
Type Inference and Type Checking for Queries on
Execution Traces ∗

Daniel Deutch Tova Milo
Tel Aviv University
{danielde,milo}@post.tau.ac.il

ABSTRACT
This paper studies, for the first time, the management of type infor-
mation for an important class of semi-structured data: nested DAGs
(Directed Acyclic Graphs) that describe execution traces of busi-
ness processes (BPs for short). Specifically, we consider here type
inference and type checking for queries over BP execution traces.
The queries that we consider select portions of the traces that are
of interest to the user; the types describe the possible shape of the
execution traces in the input/output of the query.

We formally define and characterize here three common classes
of BP execution traces and their respective notions of type inference
and type checking. We study the complexity of the two problems
for query languages of varying expressive power and present effi-
cient type inference/checking algorithms whenever possible. Our
analysis offers a nearly complete picture of which combinations
of trace classes and query features lead to PTIME algorithms and
which to NP-complete or undecidable problems.

1. INTRODUCTION
Schema and type information has proved to be extremely useful

for the management of semi-structured data, in general, and XML,
in particular. Knowledge (even partial) about the typical structure
of data items allows e.g. for intuitive query formulation, optimized
query processing, and minimization of run time errors [20, 4].

This paper studies, for the first time, the management of type
information for an important class of semi-structured data: nested
DAGs (Directed Acyclic Graphs) that describe execution traces of
business processes (BPs for short). We consider here type infer-
ence and type checking for queries over such BP execution traces.
The queries select portions of the traces that are of interest to the
user. The types that we consider describe the possible shape of the
execution traces in the input/output of the query.

In this context, we study two problems, as follows. In the type
inference problem we are given some BP, and a query over its pos-
sible execution traces, and want to infer a type describing the shape
of the sub-traces selected by the query. In the type checking prob-
∗The research has been partially supported by the European Project
MANCOOSI and the Israel Science Foundation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

lem we are also given an output type and want to verify that the
shapes of all selected sub-traces conform to it. We study here the
two problems for type specifications and query languages of vary-
ing expressivity.

Before presenting our results, let us briefly consider the practical
origin of the problems and its influence on the particular families
of graphs, types, and queries studied here.

Business Processes. A BP consists of some business activ-
ities undertaken by one or more organizations in pursuit of some
particular goal. BPs operate in a cross-organization, distributed
environment, and the software implementing them is fairly com-
plex. Standards facilitate the design, development and deployment
of such software. In particular, the recent BPEL standard (Business
Process Execution Language[5]) allows to describe the full opera-
tional logic and execution flow of BPs. A BPEL specification de-
scribes a process as a nested DAG consisting of activities (nodes),
and links (edges) between them, that detail the execution order of
the activities. Activities may be either atomic, or compound. In the
latter case their internal structure is also detailed as a DAG, leading
to the nested structure. BPEL specifications are compiled into exe-
cutable code that implements the described BP and runs on a BPEL
application server [23].

Execution Traces. An instance of a BPEL specification is an
actual running process that follows the logic described in the spec-
ification. BP Management Systems allow to trace instance execu-
tions. For each activity issued, its activation and completion events
are reported. For a compound activity, the events corresponding
to its internal flow are reported between its activation and com-
pletion events. An execution trace can be abstractly viewed as a
(nested) DAG that contains nodes representing the activation and
completion events of activities, and edges that describe their flow.
The nesting of DAGs in the trace follows naturally from the nest-
ing of the specification. Traces may vary in the amount of infor-
mation that they record on the run. In general, one can distin-
guish three families of execution traces, with increasing flexibil-
ity: (i) naive traces which provide a complete record of the activa-
tion/completion events of all activities (ii) semi-naive traces where
the activation/completion events are all recorded, but possibly with
only partial information about their origin activity, and (iii) selec-
tive traces where only a selected subset of the events is recorded.

Queries and types. Execution traces are extremely valuable for
companies. Their analysis allows to optimize business processes,
reduce operational costs, and ultimately increase competitiveness.
We next illustrate the notion of types, and intuitively explain its
merits for the purposes of query optimization and error detection.

352

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Type information, i.e., knowledge about the possible structure
of the queried (sub-)traces, is valuable for query optimization [3].
Its role is analogous to that of XML schema for XML query opti-
mization: it allows to eliminate redundant computations and sim-
plify query evaluation. For example, consider a simple query that
searches for EX-traces containing two activities, A and B. A traces
type might tell us that all traces contain an A, and then an optimized
query evaluation, checking only for the existence of B, is possible.
Similarly, if the type tells us that no trace contains an A, we can
immediately infer that the query is inconsistent (in the sense that
its output is surely empty) and halt.

Since the traces repository is typically very large, the analysis
is often done in two steps: The repository is first queried to select
portions of the traces that are of particular interest. Then, these
serve as input for a finer analysis that further queries and mines
the sub-traces to derive critical business information [25]. Type in-
formation is readily available, as the BPEL specification, for the
original traces, and can be used to optimize the first-step queries.
However, it is not available for the intermediary sub-traces selected
by queries, and fed as input to the second-stage query. One of the
main goals of this paper is to develop efficient algorithms for de-
riving this type information, thereby felicitating the optimization
of both stages of the querying process. At another level, when the
analysis tool expects data of particular type, we would like to ver-
ify that the sub-traces selected by the queries are guaranteed to con-
form to the required type. Such type checking is the second problem
studied here.

Both type inference and type checking are well studied prob-
lems for XML and tree-shaped graphs. We found that the particular
nested-DAG shape of BP execution traces, and their corresponding
type specifications, pose new challenges that require the develop-
ment of novel type inference/checking techniques. For instance,
while for XML, type checking is in general easier than type infer-
ence, we found that for nested DAGs type checking can be harder.
(For a detailed comparison to XML type inference and checking
see Section 6).

Our results. As mentioned above, we model an execution trace
of a BP instance as a nested DAG. A type here consists of a BP
specification (modeled abstractly as a rewriting system) accompa-
nied by a description of the sort of tracing (naive, semi-naive, or se-
lective) employed for the BP. The query language that we consider
selects sub-traces of interest using execution patterns. Execution
patterns are an adaptation of the tree- and graph-patterns offered by
existing query languages for XML and graph-shaped data. We first
consider simple positive queries without joins. We show that the
less detailed (and thus less restrictive) the execution traces are, the
more efficient type inference can be: it can be done in time poly-
nomial in the size of the input type (with the exponent determined
by the size of the query) for selective trace types, but may require
time exponential in the size of input type (even for small queries)
with semi-naive trace types, and may not be possible at all if all
trace types are naive. Type checking, on the other hand, becomes
more difficult as the expressivity of the involved types is extended:
It is decidable, although expensive, for (semi-)naive trace types but
undecidable for selective trace types.

Next, we consider more powerful queries that include patterns
with joins (on node and path variables), projection and negation.
While the above mentioned complexity results hold for most of
these extensions, type inference is no longer possible for queries
with joins on path variables. In contrast, type checking is shown to
be still possible (for the same class of traces as before).

Our analysis offers a nearly complete picture of combinations

of trace types and query features and their corresponding problems
complexity. We provide efficient type inference and type checking
algorithms whenever possible, and identify the cause of the dif-
ficulty when not. Our results have two main important practical
implications, the first positive and the second negative.

1. As far as type inference is concerned, our results signal the
class of selective trace types as an “ideal” type system for
BP traces, allowing both flexible description of the BP traces
as well as efficient type inference. We thus believe it to be a
firm basis for further study of type-based query optimization
for BP management systems.

2. On the other hand, we show that static type checking is not
possible for selective trace types, and even for more limited
trace types only EXPTIME algorithms are available. Con-
sequently, we believe that run-time checks are likely to be a
more useful in practice.

Remark. We conclude with a remark regarding our choice of
query language and data model. Already in 2002, the importance of
query languages for BPs had been recognized by BPMI (the Busi-
ness Process Management Initiative)[6]. Yet, unlike the case of
XML and tree-shaped data, no draft standard has been published
since. The data model and query language that we consider here
were introduced in [2, 3]. They are argued to be more intuitive for
BP developers than other query formalisms such as temporal log-
ics and process algebras, as they are based on the same graph-based
view of processes used by commercial vendors for the specification
of BPs [3]. While we state our results in terms of this particular
model, they are naturally applicable to (fragments of) other query
formalisms sharing similar expressive power. A detailed compari-
son to related data models and query languages (including temporal
logics [18], MSO, equational sets [9], etc.) can be found in [10].
In the Related Work section (Section 6) we further compare known
results on these models to our results, highlighting our relative con-
tribution.

