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ABSTRACT

Providing machines with comprehensive knowledge of the world’s
entities and their relationships has been a long-standing vision and
challenge for AL Over the last 15 years, huge knowledge bases, also
known as knowledge graphs, have been automatically constructed
from web data, and have become a key asset for search engines
and other use cases. Machine knowledge can be harnessed to se-
mantically interpret texts in news, social media and web tables,
contributing to question answering, natural language processing
and data analytics. This position paper reviews these advances and
discusses lessons learned. It highlights the role of "DB thinking"
in building and maintaining high-quality knowledge bases from
web contents. Moreover, the paper identifies open challenges and
new research opportunities. In particular, extracting quantitative
measures of entities (e.g., height of buildings or energy efficiency of
cars), from text and web tables, presents an opportunity to further
enhance the scope and value of knowledge bases.
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1 INTRODUCTION

Enhancing computers with “machine knowledge” that can power
intelligent applications is a long-standing goal for AI [14]. This
formerly elusive vision has become practically viable, by major
advances on the automatic construction of large-scale high-quality
knowledge bases (KBs), distilling noisy Internet content into crisp
statements on entities, their attributes and relationships between
them. Today, publicly available KBs, such as BabelNet (babelnet.
org), DBpedia (dbpedia.org) , Wikidata (wikidata.org) or Yago (yago-
knowledge.org), feature hundred millions of entities (such as people,
organizations, locations and creative works like books, music etc.)
and many billions of statements about them (such as who founded
which company when and where, or which singer performed which
song). Industrial KBs, deployed at major companies and widely
referred to as knowledge graphs (KGs), have an even larger scale,
with one or two orders of magnitude more entities and facts [23].
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A major use case where KGs have become a key asset is web
search engines. When we send a query like “curie awards” to Baidu,
Bing or Google, we obtain a crisp list of honors received by Marie
Curie including her two Nobel prizes. The search engine taps into its
background KG to automatically map the input strings “curie” and
“awards” to individual entities, infer the implicitly stated relation
(won award), and retrieves relevant facts accordingly. The returned
list is strictly about Marie Curie’s awards and does not erroneously
conflate the result with prizes of her husband Pierre or her daughter
Irene Curie (married Joliot). The KG carefully distinguishes entities,
and thus enables precise and concise answering.

Further application areas of KGs include question answering, lan-
guage understanding, text analytics and data cleaning — essentially,
all areas where background knowledge about entities is beneficial.
In data cleaning and database curation, master-data repositories
of entities and their relations are a potential asset for discovering
and repairing errors and for de-duplicating records. In health stud-
ies, for example, datasets can be cleaned or augmented by linking
entities to a KB and leveraging the KB contents.

In addition to general-purpose encyclopedic knowledge (i.e., the
“gist” of Wikipedia contents), there is also notable work on building
domain-specific KGs for verticals like health and life sciences, food
and nutrition, finance, consumer products, and more. Comprehen-
sive surveys on KB construction and curation are [11, 25, 38]. In
the following, Section 2 reviews history and (a subjective choice
of) lessons learned, Section 3 discusses long-term challenges, and
Section 4 outlines research opportunities for near-term progess.

2 LESSONS LEARNED

The first knowledge bases of notable scope and size were Cyc and
WordNet, both completely hand-crafted by small teams in the 1990s.
They were rich in taxonomic knowledge about types (aka classes)
and general concepts, but were short of type instances, that is,
individual entities. In the mid 2000s, the first generation of auto-
matically constructed KBs revived the theme of machine knowledge
and became a game-changer, by leveraging Wikipedia contents and
applying information extraction algorithms at large scale. Notable
projects were DBpedia, Freebase, KnowlItAll, WikiTaxonomy and
Yago. Later, further projects came along, such as DeepDive, Knowl-
edge Vault, NELL, System T and Wikidata, and greatly advanced
the methodological repertoire and the ability to construct huge
KBs. These two decades of research and industrial practice on KB
creation and curation provided insights on what works well and
where the problems, pitfalls and risks lie. The following offers a
subjective selection of lessons learned, highlighting where and why
DB thinking is vital.
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2.1 Knowledge Graphs are More Than Graphs

