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ABSTRACT
Users have the right to consent to the use of their data, but current

methods are limited to very coarse-grained expressions of consent,

as “opt-in/opt-out” choices for certain uses. In this paper we identify

the need for fine-grained consent management and formalize how

to express and manage user consent and personal contracts of

data usage in relational databases. Unlike privacy approaches, our

focus is not on preserving confidentiality against an adversary,

but rather cooperate with a trusted service provider to abide by

user preferences in an algorithmic way. Our approach enables data

owners to express the intended data usage in formal specifications,

that we call consent constraints, and enables a service provider

that wants to honor these constraints, to automatically do so by

filtering query results that violate consent; rather than both sides

relying on “terms of use” agreements written in natural language.

We provide formal foundations (based on provenance), algorithms

(based on unification and query rewriting), connections to data

privacy, and complexity results for supporting consent in databases.

We implement our framework in an open source RDBMS, and

provide an evaluation against the most relevant privacy approach

using the TPC-H benchmark, and on a real dataset of ICU data.
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1 INTRODUCTION
We are witnessing an emerging business, governmental, technolog-

ical and cultural interest in developing frameworks for allowing

citizens to choose how their personal data is used. Traditional se-

curity, data privacy or access control approaches, such as [14, 15,

25, 35, 36, 38, 45], protect personal information or ensure confiden-

tiality of individuals’ identities against an adversary. Nevertheless,
we increasingly see privacy breaches that are due to failures to

implement privacy agreements between relatively trusted, non-
adversarial parties. We refer to this setting, where data is released

to a non-adversary party who has incentive to abide by the privacy

or process agreement, as collaborative privacy.
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Today, the need for collaborative privacy is omnipresent: an

individual gives her own data to a social media provider and trusts

that the provider will respect her privacy settings, patients give

data to clinical trials and trust the researchers to respect their

preferences, customers register data in commercial websites and

trust that the website will respect their privacy, etc.. Such privacy

enforcement does not rely on encryption or partial revelation of

data. Instead, users give their personal data in its entirety and trust

the service providers to respect their privacy as described in “Terms

and Conditions” documents or other custom agreements.

Commonly, these agreements are monolithic and top-down poli-

cies which protect the interest of organizations, rather than data

subjects. They are written in natural language and they are enforced

in an “extra-algorithmic”, ad-hoc manner. For example, in clinical

trials, researchers elicit consent from patients through question-

naires and then give the list of patient’s terms to a technical team to

explicitly implement these preferences in the data workflow. There

lies a technological gap, between the agreement in natural language

and its implementation into code. Indeed, the only automation or

automatic customisation that is usually taking place is in the form

of predefined, coarse-grained opt-in/out choices.

Starting from query answering in RDBMSes, we advocate for the

need to support data usage agreements that aremachine-processable,

fine-grained, and bottom-up. In order to do this, we have to revise,

and can not directly re-use, classic data privacy technologies since

these have been designed to protect against collusions and avoid

returning (even non-private) data if this could be used for a subse-

quent privacy breach. For example, a clinical patient might hand

over their email to find out the results of a clinical research but

not for other purposes. Data privacy would not release the email at

all; collaborative privacy, on the other hand, intends to automate

organisations willingly enforcing consent and privacy preferences.

Thus we propose the notion of personal, fine-grained consent

that allows individuals to express their own data sharing policies.

In particular, we allow users to describe combinations of personal

information for which consent is not given. We call these state-

ments consent constraints. In Figure 1, users with ID numbers ‘4872‘

and ‘2321’ trust the service provider with all their data, but do not

consent for their Birthdate to be associated with their disease Diag-

nosis. They do not mind however sharing each of these attributes

in isolation or in combination with other attributes, again with the

understanding that these two attributes are not going to be com-

bined to violate their consent later. We develop an algorithm and a

system that service providers can use to honor these constraints, by

removing non-consented tuples from their queries. That is, rather

than rejecting, we partially answer a query to the fullest extent that

it does not explicitly violate consent.

We focus on expressing both our consent constraints and the ser-

vice providers queries in the language of conjunctive queries (CQs),
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Figure 1: A constraint that can be represented by a query
selecting the users with IDs 4872 or 2321 and then projecting
on ‘Birthdate’ and ‘Disease’.

which corresponds to the “core” (SELECT-PROJECT-JOIN) fragment

of SQL, and is powerful enough to express fine-grained personal

consent and top-down policies. CQs is a natural first generaliza-

tion of opt-in/out choices (the only-machine processable consent

language so far), and has been employed as a privacy language in

multiple works and systems [7, 10, 11, 22, 23, 33, 36, 39, 42]. It is

important to note that focusing on CQs for the service provider’s

language allows for more expressive solutions as well. A query

containing an aggregate operation can be checked and filtered for

consent only on its CQ part before the aggregation takes place.

Our contributions include the following. In Section 3, we for-

malize the semantics of consent constraints and consent-abiding

query answers via a novel usage of provenance annotations; we

also lay a formal connection to data privacy and the guarantees

our framework provides. In Section 4, we present an algorithm to

implement our semantics without relying on annotations, but via

query rewriting: given a CQ and a set of constraints we produce

an SQL query that computes the consent-abiding answer of our

original query on any database; we then discuss strategies to propa-

gate consent. We implement and evaluate our algorithms on top of

PostgreSQL, and compare our framework (in Sec. 5) with the most

relevant "opt-in/out" work from data privacy [33] exhibiting a com-

parably efficient but more expressive framework. We experiment

with both TPC-H and real data scaling our system to answering

queries in the face of thousands of constraints within seconds.

2 PRELIMINARIES
We use the well-known mathematical logic and relational calculus

notions of constants, variables, predicates, terms (which are either

constants or variables), attributes and tuples [4]. For any expression
𝑒 , 𝑣𝑎𝑟𝑠 (𝑒), and 𝑡𝑒𝑟𝑚𝑠 (𝑒) denote the sets of variables and terms

that appear in 𝑒 respectively. Atoms are of the form 𝑃 (®𝑡) with 𝑃 a

predicate/relation name. By ®𝑡 [𝑖] we denote the 𝑖th element of tuple

®𝑡 . A ground atom, with only constant terms, is a fact. A database

relation is a set of facts. A relation name 𝑅 and its arity, is a relation
schema. A set of relation schemas is a database schema. A a set of

facts of different relations is database instance.
A substitution 𝜎 = {𝑣1 → 𝑡1, ..., 𝑣𝑛 → 𝑡𝑛} is a mapping of

variables to terms. For any expression 𝑒 , such as a tuple, an atom,

or a set of atoms, 𝜎 (𝑒) is obtained by simultaneously replacing

each occurrence of a variable 𝑣𝑖 in 𝑒 , that also occurs in the domain

of 𝜎 , with 𝜎 (𝑣𝑖 ) = 𝑡𝑖 ; variables outside the domain of 𝜎 remain

unchanged (as, obviously, do constants). For example, consider atom

𝑃 (𝑣1, 𝑣2, 𝑣3, 𝑣4,“John”) and 𝜎 = {𝑣1 → 𝑣2, 𝑣2 → 𝑣1, 𝑣3 → 𝑣4}, then
𝜎 (𝑃 (𝑣1, 𝑣2, 𝑣3, 𝑣4,“John”)) = 𝑃 (𝑣2, 𝑣1, 𝑣4, 𝑣4,“John”). A substitution 𝜎

is a homomorphism of a set of atoms 𝑆1 into a set 𝑆2, if the domain

of 𝜎 is the set of all variables occurring in 𝑆1 and 𝜎 (𝑆1) ⊆ 𝑆2.

We write CQs in the rule form𝑞(®𝑣, ®𝑐) ← 𝑃1 ( ®𝑢1, ®𝑐1), ... , 𝑃𝑛 ( ®𝑢𝑛, ®𝑐𝑛)
where 𝑞 is the name of the answer relation, 𝑃1, ..., 𝑃𝑛 are database re-

lation names, ®𝑣 , ®𝑢𝑖 are tuples of variables, ®𝑐 , ®𝑐𝑖 are tuples of constants
and the query is safe, i.e., ®𝑣 ⊆ ⋃𝑛

𝑖=1 ®𝑢𝑖 and ®𝑐 ⊆
⋃𝑛

𝑖=1 ®𝑐𝑖 . Atom 𝑞(®𝑣, ®𝑐),
is called the head of the query, denoted ℎ𝑒𝑎𝑑 (𝑞), while the body is

𝑏𝑜𝑑𝑦 (𝑞) = {𝑃1 ( ®𝑢1, ®𝑐1), ..., 𝑃𝑛 ( ®𝑢𝑛, ®𝑐𝑛)}. The vector of head variables,

®𝑣 , is the tuple of free or distinguished variables of the query. Notice

that, for technical reasons we allow query constants to also appear

in the head. We denote joins with the same variable repeated in

different atoms. We refer to a CQ with head terms ®𝑥 by its head

𝑞( ®𝑥) or even by 𝑞 if its head terms are not important. A query with

no head terms is boolean, and it is false if the result is empty or true

if the result contains the empty tuple. For two queries 𝑞( ®𝑥) and
𝑝 (®𝑧) of arity 𝑛, we say that 𝑞 and 𝑝 have the same result schema
if, for all 𝑖 ∈ [1, 𝑛], there are atoms of the same predicate 𝑃 , 𝑃 ( ®𝑦)
in 𝑏𝑜𝑑𝑦 (𝑞) and 𝑃 ( ®𝑤) in 𝑏𝑜𝑑𝑦 (𝑝), such that ®𝑥 [𝑖] and ®𝑧 [𝑖] appear in
the same position in 𝑃 ( ®𝑦) and 𝑃 ( ®𝑤) respectively. For a query 𝑞( ®𝑥),
whenever there is a substitution 𝜎 such that 𝜎 ( ®𝑥) = ®𝑏, we denote
the query obtained by replacing ®𝑥 with

®𝑏 in 𝑞, by 𝑞( ®𝑏) or 𝜎 (𝑞( ®𝑥)).
Consider schema: {Patient(pid,name),HasDoctor(pid,did)}.

Query SELECT name FROM Patient, HasDoctor WHERE
Petient.pid=HasDoctor.pid AND HasDoctor.did = ‘723’
corresponds to the rule-notation formula: 𝑞(𝑦) ← 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 (𝑥,𝑦),
𝐻𝑎𝑠𝐷𝑜𝑐𝑡𝑜𝑟 (𝑥, 723). Given a CQ 𝑞( ®𝑥) and a database instance 𝐷 ,

𝑞(𝐷) denotes the result of evaluating 𝑞 over 𝐷 ; this is the set of all

tuples of constants ®𝑎 such that 𝑞( ®𝑎) holds in 𝐷 . For every answer

tuple ®𝑎 of 𝑞( ®𝑥) over 𝐷 , there is a homomorphism ℎ of 𝑏𝑜𝑑𝑦 (𝑞) into
𝐷 (sometimes we write of 𝑞 into 𝐷) such that ℎ( ®𝑥) = ®𝑎.