The paper is organized as follows. Section 2 introduces the def-
initions for a simplified version of our model and query language.
In Sections 3 and 4 we formally define and analyze Type Inference
and Type Checking for this simplified setting. In Section 5 we ex-
tend the study to the full-fledged model. Related work is considered
in Section 6. We conclude in Section 7.

2. PRELIMINARIES
To simplify the presentation we first consider a basic data model

and query language, and then enrich them to obtain the full-fledged
model.

2.1 Execution traces
As mentioned earlier, the execution trace of a BP instance can

be viewed as a nested DAG, containing node-pairs that represent
the activation and completion of activities, and edges that represent
causal relationships. We assume the existence of two domains, N
of nodes and A of activity names, and two distinguished symbols
act, com, denoting, resp., activity activation and completion. We
first define the auxiliary notion of activation-completion labeled
DAGs, and then use it to define execution traces.

DEFINITION 2.1. An activities DAG is a tuple (N, E, λ) in which
N ⊂ N is a finite set of nodes, E is a set of directed edges with
endpoints in N , λ : N → A is a labeling function, labeling each
node by an activity name. The graph is required to be acyclic.

353

An activation-completion (act-comp) DAG g is obtained from an
activities DAG by replacing each node n labelled by some label
a by a pair of nodes, n′, n′′, labelled (resp.) by (a,act) and
(a,com). All of the incoming edges of n are directed to n′ and
all of the outgoing edges of n now outgo n′′. A single edge con-
nects n′ to n′′.

We assume that g has a single start node without incoming
edges, and a single end node without outgoing edges, denoted by
start(g) and end(g), resp.

EXAMPLE 2.2. To illustrate, let us consider the act-comp DAG
(d2) in Figure 2. It contains four activities (Search, Hotel,
Flight and Print), each represented by a pair of nodes. In
each pair, the node with darker (lighter) background denotes the
activity’s activation (completion).

DEFINITION 2.3. The set EX of execution traces (abbr. EX-
traces) is the smallest set of graphs satisfying the following.

1. [single activity] If g is an act-comp DAG consisting of a sin-
gle activity pair, then g ∈ EX .

2. [nested trace] If g1 is in EX , (n1, n2) is an activity pair of g1

s.t. n1 (resp. n2) has a single outgoing (incoming) edge, and
g2 is some act-comp DAG, then the graph g consisting of g1,
g2, and two new edges (n1,start(g2)) and (end(g2), n2),
is in EX .

The new edges added in Item 2 above are called zoom-in edges. All
other edges are called flow edges.

In the sequel, a subgraph g2, connected as in Item 2 of Definition
2.3, by zoom-in edges, to an activity pair (n1, n2), along with the
zoom-in edges, is called a direct internal trace of the activity. The
subgraph consisting of the direct internal trace of an activity, as
well as the direct internal traces of its activities, and of their internal
activities, etc., is called a (full) internal trace.

EXAMPLE 2.4. Some example EX-traces are depicted in Fig-
ure 1. Let us focus first on EX-traces (a). It details a possible
executions of a travel agency activity Trip for reserving trips.
Zoom-in edges are marked as dashed arrows, and following them
reveals the internal trace of the corresponding compound activi-
ties. For each such compound activity, one zoom-in edge originates
at its activation node and points at the start node of another
(possibly nested) act-comp DAG g, and another outgoes the end
node of g, pointing to the activity completion node. For example,
zooming into Trip reveals that a Search was performed, after
which the corresponding hotel and flight were reserved (in paral-
lel), by the Hotel and Flight activities, resp., and a confirma-
tion was printed. Zooming into both reservation activities reveals
some credit limit check, namely Credit1. The EX-trace in Figure
1(b) is another possible EX-trace of the travel agency. Here we see
that the user was looking for a luxury trip, invoking the Luxury
activity. The internal flow here is similar to that of a regular trip
reservation, except that luxury hotels and flights are reserved (via
the LuxHotel and LuxFlight activities) and another type of
credit check, Credit2, (possibly for higher credit limit check), is
performed.

2.2 Types
To define EX-trace types, we use an intuitive model of BP spec-

ifications as rewriting systems, an abstraction of the BPEL stan-
dard [5]. A type consists of a BP specification accompanied by a

Figure 1: Execution traces.

description of the sort of tracing (naive, semi-naive, or selective)
employed for the BP.

Among the activity names in A we distinguish two disjoint sub-
setsA=Aatomic∪Acompound, representing atomic and compound
activities, resp. A BP specification is a collection of activation-
completion DAGs, along with a mapping of compound activity
names to their implementations.

DEFINITION 2.5. A BP specification s is a triple (S, s0, τ), where
S is a finite set of act-comp DAGs , s0 ∈ S is a distinguished
DAG consisting of a single activity pair, called the root, and τ :
Acompound → 2S is a function, called the implementation func-
tion, mapping compound activity names in S to sets of DAGs in
S.

A compound activity may be mapped, through the implementa-
tion function, to a set of DAGs. They represent alternative possible
implementations for the activity (one of which will be chosen at
run time as the actual implementation).

EXAMPLE 2.6. To continue with our travel agency example,
its BP specification s consists of the act-comp DAGs in Figure
2. The compound activities here are Trip, Luxury, Hotel,
Flight, LuxHotel and LuxFlight. d1 is the root of the BP,
and the implementations of the compound activities are the fol-
lowing :τ(Trip) = {d2, d3}, τ(Luxury) = {d4}, τ(Hotel) =
τ(Flight) = {d5}, τ(LuxHotel) = τ(LuxFlight) = {d6} .

354

The intuitive interpretation of this specification is as follows.
When a user starts searching for a trip, she may choose between
a regular trip (leading to d2), or a luxury trip (leading to d3, that
in turn leads to d4). Then, she searches and reserves (luxury) flights
and (luxury) hotels, as described above.

We consider three kinds of traces. The first, called naive EX-
trace, provides a complete record of the activation/completion events
of all BP activities and the internal flow of all compound activities.
Given a BP specification s, the set of possible naive EX-traces of s
consists of all EX-traces obtained from the root activity of s by at-
taching, recursively, to each compound activity one of its possible
implementations. We call this an expansion.

DEFINITION 2.7. [Naive EX-traces] Given a BP specification
s = (S, s0, τ), an act-comp DAG g, and an activity pair (n1, n2)
of g labeled by some compound activity name a and having no
internal trace, we say that g → g′ (w.r.t. τ) if g′ is obtained from
g by attaching to the pair some implementation ga ∈ τ(a) through
two new zoom-in edges (n1,start(ga)) and (end(ga), n2).

If p → p1 → p2 . . . → pk, we say that pk is an expansion of
p. pk is called a full expansion if it cannot be expanded further.
The set of possible naive EX-traces defined by a BP specification s,
denoted Naive(s), consists of all the full expansions of its root s0.

Intuitively, Naive EX-traces of a process contain the full infor-
mation regarding the process execution. For example, the two EX-
traces in Figure 1(a) and (b) are naive EX-traces of the travel agency
BP depicted in Figure 2. They contain a full record of both com-
pound and atomic activities that participated in the execution, as
well as the flow and zoom-in edges connecting them. In general,
Naive(s) may be infinite, in the case of recursive activity imple-
mentations.

While naive EX-traces detail the execution flow fully, there are
cases, however, where only partial information about the activities
is recorded. For example, our travel agency may wish not to dis-
close the fact that the billing system that is invoked in the case of
a luxury reservation is different than the one invoked in case of a
regular reservation.

In terms of the examples above, rather than labeling the EX-
trace activity nodes by the exact activity names Credit1 and
Credit2, we would like to label them by a generic Credit la-
bel. This is captured by the following definition of semi-naive EX-
traces.

DEFINITION 2.8. [Semi-naive EX-traces] Given a BP speci-
fication s and a renaming function π from activity names in s to
activity names in A, the set of semi-naive EX-traces defined by s
and π, denoted semiNaive(s, π), consists of all the EX-traces e
obtained from the naive EX-traces e′ ∈ Naive(s) by replacing
each label a in e′ by π(a).

EXAMPLE 2.9. To continue with our running example, Figures
1 (c) and (d) are semi-naive EX-traces of our travel agency BP, for a
renaming function π s.t. π(Credit1) = π(Credit2) = Credit,
and where π is the identity function for all other activities. These
two semi-naive EX-traces are obtained resp. from the naive EX-
traces in Figure 1 (a) and (b). We can see in the trace that some
credit checks were issued, but not which ones.

