

Adaptive and Big Data Scale Parallel Execution in Oracle

Srikanth Bellamkonda, Hua-Gang Li, Unmesh Jagtap, Yali Zhu, Vince Liang
*
, Thierry Cruanes

*

Oracle USA
500 Oracle Parkway

Redwood Shores, CA 94065, U.S.A.
*
while at Oracle

First.Last@oracle.com

ABSTRACT

This paper showcases some of the newly introduced parallel

execution methods in Oracle RDBMS. These methods provide

highly scalable and adaptive evaluation for the most commonly

used SQL operations – joins, group-by, rollup/cube, grouping

sets, and window functions. The novelty of these techniques is

their use of multi-stage parallelization models, accommodation of

optimizer mistakes, and the runtime parallelization and data

distribution decisions. These parallel plans adapt based on the

statistics gathered on the real data at query execution time. We

realized enormous performance gains from these adaptive

parallelization techniques. The paper also discusses our approach

to parallelize queries with operations that are inherently serial. We

believe all these techniques will make their way into big data

analytics and other massively parallel database systems.

1. INTRODUCTION
Parallel execution is the crux of commercial relational database

systems, database appliances and Hadoop systems in processing

huge volumes of data. While relational database systems and

appliances parallelize execution of SQL statements, Hadoop

systems parallelize computations specified as map/reduce jobs,

and the line is getting blurred by the day. For example, Hive

provides SQL interface to the data sitting in a HDFS; Polybase

claims to move the data from HDFS to the SQL engine, or the

computation (map/reduce job) to Hadoop. Whatever the approach

may be, analyzing the vast amounts of data being collected by

companies nowadays calls for massively scalable and adaptive

parallel execution models. The parallelization models should fully

leverage CPU resources, minimize data transmission overheads,

and adapt based on the characteristics of the data.

We targeted the heavily used SQL operators for data analysis –

joins, aggregations (group-by, rollup, cube, grouping sets), and

analytic window functions, and developed scalable parallel

execution models for them. These operators play a predominant

role in customer workloads, TPC-H and TPC-DS [5] benchmarks,

and are commonplace in data mining and graph processing using

RDBMSs. The paper is organized like this – in the rest of this

section, we briefly introduce SQL analytics and parallel execution

in Oracle; Sections 2 and 3 present our adaptive techniques for

scaling the computation of group-by and its variants. Techniques

for massively scaling analytic window functions are presented in

Section 4. In Sections 5 and 6, we describe adaptive distribution

methods and massive parallelization of joins. Section 7 shows

ways to parallelize queries with operations that are inherently

serial. Performance results are presented in Section 8. We discuss

related work in Section 9 and conclude in Section 10.

1.1 SQL Analytics
Data cube [14] computation is an expensive and critical operation

in the Data Warehouse environments. To facilitate efficient

execution, SQL Group-By clause was extended with ROLLUP,

CUBE and GROUPING SETS [4] allowing one to specify

aggregations at different levels in a single query block. ROLLUP

aggregates (or rolls up) data at successively higher levels –

ROLLUP (year, quarter, month) computes aggregations at (year,

quarter, month), (year, quarter), (year), and (<grand-total>)

levels. CUBE, on the other hand, aggregates the data on all level

combinations – CUBE (region, year) aggregates on (region,

year), (region), (year) and (<grand-total>) levels. GROUPING

SETS syntax allows users to aggregate the data on arbitrary levels.

These operations attracted research [7][15] by the database

community in late 90’s and execution schemes were proposed.

Commercial database systems have been supporting these

operations since then. Oracle RDBMS uses sort-based execution

scheme for ROLLUP. Data is sorted and aggregated on all the

group-by keys, and higher aggregation levels are computed as the

data is read in sorted order – for example, (year, quarter), (year),

and (<grand-total>) levels are computed as aggregated data at

(year, quarter, month) level is read in sorted order. CUBE and

Grouping Sets are evaluated by reducing them into one or more

ROLLUPs.

Window functions, a part of SQL 2003 [3] standards, enriched

SQL with analytic capabilities and have been widely adopted by

the user community. Analytic queries expressed with window

functions are not only elegant in expression, but execute very well

as numerous self-joins and multiple query blocks are avoided.

Oracle RDBMS supported window functions since Oracle 8i. In

the simplest form, the syntax of window functions looks like this:

 Window_Function ([arguments]) OVER (
 [PARTITION BY pk1 [, pk2, ...]]

[ORDER BY ok1 [, ok2, ...] [WINDOW clause]])

Window functions are evaluated on a per partition basis – data is

partitioned using the PARTITION BY keys and rows within each

partition are ordered on the ORDER BY keys. Then for each row,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,

August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 11

Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

1102

the WINDOW clause establishes the window (the start and the

end boundary) on which a SQL aggregate function like sum,

count, or a ranking function like rank, row_number, or a reference

function like nth_value, lag is applied to produce the result.

Window functions are evaluated after joins, group-by, and the

HAVING clause of the query block. There can be multiple

window functions in a query block, each with different partition-

by, order-by, and WINDOW specifications. Oracle RDBMS

employs sort-based execution of window functions, and this

appears as “window sort” operator in the query tree. Our query

optimizer tries to minimize the number of window sort operations

needed to evaluate the set of window functions specified in the

query. One or more passes over the sorted data will be needed to

evaluate the window functions within a window sort operator.

Three subclasses of window functions – reporting, cumulative,

and ranking, are quite ubiquitous in users’ queries. They are also

employed by database query optimizers [2][9] to remove self-

joins and multiple query blocks. Our novel techniques massively

parallelize these important classes of window functions.

1.2 Parallel Execution in Oracle
Parallel execution in Oracle RDBMS is based on producer-

consumer model in which one set of parallel processes produces

the data, while the other set consumes it. Producer and the

consumer sets have same number of processes and this number

forms the “degree of parallelism” (DOP) of the statement. There

is a Query Coordinator (QC) process overseeing the parallel

execution of the statement. The QC mostly does logistical work –

compilation of the SQL statement, distribution of the work among

parallel processes, shipping the results back to the user, and is

overloaded to perform computations that are not parallelizable.

The QC groups various operations (table scan, joins, aggregations

etc) performed in a sequence into a logical entity called the “Data

Flow Operation” (DFO). It schedules the execution of the DFOs

by the two sets of parallel processes. Data redistribution takes

place between producers and consumers, and this happens via

shared-memory in the case of single-instance database, or via a

network for multi-instance Oracle Real Application Clusters

database. The data distribution can be broadcast, hash or range on

keys, or random and is determined based on the characteristics of

the consuming DFO. Typically, the data distribution type and

keys are determined during the compilation of the parallel

statement. Once all the producer processes finish executing the

DFO and distributing data to consumers, role reversal occurs –

QC assigns the next DFO in sequence to the erstwhile producer

processes, which now become the consumers; the previously

consuming parallel processes now start producing data. In this

paper, we show DFOs using ovals and the arrows between DFOs

depict the data redistribution.