For two conjunctive queries, 𝑞1 ( ®𝑡1), 𝑞2 ( ®𝑡2), we say that 𝑞2 is

contained in 𝑞1, denoted by 𝑞2 ⊑ 𝑞1, iff for all databases 𝐷 , 𝑞2 (𝐷) ⊆
𝑞1 (𝐷) (strict query containment ⊏ is defined in the obvious way).

For all 𝑞1, 𝑞2, 𝑞2 ⊑ 𝑞1 iff there is a containment mapping from 𝑞1 to

𝑞2 [21]. A containment mapping from 𝑞1 to 𝑞2 is a homomorphism

ℎ:𝑣𝑎𝑟𝑠 (𝑞1) → 𝑡𝑒𝑟𝑚𝑠 (𝑞2) such that: (1) for all atoms 𝛼 ∈ 𝑏𝑜𝑑𝑦 (𝑞1),
it holds that ℎ(𝛼) ∈ 𝑏𝑜𝑑𝑦 (𝑞2), and (2) ℎ(ℎ𝑒𝑎𝑑 (𝑞1)) = ℎ𝑒𝑎𝑑 (𝑞2)
(modulo the answer relation names of 𝑞1, 𝑞2).

For technical reasons, we mix our rule-notation for CQs with

notation from relational algebra and in particular the projection op-

erator. Given a relation 𝑅 with size |𝑅 | = 𝑛, the standard definition

of the projection of 𝑅 on𝐴 = 𝑖1, 𝑖2, ..., 𝑖𝑚 , a list of attribute positions

of 𝑅 (𝑖 𝑗 ∈ [1, 𝑛]), is 𝜋𝐴 (𝑅) = {⟨𝑎1, ..., 𝑎𝑚⟩ | there is a tuple ⟨𝑏1, ..., 𝑏𝑛⟩
in 𝑅 with 𝑎1 = 𝑏𝑖1 , ..., 𝑎𝑚 = 𝑏𝑖𝑚 }. We also apply projection on single

tuples: given a tuple ®𝑡 = ⟨𝑡1, ..., 𝑡𝑛⟩, and 𝐴 = 𝑖1, ..., 𝑖𝑚 a list of posi-

tions of ®𝑡 (possibly with repetitions), 𝜋𝐴 (®𝑡) is the tuple ⟨𝑎1, ..., 𝑎𝑚⟩
such that 𝑎1 = 𝑡𝑖1 , ..., 𝑎𝑚 = 𝑡𝑖𝑚 . Given a CQ 𝑞(®𝑡), 𝜋𝐴 (𝑞(®𝑡)) denotes
a new query with the same body and head 𝑞(𝜋𝐴 (®𝑡)).

Lastly, we make use of some logic-programming notions [34].

Let two substitutions 𝜃 = {𝑢1 → 𝑠1, . . . , 𝑢𝑚 → 𝑠𝑚} and 𝜎 =

{𝑣1 → 𝑡1, . . . , 𝑣𝑛 → 𝑡𝑛}. The composition 𝜎 ◦ 𝜃 is obtained from the

substitution {𝑢1 → 𝜎 (𝑠1), . . . , 𝑢𝑚 → 𝜎 (𝑠𝑚), 𝑣1 → 𝑡1, . . . , 𝑣𝑛 → 𝑡𝑛}
after deleting all those elements 𝑢𝑖 → 𝜎 (𝑠𝑖 ) for which 𝑢𝑖 = 𝜎 (𝑠𝑖 ),

376



and also deleting all those 𝑣 𝑗 → 𝑡 𝑗 for which 𝑣 𝑗 ∈ {𝑢1, . . . , 𝑢𝑚}.
Given a set of atoms 𝑆 , a unifier is a substitution 𝜎 such that 𝜎 (𝑆)
is a singleton (i.e., all atoms “merge” into becoming the same one,

after substitution). A most general unifier or mgu for a set of atoms

𝑆 is a unifier 𝜎 such that any other unifier 𝜌 can be obtained by the

composition of the mgu 𝜎 with a substitution 𝜃 , i.e., 𝜌 = 𝜃 ◦ 𝜎 . For
example, for 𝑆 = {𝑃 (𝑥,𝑦, 𝑧), 𝑃 (𝑣,𝑤,𝑤)} a most general unifier is

𝜎 = {𝑥 → 𝑣,𝑦 → 𝑧,𝑤 → 𝑧)} since 𝜎 (𝑃 (𝑥,𝑦, 𝑧)) = 𝜎 (𝑃 (𝑣,𝑤,𝑤)) =
𝑃 (𝑣, 𝑧, 𝑧), and all other unifiers must be more “specific”, e.g., unifier

𝜌 = {𝑥 → 𝑧,𝑦 → 𝑧,𝑤 → 𝑧)}, for which 𝜌 (𝑆) = {𝑃 (𝑧, 𝑧, 𝑧)} can be

obtained by composing the mgu with substitution {𝑣 → 𝑧}.

3 SEMANTICS OF CONSENT
Within relational databases, it is natural to imagine a set of sharing

defaults where a user is specifying what not to reveal. We focus

on negative statements of consent called consent constraints, for-
malized as CQs with “negative” semantics, i.e, whose answers are

not consented to be revealed. Table 1 contains some consent state-

ments users may make over their health data, and the associated

constraints. The third row corresponds to the example of Figure 1.

We discuss our desired semantics starting from the most related

data privacy approach that considers negative/secret queries against

an adversary, a setting commonly referred to as perfect privacy [36].

3.1 From Adversarial to Collaborative Privacy
Perfect privacy considers whether a CQ view 𝑉 (or a set of views)

exposes answers, known as critical tuples, to a secret CQ query 𝑞.

A tuple ®𝑡 is critical for a query 𝑞, if there exists a database instance
𝐼 that contains ®𝑡 , such that the answer of the query changes if ®𝑡 is
removed from 𝐼 ; that is, ®𝑡 is critical for 𝑞 if 𝑞(𝐼 \ {®𝑡}) ≠ 𝑞(𝐼 ) [36].
The set of all critical tuples for a query 𝑞 is denoted as 𝑐𝑟𝑖𝑡 (𝑞).

Definition 3.1. [36] A CQ 𝑞 is secure with respect to a CQ view

𝑉 , denoted 𝑞 |𝑉 , if 𝑐𝑟𝑖𝑡 (𝑞) ∩ 𝑐𝑟𝑖𝑡 (𝑉 ) = ∅.

Our consent constraints can be seen, at a first glance, as secret

queries. However, there are three main properties that our non-

adversarial setting aims to offer differently to perfect privacy:

Avoid collusion explicitly. Perfect privacy aims to implicitly

avoid future collusion when answering a query: a secret query

in [36] is secure with respect to different individual views in isola-

tion iff it is secure against any possible combination of these views.

On the other hand, for collaborative privacy, we will avoid collu-

sion by having all service provider queries and their combinations

willingly go through the framework and not maliciously explored

outside. As we discuss below this is beneficial in multiple ways.

Provide fine-grained consent statements. Perfect privacy is

coarse-grained: the critical tuple semantics characterizes all the

tuples, and their values, in the image of a secret query’s homomor-

phism as critical/sensitive. In essence, no part of a tuple or a query

answer is revealed even if only a small subset of tuples/cell values

are essentially private. In fact, there is no distinction between se-

cret boolean queries and secret queries with free variables (they

characterize the same tuples as critical). On the other hand, our

explicit treatment of collusions, allows us to develop much more

fine-grained and flexible semantics. We aim to annotate particular

combinations of attributes as private; projections in our constraints

make a difference since they characterize particular cells within a

query image which are not consented to be used/shared.

For example, in Table 1, constraints 𝑁1 - 𝑁4 essentially collapse

to the same (𝑁2) using the perfect privacy semantics, as they all

reveal information (in an information-theoretical sense [36]) about

the tuples of Patient ‘1312’; these tuples are all critical. With our

modeling, these are different constraints. Including attributes in the

head of constraints denotes that only queries that ask for these (or

a superset of these) attributes are violating the constraints. Boolean

constraints, e.g, 𝑁2, are the most strict in our framework since they

disallow the sharing of any attributes (any attribute set is a superset

of the empty set). In that sense, our boolean constraints are the most

similar to secret queries. Section 3.5 provides a formal connection

of our semantics to perfect privacy using boolean queries.

Offer partial consent-abiding query answers. Perfect privacy is
a total “accept/reject” query answering approach. That is, if a secret

query and a view share a critical tuple the entire query is deemed

insecure and rejected. Instead, we will allow partial query answers:

by removing only the non-consented tuples from the result of a

query, we still return the most information allowed.

Note that [36] also studies the probability of disclosing a secret.

This is not applicable to our setting. Private values in our context are

not in fact “secret”; the service provider does have these values but

is willing to use them only in the intended way, so the probability

of learning a secret is irrelevant.

Faithful to the above requirements, we subsequently define the

semantics of consent constraints that allow us to detect consent

violations and implement consent-abiding query answering. In

principle, consent-abiding query answering is relatively simple: a

consent constraint describes values that are preferred not to be

returned and so we should remove those tuples from the query an-

swers; there are technical details however that we need to consider.

As a first step, we need to identify the “overlapping” part in the

answers of two CQs (one being a consent constraint), and we do this

in the next subsection by using data annotations (labelling every

data tuple as in [17, 29, 46]). While in Section 4 we develop an algo-

rithm to implement our semantics without relying on annotations,

using annotations for our semantics allows for a more tangible

interpretation of what our constraints mean since they describe

particular tuples; as such, a front-end implementation could even

support a visually-aided way of denoting the constraints similar to

Figure 1. There is ongoing research [7, 32] as well as real and emerg-

ing systems [23, 42] that help transform user policies into CQs. In

this paper we focus on the foundational and algorithmic aspects of

consent abiding-query answering, rather than the interface.

3.2 Annotated Relations & Overlapping Queries
To pinpoint particular values in our data, we exploit the prove-

nance [29] of a tuple, assuming each tuple in the database anno-

tated with a unique identifier or label (as in [46]), via an annotation
function 𝜆 (see Table 2). We will annotate the answer tuples of a

query with the labels by creating a different annotated tuple for ev-

ery different query homomorphism in the data. Moreover, towards

being even more fine-grained, we aim to annotate each individual

term in a result tuple with exactly the tuple identifiers it “came

from”; this is different to provenance semirings that annotate the
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Table 1: User Consent and its mapping to negative consent constraints.