For readers familiar with XML schemas, semi-naive EX-traces
can be viewed as the BP analog of XML trees defined by DTDs
with specialization [24]. In both cases the nodes’ labels give only
partial information about the origin of the node (the corresponding
BP activity, for EX-traces, or the DTD type, for XML trees).

Figure 2: Business Process (1)

In some cases, an even more selective tracing is desired, where
the occurrence of some activities is not recorded at all. For in-
stance, if some activities are completely confidential we may want
to avoid including any memory of them in the trace. Similarly,
some activities (e.g. standard input integrity checks) may simply
be non- interesting for the business analysts and may be omitted to
avoid overloading the logs with redundant information. To model
these type of traces, we introduce the notion selective EX-traces.

DEFINITION 2.10. [Selective EX-traces] Given a BP specifi-
cation s, a set A of activity names in s, satisfying condition (*)
below, and a renaming function π from activity names in s to activ-
ity names in A, the set of selective EX-traces defined by s, A and
π, denoted Selective(s, A, π), consists of all EX-traces e obtained
from the naive EX-traces of s by deleting all activity pairs with la-
bels in A 1 and then replacing each label a of the remaining nodes
by π(a).
Condition (*): A does not include the root activity of s, and for
each activation-completion graph g in s, the graph g′ obtained
from g by removing the atomic activity pairs with names in A is
itself an activation-completion graph (as in Definition 2.1), or is
empty.

EXAMPLE 2.11. For instance, if our travel agency also wishes
to keep as a secret the fact that reservations of different types are
treated differently, then not only the credit checks need to be re-
labeled, but also the LuxHotel and the LuxFlight, and the
record of the Luxury activity should be omitted altogether. Here
A = {Luxury}, and π(Credit1) = π(Credit2) = Credit ,
π(LuxHotel) = Hotel, and π(LuxFlight) = Flight.

Figure 1(e) shows the selective EX-trace obtained from the naive
EX-traces in Figure 1(b). Note that the same graph (up to node
isomorphism) is also the selective EX-trace obtained from the naive
EX-traces in Figure 1(a). Thus, given such a selective trace, there
is not way to tell from which naive EX-trace (of regular or luxury
trip reservation) it originated.

The intuition behind condition (*) in Definition 2.10 is that from
a practical point of view, it is reasonable to assume that the graph
obtained after each loss of information still bears the shape of a
trace, otherwise the loss is easily observable. For instance, remov-
ing also the Search activity-pair will result in a graph where two
zoom-in edges going out of Trip, pointing at two different nodes.
This contradicts the definition of an EX-trace. Condition (*) as-
sures that this does not happen (proof omitted). The technical im-
plication of this constraint will be discussed in the sequel.

1When an atomic activity pair (n1, n2) is deleted, the edges incom-
ing n1 are now connected to the nodes previously pointed by n2.
For compound activities the incoming(outgoing) edges of n1 (n2)
are now being connected to the start/end nodes of the implementa-
tion sub-graph.

355

Figure 3: Execution Trace
Each BP specification s, (renaming function π, and activities set

A) defines a (possibly infinite) set of EX-traces E = Naive(s)
(resp. E = semiNaive(s, π), and E = Selective(s, A, π)). Let
Naive (resp. semiNaive and Selective) denote the class
of sets of EX-traces that obtained under naive (resp. semi-naive,
selective) tracing of some BP specification (a renaming function π,
and an activities set A). More formally, Naive= {E | ∃s s.t. E =
Naive(s)}, semiNaive= {E | ∃s, π, s.t. E = semiNaive(s, π)},
Selective= {E | ∃s, π, A, s.t. E = Selective(s, A, π)}. We
can show that there is a strict inclusion relationship between the
classes, and that they do not capture all the possible sets of EX-
traces.

PROPOSITION 2.12. Naive⊂semiNaive⊂Selective⊂2EX .

Proof:The inclusion follows naturally from the definitions. We
prove next its strictness, using examples which highlight some of
the key properties of the various trace classes. These properties will
be useful in the sequel.

Naive ⊂ semiNaive. Consider the BP specification s depicted
in Figure 5 (ignore, for now, the text next to the nodes). The de-
picted BP includes Trip as its root activity, whose implementa-
tion is a sequence of two compound activities labeled Hotel1 and
Hotel2. The implementation of Hotel1 (resp. Hotel2) con-
tains the single atomic activity, Credit1 (Credit2). Now, con-
sider a renaming function π that maps both Hotel1 and Hotel2
to a single activity name, Hotel, and is the identity function for the
remaining activity names. Here, the set of semi-naive traces E =
semiNaive(s, π) of s contains the single EX-trace e, depicted
in Figure 3. The EX-trace e contains two Hotel-labeled activi-
ties, with the implementation of the first (second) being Credit1
(Credit2).

It is easy to see, however, that no BP specification s′ can have e
as its single naive EX-trace! This is because for e to be in Naive(s′),
Hotel must have at least two alternative implementations in s′,
one containing Credit1 and the other containing Credit2. But
if this is the case, Naive(s′) also contains three additional EX-
traces: one where both Hotel occurrences have Credit1 as in-
ternal traces, one where they both have Credit2, and one where
the first has Credit2 and the second Credit1.

semiNaive ⊂ selective. Consider the class of BPs where the
implementation graphs of all compound activities are chains. For
each such BP, consider the selective traces obtained by deleting all
compound activities and keeping the names of the atomic and root
activities unchanged. The resulting EX-traces consist of a root ac-
tivity whose direct internal trace is a sequence of atomic activities.
Viewing the sequence of activity names on the chain as a word, and
the set of words represented by the selective traces of a given BP as
a language, it is easy to see that for each BP s, Selective(s, A, π)
defines a context free language. (Its context free grammar follows
naturally from the BP specification). Conversely, for every context
free language L we can define a BP s (and A, π) s.t. the words

in Selective(s, A, π) are precisely those of L. (Here again, s’s
specification resembles L’s grammar). In contrast, for every BP s,
its (semi-)naive EX-traces that contain only the root activity and
atomic activities have a shape which is specified by the direct im-
plementation of the root activity, hence are of bounded length and
cannot capture all context free (or infinite) languages.

selective ⊂ 2EX . One might consider each set of EX-traces in
Selective as a language of graphs. Through this perspective,
we can compare our model to common models of graph languages
that appear in the literature. A common model, named Recursive
State Machines (RSM) [1], naturally extends Finite State Machines
(FSM) (bearing entry and exit states), by allowing some states to
be call states, invoking other FSMs. A call is simulated by re-
placing the call state by its implementation. A graph obtained by
a sequence of these replacements is called an unfolding of the orig-
inal RSM. The simplest form of RSM is Single Entry Single Exit
RSM (SERSM), where each FSM has unique start and exit nodes.
We can show that Selective captures the same sets of EX-traces
as SERSMs.

PROPOSITION 2.13. A set E of EX-traces is the set of full un-
foldings of an SERSM iff it belongs to Selective.

Proof:(Sketch) The inclusion in SERSM follows from condition
(*). For the other direction we show that SERSMs which generate
EX-traces have an equivalent normal form (like the Greibach Nor-
mal Form in context-free string grammars[26]) where all FSMs are
activation-completion DAGs.

£
It is known that SERSMs do not capture all graph languages [1].

The strict inclusion of Selective in 2EX follows. This concludes
the proof of Proposition 2.12

£
We sum up this subsection with a comment on the analogy be-

tween the EX-trace types, of the various sorts, and string gram-
mars. While the selective trace types form the analog to a Con-
text Free Language, semi-naive trace types are the analog to the
restricted form of parenthesis languages[16] (as we keep track of
the activation and completions events, analogous to parenthesis),
and naive trace types are the analog of the further restricted brack-
eted languages[14] (that also keep track of the parenthesis ‘origin’).
This analogy holds in respect to some characteristics of the trace
types, as we shall see below.

2.3 Queries
We now consider queries. As mentioned in the Introduction,

the query language that we use was originally introduced in [2, 3].
Queries are defined using execution patterns (abbr. EX-patterns).
EX-patterns generalize EX-traces similarly to the way tree patterns
generalize XML trees. EX-patterns are EX-traces where activity
names are either specified, or left open using a special ANY sym-
bol. Edges in a pattern are either regular, interpreted over edges, or
transitive, interpreted over paths. Similarly, activity pairs may be
regular or transitive, for searching only in their direct internal trace
or zooming-in transitively inside it. As we will see, this zoom-in
navigation axis, particular to nested DAGs, introduces special chal-
lenges w.r.t. type inference and checking.

