all signatures gathered in the sig-
nature pool, calling FlushSignatures in line 22. This function
sorts signatures and separates NTs from CATs, as explained in
Section 5.2. Note that it is called not only in the end, which would
need infinite resources, but also within ExecutePlan (line 6).
Algorithm ExecutePlan implements the bottom-up and depth-
first traversal mentioned in Section 3.1. It first checks if the size
of its input is equal to 1, which reveals a TT. In this case it early
stops recursion (lines 1-4). Otherwise, it aggregates all input tu-
ples and stores a new signature in the pool, after checking that it
fits (lines 5-7). Then, it follows all solid edges of the execution
plan (lines 8-10) and a dashed edge, if one exists (lines 11-15).
Finally algorithm FollowEdge sorts its input tuples according to
their values in level levels[dim] of dimension dim (line 2) and
separates them in smaller segments that have the same value (line
3). For every such segment it calls ExecutePlan in order to pass
it as input to higher lattice levels (line 5).

7. EXPERIMENTAL EVALUATION
To evaluate the efficiency of the proposed techniques, we have
implemented CURE and the most efficient methods in ROLAP,
namely BUC and BU-BST. The former identifies no redundancy,
while the latter identifies TTs but does not use efficient storage
for non-redundant data. (We have not implemented QC-Tables
[13], since the relational representation of the so-called Quotient
Cubes has been shown to have many problems [14]. This can be
solved with the use of QC-Trees [14], but these are tree-like data
structures and, hence, outside the scope of this paper.) We call
CURE+ the variation of CURE that applies a post-processing step
to sort and replace row-ids with bitmap indices, as explained in
Section 5.3. We have run our experiments on a Pentium 4 (2.8
GHz) PC with 512 MB memory under Windows XP. In this sec-
tion, we present the results of our experimental evaluation.
Flat Cubes: In our first set of experiments we have evaluated the
efficiency of all algorithms in constructing flat cubes over real
and synthetic datasets. Additionally, we have tested the effective-
ness of the generated cube formats in query answering, which is
important, since condensing a cube is pointless if it cannot pro-
vide fast query response times. The workloads we have used con-
sist of 1,000 random node queries, which perform no selection.
Real datasets: We have experimented with two widely used real-
world datasets, namely CovType [3] and Sep85L [7]. The former
has 10 dimensions and 581,012 tuples, while the latter has 9

387

0

50

100

150

200

250

300

CovType Sep85L

Ti
m

e
(s

ec
)

BUC

BU-BST

CURE

CURE+

Figure 14. Real datasets-Construction Time

0

0.5

1

1.5

2

2.5

3

3.5

4

CovType Sep85L

St
or

ag
e

Sp
ac

e
(G

B
)

BUC

BU-BST

CURE

CURE+

Figure 15. Real datasets-Storage Space

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CovType Sep85L

Ti
m

e
(s

ec
)

BUC

BU-BST

CURE

CURE+

Figure 16. Real datasets-Average QRT

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.25 0.5 0.75 1
Cache Size

Ti
m

e
(s

ec
)

CovType: CURE
CovType: CURE+
CovType: BUC
Sep85L: CURE
Sep85L: CURE+
Sep85L: BUC

Figure 17. Effect of caching on Av. QRT

0

100

200

300

400

1.E+06 3.E+06 5.E+06 7.E+06 9.E+06
Signature Pool Size (Number of Signatures)

St
or

ag
e

Sp
ac

e
(M

B
)

CovType: CURE
CovType: CURE+
Sep85L: CURE
Sep85L: CURE+

Figure 18. Pool size vs. Storage Space

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 12 16 20 24 28
Number of Dimensions

Ti
m

e
(s

ec
)

BUC

BU-BST

CURE

CURE+

Figure 19. Dimensionality vs. Constr. Time

0

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28
Number of Dimensions

St
or

ag
e

Sp
ac

e
(G

B
)