User Consent Negative Constraint
Patient 1312 does not want to share her phone number (5

𝑡ℎ
attribute of the

Patients relation)
𝑁1 (𝑥5) ← Patients(1312, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)

Patient 1312 does not want to share her any combination of her attributes (𝑁2).

𝑁2 actually subsumes𝑁3 and𝑁4 which dissalow Name and Disease respectively

𝑁2 () ← Patients(1312, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)
𝑁3 (𝑥2) ← Patients(1312, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)
𝑁4 (𝑥7) ← Patients(1312, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)

Patients 4872 and 2321 do not want to share the association of their Birthdate

together with their Disease

𝑁5 (𝑥4, 𝑥7) ← Patients(4872, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)
𝑁6 (𝑥4, 𝑥7) ← Patients(2321, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)

Do not share patient IDs when their disease is being cross checked against the

Insurance table

𝑁7 (𝑥1) ← Patients(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)∧
Insurance(𝑥7, 𝑥8)

Table 2: An annotated database 𝐼 with 4 relations, showing the
identifier annotations on the left of each tuple, and example
queries/constraints with their annotated answers.

A
𝑎1 : 1

B
𝑏1 : 1 1 2 2 3

𝑏2 : 1 1 1 1 1

𝑏3 : 1 4 2 2 3

𝑏4 : 1 4 4 5 6

C
𝑐1 : 1 5 5 6

𝑐2 : 1 5 6 6

𝑐3 : 1 5 5 5

D
𝑑1 : 1 5

𝑑2 : 2 7

𝑑3 : 2 8

𝑞1 () ← 𝐵(1, 1, 2, 2, 3) 𝑁0 () ← 𝐵(𝑥,𝑦, 𝑧, 𝑧, 𝑣), 𝐵(𝑥, 𝑥, 𝑥,𝑦,𝑦)
𝑞𝜆
1
(𝐼 ) = {<>𝑏1 } 𝑁𝜆

0
(𝐼 ) = {<>𝑏1,𝑏2 , <>𝑏2 }

𝑞2 (𝑥1, 3) ← 𝐴(𝑥1), 𝐵(𝑥1, 𝑥2, 𝑥3, 𝑥3, 3), 𝐷 (𝑥3, 𝑥4)
𝑞𝜆
2
(𝐼 ) = {< 1

𝑎1,𝑏1 , 3𝑏1 >, < 1
𝑎1,𝑏3 , 3𝑏3 >}

𝑞3 (𝑥1, 𝑥4) ← 𝐵(𝑥1, 𝑥2, 𝑥3, 𝑥3, 𝑥4), 𝐶 (𝑥1, 𝑥5, 𝑥5, 𝑥6)
𝑞𝜆
3
(𝐼 ) = {<1𝑏1,𝑐1 , 3𝑏1>, <1𝑏2,𝑐1 , 1𝑏2>, <1𝑏3,𝑐1 , 3𝑏3>, <1𝑏1,𝑐3 , 3𝑏1>,

<1𝑏2,𝑐3 , 1𝑏2>, <1𝑏3,𝑐3 , 3𝑏3>}

𝑞5 (𝑥1) ← 𝐴(𝑥1), 𝐵(𝑥1, 𝑥2, 𝑥3, 𝑥3, 𝑥4), 𝐶 (𝑥1, 𝑥5, 𝑥5, 𝑥6)
𝑞𝜆
5
(𝐼 ) = { <1𝑎1,𝑏1,𝑐1>, <1𝑎1,𝑏2,𝑐1>, <1𝑎1,𝑏3,𝑐1>, <1𝑎1,𝑏1,𝑐3>,

<1𝑎1,𝑏2,𝑐3>, <1𝑎1,𝑏3,𝑐3> }
𝑞6 (𝑧1) ← 𝐵(𝑧1, 𝑧2, 𝑧2, 𝑧3, 𝑧4), 𝐶 (𝑧1, 𝑧5, 𝑧6, 𝑧6), 𝐷 (𝑧1, 𝑧6)
𝑞𝜆
6
(𝐼 ) = {< 1

𝑏2,𝑐3 >, < 1
𝑏4,𝑐3 >}

entire result tuple (for boolean queries where the result tuple is

empty we do annotate it in its entirety).

Consider for example query 𝑞2 and database 𝐼 in Table 2. This

query has the following four different homomorphisms on 𝐼 :

homomorphism annotation
ℎ1 {𝑥1 → 1, 𝑥2 → 1, 𝑥3 → 2, 𝑥4 → 7} ⟨1{𝑎1,𝑏1 }, 3{𝑏1 }}⟩
ℎ2 {𝑥1 → 1, 𝑥2 → 1, 𝑥3 → 2, 𝑥4 → 8} ⟨1{𝑎1,𝑏1 }, 3{𝑏1 }}⟩
ℎ3 {𝑥1 → 1, 𝑥2 → 4, 𝑥3 → 2, 𝑥4 → 7} ⟨1{𝑎1,𝑏3 }, 3{𝑏3 }}⟩
ℎ4 {𝑥1 → 1, 𝑥2 → 4, 𝑥3 → 2, 𝑥4 → 8} ⟨1{𝑎1,𝑏3 }, 3{𝑏3 }}⟩
For each homomorphism, we annotate a value in the result tuple

with the identifiers of the tuples (in the image of the homomor-

phism) that this value appears in. For 𝑞2, this gives rise to two

different annotated answer tuples. Note that different homomor-

phisms do not always give different annotated tuples since the

images of atoms that do not contain head terms (such as 𝐷 in 𝑞2)

do not participate in the annotations of the result tuples.

Note that in provenance semirings [29], we annotate the tuples

of a query by constructing a monomial for each homomorphism and

“summing up” all monomials to a polynomial. In effect, according

to [29] the polynomial annotation for the result ⟨1, 3⟩ of 𝑞2 would
be 𝑎1𝑏1𝑑2 + 𝑎1𝑏1𝑑3 + 𝑎1𝑏3𝑑2 + 𝑎1𝑏3𝑑3. For presentation purposes,

and because we want to ignore 𝑑2, 𝑑3 labels that are not projected,

we choose to “break” this down to its different monomials.

For boolean queries we will use all image identifiers to label

the entire (empty) answer tuple. Shown in Table 2 the boolean

query 𝑞1 has a single annotated (empty) answer tuple on 𝐼 , while

constraint 𝑁0 will have two annotated answer tuples: tuple <>
𝑏1,𝑏2

for the homomorphism {𝑥,𝑦→1, 𝑧→2,𝑣→3} that maps the two

different atoms of 𝑁0 to 𝑏1 and 𝑏2 respectively, and <>𝑏2 for the

homomorphism {𝑥,𝑦, 𝑧, 𝑣→1} that maps both atoms of 𝑁 to 𝑏2.

Definition 3.2. For all CQs 𝑞(𝑥1, 𝑥2, ..., 𝑥𝑛), instances 𝐷 , homo-

morphisms ℎ from 𝑞 to 𝐷 , with ℎ(⟨𝑥1, 𝑥2, ..., 𝑥𝑛⟩)=®𝑡=⟨𝑡1, 𝑡2, ..., 𝑡𝑛⟩,
an annotated answer tuple of 𝑞 over 𝐷 via ℎ, is ⟨𝑡𝐿1

1
, 𝑡
𝐿2
2
, ..., 𝑡

𝐿𝑛
𝑛 ⟩,

denoted also ®𝑡 ®𝐿 with ®𝐿=⟨𝐿1, 𝐿2, ..., 𝐿𝑛⟩, where each 𝐿𝑖 is the set

of labels 𝐿𝑖 = {𝜆(ℎ(𝛼)) | 𝛼 ∈ 𝑎𝑡𝑜𝑚𝑠 (𝑏𝑜𝑑𝑦 (𝑞)) s.t. 𝑥𝑖 ∈ 𝑡𝑒𝑟𝑚𝑠 (𝛼)}.
If q is boolean we annotate an entire (empty) result tuple with

𝐿 = {𝜆(ℎ(𝛼)) | 𝛼 ∈ 𝑎𝑡𝑜𝑚𝑠 (𝑏𝑜𝑑𝑦 (𝑞))}, and we denote it ®𝑡𝐿 .

The annotated answer of 𝑞 over 𝐷 , denoted 𝑞𝜆 (𝐷), is the set of
all annotated answer tuples of 𝑞 over 𝐷 . Table 2 shows a number of

example queries with their annotated answers. We will generally

write ®𝜏𝐿 for an annotated answer tuple, to either mean that 𝐿 is

a set of identifiers (for boolean queries) or vector of sets (for non-

boolean). Given annotated answer tuple ®𝑡 = ®𝜏𝐿 we define 𝑏𝑎𝑠𝑒 (®𝑡) =
®𝜏 . For Γ a set of annotated tuples, 𝑏𝑎𝑠𝑒 (Γ) = {𝑏𝑎𝑠𝑒 (®𝑡) |®𝑡 ∈ Γ}.

Next, we use annotated tuples to define the overlap between two

queries (or a query and a constraint). Intuitively, our semantics will

want to eliminate all base tuples from a query answer for which

all corresponding annotated answer tuples are violating (common

to) some consent constraint; or dually, return those tuples which

can be obtained by at least one legitimate way with respect to

annotations. Given two annotated answer tuples with the same

base, ®𝑡1 = ®𝜏𝐿1 and ®𝑡2 = ®𝜏𝐿2 , their annotations intersect, denoted ®𝑡1⊓®𝑡2,
if 𝐿1 ∩ 𝐿2 ≠ ∅. When 𝐿1, 𝐿2 are vectors 𝐿1 = ⟨𝐿11, 𝐿12, ..., 𝐿1𝑛⟩ and
𝐿2 = ⟨𝐿21, 𝐿22, ..., 𝐿2𝑛⟩, then 𝐿1 ∩ 𝐿2 ≠ ∅ means 𝐿1𝑖 ∩ 𝐿2𝑖 ≠ ∅ for all
𝑖 ∈ [1, 𝑛]. Two queries are overlapping if they have some annotation

intersected tuples on some database, per the next definition.
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Definition 3.3. For all CQs, 𝑞 and 𝑝 of the same result schema, we

say that 𝑞 and 𝑝 overlap, if there exists a database 𝐷 , a ®𝑡1 ∈ 𝑞𝜆 (𝐷)
and a ®𝑡2 ∈ 𝑝𝜆 (𝐷) s.t. ®𝑡1 ⊓ ®𝑡2.