DEFINITION 2.14. An execution pattern, abbr. EX-pattern, is a
pair p = (ê, T) where ê is an EX-trace whose nodes are labelled
by labels from A ∪ {ANY}, and T is a distinguished set of activity
pairs and edges in ê, called transitive activities and edges, resp.

356

Figure 4: A query and its results
To evaluate a query, the EX-pattern is matched against a given

EX-trace. A match is represented by an embedding.

DEFINITION 2.15. Let p = (ê, T) be an EX-pattern and let e
be an EX-trace. An embedding of p into e is a homomorphism ψ
from the nodes and edges in p to nodes, edges and paths in e s.t.

1. [nodes] activity pairs in p are mapped to activity pairs in e.
Node labels are preserved; however, a node labeled by ANY

can be mapped to nodes with any activity name.

2. [edges] each (transitive) edge from node m to node n in p
is mapped to an edge (path) from ψ(m) to ψ(n) in e. If the
edge [m, n] belongs to a direct internal trace of a transitive
activity, the edge (edges on the path) from ψ(m) to ψ(n) can
be of any type (flow, or zoom-in) and otherwise must have the
same type as [n, m].

The result defined by ψ is the image of p under ψ. For each activity
pair in the image, the edge connecting its activation and completion
nodes is also included.

For an EX-pattern p and an EX-trace e, the result of p when
applied to e, denoted p(e), consists of the results of all possible
embeddings of p into e. Finally, given a set E of EX-traces, we will
also use p(E) to denote the set of all possible outputs of p when
applied on EX-traces in E, namely p(E) =

S
e∈E p(e).

It is easy to prove that p(e) (resp. p(E)) is a set of EX-traces.
.
An example EX-pattern is depicted in Fig. 4 (a). It zooms-in

transitively into Trip, searching for a Credit activity. Double-
bounded nodes (resp. double-lined edges) denote transitive nodes
(edges). Observe that apart from the transitive nodes and edges,
EX-patterns and EX-traces look similar, making the formulation of
queries rather intuitive. Let us now evaluate the query over the EX-
trace in Figure 1(e). Two embedding are possible here, yielding the
results in Figure 4 (b) and (c). In the first embedding, the pattern
transitive edge outgoing (incoming) the Trip activity is matched
to the EX-pattern path passing through the Flight activity. In the
second embedding it is matched to the path traversing the Hotel
activity. It is important to note that the same query, with a non-
transitive Trip activity, would yield here an empty result, as it
would search for Credit activities in the direct internal trace of
Trip (while in the given EX-trace it appears only deeper in the
zoom-in hierarchy). Finally, observe that since an embedding is a
homomorphisms, multiple query nodes may be mapped to the same
EX-trace nodes and edges (or paths).

3. TYPE INFERENCE
The type inference problem that we study is defined next. Three

variants of the problem correspond to the three families of trace
types, as follows.

Figure 5: Business Process (2)

We are given an EX-pattern p and a set of naive (resp. semi-
naive, selective) EX-traces defined by some BP s (a renaming func-
tion π and activities set A), and would like to find a BP spec-
ification s′ (and π′, A′) s.t. Naive(s′) = p(Naive(s)) (resp.
semiNaive(s′, π′) = p(semiNaive(s, π)), Selective(s′, A′, π′) =
p(Selective(s, A, π))) 2.

We first show that type inference may not be possible if only
naive trace types are considered. Namely,

THEOREM 3.1. There exist a BP specification s and an EX-
pattern p s.t. there is no BP specification s′ where Naive(s′) =
p(Naive(s)).

Proof:The proof follows lines similar to that of (the first part in the
proof of) Proposition 2.12. Consider the BP specification s whose
act-comp DAGs are depicted in Figure 6 (ignoring for now the text
near the nodes). (d1) is the root of the BP. The implementation
(d2) of the root activity Trip contains two consecutive compound
Hotel activities, and where Hotel has two possible implementa-
tions (d3) and (d4), one containing the activity Credit1 and the
second containing the activity Credit2. Naive(s) here contains
four EX-traces, e1 where both Hotels have Credit1 as inter-
nal trace, e2 where they both have Credit2, and e3 (e4) where
the first (second) Hotel has Credit1 and the second (first) has
Credit2. Now consider the query p in Figure 7 (again ignoring
the text near the nodes), which requires an occurrence of Credit1
and Credit2. Here p(Naive(s)) contains only e3, and as ex-
plained in the proof of Proposition 2.12, no BP specification s′ can
have e3 as its single naive EX-trace.

£
In contrast, the greater expressive power of semi-naive trace types

allows to capture more EX-trace sets and enables type inference.
We show next that type inference is possible with semi-naive trace
types, but may be costly.

THEOREM 3.2. For every EX-pattern p, BP s and renaming
function π, there exist s′ and π′ such that semiNaive(s′, π′) =
p(semiNaive(s, π)). s′ and π′ can be computed in time exponen-
tial in the size of s and p.

Note that since every naive trace type is also semi-naive type
(with π being the identity function), the theorem also implies that
type inference is possible for input representing naive traces, with
the output type captured by semi-naive representation.

Proof:(Sketch) The BP s′ = (S′, s′0, τ
′) constructed by the type

inference algorithm is intuitively the “intersection” of the original
BP s = (S, s0, τ) with the pattern p. We next explain how this s′

is constructed, then illustrate with an example.
Let us first consider patterns that do not contain transitive nodes

an edges. For every two activity pairs ns ∈ s and np ∈ p where np

2For EX-trace equality we use graph isomorphism up to node iden-
tifiers. Equality of sets of EX-traces is defined w.r.t this equality
relation

357

Figure 6: Business Process (3)

Figure 7: EX-pattern

is labeled either by the same (compound) activity name as ns, or by
ANY, we use a new activity name [np, ns, a], where a = π(λ(ns)),
to represent the “intersection” of pairs. The renaming function π′

maps [np, ns, a] to a. Note that a node np (resp. ns) of the pattern
p (BP s) may appear in several such new activities [np, ni

s, a] (resp.
[ni

p, ns, a]).
For compound (non-transitive) activities, the implementation τ ′

of [np, ns, a] consists of all DAGs that represent possible embed-
dings of the direct internal trace of np in p into the possible direct
implementations of ns in s. The nodes in the resulting graph (for
each of the possible embeddings) are labeled by triplets, as above,
recording for every activity pair in p to which activity pair in s it
was mapped in the given embedding. If no embedding was found,
[np, ns, a] is marked as failure. The embeddings may be found us-
ing conventional algorithms for subgraph homomorphism, whose
complexity is discussed below.

For efficiency, rather than constructing all the triplet activities
names and their implementations, the algorithm operates in a top
down manner. It starts by matching the pattern outer most activity
with the BP root, building the corresponding [np, ns, a] activity.
Then it compute its implementations, and the implementations of
the activities appearing in them, and so on.

As a final step, we perform ”garbage collection”. We recursively
mark as failure, activities for which all possible implementations
contain failure activities, and then remove from s′ all DAGs that
contain failure such activities.

When the query pattern contains transitive edges, we also define
new activity name for every transitive edge ep ∈ p and activity
ns ∈ s. When the pattern sub-graphs are embedded into the BP, the
transitive edges ep ∈ p (that connect two pattern nodes) are mapped
to all possible paths in in the BP (connecting the two corresponding
BP nodes). In the output graph, a BP node ns (with label a) that
appear on such path is labeled by the triplet [ep, ns, a].

Finally, when the pattern p contains transitive activities, the al-
gorithm becomes somewhat more complex. Recall that transitive
activities allow to navigate (transitively) inside the compound ac-
tivities of the EX-trace, and query their internal flow at any depth
of nesting. Specifically, part of the direct internal trace of np can
be matched with the direct implementation of ns, while other parts
may be matched at deeper levels of the implementation. To account
for that, the algorithm considers all possible splits of the (internal
traces of activities in the) pattern into sub-patterns, and the embed-
dings of those into the DAGs in s.

£

Before we consider the complexity of the algorithm, let us see
an example that will demonstrate its operation.

EXAMPLE 3.3. Consider again the EX-pattern p and BP s from
the Proof of Theorem 3.1 (the pattern given in Fig. 7, and the BP
of Figure 6) with π being the identity mapping. The annotations
next to the query and BP activity pairs represent their ids. The BP
s′ constructed by the algorithm is depicted in Figure 5. Its activity
names are of the form [qi, sj , a], where qi (sj) is the identifier of
a query (pattern) activity node (ignore now the labels appearing
within the nodes). The implementation of [q2, s2, Hotel] is d3 and
the implementation of [q3, s3, Hotel]) is d4. The renaming func-
tion π′ maps [qi, sj , a] to a. Note that this s′ has a single semi-
naive EX-trace, of the shape depicted in Figure 3, which is indeed
the only answer of the query p when applied on the (semi-)naive
traces of s.