1.3 Terminology
The following acronyms are frequently used in this paper:

GBY – Group By DOP – Degree of Parallelism

OBY – Order By DFO – Data Flow Operation

PBY – Partition By GPD – GBY Pushdown

QC – Query Coordinator HBF – Hybrid Batch Flushing

NDV – Number of Distinct Values

2. GROUP-BY
Group-by Pushdown (GPD) is a well-known technique for GBY

parallelization, wherein the data is aggregated before being

distributed on the GBY keys for final aggregation. GPD plan

(shown in Figure 1) scales well, reduces data distribution costs,

and handles skew. However, it comes with the added CPU and IO

costs of performing aggregation one extra time (that is at the data

production side) and can have an inferior performance when the

reduction in the data due to aggregation is low. Due to this benefit

vs. risk trade off, Oracle RDBMS has been using a cost-based

approach and some heuristics for GBY parallelization.

Oracle query optimizer uses estimates of the number of rows and

groups in choosing the GPD plan. As IO overheads are typically

much higher, Oracle uses a heuristic of not spilling to disk at the

producer side. When a producer process performing GBY runs

out of memory, it switches itself off, outputs whatever data it has

aggregated thus far, and becomes a pass-through operation.

There were several problems with our existing approach –

optimizer dependency, untimely shut-off of GPD, and the inability

to handle skew. Due to inaccurate optimizer estimates, we weren’t

choosing GPD plan in cases where it would have been ideal. Our

heuristic of stopping aggregation upon running out of memory

worked well for systems with limited memory and concurrency

support. But for newer generation systems that can support heavy

query bursts and can operate almost in-memory, our heuristic

needed to be revisited. Because of high memory availability, we

might not hit the memory-full criterion and would continue to do

GPD even though it is detrimental. In the other extreme, memory

pressure due to sudden query burst can lead to early shut-off of

GPD even though GPD is beneficial. In the former case, we waste

CPU resources and in the latter, we incur a lot of row distribution

overhead. Skew exacerbates the problem further due to low

effective degree of parallelism and the load imbalances.

We made several changes to our GBY parallelization scheme to

fix the above-mentioned issues, making it massively scalable and

adaptable based on data characteristics. It also incurs low CPU

overhead. In the new parallelization model, GPD plan is picked

irrespective of optimizer estimates, thereby eliminating the

catastrophic scenario (i.e., limited scalability in the presence of

skew). We then made GPD operation adaptive (or become pass-

through) based on the statistics (number of input records and

number of groups) gathered at execution time, rather than on the

“memory-full” heuristic. And unlike the current scheme, we

Figure 1. Parallel GroupBy Pushdown

Group By Pushdown

Joins

Group By

producer processes p1, p2, …, pn

consumer processes c1, c2, …, cn

distribute on group-by keys

1103

continue pushdown aggregation if it is found to be effective (1/3rd,

or by a configurable ratio) in reducing the data. When memory

capacity is reached, two possibilities exist for GBY to free up

memory – spill the data to disk, or send it over the network to the

consuming parallel processes (c1, …, cn of Figure 1) that complete

the GBY processing. The former approach, though spills to disk,

handles skew and transmits the least amount of data over the

network. The latter approach, which we call “Batch Flushing”

(BF), flushes the batch of rows aggregated thus far, rebuilds a new

batch, and repeats the process. BF avoids spilling to disk at the

expense of transmitting more rows over the network. It handles

skew well provided enough memory is available for aggregation.

To handle high throughput scenarios, we employ a strategy that is

a hybrid of the two described above, and we call it “Hybrid Batch

Flushing” (HBF). In HBF, instead of flushing the batch right

away, we use it to aggregate the incoming records. We probe an

incoming record against the batch and if we find a match, we

aggregate; otherwise we send the record over the network. While

doing this, we maintain the efficiency of the batch. When we find

that the current batch is not effective in aggregating the data, we

flush it to the network, rebuild a new batch and repeat the process.

Additionally, we may choose to keep the most frequent records in

the batch. HBF betters BF in reducing network traffic when

memory is limited due to heavy workload. HBF adapts well to the

memory fluctuations – especially, when memory usage by GBY

has to be brought down due to a sudden query burst. In such

cases, HBF keeps the most-frequent groups in memory and

flushes the rest to network.

Another aspect to consider is the timing of the “adaptive”

decision. Making the decision at the time of spill, as we do today,

will not be performant for queries with low or no reduction, and

in-memory aggregation. In this case, we effectively consume

twice the CPU for the GBY (hash or sort based) operation. If the

decision is made too early, we might make a bad decision due to

insufficient sample. Our approach is to make the decision when

data exceeds L2 cache size, or a multiple of it. If we find that the

reduction is good, we try to give more memory to the GBY

operation. If not, we enter HBF mode. Having a batch that is L2

resident will not add too much performance penalty, especially

when the expensive hash value computation (for group-by hash) is

shared across several operations. If we don’t encounter an

effective batch even after trying several times, we enter “pass-

through” mode that transmits rows as they are received. As

presented in Section 8.1, our HBF strategy gave significant

performance gains over the current GBY parallelization.

3. ROLLUP
Rollup operation aggregates the data at successively higher levels

and is most commonly applied along a dimensional hierarchy.

Users typically rollup the data on one dimension, keeping other

dimensions at a particular level – e.g. query Q1 rolls up on time

dimension, keeping geography dimension at country level; it

computes SUM(sales) for (c, y,q, m), (c, y, q), (c, y) and (c) levels.

Currently, Oracle RDBMS parallelizes such queries in two ways,

but both the approaches have pitfalls. The first approach, as

shown in Figure 2, parallelizes by distributing the data on non-

rollup keys (country for Q1). This scheme works well when the

number of distinct values (NDV) of the non-rollup keys is more

than the degree of parallelism (DOP), and there is no/little skew in

the distribution keys. Otherwise, performance will be very poor

due CPU underutilization.

Q1 SELECT country AS c, year AS y,
 quarter AS q, month AS m, SUM(sales)
 FROM time_dim t, geog_dim g, fact f
 WHERE t.time_key = f.time_key AND
 g.geog_key = f.geog_key
 GROUP BY country,
 ROLLUP(year, quarter, month);

The second approach tries to mitigate the scalability and skew

issues by computing ROLLUP in two stages, as shown in Figure

3. In the “ROLLUP” stage, each parallel process aggregates the

local data and rolls it up. Rows produced by this stage are at

multiple levels and are distinguished with a grouping identifier

(grouping_id function). They are distributed (hash or range) to the

second stage on GBY keys and the grouping_id. The second stage

performs vanilla group-by operation based on all the GBY keys

and the grouping_id.

This parallel execution plan shows better scalability and

performance – skew in the data is handled by the “ROLLUP”

stage via aggregation; and enough keys are used to distribute work

evenly among parallel processes. However, it falls short when

data is sparse, or limited memory is available for the rollup stage.