The term knowledge graphs is actually a misnomer and oversim-
plifies the structure and value of KBs. Graphs are binary relations,
but KBs are not limited to such instances, called subject-predicate-
object triples, or SPO triples for short. Hence, KB and not KG would
be the appropriate terminology, but the term KG became widely
established through press releases of big Internet stakeholders (e.g.,
[33]). Some research on KG embeddings even restricted itself to
entity nodes and entity-to-entity relationship edges, disregarding
attribute values with literals: numbers, strings, dates and textual
descriptions (see survey [42] and references). KBs go beyond plain
entity graphs in several important ways:

Higher-arity Relations for Context: For many facts, it is crucial
to capture temporal, spatial and other context attributes, which
leads to higher-arity tuples. Decomposing theses into binary-relation
tuples would potentially lose information, a basic lesson in DB
courses. For example, representing the two Nobel prizes of Marie
Curie, one in Physics 1903 and one in Chemistry 1911, merely by
SPO triples would lose the specific field-year combinations. Ma-
ture KBs overcome this issue by composite objects and qualifier
predicates. These can be syntactically cast into the RDF model, but
semantically this is no longer a plain graph.

Knowledge Provenance: Provenance of KB statements is another
crucial case for higher-arity relations. We need to track from which
sources by which methods at which time we extracted a statement.
Without this information, it becomes impossible to maintain and
curate the KB as its content evolves over long time horizons.

Consistency Constraints: KBs also include and leverage inten-
sional data in the form of constraints and rules. The latter serve
to derive updates by bots, such as ensuring the reciprocity of the
mother-of and child-of relations. Constraints are essential for con-
sistency checking and quality assurance: from type checking, func-
tional and inclusion dependencies, all the way to temporal consis-
tency and more. For example, knowing that Alan Turing is a person
prevents us from erroneously placing him in the type awards, as
people and abstractions (a supertype of awards) are disjoint. Like-
wise, it is impossible that he is born in both London and Princeton,
detectable by a functional dependency. Consistency constraints are
a key asset for knowledge acquisition from noisy sources with joint
inference over multiple candidate statements (e.g., [21, 27, 35], and
indispensible for KB cleaning by eliminating false positives.
All these are key points that DB thinking contributes to KBs.

2.2 Precision and Rigor Matter

KB construction inevitably faces a precision-recall trade-off: the
more entities and facts the KB captures, the higher the likelihood
that more statements will be incorrect. In prioritizing betweem
recall (KB coverage) and precision (KB correctness), we favor preci-
sion, aiming for a KB of near-human quality: comparable in error
rates to expert curation, say 1 to 5 percent. The rationale is that the
KB should provide reliable facts for all kinds of downstream use
cases, and errors may get amplified through the application stack.
To demonstrate this necessity, assume that a KB has 90% precision;
with 1 billion statements this means 100 million errors. At this scale,
fixing errors by curators or crowdsourcing is prohibitive.

A similar point can be made about the representation of entities
and their types. A rigorous KB aims to canonicalize all entities so
that they are uniquely identifiable. A canonicalized representation
captures the alias names for each entity and groups statements
per entity, not per name. Without this rigor, a KB could treat each
of the following names as if they were different entities: “Alan
Turing”, “Dr. Turing OBE”, “Alan Mathison Turing”, “Turing award”,
“ACM Turing Award”, “Turing awardee” etc. This is a recipe for
inconsistency and a cardinal sin from a DB perspective. The KB does
not resolve this name ambiguity by itself as different entities share
alias names, but the KB provides the foundation for downstream
disambiguation: entity linking for mentions in texts or tables [32].
Many methods for entity linking, coreference resolution and related
tasks have leveraged large KBs as a reference repository and source
of distant-supervision signals.

Likewise, the type taxonomy of a KB needs to be rigorous. Once
we include loose associations as class memberships or subclass-
superclass subsumptions, all kinds of errors are possible. For exam-
ple, including Alan Turing in the class marathon (as he was indeed
a marathon runner), would put him also in the superclass Greek
inventions, and placing the class code breaker as a subclass of
Internet crime would lead to equally wrong inferences.