We next explain how this s′ is constructed by the algorithm. The
construction of s′ begins by matching the query root q1 to the spec-
ification root s1, and forming a new activity name [q1, s1, T rip].
Then, the implementation of q1 is matched against the implementa-
tion of s1, thus embedding q2 (resp. q3) in s2 (resp. q3), forming a
new activity name [q2, s2, Hotel] ([q3, s3, Hotel]). This is a main
point of the algorithm: a unique activity name Hotel that labeled
two pattern nodes (s2 and s3), yielded two distinct activity names
in s′. Consequently, each of these two activities names can now
have distinct implementations that comply to the (different) condi-
tions that the query imposes on their structure. Indeed, we proceed
by embedding the implementation of q2 in the possible implemen-
tations of Hotel. There exists two such possible implementations,
one of which contains Credit1 and the other contains Credit2.
In the latter, there is no embedding of the implementation of q2;
In the former, there exists an embedding, yielding a node labeled
[q4, s4, Credit1]. Similarly, we construct the only implementation
of [q3, s3, Hotel], containing [q5, s5, Credit2].

The time complexity of the algorithm depends on the number
of possible sub-patterns that should be considered (exponential in
the size of the EX-pattern p) and the number of possible embed-
dings of these sub-patterns into the activation-completion DAGs in
s. Note that while, for each sub-pattern, the number of possible
embeddings for nodes is polynomial in the size of the DAGs (with
the exponent determined by the size of the sub-pattern), the number
of possible embeddings of transitive edges may be exponential in
the size of the DAGs in s: transitive edges are mapped to paths and
the number of paths in a DAG may be large. The following Propo-
sition shows that the exponential blowup is unavoidable, even for
very small queries and naive input traces.

PROPOSITION 3.4. There exists an infinite set S of BPs of in-
creasing sizes, and an EX-pattern p (with only six nodes), s.t. for
each BP s ∈ S , every s′ s.t. semiNaive(s′, π′) = p(Naive(s))

for some π′ is of size Ω(2|s|).

Proof:The BPs in the class S have a root activity whose imple-
mentation has the following form. The start and end activities of
the implementation are labeled a. The flow starts with the first a,
then splits into two activities b and c, then merges again into an-
other a activity, splits again into b and c, and so forth. The k-th BP
in S contains k repetitions of this form. The EX-pattern p consists
of a root activity pair whose internal trace contains a start and end
activity pairs both labeled a, and a single transitive edge between
them. Each EX-trace in p(Naive(s)) has a root activity with inter-
nal trace that is one of the individual paths from the start to the end
activity. There is an exponential number of such paths. Thus, each

358

specification generating all of these semi-naive traces must contain
each path as an explicit implementation of the root, and hence its
size must be Ω(2|s|).

£
We have seen above that selective trace types are more flexi-

ble and expressive than (semi-)naive trace types. It turns out that
adding such expressivity to the output type also allows for a more
compact representation of the possible query results, hence a more
efficient type inference algorithm.

THEOREM 3.5. For every EX-pattern p, BP s, and a renam-
ing function π, there exist s′,A′, π′ s.t. Selective(s′, A′, π′) =
p(semiNaive(s, π)). s′, A′, π′ can be computed in time polyno-
mial in the size of s (with the exponent determined by p).

Moreover, the added expressibility allows an efficient algorithm
even when the input type has stronger expressibility, i.e. represents
selective traces as well.

THEOREM 3.6. For every EX-pattern p, BP s, set of activities
A and renaming function π, there exist s′,A′ and π′ such that
Selective(s′, A′, π′) = p(Selective(s, A, π)). s′,A′ and π′ can
be computed in time polynomial in the size of s (with the exponent
determined by p).

Note that since every semi-naive trace type is also a selective one
(with A = ∅), the proof of Theorem 3.6 also proves Theorem 3.5.

Proof:(Sketch) The improved type inference algorithm is based
on the following observation. Consider the treatment of transitive
edges in the previous type inference algorithm, that was described
in the proof of Theorem 3.2. In that algorithm, each embedding of
the sub-patterns of p into the BP s is treated individually and con-
tributes one graph to s′. For a transitive edge, this means that each
of the paths between the nodes matched to its endpoints is treated
separately, hence the exponential blowup. To avoid this, we use the
added expressive power of selective traces. We view the sequence
of activity names in each path as a word, and the set of words ob-
tained from all paths between two nodes as a language L. It is easy
to define, for each pair of nodes, a regular grammar describing L.
We then use a similar construction to the one presented in the proof
of Proposition 2.12 (when showing that semiNaive⊂selective)
to define a BP s′′, along with A′′ and π′′, s.t. the words generated
in Selective(s′′, A′′, π′′) are precisely those of L. s′′ is then in-
corporated as part of s′.

Aside from the above, the type inference algorithm follows lines
similar to that of semi-naive traces. The resulting algorithm is poly-
nomial in the size of s, with the exponent determined by p.

£
A first obvious reason for not being able to provide an algorithm

of PTIME combined (data and query) complexity is the need to em-
bed the pattern sub-graphs in the DAGs of s. This entails checking
for subgraph homomorphism, known to be an NP-complete prob-
lem. Interestingly, we can expose an additional type of hardness
that comes from the nested shape of the BPs and the use of tran-
sitive activities in the EX-patterns to navigate (transitively) inside
compound activities and query their internal flow. To explain this,
we define a decision problem, MATCH?(p, s, A, π), as the prob-
lem of deciding, given a pattern p, a BP s, a set of activity names
A, and an activities renaming function π, whether some embedding
of p in a trace of s exists, i.e. whether p(Selective(s, A, π)) = ∅.
We can show the following.

PROPOSITION 3.7. Given an EX-pattern p, a BP s, a set of ac-
tivities A and a renaming function π, MATCH?(p, s, A, π) is
NP-hard in the size of p even if the following condition holds.

• In the direct internal traces of all the activities in p, and in
all the act-comp DAGs of s, all nodes besides the end node
have a single parent.

The problem is NP-hard even if only naive trace types are consid-
ered (i.e. A is empty and π is the identity function).

Note that for DAGs with the restricted shape enforced by the
condition, sub-graph homomorphism can be solved in PTIME (e.g.
using algorithms from [15]). Indeed, the hardness here comes from
the need to consider, when treating transitive pattern activities, all
the possible splits of the EX-pattern (see the algorithm in the proof
of Theorem 3.2). The proof, omitted here, is by reduction from
the problem of testing if a 3NF formula is satisfiable, known to be
NP-complete as well.

To complete the picture we can show that

PROPOSITION 3.8. Given an EX-pattern p, a BP s, a set of ac-
tivities A and a renaming function π, MATCH?(p, s, A, π) is in
NP (combined complexity).

Proof:(Sketch) The NP algorithm is based on the observation
that if p(Selective(s, A, π)) is not empty then there exists at least
one EX-trace e of s, obtained from the root activity by a polynomial
number of expansion steps, s.t. p(e′) is not empty, where e′ is the
selective EX-trace obtained from e by removing the activities in A
and applying the renaming function π. Though, for space reasons,
we do not give here a proof of this, the correctness stems from a
“pumping” lemma, analogous to the one existing for context free
string grammars [26].

Once this holds, the NP algorithm is simple - for each transitive
compound activity in the pattern, guess an expansion sequence for
the corresponding activity in the system. Then guess a mapping
from the query pattern to (the obtained expansions of) the activities
and verify that it satisfies the embedding requirements. £

This also implies that testing for the emptiness of p(semiNaive(s, π))
and p(Naive(s)) is in NP.

4. TYPE CHECKING
The problem of Type Checking is to verify that the query result

conforms to a given type. Formally, given a target BP specifica-
tion s′, (a renaming function π′ and a activities set A′), we want to
check if p(Naive(s)) ⊆ Naive(s′) (or, resp., p(semiNaive(s, π))
⊆ semiNaive(s′, π′), p(Selective(s, A, π))⊆ Selective(s′, A, π′)).

Observe that for a class X of trace types where inclusion is de-
cidable (i.e. one can decide for each two BPs s1, s2 if X(s1) ⊆
X(s2)), the ability to perform type inference implies that type check-
ing is also possible. We will see however that this is just a sufficient
condition and in some cases type checking is possible when type
inference is not.