For example, queries 𝑞2 and 𝑞3 from Table 2 overlap on 𝐼 . Indeed,

one annotated answer tuple of 𝑞2, obtained by homomorphism ℎ2,

is ®𝑡 ®𝐿2
2

= ⟨1𝑎1,𝑏1 , 3𝑏1 ⟩ and one of 𝑞3 is ®𝑡
®𝐿3
3

= ⟨1𝑏1,𝑐1 , 3𝑏1 ⟩ (let ℎ𝑞3 the
homomorphism constructing this tuple). The fact that ®𝐿2 ∩ ®𝐿3 ≠ ∅
(thus, ®𝑡2 ⊓ ®𝑡3) means that each result value in ®𝑡 ®𝐿2

2
and ®𝑡 ®𝐿3

2
exists in

the same actual tuple (here 𝑏1), common to the image of ℎ2 and ℎ𝑞3 .

In fact queries 𝑞2 and 𝑞3 overlap for both annotated answer tuples

of 𝑞2; if 𝑞2 was an input query and 𝑞3 a negative consent constraint

we would have to remove all annotated answer tuples of 𝑞2 on this

particular database in order to execute it in a consent abiding way.

Before we fully define consent-abiding query answering, we

further enhance our semantics to capture cases where a query and

a constraint differ in their answer relation schemas but we would

still like to consider them overlapping.

3.3 Query-consent Overlap and Violation
Our definition of overlapping queries relies on annotated answer

tuples having the same base and schema. However, we might want

to consider a query and a constraint overlapping even if the answer

relations (the heads of the rules) have trivially different schemas.

First, notice that a resulting query relation might have a different

order on its attributes than the constraint answer relation, but we

might still want to consider these overlapping. Consider for ex-

ample, 𝑞7 (𝑥7, 𝑥2) ← Patients(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) which asks

for ⟨𝐷𝑖𝑠𝑒𝑎𝑠𝑒, 𝐵𝑖𝑟𝑡ℎ𝑑𝑎𝑡𝑒⟩ pairs of patients. Constraints 𝑁5 and 𝑁6

of Table 1 disapprove the sharing of ⟨𝐵𝑖𝑟𝑡ℎ𝑑𝑎𝑡𝑒, 𝐷𝑖𝑠𝑒𝑎𝑠𝑒⟩ pairs for
two particular patients. Even though the head attributes are the

same, their order is different and hence a base tuple in the result

of 𝑞7 can not be the same as one returned by constraints 𝑁5 or 𝑁6.

Nevertheless, our natural interpretation of 𝑁5 and 𝑁6 is that users

prefer not to associate birthdates with diseases, independently of

the actual order of appearance of these values in an answer tuple.

Second, equally important is to abide to user consent in the face

of a query that asks for “more” attributes than those corresponding

to the constraint head. For example, for query 𝑞8 (𝑥7, 𝑥1, 𝑥2, 𝑥3) ←
Patients(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) we believe it is natural to remove

tuples with non-consented values for 𝐵𝑖𝑟𝑡ℎ𝑑𝑎𝑡𝑒 and 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 in

the attributes for 𝑥2 and 𝑥7 (per constraints 𝑁5 and 𝑁6); even if

these tuples are “larger” and contain more values, they still violate

intended consent. The requirements of reordering or dropping

attributes of the query can be supported by the projection operator;

essentially we want to look for overlaps between any projection

𝜋𝐴 (𝑞( ®𝑥)) of a query 𝑞 and a constraint 𝑁 .

Our last observation for establishing our consent semantics is

the following. Consider constraint 𝑁1 from Table 1 and a query

asking for the IDs of patients whose phone number is 23293456

(that happens to be the phone number of patient 1312): 𝑞9 (𝑥1) ←
Patients(𝑥1, 𝑥2, 𝑥3, 𝑥4, 23293456, 𝑥6, 𝑥7). With our definitions up

to now, 𝑞9 and 𝑁1 cannot be overlapping since they do not even

project on the same attribute of Patients. However, patient 1312,
in Figure 1, does not want her phone number revealed, and if we

return her ID in the answer of 𝑞9 we are violating her consent. The

observation here is that although the query does not explicitly ask

for the 𝑃ℎ𝑜𝑛𝑒𝑁𝑜 attribute through a head variable, it grounds this

attribute to a constant and in a sense it is still “asking” for it. To ad-

dress this, we place all constants appearing in the query, in its head

as well. Given a conjunctive query 𝑞( ®𝑥), with ®𝑥 = ⟨𝑥1, 𝑥2, ..., 𝑥𝑛⟩, let
⟨𝑐1, 𝑐2, ..., 𝑐𝑘 ⟩ be the tuple of all constants 𝑐𝑖 ∈ (𝑐𝑜𝑛𝑠𝑡𝑠 (𝑏𝑜𝑑𝑦 (𝑞))\ ®𝑥)
in a lexicographic order (although the order does not matter). By 𝑞

we denote the constant-extended version of 𝑞, that is, the conjunctive
query with same body as 𝑞, and head 𝑞(𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑐1, 𝑐2, ..., 𝑐𝑘 ).

To take all three observations into account, given a query 𝑞( ®𝑥)
we define its support set of queries Π̂𝑞 , as the set of queries which

are projections on 𝑞( ®𝑥), i.e., Π̂𝑞 = {𝜋𝐴 (𝑞( ®𝑥)) | 𝐴 is a non-empty list

of integers (positions) ⟨𝑖1, ..., 𝑖𝑚⟩, with 𝑖𝑖 ∈ [1, | ®𝑥 |]}. In practice, we

can limit𝑚 to the maximum arity of any constraint head (there is

no use to create support queries with heads larger than those of

the constraints since these will necessarily have different schemas).

Definition 3.4. For all CQs 𝑞, for all CQ consent constraints 𝑞𝑁 ,

we say that 𝑞 violates 𝑞𝑁 , if there is a support query 𝑞𝜋 ∈ Π̂𝑞 such

that 𝑞𝜋 and 𝑞𝑁 overlap.

As an example, query 𝑞9 with the user’s phone number violates

𝑁1 from Table 1, since the support query 𝜋1 (𝑞9 (𝑥1, 23293456)) ←
Patients(𝑥1,𝑥2,𝑥3,𝑥4, 23293456,𝑥6,𝑥7) is contained in 𝑁1, and thus

trivially 𝜋1 (𝑞9) and𝑁1 overlap. Note that support query projections

are performed only on the input query and not the constraint. Per

the semantics of Table 1, 𝑁5 is not violated by a query asking for

only one of the two attributes in its head, rather 𝑁5 is only violated

by queries asking (or setting) at least both attributes. Note that

support queries are not necessary for boolean constraints, since

just the boolean version of the query is enough to detect violations.

3.4 Consent-abiding Query Answering
Once we detect a violation of a support query 𝑞𝜋 and a constraint

𝑞𝑁 , we should remove from the query those annotated answer

tuples that intersect with the answer of 𝑞𝑁 , in order to answer the

query in a consent abiding way. To compare an annotated tuple

®𝑡 from the query to a tuple in the answer of 𝑞𝑁 , we need to use

the projection operator on the single tuple ®𝑡 as well, in order to

reorder or drop some of its values, as defined in Section 2. When

we use projection on an annotated answer tuple, the annotations

of projected terms are maintained.

Definition 3.5. Given a CQ 𝑞, a set of CQ constraints N , and a

database 𝐷 , the annotated consent-abiding answer of 𝑞 w.r.t. N is

𝑞 \𝐷N = {®𝑡 | ®𝑡 ∈ 𝑞𝜆 (𝐷) and there is no support query 𝑞𝜋 = 𝜋𝐴 (𝑞) ∈
Π𝑞 , constraint 𝑞𝑁 ∈ N and ®𝑡𝑁 ∈ 𝑞𝜆𝑁 (𝐷) such that 𝜋𝐴 (®𝑡) ⊓ ®𝑡𝑁 }.

After removing all consent-violating annotated tuples we drop

annotations to get the final answer tuples of our query. Thus, intu-

itively, base tuples make it to the consent-abiding answer if they can

be obtained by at least one non-consent-violating way. The consent-
abiding query answer of 𝑞 with respect to N over 𝐷 , denoted by

𝑞¬ (N , 𝐷), is 𝑞¬ (N , 𝐷) = 𝑏𝑎𝑠𝑒 (𝑞 \𝐷 N).
Towards a practical implementation of our semantics note that

if a query and a constraint overlap they do so on all databases

where both queries are answerable and their homomorphic images

“intersect” on some database atoms. In fact, two query atoms that

map to the same database tuple are unifiable (see section 2), and
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by computing unifications between query and constraint atoms we

will present a rewriting algorithm that produces a query that can

be directly executed using SQL and returns 𝑞¬ (N , 𝐷). Intuitively,
unifications can give us the intersections of the queries’ annotated

tuples on a “schema level”. This has multiple benefits: It allows

us to develop a data-independent approach; our consent-abiding

rewriting is the same for all database instances. At the same time we

do not need to annotate the data nor do a brute-force comparison

of the annotation vectors for all pairs of resulting tuples; unified

parts of the query and the constraint will directly map to intersected

tuples. Moreover, by bookkeeping the way constraint head variables

unify with query terms, in the next section, we automatically obtain

all support queries as results of these unifications.

3.5 Privacy guarantees
As discussed, our framework has been designed with collaborative

privacy in mind, and not to protect against an adversary. Neverthe-

less we provide a formal connection to traditional data privacy and

in particular perfect privacy [36]. The following Theorem guaran-

tees that using our framework with boolean constraints, a query

that does not violate a constraint per our definition means always

that the constraint is secure with respect to the query per [36] (all

theorem and lemma proofs can be found in our online appendix at

https://github.com/georgeKon/enabling-personal-consent).

Theorem 3.6. For all CQs 𝑞 and boolean CQs 𝑞𝑁 , 𝑞 if q does not
violate 𝑞𝑁 then 𝑞𝑁 |𝑞.

Note that our boolean constraint semantics is more strict than

secret queries; there are corner cases wherewemight call a violation

where perfect privacy is not violated. Due to space limitation we do

not give an example but point the interested reader to [36], page 7,

example immediately following Prop 3.9. Admittedly as the authors

of [36] point out this concerns some rather unnatural cases, and in

practice and most cases our semantics actually coincides (certainly

for all examples of this paper and of [36]).

4 A PRACTICAL SOLUTION
Our objective in this section is to produce a rewriting of the query

and the constraints that can be directly executed to obtain the

consent-abiding answer on any (non-annotated) database. If we

attempt to do this by simply taking the difference of a constraint 𝑞𝑁
from a query 𝑞 we might remove tuples which are not annotation-

intersected. Thus, intuitively, we aim to produce a new constraint

𝑞𝑚 , by unifying 𝑞 and 𝑞𝑁 appropriately, such that we can safely

remove all answers of 𝑞𝑚 ; due to the way 𝑞𝑚 is constructed all its

homomorphisms will be “touching” tuples that the query does.