2.3 Input Data Quality is Key

It is easier to build a limited-scope core KB first and gradually aug-
ment and grow it, than to create a full-scale KB in a single shot. This
staggered approach has the freedom of choosing which sources it
taps into at different stages. Whenever possible, we would prioritize
what we call premium sources, with the following characteristics:

e authoritative high-quality content about entities of interest,

e high coverage of many entities, and

o clean and uniform data representation.

This suggests first “picking low-hanging fruit” from structured or
clean semi-structured sources (like web tables, lists etc.) and tack-
ling text documents later and only when needed for coverage. For
broad encyclopedic KBs, Wikipedia has served as such a premium
source, most notably by its infoboxes and category system, but
also by its clean markup, clear and largely unified headings and
well-organized lists.

For vertical domains such as geography, finance or health, pre-
exisiting databases and high-quality datasets, catalogs and rich web
sites with uniform markup are the best choice. Consider the task of
constructing a health KB with focus on lifestyle-induced diseases
such as diabetes, hypertension or gastrointestinal disorders (possi-
bly for the purpose of better understanding risks and complications
of Covid cases). A seemingly natural source to capture entities like
diseases, symptoms, risk factors, drugs and other treatments and
their relationships would be PubMed articles. However, this is a
formidable problem, already for recognizing and disambiguating
entities; there is hardly a chance of achieving near-human-quality
output. Instead, we advocate harvesting premium sources first, to
create a high-quality core KB. For entities and types, the UMLS
thesaurus and the MeSH taxonomy are good starting points, sup-
plemented with biomedical databases on drugs (e.g., Drugbank),
proteins (e.g., UniProt) and more. For relationships between the
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different entity types, e.g., which are the risk factors that trigger di-
abetes or aggravate it, the best choice is to tap into semi-structured
contents as provided by patient-centric health portals such as may-
oclinic.org or patient.info. They contain many lists with informa-
tive headings (e.g., symptoms (of diseases), side effects (for drugs)
etc.), this way simplifying their extraction into relational tuples.
DOM-tree labels (HTML headings, list items etc.) have been found
most useful in various projects for large-scale KB construction (e.g.,
(4. 5]).

The take-home point is that judicious thinking about data source
discovery and data quality assessment are crucial.

2.4 KB Construction is not End-to-End ML

It is tempting to think of KB construction as a single end-to-end
machine learning (ML) task: collect enough training data, devise a
neural network architecture (or just select Transformer), perform
gradient descent to minimize a suitable loss function, and then
deploy the trained model. This is wishful thinking. The task would
require a huge amount of labeled training samples that cover a wide
variety of cases.

KB construction is not a one-time task anyway. KBs serve as
infrastructure assets, maintained over long timespans. The life-cycle
involves correcting errors, adding new entities and facts, marking
outdated statements (with temporal annotations), expanding the
schema of attributes and relations, and further quality-assurance
measures. For this bigger picture, a diverse toolbox and a substantial
amount of engineering are required, with humans in the loop.

Taking the ML-only thought even further, we may not need
explicit KBs at all, because we could just pull in suitable raw data
into end-to-end-learning for whatever specific task arises. This is
barely viable, as each task would repeatedly have to go through
the demanding stages of data collection and preparation — the pain
point of ML systems “in the wild”. In fact, a major motivation for
KBs has been to factor out these stages once and for all, so that high-
quality background knowledge is already available when needed
(e.g., for distant supervision or data augmentation). KBs do not
become obsolete by ML; machine knowledge and machine learning
complement and strengthen each other.

3 OPEN CHALLENGES

3.1 Expanding KB Coverage

Despite the impressive size of today’s KBs, they have many gaps
and are still far from the desired coverage of salient facts. The
shortcomings have two different flavors:

o Long-tail entities or facts about them are missing, and also non-
standard types are hardly covered, such as climate activists,
anti-war protest songs or aboriginal rock paintings.

e Facts about entities are largely restricted to basic predicates
regarding biography, family, awards, memberships and major
works. However, many potentially interesting predicates are
absent, examples being song-is-about, book-features-location
or software-deployed-at.