First, we show undecidability for selective trace types.

THEOREM 4.1. Given an EX-pattern p and source and target
BP specifications, renaming functions and activity sets s, π, A and
s′, π′, A′, the problem of testing whether p(Selective(s, π, A)) ⊆
Selective(s′,π′,A′) is undecidable.

Proof:The proof is by reduction from the problem of testing
containment of context free (string) languages, known to be un-
decidable. Given two context free languages L, L′, we construct,
as in the proof of Proposition 2.12, s, A, π and s′, A′, π′ such that
Selective(s, π, A) and Selective(s′, π′, A′) capture, resp., L and
L′. The EX-pattern p consists of a root activity whose implemen-
tation contains two activity pairs connected by a transitive edge.

359

When applied to the EX-traces in Selective(s, A, π) it retrieves all
the paths (words) from the start to the end node of the root’s internal
trace, (hence all the words in L). Hence p(Selective(s, A, π)) =
Selective(s, A, π) and p(Selective(s, A, π))⊆Selective(s′, π′, A′)
iff L⊆L′. £

In contrast, type checking is decidable for naive and semi-naive
trace types. To prove this, we start by defining an auxiliary class of
semi-naive trace types called deterministic. Then we suggest a type
checking algorithm for such trace types, and finally we show that
we can translate every BP s and renaming function π to equivalent
s′ and π′ w.r.t. which the set of semi-naive EX-traces is determin-
istic. Note that our proof technique is inspired by [19] that consid-
ers inclusion of parenthesis string languages. However, the case is
more complex here as our proof must additionally account for the
graph structure which is more complex than a string structure, as
well as for the activities renaming function.

To define deterministic trace types we use the notion of nodes
origin. Let s be some BP specification and π a renaming function
for the activities in s. Consider an EX-trace e ∈ Naive(s) and
its image, after activities renaming, Π(e) ∈ semiNaive(s, π).
Clearly, there is at least one isomorphism from e to Π(e) mapping
activity pairs labelled a to activity pairs labelled π(a). A node no

in e that is mapped through such isomorphism to a node n in Π(e)
is called n’s origin. Note that in general, a node may have more
than one possible origin, as (a) Π is not one-to-one and (b) even for
a specific pair of traces e and Π(e), there may be several different
isomorphisms between them.

DEFINITION 4.2. For a BP specification s and activities re-
naming function π, the set of semi-naive traces semiNaive(s, π)
is called deterministic (w.r.t. s, π) if for every node n in it, its pos-
sible origins in Naive(s) all have the same activity name.

We can now show the following.

THEOREM 4.3. Given an EX-pattern p, a BP specification s
(with renaming function π), and a target BP specification s′ (with
renaming function π′ s.t. semiNaive(s′, π′) is deterministic),
the problem of testing if p(Naive(s)) ⊆ Naive(s′) (respectively,
p(semiNaive(s, π))⊆ semiNaive(s′, π′)) is decidable, and can
be solved in EXPTIME.

Proof:Note that naive trace types can be viewed as semi-naive
trace types where π is the identity function and that such semi-
naive traces are naturally deterministic. So it suffices to prove the
theorem for semi-naive trace types.

The intuition behind the proof is as follows. We saw above that
for every s, π and p we can derive s′′ and π′′ s.t. semiNaive(s′′, π′′) =
p(semiNaive(s, π)). To prove the theorem we will construct, for
every s′′, π′′ and s′, π′ where semiNaive(s′, π′) is determinis-
tic, an s′′′ and π′′′ such that semiNaive(s′′′, π′′′) is empty iff
semiNaive(s′′, π′′) − semiNaive(s′, π′) is empty. Note that
semiNaive(s′′, π′′)−semiNaive(s′, π′) = semiNaive(s′′, π′′)T

semiNaive(s′, π′), where semiNaive(s′, π′) is the comple-
ment of semiNaive(s′, π′), i.e. it contains all EX-traces that are
not included in semiNaive(s′, π′). Also note that, in fact, it suf-
fices to consider a restricted portion of semiNaive(s′, π′) that in-
cludes only the traces of the complement in which the size of each
direct internal trace is bounded by the size of the largest direct pos-
sible internal trace in EX-traces of s′′. In other word, we can bound
their size by some number k - the size of the largest act-comp graph
in s′′. This holds because other traces of the complement cannot be
isomorphic to some EX-trace of s′′: in traces of s′′, each activity
has a direct implementation chosen out of the act-comp graphs of
s, thus its size is bounded by k.

The rest of the proof is dedicated to showing that semi-naive
trace types are closed under intersection and (for deterministic semi-
naive trace types) also under the above restricted form of comple-
ment, and that these may be effectively computed. We start by
showing closure under intersection, then move to closure under (re-
stricted) complement.

PROPOSITION 4.4. For every pair of BPs s, s′, we can compute
a BP s′′ s.t. Naive(s′′) = Naive(s) ∩Naive(s′).

Similarly, for every s, π and s′, π′ there exists s′′, π′′ such that
semiNaive(s′′, π′′) = semiNaive(s, π) ∩ semiNaive(s′, π′).

Proof:Let us first consider naive traces. Let s = (S, s0, τ), s′ =
(S′, s′0, τ

′) be two BP specifications. The required s′′ = (S′′, s′′0 , τ ′′)
is constructed as follows.

The set of its activity names is the intersection of the activ-
ity names sets of s′, s′′. If the activity names r, r′ labeling the
root activities of s and s′ are different, then clearly Naive(s) ∩
Naive(s′) = ∅ and s′′ is the empty BP. Otherwise, the root of
s′′ is labeled by r = r′. The construction of s′′ proceeds as fol-
lows. For every compound activity name a in S′′ that hasn’t been
treated, we set τ ′′(a) = τ(a)∩ τ ′(a). This intersection is a regular
intersection between sets of graphs, where a graph g ∈ τ(a) ap-
pears in the intersection if it is isomorphic (up to node ids) to some
g′ ∈ τ ′(a).

All the act-comp graphs appearing in τ ′′(a), for some activity
name a, are added to S′′. Finally, we perform “cleanup”: repeat-
edly, all the graphs in S′′ are checked and the graphs g having
compound activities a for which τ ′′(a) = ∅ are removed from S′′.
τ ′′ is being adjusted accordingly, removing g from the implemen-
tation sets of all activities. Note that this may now make τ ′′(b) = ∅
for some additional activities b, and recursively trigger the removal
of more graphs from S′′, etc.

The proof for semi-naive traces follows similar lines. Two main
differences are that (1) the graphs of the two BPs are now tested
for isomorphism modulo the activity renaming functions π and π′,
and (2) the nodes in s′′ represent pairs of nodes in s and s′ and are
labeled by pairs of their origin activity names. The implementa-
tion of such activity (a, a′) is computed as the intersection of the
implementation of a in s with the implementation of a′ in s, with
isomorphisms computed up to π, π′. The result of each such iso-
morphism is an act-comp graph whose nodes are labeled by pairs
of the original activity names from s, s′, labeling nodes matched
by the isomorphism. The cleanup step remains as above.

£
We now consider (restricted) complement. We start by defining

an auxiliary notion of k-bounded EX-traces. A k-bounded EX-trace
is defined as a trace in which the size of the direct internal traces of
each compound activity is bounded by k. Given a BP specification
s with activities renaming function π, we use semiNaivek(s, π)
to denote the set of all k-bounded EX-traces that do not belong
to semiNaive(s, π). We shall construct a BP s with renaming
function π s.t. semiNaive(s, π) = semiNaivek(s, π). This
construction may be used for any k.

PROPOSITION 4.5. For every BP specification s and activity
renaming function π, where semiNaive(s, π) is deterministic, and
for every k, there exists a BP specification s and a renaming func-
tion π s.t. semiNaive(s, π) = semiNaivek(s, π).

Observe that every BP specification is deterministic w.r.t to π
that is the identity function. Thus, it follows that the same holds for
naive EX-traces of any s.

Proof:For each (compound) activity a in s , let a be a new (com-
pound) activity name not in s that will be used to represent the

360

”complement” of a. Let Act be the set of activity names consisting
of the activity names in s and their ”complements”. The renaming
function π maps a and a to π(a), i.e. π(a) = π(a) = π(a).