4.1 Query Unifications and SQL Rewritings
In order to unify a set of query atoms to atoms of another query

or constraint, we define a variant of unification for sets of atoms

(reminiscent of piece unification [8]). Our unifiers describe all atoms

of a query that are unified with some atoms in the constraint.

Definition 4.1. For non-empty sets of atoms 𝑆1 = {𝑎1, 𝑎2, ..., 𝑎𝑚}
and 𝑆2 = {𝑏1, 𝑏2, ..., 𝑏𝑛}, a piece unifier of 𝑆1 over 𝑆2 is a substitution
𝜃
𝑆1
𝑆2

s.t. for all 𝑎𝑖 ∈ 𝑆1 there is a 𝑏 𝑗 ∈ 𝑆2 with 𝜃𝑆1𝑆2 (𝑎𝑖 ) = 𝜃
𝑆1
𝑆2
(𝑏 𝑗 ); we

call all such (𝑎𝑖 , 𝑏 𝑗 ) pairs the unifiable pairs of 𝜃𝑆1𝑆2 .

For example let 𝑆1 = {𝐵(𝑥1, 𝑥2, 𝑥3, 𝑥3, 𝑥4), 𝐶 (𝑥1, 𝑥5, 𝑥5, 𝑥6)} and
𝑆2 = {𝐵(𝑧1, 𝑧2, 𝑧2, 𝑧3, 𝑧4), 𝐶 (𝑧1, 𝑧5, 𝑧6, 𝑧6), 𝐷 (𝑧1, 𝑧6)}. Notice that 𝑆1
is a subset of the body of 𝑞5 from Table 2 and 𝑆2 is the body of 𝑞6.

One piece unifier is 𝜃1
𝑆1
𝑆2
= { 𝑥1→𝑧1, 𝑥2→𝑧2, 𝑥3→𝑧2, 𝑥4→𝑧4, 𝑥5→𝑧5,

𝑥6→𝑧5, 𝑧3→𝑧2, 𝑧6→𝑧5 }. Applying the unification, 𝜃1
𝑆1
𝑆2
(𝑆2) =

{𝐵(𝑧1, 𝑧2, 𝑧2, 𝑧2, 𝑧4),𝐶 (𝑧1, 𝑧5, 𝑧5, 𝑧5), 𝐷 (𝑧1, 𝑧5)}, and indeed for all

𝑎𝑖 in 𝑆1, 𝜃
𝑆1
𝑆2
(𝑎𝑖 ) is in this set. Note that this unified piece has a

homomorphism to the annotated tuples in Table 2 that are common

to 𝑞5 and 𝑞6 (where 𝑞6 can be negative constraint). To construct a

proper unfied CQ out of this unifier we should also unify the heads

of the the query and the constraint.

Definition 4.2. For all CQs 𝑞( ®𝑥), 𝑞𝑁 (®𝑧), and non-empty 𝑆 ⊆
𝑏𝑜𝑑𝑦 (𝑞), a query unifier of𝑞 over𝑞𝑁 for 𝑆 , is a piece unifier of 𝑆 over

𝑏𝑜𝑑𝑦 (𝑞𝑁 ), 𝜃𝑆𝑏𝑜𝑑𝑦 (𝑞𝑁 ) , such that 𝜃𝑆
𝑏𝑜𝑑𝑦 (𝑞𝑁 ) ( ®𝑥) = 𝜃𝑆

𝑏𝑜𝑑𝑦 (𝑞𝑁 ) (®𝑧).

Given a query unifier 𝜃 of 𝑞( ®𝑥) over 𝑞𝑁 (®𝑧), the query unification
for 𝜃 , denoted 𝜃 [𝑞, 𝑞𝑁 ], is the conjunctive query with head 𝑞(𝜃 ( ®𝑥))
and body 𝜃 (𝑏𝑜𝑑𝑦 (𝑞)) ∪ 𝜃 (𝑏𝑜𝑑𝑦 (𝑞𝑁 )). Using 𝜃1𝑆1𝑆2 from previously

as 𝜃 , the query unification 𝜃 [𝑞5, 𝑞6], of 𝑞5 over 𝑞6 is:
𝑞𝐵𝐶 (𝑧1) ← 𝐴(𝑧1), 𝐵(𝑧1, 𝑧2, 𝑧2, 𝑧2, 𝑧4),𝐶 (𝑧1, 𝑧5, 𝑧5, 𝑧5), 𝐷 (𝑧1, 𝑧5). There
are other query unifiers for 𝑞5 over 𝑞6, that could potentially use a

different subset of 𝑏𝑜𝑑𝑦 (𝑞5), as long as these still unify the distin-

guished variables of both queries, e.g., for 𝑆3 = {𝐵(𝑥1, 𝑥2, 𝑥3, 𝑥3, 𝑥4)}
or 𝑆4 = {𝐶 (𝑥1, 𝑥5, 𝑥5, 𝑥6)}. For example𝜃2

𝑆3
𝑏𝑜𝑑𝑦 (𝑞6)= {𝑥1→𝑧1,𝑥2→𝑧2,

𝑥3→𝑧2, 𝑥4→𝑧4, 𝑧3→𝑧2} unfies only the 𝐵 atoms and keeps both 𝐶

atoms of the queries, producing query unification 𝑞𝐵 (𝑧1) ← 𝐴(𝑧1),
𝐵(𝑧1, 𝑧2, 𝑧2, 𝑧2, 𝑧4),𝐶 (𝑧1, 𝑥5, 𝑥5, 𝑥6),𝐶 (𝑧1, 𝑧5, 𝑧6, 𝑧6),𝐷 (𝑧1, 𝑧6), while
unifier 𝜃3

𝑆4
𝑏𝑜𝑑𝑦 (𝑞6)= {𝑥1→𝑧1, 𝑥5→𝑧5, 𝑥6→𝑧5, 𝑧6→𝑧5} unfies only

the 𝐶 atoms producing 𝑞𝐶 (𝑧1) ←𝐴(𝑧1), 𝐵(𝑧1, 𝑥2, 𝑥3, 𝑥3, 𝑥4),
𝐵(𝑧1, 𝑧2, 𝑧2, 𝑧3, 𝑧4), 𝐶 (𝑧1, 𝑧5, 𝑧5, 𝑧5), 𝐷 (𝑧1, 𝑧5) .

Intuitively, all query unifications provide only consent-violating

annotated answer tuples. For every distinguished variable of the

constraint, a query unification contains a unified atom with this

variable, and anywhere this atom maps on a database the anno-

tation labels will be “propagated” to the constrtaint result value.

At the same time, the query also maps to this atom by mapping

one of its own head terms and thus inheriting the same database

annotations on this term. For example, the annotated answer tuples

that 𝑞𝐵 gives would contain a superset of the annotations that 𝑞5
gets on the resulting value for 𝑧1 (since 𝑞𝐵 contains more atoms).

Similarly, 𝑞𝐶 will propagate the annotations, for any tuple of table

𝐶 it touches, to both 𝑞5 and 𝑞6. Lastly, note that 𝑞𝐵𝐶 might only give

a subset of the annotated answer tuples that either 𝑞𝐵 or 𝑞𝐶 give

as it is more restrictive, essentially contained in both 𝑞𝐵 and 𝑞𝐶 . In

this example 𝑞𝐵 and 𝑞𝐶 are enough to capture (intersect with) all

intersected answer tuples of 𝑞5 with 𝑄6. Indeed, we will not need

all query unifications but just the most general ones, i.e., the ones

that come out of a minimal set of unifications between the query

and constraint (which still unify all constraint head terms).

Definition 4.3. For all CQs 𝑞( ®𝑥), 𝑞𝑁 (®𝑧), and non-empty 𝑆 ⊆
𝑏𝑜𝑑𝑦 (𝑞), a most general query unifier of 𝑞 over 𝑞𝑁 for 𝑆 , is a query

unifier 𝜃𝑆
𝑏𝑜𝑑𝑦 (𝑞𝑁 ) , s.t. there is no non-empty 𝑆 ′ ⊂ 𝑆 with a query

unifier 𝜃𝑆
′

𝑏𝑜𝑑𝑦 (𝑞𝑁 ) for which 𝜃
𝑆
𝑏𝑜𝑑𝑦 (𝑞𝑁 ) ( ®𝑥) = 𝜃𝑆

′

𝑏𝑜𝑑𝑦 (𝑞𝑁 ) ( ®𝑥).
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Let𝑀𝐺𝑄𝑈 (𝑞, 𝑞′) the set of all most general query unifications

of 𝑞 over 𝑞′. We can now implement the annotated consent abid-

ing answer of a query and a set of constraints, as in Def. 3.5, by

considering queries in𝑀𝐺𝑄𝑈 rather than the constraints.

Theorem 4.4. Given a CQ 𝑞, set of constraintsN , and database 𝐷 ,
𝑞 \𝐷 N = {®𝑡 | ®𝑡 ∈ 𝑞𝜆 (𝐷) and there is no support query 𝑞𝜋 = 𝜋𝐴 (𝑞) ∈
Π̂𝑞 , constraint 𝑞𝑁 ∈ N , 𝑞𝑚 ∈ 𝑀𝐺𝑄𝑈 (𝑞𝜋 , 𝑞𝑁 ) and ®𝑡𝑚 ∈ 𝑞𝜆𝑚 (𝐷)
such that 𝜋𝐴 (®𝑡) ⊓ ®𝑡𝑚}.

Given a support query and a constraint, Theorem 4.4 dictates

that it is only tuples of a query unification that need to be removed.

In practice, as explained in Section 3.4 (and as we will do in Sec-

tion 4.2), by relaxing the requirement to unify all query head terms

we essentially obtain directly the corresponding projections of a

support query; it has the head constructed from those query terms

that unified with the constraint distinguished variables. In the ex-

amples above, even if 𝑞5 had additional free variables to 𝑧1, it is

only 𝑧1 that is needed to violate 𝑞6 (as a constraint). Thus, every

different appropriate unification of the query and the constraint

produces a different 𝑞𝑚 in Theorem 4.4, and for every 𝑞𝑚 we will

create a query rewriting; the union of these rewritings gives the

consent-abiding query answer, without relying on annotations, by

removing those tuples that exactly “satisfy” unifications 𝑞𝑚 . In the

next subsection, we present a bottom up, dynamic-programming

style of algorithm to obtain an mgu.