The lack of capturing predicates has been referred to as a prob-
lem of “unknown unknowns” [18], as KBs and even KB architects
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are completely unaware of their existence and relevance. Address-

ing this gap requires new ways of identifying what constitutes

salient knowledge about entities. For example, the following state-

ments would be considered highly notable by most humans (and

are prominently mentioned in Wikipedia articles):

o The Joan Baez song “Diamonds and Rust” is about Bob Dylan.

e A replica of the black monolith from the “2001” movie was found
in a remote canyon in the Utah desert.

o Cixin Liu’s book Three Body features interesting locations like
Tsinghua University and Alpha Centauri.

e Frida Kahlo, the surrealistic Mexican painter, suffered her whole
life from injuries in a bus accident.

Despite advances on Open IE to discover new predicates [20, 22] and

on neural methods to extract relational instances [6], KB coverage

is still far from where we would like it to be. Moreover, the pace at

which the world evolves will widen the gap, unless we can come

up with new methods for both discovering relevant data sources

and reliably extracting crisp statements.

3.2 Supporting Analytic Tasks

KBs should also support knowledge workers like (data) journal-
ists, (business and media) analysts, health experts, and more. Such
advanced users go beyond finding entities or looking up their prop-
erties, and often desire to filter, compare, group, aggregate and rank
entities based on quantities: financial, physical, technological, medi-
cal and other measures, such as annual revenue or estimated worth,
distance or speed, energy consumption or CO2 footprint, blood lab
values or drug dosages. Examples of quantity-centric information
needs are:
e Which women have five or more marathons under 2:25:00 hours?
e How do the sales/downloads, earnings and wealth of male and
female singers compare?
e How do Japanese electric cars compare to US-made models, in
terms of energy efficiency, CO2 footprint and cost/km?
e Which are the top-10 countries with the highest coverage of
vaccinations against virus diseases?
These kinds of analyses would be straightforward, using SQL or
SPARQL queries and data-science tools, if the underlying data were
stored in a single database or knowledge base. Unfortunately, this
is not the case. KBs are notoriously sparse regarding quantities; for
example, Wikidata contains several thousand marathon runners
but knows their best times only for a few tens (not to speak of
all their races). Instead of a KB, we could turn to domain-specific
databases on the web, but finding the right sources in an “ocean
of data” and assessing their quality, freshness and completeness is
itself a big challenge.

3.3 Commonsense Knowledge

Commonsense knowledge (CSK) is the Al term for world knowledge

that virtually all humans agree on. This comprises:

e Notable properties of everyday objects, such as: mountains are
high and steep, they may be snow-covered or rocky (but they
are never fast or funny).

o Behavioral patterns and causality, such as: children live with their
parents, pregnancy leads to birth, and so on.



e Human activities and their typical settings, such as: concerts in-
volve musicians, instruments and audience; rock concerts involve
amplifiers and take place in big halls or open air (and not in bars).
CSK is difficult to acquire by machines, because of sparseness

and bias in online contents, suggesting prejudiced or sensational

statements such as: programmers are lonely, or programmers work

72 hours without sleep. CSK may be a crucial building block for

next-generation Al, for use cases like QA and chatbots. Recent

tutorials on CSK acquistion and reasoning, with ample references,

are [12, 29].

A variation of CSK that matters for human-computer interac-
tion is socio-cultural knowledge: behavioral patterns that do not
necessarily hold universally, but are widely agreed upon within a
large socio-cultural group. For example, there are preferred styles of
eating meals, with different utensils (e.g., silverware vs. chopsticks)
different ways of sharing, etc.