Sparse data [6] is not so uncommon in the real world and as

ROLLUP is done before the data distribution, huge explosion in

the data traffic can happen. For example, peak holiday sales occur

during different months (and say, quarters) in different countries.

So the ROLLUP of query Q1 would produce one row at (year,

quarter, month) level and one at (year, quarter) level for every

base level (year, quarter, month, country) row. When there is not

enough memory for the ROLLUP operation, we either have to

stop aggregation (like the adaptive group-by of Section 2), or spill

the data to disk. The former is like the “sparse data” case in that it

explodes the data – 4 rows produced for each input row to the

query Q2. The latter case is less performant as it might spill the

data to disk twice – once each in ROLLUP and GBY stages.

Figure 3. Rollup Pushdown Parallel Plan

Figure 2. Single Stage (Non-Pushdown) Parallel Plan

ROLLUP

Joins

Group By

 hash on all keys
 [country, year, quarter, month]

Joins

 hash on non - rollup keys
 [country]

ROLLUP

1104

Our new ROLLUP parallelization scheme, shown in Figure 4,

overcomes the scalability issues of the above-described

parallelization models. It employs two stages namely “Rollup

Distributor” (RD) and “Rollup Collector” (RC) and is adaptive. It

makes several decisions at query execution time based on the

statistics gathered on the real data. It decides the data distribution

keys, whether to aggregate at the base level or now, and the

aggregation levels to be computed in the RD vs. the RC during

the query execution. Thus, it is immune to optimizer errors and

scales massively.

To save space, we use the first letter of the column (c for country,

y for year, q for quarter, and m for month) in the following

description. Adaptive group-by operation (as described in Section

2) aggregates data at the base level and if it finds that there is no

reduction due to group-by, it becomes a pass-through operation.

RD performs several actions in the following sequence. Example

query Q1 specific information is given in square brackets:

1. Buffers incoming rows and collects the NDV of potential

distribution keys [(c,y,q,m), (c,y,q), (c,y), and (c)].

2. Upon finding a candidate distribution key with NDV >>

DOP, it informs the Query Coordinator (QC) of its decision

[say (c, y, q) is the candidate distribution key]. Note that this

is a local decision made by a parallel process.

3. QC informs RD of the global choice for the distribution key

[say (c,y,q)]. QC makes this decision based on the local (and

potentially different) choices made by various RD processes.

The distribution key implicitly determines the levels RD

would be computing.

4. RD now knows the ROLLUP levels it has to compute [(c,y)

and (c)]. It first processes rows from the buffer – each row

would be inserted into an access structure (sort/hash) for

aggregation [on (c,y) level], and would also distributed to a

corresponding RC process based on the global distribution

key [(c,y,q)]. Rows distributed to the RC are tagged with a

bit indicating that these are “base” rows.

5. RD then reads the remaining rows from input source and

processes them like in step 4.

6. Once input is exhausted, RD would roll the data up [level

(c)] and distributes it to the RC. Rows distributed in this step

do not have the “base” row tag.

Parallel processes performing the RC step get informed by the QC

of the ROLLUP levels they are supposed to compute [(c,y,q,m)

and (c,y,q)]. RC aggregates data on those levels for “base” rows.

Rows not marked as “base” are vanilla aggregated on GBY keys

and the grouping_id [(c, y, q, m), grouping_id(y, q, m)]. In the

example scenario, non-base rows at level (c,y) have NULL value

for q and m columns, and NULLs for y, q, and m for rows at (c)

level. Grouping_Id is needed to distinguish these NULLs

generated by the rollup operation from the NULLs in the real

data. Essentially, our new plan is an amalgamation of two

independent (pushdown and non-pushdown) plans shown below:

The new ROLLUP parallelization model has yielded significant

(up to 25x) performance gains as it leveraged all the CPU

resources. As CUBE and GROUPING SETS are evaluated by

decomposition into a series of rollups [7], they too become

massively scalable.

4. WINDOW FUNCTIONS
In this section, we describe our novel adaptive parallel execution

models for the three most popular classes of window functions –

reporting, ranking and cumulative window functions. Reporting

window functions (also called reporting aggregates) report the

partition-level aggregate value for each row in the partition. This

is so because the window for each row spans the entire partition.

They are often used for comparative analysis – e.g. compare each

day’s (base rows) sale to the yearly sales obtained using

“sum(sales) over (partition by year)”.

Cumulative window functions, as suggested by their name,

produce “year-to-date” style aggregations. Unlike reporting

aggregates that have a fixed window (that is an entire partition)

for each row, cumulative functions have a window that grows,

albeit in one direction. For each row in a partition, the window

extends from the first row in the partition to the current row, and

an aggregate is applied on the window. For example, a window

function “max(price) over (partition by stock, year order by
date rows between unbounded preceding and current row)”

computes the year-to-date maximum price of a stock.

Ranking function is a special case of cumulative function in that

the aggregate applied on the window is not a typical SQL

aggregate (like sum, count), but a ranking function – row_number,

rank, dense_rank etc. For example, “rank() over (partition by
department order by sales desc)” is useful in finding top sales in

each department. For convenience, we use short cuts PBY and

OBY for “PARTITION BY” and “ORDER BY” respectively.

4.1 Reporting Window Functions
Reporting window functions are used in computing the aggregates

at successively higher hierarchical levels for comparative analysis.

Figure 4. Adaptive Rollup Parallelization

GBY c, y, q, ROLLUP(m)

 ↑↑ hash(c,y,q)

AGBY c, y, q, m

Joins

GBY c, y, q, grouping_id

 ↑↑ hash(c,y,q)

GBY c, ROLLUP(y)

AGBY c, y, q, m

Joins

computes levels (c,y,q,m),

(c,y,q)

computes levels (c,y), (c)

ROLLUP Distributor

Adaptive Group-By

Joins

ROLLUP Collector

 distribute on a prefix of GBY keys

 (determined at runtime)

1105

Consider this common data warehouse query for example:

Q2 SELECT /*y:year q:quarter m:month d:day*/
 y, q, m, d, sales,
 SUM(sales) OVER (PBY y,q,m) msales,
 SUM(sales) OVER (PBY y,q) qsales,
 SUM(sales) OVER (PBY y) ysales
 FROM fact f;

As mentioned in Section 1.1, Oracle RDBMS uses sort-based

execution of window functions and evaluates the three reporting

aggregates in Q2 using a single “window sort” operation. Because

of this clumping, the parallel plan requires data redistribution

(hash or range) on the common PBY key. Figure 5 shows the

parallel plan for query Q2, wherein the data distribution is done

by “hash” on the common PBY key “year”.

This parallel execution plan works well when the number of

partitions created by the common PBY key is equal to or greater

than the system supported degree of parallelism (DOP).