We construct s = (S, s0, τ) as follows. S is the set of all pos-
sible act-com DAGs with activity names in Act and size bounded
by k. s0 is obtained from the root of s by replacing the root ac-
tivity name a by a. The implementation function τ is defined as
follows. For compound activities a from s, τ(a) = τ(a). For the
”complement” activities, τ(a) is a subset of S consisting of (1) all
graphs g ∈ S where π(g) 6∈ π(τ(a)), (2) the graphs in τ(a) with
one or more or their compound activities a replaced by the corre-
sponding “complement” a. We can show that semiNaive(s, π) =
semiNaivek(s, π), by induction on the nesting depth of traces.

£
Applying Theorem 3.2, for inferring type s′′ corresponding to

the query answer, then combining Proposition 4.4 with Proposi-
tion 4.5 (applied for k which is the size of the s′′), we obtain an
EXPTIME algorithm for type checking, when the target type is de-
terministic.

£
Now that we showed decidability of type checking for determin-

istic semi-naive target types, we next show that we can translate
every BP s and renaming function π to equivalent s′ and π′ w.r.t.
which the set of semi-naive EX-traces is deterministic.

THEOREM 4.6. Given a BP s and an activities renaming func-
tion π, there exist a BP s′ and a renaming function π′ such that
semiNaive(s′, π′) = semiNaive(s, π) and semiNaive(s′, π′)
is deterministic w.r.t. s′, π′.

Proof:(Sketch) The idea is to create equivalence classes of ac-
tivity names from s, that have the same set of semi-naive (sub) EX-
traces rooted at them. As the trace types here are semi-naive, and
not selective, each such equivalence class may only contain activi-
ties that are mapped by π to the same activity name. The grouping
of activities to equivalence classes will ensure the determinism; to
ensure that no new traces are created, we will require that each
member of the equivalence class indeed had, in s, an implementa-
tion equivalent to each implementation of the equivalence class in
s′; finally to ensure that no traces are lost we will consider only
the maximal equivalence classes for which the requirements above
holds. The details follow.

We shall use the notation Π over act-comp graphs, and denote
Π(g) as the graph obtained from g by applying π over all of its
activity names. Similarly, Π(G) where G is a set of graphs, denotes
the set obtained by applying Π on each g ∈ G.

First, we group together all activities of s that are mapped by π
to the same activity, obtaining a set γ of activity subsets. We say
that each activities subset is represented by the (single) activity to
which its members are mapped. As each activity of s is mapped
by π to a unique activity (π is a function), we can guarantee that
no activity will appear in two different subsets. Furthermore, each
subset is represented by a single activity.

Each such subset A′ forms an activity of s′ and π′ maps A′ to
its representing activity. We exploit the notation of A′ to denote
both the activity name, as well as the subset of activity names that it
represents. We say that a set A′ is an equivalence class with respect
to a graph g′, if for all a ∈ A′, there exists a graph ga, obtained
from g′ by replacing each activity name B with some b ∈ B, such
that Π(ga) ∈ Π(τ(a)).

The new implementation function τ ′ is defined as follows. For
an act-comp graph g′ labeled by activities of s′, and for an activity
A′ of s′ (representing a subset of the activities ofs), g′ ∈ τ(A′)
if and only if A′ is the maximal set out of the sets in γ, that is an

equivalence class with respect to g′. Also, with respect to each
specific A′ and keeping fixed all other activities in g′, each atomic
activity in g′ is required to represent the maximal set of atomic
activities out of these in γ.

To conclude we can show that the set of EX-traces stays intact
and is deterministic w.r.t. the defined s′, π′.

£
The immediate corollary of Theorems 4.3 and 4.6 follows.

COROLLARY 4.7. Given an EX-pattern p, a BP specification s
(with renaming function π), and a target BP specification s′ (with
renaming function π′), the problem of testing if p(Naive(s)) ⊆
Naive(s′) (resp. p(semiNaive(s, π)) ⊆ semiNaive(s′, π′)) is
decidable.

Our proof is constructive, and gives an EXPTIME type checking
algorithm. It may be extended to an algorithm that checks equal-
ity to the target trace type, rather than just inclusion, in a fairly
straightforward manner. For semi-naive trace types, we can show
that the problem is CO-NP-hard in the size of the trace types. (The
proof works by reduction from the the problem of testing unsatisfi-
ability of 3NF formulas, known to be CO-NP-complete). For naive
trace types it is open whether an algorithm polynomial in the size
of input and output types exists. We already know by Proposition
3.7 that unless P=NP, an algorithm that is also polynomial in the
size of the query does not exist.

5. EXTENSIONS
To conclude we consider some useful extensions to the query

language that enhance the expressive power, and facilitate the query-
ing of real life EX-traces.

Variables and joins. The first extension for EX-patterns that
we consider is obtained by attaching variables to nodes and tran-
sitive edges, and introducing equality conditions (called joins) on
these variables. The notion of embedding (from Definition 2.15)
extends naturally to account for such variables: For node variables,
we require that nodes labeled by equal variables are all mapped
to EX-trace nodes having the same activity name; For transitive
edges, if e1 and e2 are transitive edges to which equal variables are
attached, we require that the sequence of node labels on the paths
p1, p2 to which e1 and e2 are mapped (resp.) represent the same
word. Inequality restrictions on variables are similarly defined.

An example for a query with variables and a join is depicted in
Figure 8(a). Two of its transitive edges are annotated with the vari-
ables $x and $y, and the join condition is $x = $y. The intuitive
meaning is that the query searches for EX-traces that contain two
paths, one from a C activity to an F activity and the other from a
D activity to an F activity, s.t. the sequences of labels on the two
paths form the same word. In the sequel, we will refer to the vari-
ables annotating nodes (transitive edges) as node (path) variables.
Results. Incorporating node variables in our type inference and
type checking algorithms is straightforward. Theorems 3.2, 3.6 and
Corollary 4.7 still hold for queries with joins on node variables.
For queries with joins on path variables, however, type inference
may no longer be possible, even when the input is of naive trace
type. This is because a query that tests for equality of path variables
may have for an answer a set of EX-traces that does not belong to
Selective, as illustrated by the following theorem. The theo-
rem also highlights the difficulty introduced by the use of transitive
activities in the query.

THEOREM 5.1. 1. There exist a BP s and an EX-pattern p
with join on path variables s.t. there is no BP s′, renaming

361

Figure 8: Query with variables.

function π′ and set of activities A′, where Selective(s′, A′, π′)=
p(Naive(s)).

2. For EX-patterns with no transitive activities, type inference
is possible for semi-naive (resp. selective) input and output
types, even with joins on path variables. The time complexity
here, in both cases, is exponential.

Proof:(Sketch) We first consider part 1, then part 2. Consider
again the EX-pattern p depicted in Figure 8(a), and the BP s whose
act-comp DAGs are depicted in Figure 8(b). Assume that A is
the root activity and has a single implementation - the act-comp
graph (d2), while E has two possible implementations - (d3) and
(d4). Consequently, Naive(s) contains EX-traces where the inter-
nal trace of the two Es (that follow C and D) includes an arbitrary
number of nested E activities, ending by a G activity. Note that
p(Naive(s)) includes only traces in which the number of nested
E activities on both paths (the one following C and the one follow-
ing D) is identical. It is easy to show that this set of EX-traces may
not be captured by any selective trace type (as it requires correlation
between activity expansions at distinct parts of the EX-trace).

The pattern p in the above example contains a transitive root
node, hence the transitive edges in its internal trace are matched to
paths that zoom into the nested activities of the EX-trace. We next
show that for queries with no transitive nodes, type inference is still
possible. The difference is due to the fact that in such queries, the
direct internal trace of each compound node in the query is matched
against the direct internal trace of the corresponding EX-trace node.
Thus, the number of possible matchings is finite, and we may sim-
ply enumerate all matchings, selecting those that conform to the
join criteria. However, for transitive edges, the number of possible
matches (as the number of paths in a DAG) might be exponential,
hence the exponential time complexity.

£
While such joins make type inference impossible/harder, type

checking is still possible for the same cases as before.

THEOREM 5.2. Type checking is possible for (semi)-naive in-
put and output types, even with joins on path variables.