4 OPPORTUNITIES FOR DB RESEARCHERS

4.1 KB Coverage of Salient Facts

While there are good methods for handling the long tail of enti-
ties, the bottleneck is obtaining more informative facts about them.
This calls for more aggressive extraction of relational tuples, in par-
ticular, for predicates outside the mainstream (e.g., song-is-about,
book-features-location or software-deployed-at). Some of these
may be extractable from lists in web pages (and their surround-
ing headings, captions etc.), but in general there is little hope that
this mission can be achieved from semi-structured data alone. We
need to turn to textual contents, while still exploiting markup if
present (e.g., headings in DOM-tree paths). Relation extraction (RE)
from text sources has been advanced over thirty years (see surveys
[30, 34]), achieving good results in benchmarks such as TACRED
(https://paperswithcode.com/dataset/tacred), but with precision below
80 percent and far from being robust “in the wild”.

Distant Supervision for Relation Extraction: Unsurprisingly,
state-of-the-art methods for RE from text (see overview by and
references in [6]) are based on deep neural networks, including
Transformer architectures. For training, distant supervision is key,
to mitigate the bottleneck of fully labeled samples. This is done by
leveraging existing KBs with correct SPO triples for a variety of
predicates. The entity pair in a triple is matched in sentences or
short passages, and this text is then considered as a positive sample.
Negative samples are generated via entity pairs that are guaranteed
to be counterexamples for a given predicate (incl. adversarially
generated ones), and there are various ways of countering spurious
matches (co-occurrence, but no relation). The methods have major
limitations, calling for new departures:

e Input Length: Inputs are limited to short texts like single sen-
tences or passages, due to the complexity of the neural network.
This makes it impossible to extract triples when it is vital to com-
bine cues from different parts of a long text (e.g., entire books,
biographies, movie scripts).

Representative Samples: The viability of distant supervision
lives or dies with the amount and representativeness of samples,
and also hinges on whether different predicates may be easy to
confuse (e.g., song is about person vs. song is covered by person).
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It works well for predicates such as spouse, member/employee-of
or country-of-residence, but struggles with less straightforward
ones such as song-is-about-person or movie-set-in-location.
Zero-shot Extraction: The methods cannot discover any predi-
cates without distant-supervision samples. For example, song-is-
about-person and movie-set-in-location are not included in any
Wikipedia infoboxes, so it is not clear how to obtain samples. The
conceivable solution is to employ some form of transfer learning,
aiming to capture “hyper-patterns” (i.e., generic templates for
patterns) that carry over from known predicates to previously
unseen predicates. This has been shown to be effective for prod-
uct attributes from structured websites with tables and lists [19].
For example, starting with samples of movie-book pairs for the
movie-based-on-book relation, the method could identify a list
with heading “movies based on books” and list items consisting of
movie-book pairs, then learn a generic hyper-pattern to discover
a list labeled “novels inspired by biographies” with book-person
pairs as list items, and thus extract instances of a new relation
book-inspired-by-person. However, this is a demanding example,
and the method will not easily work robustly. Moreover, for this
kind of zero-shot learning, it is widely open how to go about text
sources with complex sentences rather than crisp noun phrases
like list headings.

Creative Use of Language Models: With distant supervision be-
ing a bottleneck, a promising direction is to exploit neural language
models (LMs) that have recently revolutionized the field of NLP;
examples are EIMo, GPT-3 and T5, and most notably, BERT [3]
and its variants (RoBERTa, ALBERT, BART, BioBERT etc.). These mod-
els, pre-computed and available at sites like https://huggingface.co/
transformers/model_doc/bert.html, are Transformer networks with bil-
lions of parameters trained over huge text corpora (incl. Wikipedia
articles, books, news). They are trained to minimize the loss for
predicting masked-out words, subsequent sentences or similar NLP
tasks. The beauty is that training data is for free without any effort
to label samples: simply take a sentence or sentence pair, mask
some part out and have the already known left-out part as ground
truth for the loss function.