BUC

BU-BST

CURE

CURE+

Figure 20. Dimensionality vs. Storage Space

0

50

100

150

200

250

300

350

400

0 0.4 0.8 1.2 1.6 2
Skew

Ti
m

e
(s

ec
)

BUC

BU-BST

CURE

CURE+

Figure 21. Skew vs. Construction Time

0

0.5

1

1.5

2

2.5

0 0.4 0.8 1.2 1.6 2Skew

St
or

ag
e

Sp
ac

e
(G

B
)

BUC

BU-BST

CURE

CURE+

Figure 22. Skew vs. Storage Space

0

50

100

150

200

250

300

1.E+06 1.E+07 1.E+08 1.E+09
Number of Tuples in the Fact Table

Ti
m

e
(m

in
)

CURE_DR

CURE_DR+

CURE

CURE+

Figure 23. Construction Time (APB-1)

0

2

4

6

8

10

12

14

16

1.E+06 1.E+07 1.E+08 1.E+09
Number of Tuples in the Fact Table

St
or

ag
e

Sp
ac

e
(G

B
)

CURE_DR

CURE_DR+

CURE

CURE+

Figure 24. Storage Space (APB-1)

0.001

0.01

0.1

1

10

100

1000

10000

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
Maximum Number of Tuples in Result

Ti
m

e
(s

ec
)

CURE

CURE+

CURE_DR

CURE_DR+

Figure 25. Average QRT (APB-1 density 4)

0

50

100

150

200

250

300

APB 0.4

Ti
m

e
(s

ec
)

BUC
BU-BST
FCURE
FCURE+
CURE
CURE+

Figure 26. Flat vs. Hier. cube

(Construction Time)

0

50

100

150

200

250

300

350

400

450

APB 0.4

St
or

ag
e

Sp
ac

e
(M

B
)

BUC
BU-BST
FCURE
FCURE+
CURE
CURE+

Figure 27. Flat vs. Hier. cube

(Storage Space)

0

2

4

6

8

10

12

14

APB 0.4

Ti
m

e
(s

ec
)

BUC
BU-BST
FCURE
FCURE+
CURE
CURE+

Figure 28. Flat vs. Hier. cube

(Average QRT)
dimensions and 1,015,367 tuples. Figure 14 shows the time spent
on the construction of the corresponding cubes, Figure 15 their
storage space requirements, and Figure 16 the average query re-
sponse time in a workload of the type mentioned above. Note that
in both datasets the size of the CURE cube (cube constructed by
CURE) is an order of magnitude smaller than the size of the BU-
BST cube, since BU-BST removes only specific kinds of redun-
dancy and mainly because it does not use an efficient schema for

non-redundant data. The BUC cubes exceed the ranges of the
graph. Interestingly, in the Sep85L dataset the construction time
of CURE is a little worse than the one of BU-BST. This is attrib-
uted to the fact that Sep85L contains some dense areas that gener-
ate many non-trivial tuples, which forces CURE to pay a greater
cost for sorting signatures. Nevertheless, the small penalty in con-
struction time is compensated by great storage savings and effi-
ciency in answering queries. The same holds for the time cost of