Otherwise, it fails to leverage system resources fully and executes

very poorly. The scaling of this parallel plan depends on the

number of distinct values (NDV) of the PBY keys. For example,

if “year” had only 10 distinct values, the plan cannot use more

than 10 parallel processes. Thus, this model is ill suited for big

data systems and database appliances that have lots of processing

power. So to make the window function computation massively

parallelizable, we use extended data redistribution keys, or

employ window pushdown. Both these techniques split the

window function computation into two stages.

With “extended distribution keys”, we use more PBY keys than

the common PBY key of the window functions involved so that

the NDV of the distribution keys is equal to or greater than the

desired DOP. With “window pushdown” approach, we push the

window computation down to the underlying data flow operation

(DFO). In both approaches, a second stage is needed to

consolidate the local results from various parallel processes. A

new operator called “Window Consolidator”, Figures 6 and 7,

performs this consolidation step.

The decision of extending data distribution keys or using window

pushdown is based on the optimizer NDV estimation of the PBY

keys during query compilation. When none of the PBY key

combination has sufficient NDV, window pushdown will be

chosen. Otherwise, we will pick a set of PBY keys that has

sufficient NDV as the distribution keys. For example, Figure 6

shows “extended distribution keys” plan for query Q2, assuming

that PBY key combination (year, quarter) has sufficient NDV for

a balanced data distribution and scalability. Figure 7 shows the

window function pushdown plan for the same query Q2.

Unlike the traditional parallel plan (Figure 5), window function

computation is not completed in the “window sort” operation. A

parallel process performing “window sort” only sees a portion of

the data belonging to a partition and needs to know the results

from peer parallel processes. In case of “extended distribution

keys”, window functions at a coarser granularity than the

distribution keys picked are incomplete. For example, the yearly

sales reporting aggregate of query Q2 will not be completed in the

“window sort” operation of Figure 6. The “window consolidator”

operation finishes computation of such window functions. For the

“window pushdown” plan, none of the window functions will be

completed in the window sort stage as parallel processes would be

working on an arbitrary set of rows. For notational convenience,

we use the term “to-be-consolidated” window functions to refer to

the window functions whose results, as computed in the window

sort operation, are not final. We now describe the consolidation

phase and then show how we handle optimizer misestimates of the

NDV.

4.1.1 Window Consolidation
Parallel processes that perform “window sort” would first

broadcast the local results of the “to-be-consolidated” window

functions to the parallel processes performing the “window

consolidator”. Note that this broadcasted data is expected to be

small, as these “to-be-consolidated” window functions must have

low NDV estimates on their PBY keys. Otherwise, their PBY

keys would have been chosen to be the extended data re-

distribution keys. After they are done with broadcasting, the

window sort processes would randomly distribute the actual data

and the results of the window functions “completely” processed in

that stage. Observe this “hybrid” distribution method between

window sort and window consolidator in Figures 6 and 7.

At the consuming DFO, each window consolidator process

aggregates the partial results it has received via the broadcast, and

builds a hash table on the PBY key values. Then the rows that are

received via random distribution are probed in the hash table to

get the fully aggregated values for the “to-be-consolidated”

 hash on common PBY key [year]

Table Scan (f)

Window Sort

hybrid distribution

 hash on extended keys
 [year, quarter]

Window Consolidator

Window Sort

Table Scan (f)

Window Sort

Table Scan (f)

 h ybrid data
 redistribution

Window Consolidator

Figure 6. Parallelization on Extended Keys

Figure 5. Parallelization on Common PBY Keys

Figure 7. Parallelization with Window Pushdown

1106

window functions. Rows are marked with a special bit indicating

whether they are “broadcast” or “randomly” distributed. For lack

of space, we skipped some finer details such as synchronization

among parallel processes and buffering of rows. Note that the

window consolidator has an extra O(n) lookup operation and in

case of “extended distribution keys”, there is an extra data

distribution cost. These additional costs are insignificant and

worth spending, considering the massive scalability achieved.

4.1.2 Example
 Consider the query Q2 executed on a system with a desired DOP

of 20, with the optimizer estimates NDV(y)=5, NDV(y,q)=20, and

NDV(y,q,m)=60. Since NDV(y,q) is equal to the desired DOP, we

pick (y,q) for data distribution. This plan is shown in Figure 6 and

the “to-be-consolidated” window function in this case would be

yearly sales “SUM(sales) OVER (PBY y)”. There will be 20

parallel processes executing the window sort operation – they will

sort input data on (y, q, m), compute and broadcast yearly sales to

the next set of parallel processes performing window

consolidation, and randomly distribute input data along with

completed window functions (quarterly and monthly sales) to

consolidator processes. For simpler illustration, we describe the

example using only two parallel processes.

Parallel Process 1 Parallel Process 2

[WINDOW SORT] [WINDOW SORT]

Y Q M D S Y Q M D S

2001 Q1 Jan 1 10 2001 Q1 Jan 3 20

2001 Q1 Feb 8 20 2001 Q2 Apr 20 100

2001 Q2 Apr 15 10 2001 Q2 May 25 35

2001 Q2 Jun 5 8 2001 Q3 Jul 30 8

2001 Q3 Jul 3 2 2001 Q4 Nov 8 20

2001 Q3 Aug 6 20 2001 Q4 Dec 9 20

2001 Q3 Sep 1 5 2002 Q1 Jan 5 50

2001 Q4 Nov 10 10 2002 Q1 Mar 20 30

2002 Q1 Mar 25 30 2002 Q2 Apr 5 30

2002 Q2 Apr 15 20 2002 Q2 Jun 10 25

2002 Q2 May 20 15 2002 Q3 Jul 30 25

2002 Q3 Aug 18 45 2002 Q3 Sep 5 35

2002 Q3 Sep 25 35 2002 Q4 Nov 15 25

2002 Q4 Nov 18 20 2002 Q4 Nov 18 10

2002 Q4 Dec 25 100 2002 Q4 Dec 25 200

This figure shows the sample data received and sorted by the two

parallel processes performing the window sort. Here, each parallel

process sees two partitions for the “year” column. For parallel

process 1, partially aggregated yearly sales values for partitions

“2001” and “2002” are 85 and 265 respectively. Corresponding

yearly sales values for parallel process 2 are 203 and 430. This

data gets broadcast to the window consolidator processes.

The window consolidator processes first aggregate the results of

“to-be-consolidated” window functions. In the example, the fully

aggregated value for partition “2001” is 288 and the fully

aggregated value for partition “2002” is 695. These values are

kept in a hash table based on the PBY key “year”. Next, the

window consolidators probe the incoming regular (non-

broadcasted) rows in the hash table to get the final yearly sales.

4.1.3 Handling Optimizer Errors
As stated earlier, the NDV of PBY keys is calculated by the query

optimizer and is used in picking the parallelization model.