The fully trained models are then “fine-tuned” to all kinds of use
cases such as question answering, sentiment classification, summa-
rization, chatbots and more. By providing relation-specific patterns
or generic hyper-patterns (i.e., templates for patterns) for cloze
questions (or, equivalently, basic Who/Where/When questions),
relation extraction can be cast into masked-word predictions over
an LM, leveraging neural learning for machine reading comprehen-
sion [15]. For example, to infer the birthplace of Alan Turing, one
would enter “X was born in [MASK]” with X being substituted by
names of the respective entities, and obtain predictions for [MASK].
Potentially, the templates could be even generic, for example, “S
was P in [MASK]” with S and P as placeholders for subject entities
and predicates of interest.

There are other ways of incorporating BERT-like language mod-
els into RE machinery, for example, by pre-computing BERT-based
entity representations from (carefully selected passages of) entire
documents or large corpora and feeding the resulting vectors into
a neural RE model. The enhanced RE model then takes as input
a sentence or passage and the latent encodings of all entities that
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occur there, and predicts a scored list of predicate labels by putting

classification layers on top [37, 39]. In fact, similar approaches have

lately been leveraged for DB problems, like QA over DB tables

[13, 36], QA over web tables and text [40], or entity matching for

data integration [1, 16].

The bottom line is that neural language models are amazing data
resources of great value and versatility. It has even been hypothe-
sized that LMs can replace explicit KBs, by predicting components
of SPO triples instead of looking them up [24]. This is quite a long
shot, though, with several showstoppers coming to mind:

o Predictions vs. Queries: LMs always return a ranked list of
predictions, with a confidence score distribution that is rarely
calibrated and thus difficult to interpret. In other words, an LM
will never return a definite answer. This is problematic when the
number of ground-truth facts is variable and a priori unknown
(e.g., founders of a company or rivers flowing through a city) or
the correct answer would be empty (e.g., the cause of death for
someone who is still alive).

e Frequency Fallacies: LM predictions are strongly affected by
(direct or indirect) co-occurrence frequencies in the corpora on
which the LM was trained. This induces a bias for prominent
entities; predicting a rarely occurring output is a challenge. For
example, when asking “Turing died in [MASK]”, the LM will
tend to return frequently observed answers like London (where
he was born), Cambridge, England, his office, prison, Paris etc.,
and the correct answer Wilmslow (with a population of 30,000
people) will be way down in the ranking or completely missed.

e Knowledge Life-cycle: Since all knowledge is latently captured
by the LM’s neural network parameters, it is unclear how to
maintain the knowledge: correcting errors, updating statements,
adding new ones etc. Thus, the mission-critical issue of knowl-
edge life-cycle management is disregarded.

Take-Away: What all this points to is that advancing the scope
and quality of neural (or other) RE methods is largely a matter of
being creative about the data sources that are leveraged at different
levels: data for distant supervision, choice or discovery of best input
texts to extract from, and data for contextualizing the input (like
language models). This is less of an ML problem and more of a
DB-thinking endeavor.

4.2 Entities with Quantities

Supporting analysts, journalists and other knowledge workers
poses big challenges. Even if we simplify the task to merely provide
building blocks towards analytic queries over KBs, there are major
problems. Consider quantity filter queries that search for entities sat-
isfying a condition on associated quantities (but without group-by
aggregation), such as:
e women who ran a marathon under 2:25:00
o female singers worth more than 10 mio Euros,
e hybrid cars with battery range above 50 km and energy consump-
tion below 25 kWh/100km,
e countries with CoVid vaccination rate above 50%.
Search engines handle quantity lookups for given entities fairly
well (e.g., “Brigid Kosgei personal best”), but largely fail on quantity
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filter queries (e.g., “...under 2:25:00”) due to their lack of understand-
ing units and numeric comparisons. In addition, when matching
query keywords in web-page text, it is often difficult to infer the
proper entity to which a quantity mention refers. For example, the
sentence “Kosgei won the race in London; compared to Emil Za-
potek’s time in his legendary 1952 Olympic marathon, finishing in

2:18:58 was more than four minutes faster”. It is not easy for ma-

chines to understand that 2:18:58 is a marathon time and refers to

Kosgei, not to Zapotek. The goal is to overcome the KB sparseness

on quantities and populate KBs with more informative knowledge

so as to answer the above kind of queries from a KB.