To see how we construct our rewritings, consider query 𝑞(𝑥) ←
𝐴(𝑥,𝑦) and a constraint 𝑞𝑁 (𝑧) ← 𝐴(𝑧, 𝑧); the most general query

unification is 𝑞′(𝑥) ← 𝐴(𝑥, 𝑥), equating 𝑥 and𝑦 in 𝑞 (support query

is 𝑞 itself). Let a database with two tuples 𝐷 = {𝐴(1, 0), 𝐴(1, 1)}.
If we were, however, to execute 𝑞(𝐷) \ 𝑞′(𝐷) the result would be

empty since the value 1 coming from tuple 𝐴(1, 0) would also get

removed, but per our semantics it should be retained. To achieve

this without annotations we have to execute a query informally

looking like 𝑞(𝑥) ← [𝐴(𝑥,𝑦) \ (𝐴(𝑥, 𝑥), 𝑥 = 𝑦)]; by this we mean

to iterate over every tuple of𝐴(𝑥,𝑦) and remove those which agree

with (𝐴(𝑥, 𝑥), 𝑥 = 𝑦), i.e., agree on all unified attributes, pinpointing
exactly the tuples to remove. We can express such queries in SQL.

Lemma 1. Let a CQ 𝑞( ®𝑥) ← 𝑃1 ( ®𝑥1), ..., 𝑃𝑛 ( ®𝑥𝑛), a CQ constraint
𝑞𝑁 , a support query 𝑞𝜋 ( ®𝑦) = 𝜋𝐴 (𝑞), and a 𝑞𝑚 ∈ 𝑀𝐺𝑄𝑈 (𝑞𝜋 , 𝑞𝑁 )
with 𝑞𝑚 (®𝑧) ← 𝑅1 ( ®𝑧1), ..., 𝑅𝑚 ( ®𝑧𝑚). The following SQL query re-
turns all tuples ®𝑡 ∈ 𝑞(𝐷) for which there are no ®𝑡𝑞 ∈ 𝑞𝜆 (𝐷) with
𝑏𝑎𝑠𝑒 ( ®𝑡𝑞) = ®𝑡 , and ®𝑡𝑚 ∈ 𝑞𝜆𝑚 (𝐷), such that 𝜋𝐴 ( ®𝑡𝑞) ⊓ ®𝑡𝑚 :

SELECT ®𝑥 FROM 𝑃1, ..., 𝑃𝑛
WHERE 𝐽𝑞 AND NOT EXISTS(

SELECT ®𝑧 FROM 𝑅1, ..., 𝑅𝑚
WHERE 𝐽𝑚 AND 𝐽𝐴 AND 𝐽𝜃); where

• 𝐽𝑞 is a conjunction of equalities of the form 𝑃𝑖 .𝑥 = 𝑃𝑙 .𝑥 for all the
joins/repeated terms in atoms 𝑃𝑖 , 𝑃 𝑗 in 𝑞,

• 𝐽𝑚 is the corresponding conjunction of equalities, 𝑅𝑖 .𝑧 = 𝑅 𝑗 .𝑧, for
the joins/repeated terms in 𝑞𝑚 ,

• 𝐽𝐴 is the conjunction of equalities
∧𝑖= | ®𝑦 |

𝑖=1
®𝑦 [𝑖] = ®𝑧 [𝑖] (equating the

projection/re-ordering of terms in 𝜋𝐴 (𝑞) and 𝑞𝑚),
• 𝐽𝜃 adds the unification equalities between 𝑞𝜋 and 𝑞𝑚 , i.e., for

𝜃 [𝑞𝜋 , 𝑞𝑁 ] = 𝑞𝑚 and for all unifiable pairs of 𝜃 , (𝛼, 𝛿) ∈ 𝑏𝑜𝑑𝑦 (𝑞)×
𝑏𝑜𝑑𝑦 (𝑞𝑁 ), for all terms 𝑢 ∈ 𝑡𝑒𝑟𝑚𝑠 (𝛼) we add 𝑢 = 𝜃 (𝑢) in 𝐽𝜃 .

As an example consider again 𝑞5 against constraint 𝑞6 and their

most general query unification 𝑞𝐵 (using 𝑞5 itself as support query).

To remove consent violating tuples of 𝑞𝐵 from 𝑞5 we execute:

SELECT A.at1 FROM A, B, C
WHERE A.at1=B.at1=C.at1 AND B.at3=B.at4 AND C.at2=C.at3
AND NOT EXISTS(
SELECT A2.at1 FROM A as A2,B as B2,C as C2,C as C3,D
WHERE A2.at1=B2.at1=C2.at1=C3.at1=D.at1 AND B2.at2 =
B2.at3 = B2.at4 AND C2.at2=C.2at3 AND C3.at3=C3.at4=D.at2
AND B.at1=B2.at1 AND B.at2=B.at3=B2.at2 AND B.at5=B2.at5)

In the face of multiple constraints and MGQUs, Lemma 1 gen-

eralizes to construct 𝑞¬ (N , 𝐷) by simply conjuncting more nested

NOT EXISTS queries to the WHERE clause of the outer query. Alterna-
tively, we could UNION more nested queries inside the NOT EXISTS.
Notice that there is not a unique way to express difference with

union in SQL; in fact, in Section 5.2 we run different comparisons

with EXCEPT, LEFT OUTER JOIN and NOT EXISTS. Through ex-

perimentation, we decide to use NOT EXISTS; however, finding the

optimal serialization is an orthogonal rich research problem [43].

Independently of the actual serialization of Lemma 1 in the face

of multiple constraints the query produced is the consent-abiding
rewriting of 𝑞 with respect toN , and we can represent it as a union

of CQs (UCQ) with safe negation.

4.2 Algorithm
In this section, we present the core algorithm of our framework to

find the most general query unifications of support queries. This

happens by unifying the original query’s body with the constraint

such that all constraint distinguished variables are unified with

either distinguished query variables or query constants (thus iden-

tifying the necessary head terms of a support query). The output

of this algorithm is a set of query unifications 𝑞𝑚 each paired with

the necessary equalities 𝐽𝐴 and 𝐽𝜃 as required by Lemma 1; these

pairs are then translated to SQL as in the previous subsection.

Generally, given an input query 𝑞 and a constraint 𝑞𝑁 we will

start by pairwise unifying, initially taking the mgu (see Sect. 2) of

single atoms in the query and the constraint, while making sure

that we unify head terms in the constraint with either a head term

of the query or a constant. By starting from pairwise unifications of

single atoms, we guarantee that our unifiers will be most general,

i.e., contain a minimal number of query atoms (or unifiable pairs).

If by simple pairwise unifications we cover all head terms of the

constraint (if the constraint is boolean, one atomic unifier is enough)

we have essentially managed to find a most general query unifier

over a support query of 𝑞. If by using pairwise mgu’s we fail to

unify all head terms of the constraint it might be because two, or

more, query atoms need to be unified with a constraint atom. To

unify larger sets of atoms in a minimal and efficient way, if a set

of atoms has been unified and has not covered all the constraint

head terms, this unifier is still “open” and we will try to further

unify it with another query atom. Whenever some sets of atoms

unify successfully we shall not use them in further unifications, as

unnecessary unifications will spoil the most-generality property.

The structure that keeps our substitutions/unifications is a set of

equivalences classes named ECset in our pseudocode. Each equiva-

lence class in this set contains terms that have been unified with
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one of them being a representative term, so each equivalence class

essentially is a substitution that maps all the terms it contains to

the representative (obviously if there is constant in an equivalence

class this should be the representative). Substitutions that are used

together in a unifier are kept in a set of ECset objects.

Algorithm 1: findMGQUs

Input: A Query 𝑞 and a set of constraints N
Output: Union of pairs ⟨𝑀𝐺𝑄𝑈 (𝑞𝜋 , 𝑞𝑁 ), 𝐽𝐴, 𝐽𝜃 ⟩ where 𝑞𝜋 , 𝑞𝑁 , 𝐽𝐴 , 𝐽𝜃

are as in Lemma 1

1: Result← ∅
2: for all constraints 𝑞𝑁 ∈ N do
3: ApplicableECsets← ∅
4: OpenAtomicECsets← ∅
5: for all atoms 𝛼 in 𝑞 do
6: for all atoms 𝛿 in 𝑞𝑁 do
7: ECset← unify(𝛼, 𝛿)
8: if unify(𝛼, 𝛿) was not successful then
9: continue line 6
10: if coversHead(ECset, 𝑞𝑁 ) = true then
11: ApplicableECsets← ApplicableECsets∪ ECset
12: else
13: OpenAtomicECsets←OpenAtomicECsets∪ ECset
14: 𝑛← 2 //first pick pairs, then triples, etc

15: while 𝑛 < |OpenAtomicECsets | do
16: for all sets T = {ECset1, ..., ECset𝑛 } where

ECset𝑖 ∈ OpenAtomicECsets and for 𝑖 ≠ 𝑗 , ECset𝑖 ≠ ECset𝑗
do

17: if no subset of𝑇 has been marked applicable then
18: ECset← ∅
19: for 𝑖 ∈ {1, ..., 𝑛} do
20: ECset← unionECSets(ECset,ECset𝑖 )
21: if union unsuccessful then
22: goto line 16

23: if coversHead(ECset,𝑞𝑁 ) then
24: add ECset to ApplicableECsets
25: mark T as applicable

26: 𝑛 ← 𝑛 + 1
27: for all ECset ∈ ApplicableECsets do
28: mgqu-query← apply(ECset, 𝑞𝑁 ) //replace terms with EC

representative

29: Equalities← ∅
30: for all EC ∈ ECset do
31: Equalities← Equalities ∪ transitive closure of EC
32: Result← Result ∪ ⟨mgqu-query, Equalites⟩
33: return Result

Algorithm 1 starts by initializing the applicable unifiers, i.e.,

those that are already most general, and the open ones, i.e., those

that should be combined further (lines 3-4). Then, it tries to unify all

pairs of query-constraint atoms (lines 5-13), and for the successful

unifications it checks whether each one of them is a most general

query unifier, i.e., whether it has covered all head variables of the

constraint (line 10); those are called applicable and stored aside for

later generation of the most general query unifications. Those that

are not applicable are still open (line 13). Note that, each one of

the applicable unifiers corresponds to a different query unification

of a support query over the constraint, since most probably it is

using different head terms and constants of the original query. The

pairwise unifications that are still open are combined gradually in

larger groups to each other (lines 14-25). Note that, to make sure

we end up with a most general unifier, we do not try combinations

of 𝑛 + 1 open unifiers before we finish examining combinations of 𝑛.

We first chose two ECSets (line 14) to see if they are compatible and

they can be unioned (line 20). This unioning essentially consists

of comparing all equivalence classes in the two sets and merging

them if they contain common values; or fail if they contain common

values but their representatives are different constants. At the end

of this process we apply the most general query unifiers to get their

query unifications, and we compute equalities between terms that

we will use as 𝐽𝐴 and 𝐽𝜃 (lines 27-32).