Inaccurate statistics pose a serious performance problem. When

NDV is underestimated, we will end up broadcasting too many

“to-be-consolidated” rows to the window consolidator stage and

perform poorly. This may even introduce performance regression

compared to the traditional plan of Figure 5. In order to

accommodate optimizer’s NDV misestimates, we made the new

parallel execution plans adapt at query execution time. In

particular, the window sort operations compute/monitor the NDV

of PBY keys of the “to-be-consolidated” window functions. As

soon as they discover that the NDV is higher than anticipated,

they inform the query coordinator (QC) of their finding. QC then

adapts the plan to the traditional parallel plan (Figure 5) by setting

the distribution keys to be the common PBY keys. It asks the

window sort processes to become pass-through operation, and

informs window consolidators to perform the entire window

function computation. In response, the window sort processes

would distribute whatever rows they have processed/buffered thus

far and become pass-through operations. The consolidators would

act as “window sort” and compute all the window functions.

As a future work, we want to make window function

parallelization completely immune to optimizer errors (over and

under estimations). We propose an “always window pushdown”

parallel execution plan that would be similar to scalable and

adaptive rollup computation of Section 3. In particular, we will

monitor the NDV of PBY keys and pick the set of PBY keys that

give us good scalability and with less broadcasting overhead.

Once data distribution keys are decided, window sort and window

consolidator operations will be adapted accordingly. Though this

plan is truly scalable and adaptable, it may end up

sorting/buffering and spilling to disk twice i.e., at window sort

and window consolidator. We plan to investigate further and

implement this “always window pushdown” parallel plan.

4.2 Ranking and Cumulative Functions
In this section, we describe scalable execution models for ranking

and cumulative window functions. Consider the following query

computing rank and cumulative sum total. The window functions

have the same PBY key, but have different OBY keys:

Q3 SELECT prod_id, date, sales,
 SUM(sales) OVER (PBY prod_id OBY date),
 RANK() OVER (PBY prod_id OBY sales)
 FROM fact f;

When parallelizing multiple window functions in the query block,

Oracle query optimizer currently makes a heuristic decision of

combining/clumping multiple window sort operations that have

common PBY keys into the same DFO. Data is distributed on the

common PBY key and each parallel process will execute the

window sort operations independent of the others. As shown in

Figure 8, the parallel plan for query Q3 uses distribution on the

PBY key prod_id. The “window sort (s)” operation computes the

cumulative total and requires ordering on (prod_id, date). The

rank function is computed by the “window sort (r)” operation and

requires data to be sorted on (prod_id, sales). The clumping

Table 1. Sample Data for Reporting Aggregates

1107

optimization that combined window sort (s) and window sort (r)

in the same DFO reduces the number of data redistribution steps.

It works well when the number of partitions created by PBY keys

is equal to or greater than the DOP. Otherwise, this plan has

severe scalability limitation.

Our new strategy to massively scale ranking and cumulative

window functions extends data distribution keys to include some

or all OBY keys, and can further include a random number such

that the number of partitions is equal to or greater than the DOP.

We use optimizer estimates of the NDV of PBY and OBY keys in

deciding the distribution keys. If the NDV of PBY key is less than

the desired DOP, we successively add OBY keys of the window

function till the NDV exceeds the DOP. Even if including all

OBY keys does not meet the DOP threshold, we include a random

number in the distribution keys.

Unlike reporting aggregates, ranking and cumulative window

functions require rows to be sorted within each partition. So when

additional keys are used for data distribution and multiple parallel

processes do the computation of a partition, range distribution

needs to be employed. For the example query Q3, assuming

NDV(prod_id, date) and NDV(prod_id, sales) is greater than the

DOP, we will have a parallel execution plan like Figure 9.

Observe that as a result of including OBY keys for data

distribution, we introduced data redistribution from window sort

(s) to window sort (r).

The parallel execution model with range distribution operates in

two phases interspersed with a synchronization step. Assuming

that the data is range distributed among parallel processes p1 to pn

in that sequence, a parallel process pi needs to know about the

data processed by parallel processes pj, j<i that have the same

partition as the first partition of pi. This is to correctly compute

the window function results. When random number is used for

distribution, process pi may need information about processes pk,

k>i that have same partition as the last partition of pi.

In the first phase, each parallel process computes the local

window function results for the first row of the first partition and

the last row of the last partition. They then send these results, the

corresponding PBY key values, and if required, the OBY key

values to the query coordinator (QC). OBY key values are

required when a random number is included in the distribution

keys as rows with the same PBY and OBY key values can end up

at different parallel processes, but the window computation ought

to treat these rows alike and produce the same result.

Based on the type of window functions being computed, the QC

consolidates the information it receives from various window sort

operations. The QC then sends the relevant information to the

participating parallel processes so that they can produce correct

final results. This information includes offsets or replacements to

be used by the respective parallel processes for computing the

final results. For data partitions that get allocated/distributed in

entirety to one parallel process, window computation does not

need consolidation. These are the partitions that are not the first

and last data partitions within a window sort.

4.2.1 Example

Parallel Process 1 Parallel Process 2

[WINDOW SORT] [WINDOW SORT]

prod_id date sales prod_id date sales

P1 D1 10 P1 D4 10

P1 D1 20 P1 D5 25

P1 D2 10 P1 D5 15

P1 D2 20 P2 D1 20

P1 D3 15 P2 D2 10

P1 D3 25 P2 D2 20

Parallel Process 3 Parallel Process 4

[WINDOW SORT] [WINDOW SORT]

prod_id date sales prod_id date sales

P2 D3 10 P2 D7 10

P2 D3 20 P2 D8 20

P2 D3 10 P2 D9 10

P2 D4 20 P2 D9 20

P2 D5 15 P2 D10 15

P2 D6 25 P2 D12 25

Assume that query Q3 is executed with a DOP of 4 using the

parallel plan of Figure 9. To save space, we only show how to

compute “SUM(sales) OVER (PBY prod_id OBY date”. Table 2

shows the data sorted on PBY and OBY keys by each of the four

parallel processes performing the window sort.

Table 2. Sample Data for Cumulative

 hash on PBY keys

 [prod_id]

Table Scan (f)

Window Sort (r)

Window Sort (s)

Figure 8. Clumped Plan on Common PBY Keys

Figure 9. Range Parallelization on Extended Keys

 r ange on [prod_id, sales]

 r ange on [prod_id, date]

Table Scan (f)

Window Sort (s)

Window Sort (r)

1108

Each parallel process computes the local cumulative sum for the

first row of the first partition and the last row of the last partition.

For parallel process 1, there is only one partition “P1”. It

produces the result “P1, 10” for the first row and “P1, 100” for

the last row. Process 2 sees two partitions “P1” and “P2”, and

produces local results “P1, 10” and “P2, 50". Parallel process 3

sees only one partition “P2” and produces the results “P2, 10” and

“P2, 100". Similarly, process 4 produces local results “P2, 10”

and “P2, 100". All these local results are sent to the QC. The QC

consolidates and sends the following information to each of the

parallel processes.