Proof:(Sketch) We first ignore the joins and compute the semi-
naive output type t for the BP and the pattern (without the joins).
Next we compute (as in the proof of Corollary 4.7) a semi-naive
type t′ describing the EX-traces that belong to t but not to the re-
quired target type. To conclude we show that, for semi-naive trace
types, it is possible to check if there exists some EX-trace in t′ for
which the result of the EX-pattern (with the joins) is not empty.
The answer to the type checking problem is positive iff no such
EX-trace exists. £

Further extensions. To conclude this section, we briefly and
informally discuss two additional extensions to the query language,
namely projection and negation. We first describe them, then con-
sider their effect on the results presented in the previous sections.
Projection. In a query with projection, the user is interested in
projecting out only the matches to some part of the EX-pattern.
These EX-pattern nodes and edges are marked as projected. The
non-projected EX-pattern parts stand, in this case, as a constraint:
the projected parts must co-appear with the non-projected parts in
a qualifying trace.
Negation. In a query with negation, the patterns have some nodes
and edges that are marked as negative. These again stand as con-
straints: the query searches for all traces that contain occurrences
of the positive portions of the patterns, and does not contain any of
the negative parts co-appear.

We can show that our results on type checking and type infer-
ence extend to EX-patterns with negation and projection. That
is, Theorems 3.2 and 3.6 and Corollary 4.7 hold for the extended
EX-patterns as well. For space constraints the type inference and
checking algorithms that support these extensions remain outside
the scope of this paper.

6. RELATED WORK
We next consider related work, highlighting our relative contri-

bution.
The query language studied here is used in BPQ, a BP manage-

ment system that allows to analyze BP specifications, monitor BP
instances at run time, and query their execution traces [2, 3]. All
these tasks are performed via a uniform, intuitive, graphical query
interface, whose abstraction (for the case of traces analysis) was
presented here. The complexity of query evaluation was studied in
[10, 3]. The latter work highlights the value, for query optimiza-
tion, of knowledge on the structure of the queried (sub-) traces, and
motivated the present work.

There is a tight connection between the classes of EX-trace types
studied here and corresponding classical classes of string and graph
languages. We already mentioned the analogy between naive trace
types and bracketed string languages [14], semi-naive trace types
and parenthesis languages [19], and selective trace types and con-
text free languages [26]. There is also a close connection between
selective trace types and context free graph languages[16, 9]. These
are defined using context free graph grammars, an extension of con-
text free string grammars to graphs. They include graphs where
some nodes represent non-terminals, and derivation rules allow-
ing to replace them by graphs. A simple variant requires each
graph to have single entry and exit nodes. It is easy to show that
Selective is equivalent to the set of graphs defined by such
grammars. However, to our knowledge, no model in this area that
is equivalent to Naive or semiNaive has been studied before.

In terms of query languages, most of the work on context free
graph grammars is concerned with formal logic, and specifically
First and (Monadic) Second Order Logic (MSO). MSO is very ex-
pressive, and in particular may capture our query model. Cour-
celle [9] has shown that the theory of MSO over context free graph
grammars is decidable. However, the complexity of the algorithms
suggested in [9] is non-elementary in the size of the query. By
choosing a restricted - yet expressive enough for our needs - query
language, we are able to obtain more efficient, practical, type in-
ference algorithms. As to type checking, in order to use the decid-
ability results of Courcelle, it should first be shown that the set of
semi-naive EX-traces of any given BP and renaming function may
be expressed by MSO. (We know that this is not the case for selec-

362

tive trace types or else type checking would be decidable for them).
Whether or not this holds is a subject of on-going research, but in
any case, even if an algorithm that walks in this path exists, its com-
plexity will be non-elementary in the size of the type specification
(whereas the complexity of our algorithm is exponential).

Related models have been studied in the area of verification. We
have mentioned above that selective trace types can be expressed by
SERSM[1]. However, the query languages considered for SERSMs
differ in expressive power from ours. For instance, graph homo-
morphism, which can be expressed in our query language cannot
be expressed by the temporal logics often used in these works.
Moreover, as the needs and motivations in verification are differ-
ent, there are (to the best of our knowledge) no equivalences of the
particular families of trace types studied here. We note that query-
ing processes using formal languages representation was studied
extensively, typically using temporal logics (see e.g. [11, 12, 7]).

Type checking and type inference are well studied problems in
functional programming languages [22]. The complexity there is
derived from the interaction of function types, polymorphism, and
let-bindings; as pointed out in [8], this analysis is valuable for
database queries as well. In our setting, the complexity is derived
from the interaction of nested activities in the types with transi-
tive edges/activities in queries. Type inference and type checking
were also considered extensively in the context of XML. The XML
analogous of the queries studied here are XML selection queries
[20] that use tree patterns to select subtrees of interest. For such
XML queries, [20] showed that type checking can be performed
in time complexity equal to or lower than type inference (depend-
ing on the XML types/queries being considered). Compare to our
setting (bearing the obvious distinction of having nested DAGs in-
stead of flat trees), where type checking may be harder than type
inference. Another common class of XML queries is transforma-
tion queries that restructure the input tree. [20] and [21] showed the
impossibility of type inference and undecidability of type checking
under a general model of transformations. Further work (e.g. [17],
[13]) considered restrictive transformation models that allow de-
cidability of type checking, with complexity ranging from PTIME
to non-elementary. An interesting future work is to examine the
adaptation of corresponding (restricted) transformation queries to
our settings. Another aspect to study are extensions of the query
language to consider additional information often available in EX-
traces, such as the names and values of the activities data variables.
It may be interesting to formulate practical restrictions on the use
of data values that allow type inference and checking.

7. CONCLUSION
We studied in this paper type inference and type checking for

queries over BP execution traces, modeled as nested DAGs. We
formally defined and characterized three common classes of EX-
trace types - naive, semi-naive, and selective. We considered their
respective notions of type inference and type checking and studied
the complexity of the two problems for query languages of varying
expressive power.

Our results have two main important practical implications. For
type inference they signal the class of selective trace types as an
“ideal” type system for BP traces, allowing both flexible descrip-
tion of the BP traces as well as efficient type inference. We thus
believe it to be a firm basis for further study of type-based query op-
timization for BP management systems. On the other hand, for type
checking, we showed that even for limited trace types, type check-
ing takes EXPTIME (and is impossible for selective trace types).
Consequently, we believe that run-time checks of the query result
are likely to be a more useful in practice.

8. REFERENCES
[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps,

and M. Yannakakis. Analysis of recursive state machines.
ACM Trans. Program. Lang. Syst., 27(4), 2005.

[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying
business processes. In Proc. of VLDB, 2006.

[3] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring
business processes with queries. In Proc. of VLDB, 2007.

[4] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen.
Type-based xml projection. In Proc. of VLDB, 2006.

[5] Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/.

[6] BPMI. Business process management initiative.
http://www.service-architecture.com/web-
services/articles/business process query language bpql.html.

[7] T. Bultan, J. Su, and X. Fu. Analyzing conversations of web
services. IEEE Internet Computing, 10(1), 2006.

[8] J. Bussche, D. Gucht, and S. Vansummeren. A crash course
on database queries. In Proc. of PODS, 2007.

[9] B. Courcelle. The monadic second-order logic of graphs. Inf.
Comput., 85(1), 1990.

[10] D. Deutch and T. Milo. Querying structural and behavioral
properties of business processes. In Proc. of DBPL, 2007.

[11] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and D. Zhou. A
verifier for interactive, data-driven web applications. In Proc.
of SIGMOD, 2005.

[12] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of
communicating data-driven web services. In Proc. of PODS,
2006.

[13] J. Engelfriet, H. J. Hoogeboom, and B. Samwel. Xml
transformation by tree-walking transducers with invisible
pebbles. In Proc. of PODS, 2007.

[14] S. Ginsburg and M. Harrison. Bracketed context-free
languages. J. Computer and System Sciences, 1, 1967.

[15] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing xpath queries. ACM Trans. Database Syst., 30(2),
2005.

[16] D. Janssens and G. Rozenberg. Graph grammars with
node-label controlled rewriting and embedding. In Proc. of
COMPUGRAPH, 1983.

[17] S. Maneth, T. Perst, and H. Seidl. Exact xml type checking in
polynomial time. In Proc. of ICDT, 2007.

[18] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag, 1992.

[19] R. McNaughton. Parenthesis grammars. J. ACM, 14(3),
1967.

[20] T. Milo and D. Suciu. Type inference for queries on
semistructured data. In Proc. of PODS, 1999.

[21] T. Milo, D. Suciu, and V. Vianu. Type checking for xml
transformers. In Proc. of PODS, 2000.

[22] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[23] Oracle BPEL Process Manager 2.0 Quick Start Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[24] Y. Papakonstantinou and V. Vianu. Dtd inference for views
of xml data. In Proc. of PODS, 2000.

[25] D. M. Sayal, F. Casati, U. Dayal, and M. Shan. Business
Process Cockpit. In Proc. of VLDB, 2002.

[26] M. Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 1997.

363