In practice, our implementation is more careful than the abstract

algorithm presented here, e.g., in line 31 our implementation com-

putes only a required part of the transitive closure. Moreover, notice

that in line 28 we obtain the most general query unification by only

applying the unifier to the constraint. We do not have to include

the extra joined atoms of the input query apart from the unified

atoms. Our end objective is to remove tuples from the input query

and, since the input query contains these joins, any tuples that we

are going to remove have to satisfy such joins in the first place.

This is referred to as serialization optimization in our experiments.

Every unification Alg. 1 finds creates an element in the union

of our rewriting. The latter can be exponentially large but each

element is NP-complete to compute in constraint size, as we prove

below. Moreover, to evaluate each of the elements in the union has

the same complexity as evaluation of CQs with safe negation (in

NP in query size). Thus, the whole end-to-end problem remains

NP-complete in combined complexity. Our complexity results are

reminiscent of Ontology Based Data Access [19], where a CQ is

rewritten over ontological constraints into a (possibly exponential)

UCQ. Similar to these results and since our rewriting is a UCQ with

safe negation we know that our data complexity (fixing the query

and constraints) is in AC0.

Theorem 4.5. Given a CQ 𝑞, a constraint 𝑞𝑁 , a database 𝐷 , and
a tuple 𝑡 , deciding if 𝑡 ∈ 𝑞¬ ({𝑞𝑁 }, 𝐷) is NP-complete.

5 EVALUATION
The algorithms described in Section 4, were implemented in Java

and executed over a PostgreSQL database using default settings

(code, data and experiments can be found in [1]). All experiments

were run on a 2.30GHz processor, with 32GB of memory, and a

total of 512GB of disk space. We have used two datasets for our

experiments. Initially, we used the TPC-H [47] dataset; in addition

to being a widely used benchmark in databases, it also provides

realistic scenarios for our framework such as customers and their

personal order data. We scaled TPC-H with default distribution

using scale factors 0.1, 1, 7, 33, 66, and 100. For reference, this results

in 15K, 150K, 1 million, 5 million, 10 million and 15 million tuples in

the Customer relation alone.Wemanually extracted the conjunctive

part of the TPC-H queries (queries 14 and 22 are meaningless as CQs

and discarded). Our second, real, dataset is MIMIC-III [3], a large,

freely-available database comprising of de-identified health-related

data associated with over forty thousand patients who stayed in

critical care units of the Beth Israel Deaconess Medical Center
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Figure 2: TPC-H queries against constraints that opt-out 10%
of the join values. The graph shows our rewriting- vs the
annotation-based approach, the original query times also
with the execution of all constraints, and the re-application
of aggregation operators after the rewriting process.

between 2001 and 2012. We hand-crafted a number of queries and

automatically generated constraints inspired by the policies of [48].

We have four sets of main experiments. First, we compare against

our annotation-based semantics and we also show the impact of

re-application of aggregations on the rewritten queries. Second, we

compare against the most relative opt-in/out approach from data

privacy. Third, we explore the overhead of supporting fine-grained

consent in query answering (which often is minor), and then we

do scalability experiments where we scale the number and size of

constraints, using both TPC-H and MIMIC-III datasets.

5.1 Annotation semantics and aggregation
First, we compare our rewriting-based approach with our imple-

mentation of the annotation-based semantics. To implement this

semantics we wrote scripts that extend the database schema with

a label column and the data tuples with a unique id. We then im-

plemented Def. 3.5 to obtain the consent abiding answer of the

query. We run several experiments with the TPC-H queries, us-

ing the OJ set of constraints explained in Section 5.3. We varied

the data size and the number of constraints and we compared the

rewriting-based approach with the annotation-based. Fig. 2 shows

a small TPC-H scale (0.1) using 500 constraints.

The rewriting-based semantics clearly performs faster, even by

an order of magnitude, in all but two queries. Nevertheless, we find

that in larger scales the difference between the two approaches

becomes smaller and further investigation is needed into settings

where the annotation-based implementationmight be preferable. At

the same time, the figure shows the original query execution’s time,

and as well the sum of the times it takes to execute all constraints

plus the query in isolation. We see that executing the rewriting in

all but the two slow aforementioned rewritings (Q9, Q18) is faster

than just executing the query and the constraints in isolation. This,

intuitively, shows that our rewriting approach very often does not

induce more overhead than what the constraints encode; on the

contrary, it might actually factor out execution cost of constraints

that are not overlapping with the query. The last point that Figure

2 makes is about inserting aggregation back in our re-writings. As

discussed, we rewrite the CQ part of our original query; thereafter

we have implemented a re-insertion of the aggregation back into

the rewriting. Note that our scripts do a “best-effort” approach in

re-inserting the aggregations; many of the TPC-H queries contain

aggregations in nested queries or interacting with other features

which are stripped out of the CQ version. As such, re-inserting ag-

gregations might end up in queries with different semantics. In fact,

we believe that focusing on aggregations should be an independent

piece of feature research on its own. Our experiments do show

however the impact of aggregations to some extend and we see

that, in almost half the queries the rewriting plus the aggregation

is faster than the rewriting itself. This happens in particular when

the rewriting produces an output which is order of magnitudes

larger than the result set of the aggregated version. Note that at this

point aggregation is supported only on the input queries and not

the negative constraints; for the latter further research is needed.

5.2 Comparison to Opt-in/out Approaches
Our approach allows us to capture more traditional opt-in/out

approaches as well. Here, we compare against the Hippocratic work

[33] where a user opts-in/out of sharing an attribute of a table.

Experiments in [33] use opt-in/-out choices at varying degrees

of selectivity over a single table. These options are encoded either

within the data as extra columns in the same data table (-IN) or

externally in a separate table (-EX). In our approach we can easily

encode these options as negative constraints. We reimplemented

this work (HIPPO) using the Customer table of the TPC-H dataset

which has 8 attributes. For the solution HIPPO-EX, we create a

“Choice Table” with 8 attributes distributing values that can take 1

(opt-in) or 0 (opt-out) as follows. Over the 8 attributes for which a

user can express choices, we vary the privacy selectivity to encom-

pass: 1%, 10%, 50%, 90%, 100% opt-ins. Within [33], a basic query

selecting all attributes is executed; based on the consent stored in

the choice cells, data cells are nulled out, and if the key becomes null

the entire tuple is removed from the answer. In our recreation of

HIPPO, we execute the same “SELECT *” query over Customer with

either internally or externally represented choices. Additionally,

we create a set of negative constraints that reflect information from

the choices. These are serialized via EXCEPT (E), LEFT OUTER

JOIN (LOJ), NOT EXISTS (NE), as discussed in Section 4.1. For these

use the optimization serialization discussed in Sec. 4.2, but we also

create a version of NOT EXISTS that does not use this optimization

(NEU). We also run the unmodified query (UM).

Queries are evaluated on a warmed-up database, and we take

the average of 11 executions. Fig. 3 contains times for all these

queries that honor consent both via HIPPO and our approach, for

the TPCH scale 100. As expected, enforcing the privacy choices is

slower than the unmodified query (UM) for all implementations.

Our implementation of NOT EXISTS with internal choices (NE-IN)

outperforms the unoptimized NOT EXISTS with internal choices

(NEU-IN), indicating that the optimization we discuss at the end of

Sec. 4.2 is worthwhile. Our NOT EXIST external choices (NE-EX)

outperforms both LEFT OUTER JOIN external choices (LOJ-EX)

and EXCEPT external choices (E-EX). Based on this we use NOT

EXISTS with optimization as our serialization method for the rest of

our experiments. Moreover, we can focus on comparing HIPPO-IN

against our NE-IN, and HIPPO-EX against our NE-EX. Our NE-IN

is always on par or slightly faster than HIPPO-IN, while our NE-EX
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Figure 3: Comparing the methods used in the Hippocratic Databases and different possible serialization methods for consent
abiding queries over TPC-H with a scale factor of 100 (15 million rows), with constraints retaining 1%, 10%, 50%, 90% and 100%
of the unmodified query results. a. AllChoices contains 8 projected attributes in the Query and 8 in the constraint head; b.
KeyChoices contains 8 projected attributes in the Query and just the single customer key in the constraint head; c. SomeChoices
projects on 4 non-key attributes in the Query and has the same attribute in the constraint head. implementations are shown
for each choice configuration in the same order as shown top to bottom in the legend for ease of comparison.

is faster than HIPPO-EX in 66% of the cases and mostly on par in

the rest. Overall, our performance is comparable or faster than the

hippocratic work, while being substantially more expressive.

A particular kind of additional useful expressivity that [33] does

not support has to do with joins. As a conventional data privacy

approach, [33] is more strict and operates by “nulling-out” attributes

or entire tuples that are opted-out as soon as it scans a database

table. Thus, the Hippocratic approach will not be able to answer

query 𝑞(𝑥) ← 𝐴(𝑥,𝑦), 𝐵(𝑦, 𝑧) if 𝑦 is private - even though it is not

returned. We offer a more expressive language, where one could

choose to disallow the sharing of join. In the query above we would

simply return all values for 𝑥 from tuples that do not join with 𝐵.

Simple opt-in/opt-out choices can be captured by atomic constraints

and joins can be seen as a direct extension of these. E.g., the query

𝑞(tel)← Nurse(tel, name, building), NightShift(building, “17/04/21”)

will return all telephone numbers (as long as they are not private)

of nurses in buildings that have a nightshift on a specific date, even

though all other attributes of the query could be private.

To evaluate this we created a set of constraints on attributes

which are joined in the TPC-H queries. For each query we randomly

chose a different joined attribute and made it private (set it to opt-

out) in approximately 10% of its values in the data. We run all

queries with joins (so we left out 1, 4, 6 and 15) on a database with

scale 1 and we measured that our approach gives from 10% to over

40% more answer tuples in this setting (graph omitted due to space).

5.3 Complex Constraints
In order to investigate the impact of complex constraints on perfor-

mance, we have generated a set of four constraints for each query

in the TPC-H dataset. Constraint 1 and 2 for a given query are built

by starting with the initial query and adding additional atoms. The

addition of these atoms is designed to remove ∼50% and ∼ 5% of the

unmodified query’s tuples respectively. For instance, Query 10’s

Constraint 1 has Lineitem’s L_linestatus attribute fixed to a value

of ’F’, which is the value that 50% of the rows in Lineitem take;

thus it will remove half of the query results. Constraint 2 for every

query is designed to remove 4% of possible tuples. Constraints 3

and 4 are built by starting with Constraint 1 and 2 and removing

atoms (such as Nation) that do not essentially remove query tuples

(all queries and constraints can be found on our Github page [1]).