Parallel

Process

Information from QC

Process1 no “offset”

Process2

Use 100 as “offset” for rows in first

partition “P1”

Process3

Use 050 as “offset” for rows in first

partition “P2”

Process4

Use 150 as “offset” for rows in first

partition “P2”

The information in Table 3 is deciphered like this: there is no

“offset” for process 1, so its local results are final. For process 2,

the offset is 100 for partition “P1”. This is because cumulative

sum from process 1 for partition “P1” is 100. So process 2 adds

100 to the local results for partition “P1” to produce correct

result. It also produces local results for partition “P2”. The

process 3 needs to offset the local result for partition “P2” by 50,

the cumulative sum of partition “P2” in process 2. Likewise,

process 4 offsets local results by 150 (50 from process 2 and 100

from process 3).

With the techniques described in this section, window function

computation can scale massively. We got a whopping 20x

improvement in our performance results (see Section 8).

5. ADAPTIVE DISTRIBUTION METHODS

FOR JOINS
Parallel execution plans for an equi-join between two non-

partitioned tables involve data distribution on one or both tables

involved. We assume hash joins in this discussion as they are

most commonly used, but the discussion is applicable to merge

join as well. Consider the following query for which the optimizer

picks hash join:

Q4 SELECT t.year, t.quarter, f.sales
 FROM time_dim t, fact f
 WHERE t.time_key = f.time_key;

Different data distribution methods are possible for the parallel

plan of this hash join. One approach is hash-hash distribution

(Figure 10) in which both tables are distributed by hash on the

join key. This works well when the inputs are large. Another

approach is broadcast or broadcast-random distribution, in which

the smaller table is broadcast to the parallel processes performing

join and the larger table is either randomly distributed or accessed

in chunks. Broadcast plan, as shown in Figure 11, is ideal when

the left input of the join is small. Query optimizer uses cardinality

estimates and makes a cost-based decision in choosing the

distribution method. It is not uncommon to have the query

optimizer make gross over or under estimation of the cardinality

of join inputs, and this can result in severe scalability issues. If

hash-hash distribution is picked due to overestimation, it can

happen that only a few parallel processes would end up doing

most of the join execution. With underestimation of the input,

broadcast distribution would get picked and can be catastrophic

due to huge data transmission and CPU overheads.

With systems that can support massive parallelism becoming a

necessity with big data, what is needed is a distribution method

that adapts at query execution time based on the cardinality of the

real data. So we have extended our hash-hash distribution to be

“adaptive” – become “broadcast-random” when the left input is

small, otherwise stay as “hash-hash”. We call this “hybrid hash-

hash” distribution method. It is shown in Figure 12.

As can be observed, there is a new operator, called “statistics

collector”, in the query tree. This operator buffers rows and aids

in selecting the distribution method at runtime. For hash-hash, we

let the statistics collector operator to buffer at most 2*DOP rows.

Upon reaching this threshold or seeing end-of-input, it informs

the query coordinator (QC) of the local cardinality. The QC

aggregates the information sent by all the parallel processes and

chooses the distribution method. If the left input cardinality is less

than 2*DOP, the data distribution for the left input is set as

“broadcast” and the right input is distributed randomly.

Otherwise, “hash-hash” distribution on join keys is used. Once

the distribution decision is made, the statistics collector becomes a

pass-through operator. With this adaptive hash-hash distribution,

we can massively scale joins irrespective of the accuracy of the

optimizer’s estimates. Our performance results (Section 8) show

impressive gains from this method.

Figure 12. Adaptive Distribution Plan

Figure 10. Hash-Hash Distribution Plan

Figure 11. Broadcast Plan

Table 3. Consolidation Information

 Hash Join

Table Scan (t) Table Scan (f)

hash hash

Table Scan (t)

Hash Join

‘

Table Scan (f)

broadcast

 Hash Join

Statistics Collector

Table Scan (t)

Table Scan (f)

hybrid-hash hybrid-hash

1109

The hash-hash distribution method is naturally suited to adaptive

behavior as the left and the right inputs of the join are in separate

DFOs. Broadcast plans pose a difficulty as the right input is in the

same DFO as the join. So if this plan were to be adaptive and

become hash-hash when the left input is large, we would have to

change the shape of the query tree at execution time. This is quite

involved and we might consider it in the future. Note that when

we place the hash join and its inputs in separate DFOs, we would

have to buffer the output of join owing to our producer-consumer1

model. This buffering can hinder performance if it were to spill to

disk. So, we make a conservative choice of picking “hybrid hash-

hash” distribution method for cases in which the optimizer is not

confident about the statistics and choosing broadcast distribution

method might result in a bad plan. In other words, we made our

traditional “hash-hash” plans “hybrid hash-hash”. In the next

section, we describe improvements to the broadcast plans.

6. SMALL TABLE REPLICATION
As mentioned in Section 5, broadcast distribution is ideal for

smaller inputs as it does not have to distribute the right input and

is also resilient to skew. When there is skew, broadcast plan

results in better CPU utilization and massive scalability.

Broadcast plans are quite common in data warehousing workloads

– a bigger fact table is joined with one or more small dimension

tables (e.g., time, geography). Consider this query on star schema:

Q5 SELECT country, year, SUM(sales)
 FROM fact f, time_dim t, geog_dim g
 WHERE f.time_key = t.time_key AND
 f.geog_key = g.geog_key
 GROUP BY country, year;

Parallel execution plan for this query follows the model in Figure

11 and would broadcast the small dimension tables, time_dim and

geog_dim. The cost of broadcasting is proportional to the number

of rows being distributed and the degree of parallelism (DOP).

With massive DOP, broadcasting small tables can consume

significant network and CPU resources. This can be improved

with a new parallelization model called “small table replication”.

A table is a candidate for small table replication if it can be

cached in the buffer pool of a database instance. Scans of such

tables would be serviced from the database buffer cache instead of

expensive disk reads and hence, scanning done by multiple

parallel processes should have negligible cost. The name

replication comes from the fact that these small tables get

replicated in the buffer pools of multiple database instances. Once

these small tables are brought in the database buffer pool/cache,

they will stay there because of their high frequency of usage. This

feature goes extremely well with in-memory parallel query

execution where caching of the database objects is maximized.

With small table replication, scan of the small table and the

subsequent join operation get combined into a single DFO. Figure

13 shows parallel plan with small table replication. This plan has

several benefits – first, there is no data distribution cost. For

multi-instance database clusters in which data distribution

happens on a network, this saving is significant. Secondly, there

will be a reduction in parallel query startup and teardown costs, as

only one set of parallel processes is sufficient to execute the

1 Consuming parallel processes cannot produce rows and have to

buffer results till they become producers.

statement. Finally, the unused set of parallel processes is available

to other concurrent database statements.

7. HANDLING SERIALIZATION POINT
In Oracle parallel execution plans, serialization points can exist

due to the presence of operators (e.g. top-N) that are inherently

serial. Obviously, having a serialization point is not good for

massive parallelism. Firstly, any serialization point is executed on

the query coordinator (QC) process. This would block the QC

from performing its usual tasks of coordinating the query

execution among parallel processes. Secondly, any single-input

operator (e.g. group-by) above the serialization point also

becomes serial, and any multiple-input operator (e.g. join)

becomes serial if all its inputs are serial.