388

the post-processing step of CURE+, which is negligible compared
to the improvements it offers. Furthermore, BU-BST cubes are
two and three orders of magnitude worse than their BUC and
CURE counterparts, respectively, in query answering. This is
attributed to their monolithic format that stores all cube tuples in a
single relation incurring a sequential scan of the entire cube for
answering any query. This could be improved only by indexing
the entire BU-BST cube in order to cluster together tuples that
belong to the same node. However, indexing the entire cube is
non-trivial both in computation time and in storage space. CURE
also outperforms BUC in query answering due to its smaller size
and mainly due to the use of caching of the original fact table.
Recall that for BUC and BU-BST there is no rule on what to
cache in order to improve efficiency overall. The effect of
caching is further studied in Figure 17. In this graph the x-axis
shows the portion of the original fact table cached. CovType is
sparser, which produces more tuples in each node and more ac-
cesses in the original fact table, deteriorating CURE’s perform-
ance in small cache sizes. Nevertheless, even when no caching is
used, CURE+ is close to BUC outperforming it in CovType.
Finally, Figure 18 illustrates the effect of the pool size in the abil-
ity of CURE to identify redundancy. Apparently, the final result
size is monotonically decreasing with memory size. However,
improvement is minor, which confirms our claim that the sig-
nature “working set” is relatively small.
Synthetic datasets: To test the effect of dimensionality, skew, and
size of the original data on the scaling of the proposed methods,
we have generated synthetic datasets of various parameters.
Figure 19 and Figure 20 illustrate the effect of dimensionality on
construction time and storage space, respectively. In these experi-
ments, the number of tuples in the original fact table is T=500,000,
the zipf factor is Z=0.8, and the cardinality of the i-th dimension
is Ci=T/i. Clearly, on storage space, CURE and especially
CURE+ are the undisputed winners. Furthermore, in moderate
dimensionalities (up to D=24) CURE is slightly faster than BU-
BST compensating signature sorting by smaller output costs. The
efficiency of CURE+ degrades faster due to the large number of
nodes that need to be processed in the post-processing step. In
very high dimensionalities (D>24) CURE is outperformed by BU-
BST, since the latter stores all tuples in a single relation, while the
former generates (at most) three relations per node. Theoretically,
the maximum number of relations created by CURE is 3·2D,
which seems prohibitive for D=28. However, in practice this
number is much smaller, since in great dimensionalities there are
many TTs, which saves the generation of a very large number of
relations. In our experiment, CURE constructed 88,932 relations
which is four orders of magnitude smaller than the theoretical
3·228 = 805,306,368.
Figure 21 and Figure 22 show the effect of skew on the efficiency
of the studied methods. In this experiment we have set D=8,
T=500,000, and Ci=T/i, while varying Z from 0 (uniform distribu-
tion) to 2. Although in the existing literature BUC-based methods
have been shown to degrade in high skew values, we have con-
firmed the remark of others [2] that using CountingSort instead of
QuickSort for tuple sorting is very helpful. Moreover note that in
low Z values the cube is sparse, which generates many TTs de-
creasing the size of CURE and BU-BST. In moderate Zs dense
areas appear and the size of both methods increases. Finally, in
really high skews the cube becomes so dense that the total number
of cube tuples is very small, hence the sizes decrease again. Note

that the efficiency of BUC seems to improve in high Zs due to the
great saving in its output costs. The fact that in Z=2 the sizes of
BUC and BU-BST are approximately equal denotes that in this
case there are no TTs and CURE attributes its storage savings to
the identification of dimensional redundancy and CATs.
Varying the number of tuples so that they still fit in main memory
has not revealed any interesting trends and the corresponding
graphs are omitted. In summary, CURE slightly wins BU-BST in
the time field, while the cube it produces is much more compact.
Hierarchical Cubes: In this set of experiments, we have evalu-
ated the efficiency of several variations of CURE in constructing
hierarchical cubes and the effectiveness of the corresponding for-
mats in query answering. (Recall that neither BUC nor BU-BST
support hierarchies.) The datasets we have used are synthetic and
have been produced by the data generator of the APB-1 bench-
mark [17], which is a standard in OLAP. The generated fact table
has two measures (Unit Sales and Dollar Sales) and four dimen-
sions organized in hierarchies as follows (in parenthesis we show
the corresponding cardinalities). Product: Code (6,500) → Class
(435) → Group (215) → Family (54) → Line (11) → Division
(3), Customer: Store (640) → Retailer (71), Time: Month (17) →
Quarter (6) → Year (2), and Channel: Base (9). The size of the
fact table is tuned by a density factor varying between 0.1 and 40.
The lowest density factor generates a fact table consisting of
1,239,300 tuples occupying approximately 30 MB (in binary for-
mat). The same figures in the highest density are 400 times larger
(495,720,000 tuples and 12 GB). The total number of nodes in the
cube is (6+1)·(2+1)·(3+1)·(1+1) = 168. Note that the base-level
cardinality of all dimensions is very low; this implies that any
naive partitioning algorithm would fail. However, the partitioning
algorithm of CURE is able to handle this case smoothly.
Figure 23 and Figure 24 show the construction time and the stor-
age space, respectively, for a low (0.4), a medium (4), and the
highest possible (40) density. The values along the x-axis indicate
the number of tuples in the corresponding fact tables. CURE_DR
is a variation of CURE that removes no dimensional redundancy
from NTs trading some storage space for query efficiency. Evi-
dently, all variations of CURE scale very well attributing their per-
formance in the efficient execution plan, the external partitioning
algorithm, and the effective storage format they use, which reduces
output costs. Constructing a full hierarchical cube for the APB-1
benchmark in its highest density in approximately 3h 50min using
very limited resources (256 MB of memory for loading partitions
and caching signatures) is impressive. In the field of storage space
CURE+ is the winner constructing a cube that occupies 6.86 GB
(recall that the original fact table size has been 12 GB).
Figure 25 illustrates the average query response times for all for-
mats under a workload of all possible (168) node queries in APB-
1 with density factor 4 separated into ten equal-sized sets that
have been produced by ordering the queries according to the
number of tuples they return. The first set contains the 17 smallest
queries and so on. Note that CURE_DR and CURE_DR+ cubes
take less than 0.5 seconds on average to answer 60% of all node
queries possible (that return up to 105 tuples) and less than 10
seconds for 80% (that return up to 106 tuples). Such query re-
sponse times should be considered very fast for heavy workloads
like the ones described here. Note that while testing our software
we have used a widely accepted commercial database server,
which has taken 12 hours to answer 20 small and moderate que-