Extracting entity-quantity pairs from text has been tackled in [8],
but many issues are widely open. Moreover, for quantities the more
appropriate input data would probably be web tables: ad-hoc tables
in HTML contents or spreadsheets or JSON files, typically small and
hand-crafted without proper schema design or content curation.
Information extraction from web tables has been addressed for
a decade (e.g., [2, 17, 41]), but there is only limited work on the
specific theme of quantities (e.g., [31] and our recent work [9, 10]).
Key issues are:

o detecting and normalizing quantities that appear with varying
values (e.g., estimated or stale), with different scales (e.g., with
modifiers “thousand”, “K” or “Mio”) and units (e.g., MPG-e (miles
per gallon equivalent) vs. kWh/100km);

e inferring to which entity and measure a quantity mention refers;

o contextualizing entity-quantity pairs with enough data for proper
interpretation in downstream analytics — all this with very high
quality and coverage.

Extracting Quantity Facts: The first issue — quantity detection —
can be addressed by a combination of supervised learning and rules
for pattern matching (e.g., [26, 28]). The second issue — column
alignment — is surprisingly difficult when we consider complex
tables. Prior works often assumed that a table has a single sub-
ject column with entities in its rows while all other columns are
attribute values of these entities. However, quantities for techno-
logical or financial measures often appear in more complex tables
with multiple entity columns and multiple quantity columns. This
requires algorithms for inferring which quantity column refers to
which entity column [9]. Nested tables with sophisticated layout
further add to this problem.

Contextualizing Quantity Facts: Finally, the third issue - con-
textualization of entity-quantity pairs — is crucial for proper inter-
pretation of statements and correct query answering. For example,
for the query “hybrid cars with battery range above 50 km”, the
“battery” cue is decisive, as the total fuel-based range is not of in-
terest. Likewise, interpreting financial numbers such as revenue or
earnings mandates the extraction of temporal and spatial context
(e.g., revenue in the last quarter of 2020 in EU countries). The right
contextualization needs to consider cues from table headers and
table captions, but should additionally tap into the text and struc-
ture of the page or document that contains the table. Surrounding
paragraphs or headings on the DOM-tree path to the table can be
informative.

Beyond Filter Queries: Quantity filter queries are just a building
block and first step. Going beyond, poses further difficulties. How
do we handle join queries that require stitching together multiple



statements about entity-quantity statements? How does uncertainty
of automatic extractions propagate to join results, and how can we
ensure high confidence? For group-by aggregation, how can we
ensure sufficient coverage without sacrificing precision? This is akin
to approximate query processing over samples [7]). For example,
to have high-confidence counts of each athlete’s marathon races
under 2:25:00, we need to find and extract enough instances. What
is the query processing strategy over mixed-confidence statements,
and how does this affect the choice of extraction strategies?

Take-Away: Capturing quantity properties of entities in sports,
finance, technology and health is important for KB coverage to-
wards analytic tasks. This is a big gap in today’s major KBs, and
search engines are not a good proxy. Extraction from tables, lists
and possibly text sources poses difficult problems that require re-
thinking RE methodology, as none of the approaches in Section
4.1 seem applicable here. Quantities are not just numeric literals,
but require understanding units, entities to which they refer, and
contexts like spatio-temporal validity and other restrictions or re-
finements. While many models for neural learning come to mind
for this setting, a DB-flavor key issue is the discovery and choice of
the best data sources (for specific domains or even specific target
entities or types), and the quality assurance towards KB population.

5 CONCLUSION

After nearly two decades on research and industrial practice with
automatically constructed knowledge bases, this technology has
become fairly mature. DB thinking, about data quality and consis-
tency constraints, has played a substantial role in these advances.
Nothwithstanding this success, there are new challenges and oppor-
tunities, most notably, extending KB coverage with non-standard
predicates and better support for analytic tasks with quantities.
While ML-fueled approaches are being pursued already, viable solu-
tions need deeper thought on data discovery, data selection and data
quality. Smart choice and creative use of data — as input sources,
for training and for contextualization — remains a key issue. The
data odyssey towards next-generation knowledge bases continues.
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