Fig. 4 shows the time to rewrite a query to be consent abiding,

grouped by constraint type (e.g. Constraints 1-4). Every constraint

was applied individually to its related query. The results have been

averaged, per constraint type for a given number of atoms. All

rewritings are within 3 milliseconds. The rewriting time appears to

grow exponentially with the number of atoms in the constraint (as

the problem is NP-complete), but it is mostly insignificant compared

to the actual query execution time as shown in Fig. 5, indicating

that consent enforcement does not induce a large overhead.

Figure 5 compares the slowdown of query execution, as calcu-

lated by {consent-abiding query execution time / unmodified query

execution time}, versus the percentage of query results returned as

calculated by { consent abiding # rows / unmodified query # rows}.

Four query-constraint pairs (q𝑖𝑑 ,C𝑖𝑑 ) are not shown in Figure 5:

(20,3) (11,3), (15,4), (20,4) with slowdown multipliers of 18, 32, 141

and 642 respectively. For (20,3) and (20,4), the unmodified query

returns 2861 rows, while the constraints “touch” 21million rows

and 586million rows respectively, which would not be expected for

a “personal” constraint; data about a particular person will often

be very small compared to the entire database that might contain

data from thousands of people. This of course can be false in some

domains (e.g., genomic databases). For (11,3), the constraint itself

when executed as a standalone query is so slow that it timed out

after 1 hour; we would expect poor performance when used as a

constraint. Finally, for (15,4), the constraint requires a join across

4 relations, even though the unmodified query runs over only 1

relation, which again seems unlikely for a ’personal’ constraint.

As Figure 5 shows, the bulk of the queries have little (1-2x slow-

down) impact on execution time, and some are even faster than the

unmodified queries (when, e.g., the query returns a large number

of tuples while the rewriting a small). Only 4 queries (2,4,13,16)

slow down as more tuples are removed, and the slowdown seems

to be linear. From these results, it appears that the number of tuples

removed is not a key factorInstead, the number of tuples "touched"

by the constraint seems to be crucial. This is encouraging for a

system designed to honor personal consent precision statements.
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Figure 4: Effect of the number of atoms
within the constraint on the time it
takes to rewrite a query to be consent
abiding.

Figure 5: Slowdown of query vs per-
centage of tuples removed to honor
consent for TPC-H scaled by 7.

Figure 6: Effect of Institutional Policy
and Personal Consent constraints on
query time.

5.4 Scaling Constraints and Supporting Policies
In this section we explore scalability of our system with a large

number of individual fine-grained consent statements by generating

four sets (CW, CJ, OW, OJ) of 5000 independent constraints. The first

set of constraints, 𝐶𝑊 (customer without joins) are atomic queries

that: (1) contain a 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 atom with a random fixed 𝐶_𝐶𝑢𝑠𝑡𝑘𝑒𝑦,

and (2) a random number of attributes are projected. For 𝐶𝐽 , we

randomly join each 𝐶𝑊 constraint with either 𝑂𝑟𝑑𝑒𝑟𝑠 or 𝑁𝑎𝑡𝑖𝑜𝑛

while fixing some of the values within𝑂𝑟𝑑𝑒𝑟𝑠 and𝑁𝑎𝑡𝑖𝑜𝑛. The third

and fourth sets, 𝑂𝑊 and 𝑂𝐽 , were generated similarly, but using

𝑂𝑟𝑑𝑒𝑟𝑠 instead of𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 as the base seed atom. For𝑂𝐽 the base

constraints are joined to either 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚 or𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 . This allowed

us to create many relevant constraints to a query (having non-trivial

rewritings) which however do not remove much, consistent with

our intention of them being personal constraints. For example,

for TPC-H query Q10 rewritten using the constraints from 𝐶𝑊 ,

1650 (33%) of the 5000 constraints are applicable, and result in the

removal of .003% of the unmodified query’s 10million tuples. For

scalability testing, we rewrite the query using different numbers

up to 5000 constraints. Fig. 7 shows the results of this experiment,

averaging over each query. There are more𝑂𝑊 and𝑂𝐽 data points

than 𝐶𝑊 and 𝐶𝐽 because the CQ parts of only TPC-H queries 10,

13, and 18 refer to 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , while there are many TPC-H queries

for 𝑂𝑟𝑑𝑒𝑟 . Figure 7 shows the performance when a large number

of personal constraints are applied at the same time. Notice in Fig.

7a the execution time grows linearly. Smilarly, Fig. 7b shows that

as we encounter more unifications, we have a linear slowdown. Fig.

7c shows the time to rewrite queries to become consent-abiding;

this time grows linearly with more constraints, however it is still

just a few milliseconds. Lastly, the sets of constraints that include

joins (𝐶𝐽 , 𝑂𝐽 ) exhibit a greater slowdown than the sets without

joins, confirming that simpler constraints are faster to enforce.

Finally, we look at the interactions of institutional policies and

personal consent. We encode three institutional policies that would

mimic HIPPA [2] requirements on health data: (i) do not associate

name, ID for patients in category X; (ii) do not associate name,

phone number when country=X; (iii) do not share addresses once

patients have completed treatment. In TPCH we implement (i) by

not sharing keys and names of customers in a particular building,

(ii) as is, and (iii) not sharing addresses of customers with finished

transactions. These policies were added to the individual constraints

described above. Fig. 6 shows the slowdown of 7 queries in this

setting. The institutional constraints do not seem to affect or, in

cases, even speed up queries by significantly reducing result tuples.

5.5 Real dataset
Our last set of experiments was performed using the MIMIC-III

dataset [3] that contains real but de-identified critical care unit data.

This dataset comprises of 27 tables with millions of tuples for a

total database size of 47GB, where one of the tables, ChartEvents,
is orders of magnitude larger than the rest, occupying 33GB on disk.

MIMIC-III has been used in a similar setting before in [48] where

the authors study the problem of policy enforcement on query meta-

data (e.g., do not answer a query if the query issuer has done too

many queries in the last day). Inspired by [48] we created a set of 7

queries such as “select patient id and gender from patients that have

their heart rate monitored”, or “select all instrument measurements

for a specific patient”, or “select admission information for patients

who are in ICU and the type of service they are receiving”. The

entire list of our queries can be found on our github. To create

constraints for our experiments we used variations of the queries to

create patterns of constraints that we instantiate with hundreds of

different constants from the database, e.g., patient ids. This way we

created 1000 particular constraint instances per query. The results

of our experiment can be seen in Fig.8. Query Q4 is a particularly

slower query that is using ChartEvents; while most queries can

be answered in under a few seconds for hundreds or a thousand

constraints Q4 takes up to 20sec (Fig.8(a)). Nevertheless, since the

original query is very slow to begin with, the slowdown for this

query in the face of the constraints is relatively ok: 20 times slower

for 500 constraints, and around 50 times slower for 1000 constraints.

This slowdown (of a few tens of times) is common for all queries

(Fig.8(a) and (b)), except Q6 and Q7 that were particularly designed

to overlap with all thousand constraints in more than one ways

(each query-constraint pair can have multiple unifications). Thus

Q6 and Q7 in Fig.8(b) become linearly slower with the addition

of constraints, by hundreds of times. Still, these queries can be

rewritten and executed in a few seconds even with 1000 constraints

(Fig.8(a)). Our experiments with this dataset show that in realistic

scenarios and with real data, consent-abiding query answering can

become more challenging, inducing overhead for certain queries

which however seems linear. Our results are promising and show

that consent can be enforced in seconds also in this setting.
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Figure 7: a. Number of constraints impact on query execution time. b. The slowdown per number of unifications (number of
UNION elements in our rewriting). c. The rewriting time to create consent-abiding queries across each size of constraint set.
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Figure 8: a. Consent-abiding execution time vs number of constraints. b. Slowdown per number of constraints. c. The 5 queries
from (b) with the smallest slowdown.

6 RELATEDWORK
Research in data privacy can be broadly classified into two cate-

gories. First, we have statistical approaches [25, 35, 45] that focus

on protecting the identity of individuals when releasing aggre-

gate statistics or performing machine learning tasks, by inserting

noise to data or masking/supressing the data. Second, we have

logic-based approaches, where usually data is not distorted but

rather a declarative layer written in logic, often using logical views

[11, 16, 22, 28, 40, 41], is used to filter queries that might compro-

mise privacy. This and relevant problems such as inference control

[12, 26], or controlled query evaluation [13, 27], study when sensi-

tive information can be disclosed from non sensitive data. Often,

authorisation views [20, 37, 51] extend classical access control ap-

proaches [6, 18, 44, 49, 50] by defining a logical security layer and

assuming a secret query/policy [9–11, 22, 36, 39]; the problem then

is to design safe views, or decide if views expose secret answers

via inference. Our approach is much closer to the logic-based ap-

proaches that protect a secret query’s answer (for us a negative

constraint). However, instead of limiting access to data in order

to hide the constraint’s answer, we explicitly describe this unde-

sired use in a formal contract released to the service-provider. To

the best of our knowledge, ours is the first approach to address

this problem from a collaborative privacy perspective. Datalawyer

[48], seems the only other approach in Databases that is motivated

by supporting top-down data privacy policies, without aiming to

prevent access to information. In its current version, it is using

data-dependent semantics while our approach is data-independent.

It also follows an “accept or reject the query” policy, in contrast to

our approach that gives back the maximal consent-abiding part of

the answer. Hippocratic Databases [33], which we compare against,

were inspired by implementing P3P-like policies [24] within an

RDBMS, and assume an access control perspective. We envision

our approach also being useful in data auditing scenarios [5, 38].

7 CONCLUSION
Society’s interest is shifting towards underlying systems that appro-

priately manage and facilitate fine-grained consent. We present the

first, foundational work to look at how to manage, and honor, fine-

grained, personal consent and contracts of data usage in a collabo-

rative privacy setting. We implement a solution in an open source

DBMS, and show that we can cover and outperform previous works

such as [33] on information disclosure while having much larger ex-

pressive power. Our expressive consent can be managed with small

overhead to queries, even in the face of thousands of constraints.

Conjunctive queries are already employed as a privacy policy lan-

guage in several areas [10, 23, 36]. Many future directions for this

research open up, some of which we are already working on: bring-

ing this language closer to the end-user [32], investigate the benefits

of our alternative annotation-based implementation, investigate

interaction with reasoning constraints, precisely formalize aggre-

gation, and finally look into how we can support a service provider

to enforce consent across multiple queries, in essence,“propagate”

consent by inducing more consent constraints relative to a query

answer for later use; we envisage the latter happening with a query-

answering-using-views technique or similar [30, 31].
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