389

ries, whose maximum result size has been 534,654 tuples. Note
also that queries with smaller results, which can be answered very
efficiently, have more practical interest for analysts, since they
are easier to interpret. On the contrary, queries that return many
millions of tuples are impractical and would be more interesting if
they were combined with some selection of specific ranges (accel-
erated by indexing techniques). Our experiments with APB-1 in
density factor 40 have shown similar trends; hence they are not
explicitly shown. Furthermore, expectedly, in APB-1 with density
factor 0.4, whose fact table fits in main memory, the results have
been orders of magnitude better, due to caching.
Moreover, we have investigated the trade-offs between construct-
ing flat (only at the finest level of detail) and hierarchical cubes
over hierarchical data. The dataset we have used is APB-1 in den-
sity 0.4, which fits in memory. FCURE is the version of CURE
that generates flat cubes ignoring hierarchies. Clearly, the con-
struction of a flat cube is faster (Figure 26) and occupies less stor-
age space (Figure 27), but a hierarchical cube offers greater ad-
vantages in answering roll-up/drill-down queries fast (Figure 28).
In all cases some variation of CURE provides the best solution.
Finally, we have noticed that answering count iceberg queries
(which contain a predicate of the form HAVING count(*) >
min_count in their SQL syntax) over a CURE cube is orders of
magnitude more efficient than doing so over any other format,
since in this case TTs can be ignored (recall that the count for TTs
is always 1). We omit the exact figures due to space limitations.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied ROLAP cubing in the presence of
hierarchies and presented CURE, a novel ROLAP cubing method
that addresses these issues and constructs complete data cubes over
very large datasets with arbitrary hierarchies. To achieve this we
have introduced a novel and efficient execution plan suitable for hi-
erarchical cube construction and revisited partitioning and size re-
duction methods complicated due to the existence of hierarchies.
The effectiveness of CURE has been demonstrated through ex-
periments on both real-world and synthetic datasets (including the
APB-1 benchmark in its highest density), which have given very
promising results with respect to the potential of CURE overall.
In the future, we are planning to compare CURE directly with
Dwarf and QC-Trees, prominent cubing methods that use spe-
cialized tree-like data structures. We expect this comparison to re-
veal the fundamental strengths and weaknesses of the two under-
lying techniques. Furthermore, we are planning to investigate in-
dexing for accelerating selective queries. Finally, we will further
study incremental updating for redundant tuples in CURE cubes.
Our initial investigation has resulted in efficient methods for up-
dating NTs and TTs, and we are currently working on CATs.