Two new features, Back-To-Parallel and Single-Server DFO, are

introduced to handle serialization points. The Back-To-Parallel

feature brings an operator back to parallelism after a serialization

point. Single-Server DFO feature places the serialization point on

a parallel process instead of on the QC, thereby letting the QC do

important tasks.

Figure 13. Small Table Replication Plan

Figure 14. Back-to-Parallel Plan

Rownum

↑

Table Scan

(dept)

Serial QC-DFO

Group By

↑

Rownum

(a) Plan with

 Serialization Point

Single Server

DFO

Rownum

↑

Table Scan

(dept)

Rownum

(b) Plan with

 Back-To-Parallel

 and Single Server DFO

Group By

Hash Join

‘

Hash Join

?

Table Scan
(f)

Table Scan
(t)

Table Scan
(g)

1110

Consider the following top-N query containing an inherently

serial rownum predicate. Figure 14 shows the plan for this query,

with original plan on the left and the new plan on the right side.

Q6 SELECT time_key, sum(sales)
 FROM (SELECT * FROM fact ORDER BY sales)

 WHERE rownum < 100000

 GROUP BY time_key;

In the original plan, the DFO containing the serialized rownum is

executed on the QC and is tagged as serial QC-DFO. Observe

rownum pushdown parallelism and that the serial rownum is

needed to produce the correct result. The GBY operator above the

serial rownum is serial as well. In the new plan, the GBY operator

goes back to parallel and the serial rownum is executed on a

single parallel process instead of the QC. Back-To-Parallel feature

is always applied as long as the operator above the serialization

point has a calculated DOP that is greater than 1. Single-Server

DFO feature is applied whenever the operators in a serial DFO

can be executed on a parallel process.

8. PERFORMANCE STUDY
Performance experiments were conducted on a 2-node Oracle

RAC database, with each node having 40 2.26GHz dual-core

CPUs and 200GB of memory. This system supports a degree of

parallelism (DOP) of 160. To evaluate the effectiveness of our

parallelization techniques in adapting to data reduction ratios and

skew, and in scaling the computation beyond the traditional

parallelization, we had to use synthetic datasets. Some of these

synthetic datasets are derived from our customer datasets. We

varied the data reduction (due to GBY) ratios, skew and the NDV

of distribution keys in the experiments. Statistics were gathered on

all the tables involved. Due to the criticality of GBY operation,

we validated our new GBY parallelization on the 3TB TPC-H.

8.1 Group-By
We took a GBY query with 50 aggregates (min, max, count, avg,

and stddev on each of the 10 columns) and measured the query

performance, varying the input size (16, 64, and 256 million

rows) and the GBY reduction ratio (low i.e. unique data and

high). Due to the high overhead of processing the aggregates, this

query is least favorable to group-by pushdown in the low

reduction scenario. We chose it to see how much the performance

might regress in choosing hybrid batch flushing. When GPD

becomes adaptive and enters the pass-through mode, it needs to

marshal the aggregate operator’s result to be like a partially

aggregated value, and the higher the number of aggregates, the

greater the number of CPU cycles spent in marshalling.

In the results shown in Figures 15 and 16, we use labels CB_GPD

and HBF for the existing cost-based group-by pushdown scheme

and the new hybrid batch-flushing scheme respectively. With

unique data and accurate statistics (Figure 15), query optimizer

decision of not choosing group-by pushdown is ideal. As can be

observed, HBF performed on par with CB_GPD (a non-pushdown

plan) by adapting itself at runtime to a plan that is effectively a

non-pushdown plan. The slight improvement can be ignored as a

run-to-run variation.

Next, we introduced skew in the data – about 75% of the rows

have same value for GBY keys and rest of them are unique. In this

case, Oracle query optimizer incorrectly picked the non-pushdown

plan i.e. CB_GPD is a non-pushdown plan. With CB_GPD, 75%

of rows are processed by one parallel process. In contrast, HBF

handled skew and gave 2x improvement (Figure 16). HBF

performed as expected in other experimental variations as well.

We then tested HBF on query q18 (that groups lineitem table by

orderkey) of TPC-H [5]. For this query, pushdown will not be

beneficial due to low reduction (about 4 lineitems per order) and

can even lead to performance regression. Our HBF technique

adapted at runtime as designed and there was no perceptible

degradation in q18 performance.

8.2 Rollup
To test our ROLLUP parallelization strategy, we took a query

with shape similar to Q1 and varied the GBY reduction ratio and

the NDV of non-rollup keys (country for Q1). Table 4

summarizes these results – it gives the elapsed times when the

NDV of non-rollup keys is greater/lesser than the DOP, and for

the high (90%) and low (1%) reduction scenarios.

Reduction NDV>>DOP Static Adaptive Benefit

Yes 89 102 0.9x Low
(1%)

No 1663 119 14x

Yes 27 23 1.2x High
(90%)

No 646 26 24.8x

Unlike the “static” parallelization model that distributes work

based on non-rollup keys, our new “adaptive” parallelization

model picks the right set of distribution keys at runtime and scales

well. When the NDV of non-rollup keys is lower than the DOP,

the “static” plan used only a few parallel processes, while the

Figure 16. GBY Performance – Skewed Data

Skewed Data

90

328

1289

50

196

706

0

200

400

600

800

1000

1200

1400

16 64 256
Number of Rows (millions)

E
la
p
s
e
d
 T
im

e

CB_GPD

HBF

Table 4. Adaptive Rollup Performance

Unique Data

14

38

133

14

34

117

0

20

40

60

80

100

120

140

16 64 256

Number of Rows (millions)

E
la
p
s
e
d
 T
im

e

CB_GPD

HBF

Figure 15. GBY Performance – Unique Data

1111

“adaptive” plan uses all CPU resources and ran significantly

faster (up to 25x). As expected, there was no difference in

performance when NDV is higher than the DOP. Elapsed times

for the low reduction case are high due to GBY spilling to disk.

8.3 Window Functions
In the first experiment, we took a query like Q2 and varied the

number of rows in the table from 16 to 1024 million. The NDV of

the common PBY key (“y” in Q2) is a mere 2 and the naïve

parallelization scheme (tagged “common-pby”) could only use 2

parallel processes. In contrast, our adaptive method (tagged

“adaptive”) finds at query execution time that the NDV is low and

pushes the computation of all the window functions to 160

parallel processes. Results, as shown in Figure 17, demonstrate

that “adaptive” parallelization improved the performance by a

whopping 20x for 64m and 256m row cases. One would expect an

improvement of 80x with “adaptive” as it ran with a DOP of 160.

Mimicking our customers’ usage of window functions for

complex analysis, we used “create table as select” statement in

our scalability experiments. Hence, the improvement is only 20x

as the costs of table scan and load into a destination table are

included. In addition, the “adaptive” plan incurs an extra cost of

performing hash lookup to produce the final results. The benefit is

lower for 16m and 1024m row cases as the data was fitting in-

memory in the former case and was spilling to disk in the latter.