9. REFERENCES
[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.

Naughton, R. Ramakrishnam, and S. Sarawagi. On the Com-
putation of Multidimensional Aggregates. In VLDB 1996.

[2] K. Beyer and R. Ramakrishnan. Bottom-Up Computation of
Sparse and Iceberg CUBEs. In SIGMOD 1999.

[3] J. A. Blackard. The Forest CoverType Dataset.
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype

[4] Z. Chen, V. R. Narasayya. Efficient Computation of Multiple
Group By Queries. In SIGMOD 2005.

[5] Y. Feng, D. Agrawal, A. Abbadi, A. Metwally. Range
CUBE: Efficient Cube Computation by Exploiting Data Cor-
relation. ICDE 2004.

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. Proceedings of the
12th International Conference on Data Engineering, 1996.

[7] C. Hahn, S. Warren, and J. London. Cloud reports.
http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html

[8] J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of
Iceberg Cubes with Complex Measures. In SIGMOD 2001.

[9] V. Harinarayan, A. Razaraman and J. D. Ullman. Implement-
ing Datacubes Efficiently. In SIGMOD 1996.

[10] H. V. Jagadish, L. Lakshmanan, and D. Srivastava. What can
Hierarchies do for Data Warehouses? In VLDB 1999.

[11] N. Karayannidis, T. Sellis, Y. Kouvaras. CUBE File: A File
Structure for Hierarchically Clustered OLAP Cubes. EDBT 04.

[12] N. Kotsis and D. R. McGregor. Elimination of Redundant
Views in Multidimensional Aggregates. In DaWaK 2000.

[13] L.V.S. Lakshmanan, J. Pei, J. Han. Quotient Cube: How to
Summarize the Semantics of a Data Cube. VLDB 2002.

[14] L.V.S. Lakshmanan, J. Pei and Y. Zhao. QCTrees: An Effici-
ent Summary Structure for Semantic OLAP. SIGMOD 2003.

[15] C. Li, G. Cong, A. K. H. Tung, S. Wang. Incremental
maintenance of quotient cube for median. KDD 2004.

[16] X. Li, J. Han, and H. Gonzalez. High-Dimensional OLAP: A
Minimal Cubing Approach. In VLDB 2004.

[17] OLAP Council. APB-1 OLAP Benchmark.
http://www.olapcouncil.org

[18] K. A. Ross and D. Srivastava. Fast Computation of Sparse
Datacubes. In VLDB 1997.

[19] S. Sarawagi, R. Agrawal and A. Gupta. On Computing the
Data Cube. Research report 10026. IBM Almaden Research
Center, San Jose, California 1996.

[20] Z. Shao, J.Han, and D.Xin. MM-Cubing: Computing Iceberg
Cubes by Factorizing the Lattice Space. In SSDBM 2004.

[21] Y. Sismanis, A. Deligiannakis, Y. Kotidis, N. Roussopoulos.
Hierarchical Dwarfs for the Rollup Cube. DOLAP 2003.

[22] Y. Sismanis, A. Deligiannakis, N. Roussopoulos and Y.
Kotidis. Dwarf: Shrinking the petacube. In SIGMOD 2002.

[23] Y. Sismanis, and N. Roussopoulos. The Complexity of Fully
Materialized Coalesced Cubes. In VLDB 2004.

[24] W.Wang, H.Lu, J.Feng, J.Xu Yu. Condensed Cube: An Ef-
fective Approach to Reducing Data Cube Size. ICDE 2002.

[25] D. Xin, J. Han, X. Li, and B. W. Wah. Star Cubing: Comput-
ing Iceberg Cubes by Top-Down and Bottom-Up Integration.
In VLDB 2003.

[26] Y. Zhao, P. M. Deshpande and J. F. Naughton. An Array–
Based Algorithm for Simultaneous Multidimensional Aggre-
gates. In SIGMOD 1997.

390