Figure 17 also shows the performance comparison when the NDV

of common PBY key is greater than the DOP. This result is inline

with our expectation – that there will be a small (negligible for

large datasets) penalty with “adaptive” algorithm due to NDV

counting and the code overheads.

Next we compared the two alternatives – extended distribution

keys (Figure 6) and pushdown (Figure 7), with the current

common PBY-based parallelization of the reporting aggregates.

For the 256m rows input, we took the best case for PBY

parallelization where in the PBY key has NDV much higher than

the DOP and forced our runtime window function parallelization

algorithm to pick different distribution keys. The results and

explanation is tabulated in Table 5. For the “default” case,

parallelization based on common PBY key is ideal. When we

force the distribution keys to be 2, 3, or 4, performance suffers

due to extra data distribution and code overheads. The

“pushdown” case finds that the NDV of common PBY key is

greater than the DOP and adapts to the “default” case.

Distribution Keys Elapsed Time Explanation

default (1) 36 best-case

2 52

3 53

4 44

extra data
distribution

pushdown 36 adapts to default

In the final experiment, we compared the PBY key based

parallelization of ranking and cumulative window functions with

the new parallelization scheme that uses extended keys. We took a

query (like Q3) with rank, dense_rank and cumulative sum

functions having the same PBY keys, but different orderings

(ok1), (ok1, ok2), and (ok1, ok2, ok3). Figure 18 shows the results

for low and high NDV PBY keys. For the low NDV case, the

current parallelization (tagged “pby”) could use only few (4 in this

case) parallel processes. Our new parallelization scheme (tagged

“extended keys”) uses PBY and OBY keys for distribution, and

achieves better scalability; it gives up to 10x improvement. When

the NDV of PBY keys is greater than the DOP, “extended keys”

scheme incurs tiny overhead due to NDV counting.

8.4 Adaptive Distribution Methods for Joins
We conducted a study comparing ADDM plan (Figure 12) with

the traditional hash-hash plan (Figure 10). We took the scenario

in which the optimizer incorrectly picks the hash-hash plan.

Figure 18. Ranking & Cumulative Performance

Table 5. Reporting Aggregates Performance

Figure 17. Reporting Aggregate Performance

Reporting Aggregates

7x

20x 20x
14x

1

10

100

1000

10000

16 64 256 1024 16 64 256 1024

ndv < dop ndv > dop

Number of Rows (m illions) & NDV

E
la
p
s
e
d
 T
im

e
 (
lo
g
a
ri
th
m
ic
)

common-pby

adaptive

improvement

Figure 17. Reporting Aggregate Performance

Ranking & Cumulative

6x

10x 11x

1

10

100

1000

16 64 256 16 64 256

ndv < dop ndv > dop

Number of Rows (millions) & NDV

E
la
p
s
e
d
 T
im

e
 (
lo
g
)

pby

extended keys

improvement

1112

Both tables have two distinct key values, with time_dim having

just two rows and fact having millions of rows. ADDM broadcasts

time_dim and distributes fact in a round robin fashion, thereby

using all the 160 parallel processes for the join. The hash-hash

plan could only use 2 parallel processes for the join. Results as

shown in Table 6 show dramatic improvement and could have

been 80x, if not for the constant costs (parallel query

startup/teardown).

8.5 Small Table Replication
Our experiments comparing small table replication (Figure 13)

with broadcast (Figure 11) yielded expected results. We used

query Q5 with 1M row table T1 and a DOP of 160. Once T1 is

cached, small table replication was 8x faster in handling T1 than

scanning and broadcasting the table T1 to hash join.

9. RELATED WORK
Recent years have seen some published research work related to

SQL window functions – [9][1] use window functions in query

optimization, [10] addresses the performance of a set of window

functions in a query but doesn’t touch upon massive scalability;

[1] describes ways to parallelize window functions with zero or

low cardinality PBY keys and is a precursor to the elaborate,

scalable and adaptive parallelization schemes of this paper. A

novel way of handling of skew in the context of joins was

presented in [11], but no prior work has attempted skew handling

for window functions. Some of our window parallelization

techniques can be extended to handle skew – much like our

“extended distribution key” method, a skewed partition can be

distributed to multiple parallel processes, with the query

coordinator consolidating the local results.

Research on cache-friendly hash joins [12] and the performance

analysis of our hash algorithms (joins and aggregation) motivated

us to use hash tables that are cache resident. In [13], the authors

propose sharing of the hash table by the parallel processes

performing group-by, and being orthogonal, that strategy can be

employed along with our hybrid batch flushing. Hive [8] employs

“map-join” optimization that is similar to our small table

replication method. Unlike [8], we do not require any pre-

processing (map-reduce local task) for small table replication. In

the steady state, Oracle RDBMS would have small tables cached

in the buffer cache. Small table replication benefits us by picking

higher parallelism for the query, or makes parallel resources

available to other queries in the system.

10. CONCLUSION
Joins, aggregations, and analytics are the key operations used to

analyze the already huge, and fast-growing datasets residing in

traditional databases or in hadoop-based distributed systems.

Scalable and adaptive evaluation of these operations is of

paramount importance to the success of any data management

system. To that end, we developed several techniques for massive

scalability of SQL operations in the Oracle RDBMS. We believe

these techniques would be quite applicable to analyses using

hadoop map-reduce jobs.

Our parallelization schemes are not only scalable, but adaptable –

ADDM chooses a distribution method for joins based on the real

input size rather than the optimizer estimate; group-by pushdown

with hybrid batch flushing adapts based on the data reduction

observed during execution; ROLLUP and window function

parallelization models choose work distribution based on data

demographics. Performance studies on datasets and database

statements similar to what we have seen from customers have

yielded exciting results – up to 30x improvement to elapsed times.

11. ACKNOWLEDGMENTS
We thank our colleagues for their inputs, Allison Lee for statistics

collector work, and Murali Krishna for the performance work.

12. REFERENCES
[1] R. Ahmed, et al, “Cost-Based Query Transformation in

Oracle”, Proceedings of the 32nd VLDB Conference, Seoul,

S. Korea, 2006.

[2] S. Bellamkonda, et al, “Enhanced Subquery Optimizations in

Oracle”, Proceedings of the 35th VLDB Conference, Lyon,

France, 2009.

[3] A. Eisenberg, K. Kulkarni, et al, “SQL: 2003 Has Been

Published”, SIGMOD Record, March 2004.

[4] SQL – Part2: Foundation, ISO/IEC 9075:1999.

[5] TPC-H (Decision Support), Standard Specification Rev 2.8,

TPC-DS Specification Draft, Rev 32, http://www.tpc.org/

[6] OLAP Council, APB-1 OLAP Benchmark, Release II,

http://olapcouncil.org/research/APB1R2_spec.pdf

[7] S. Agarwal, et al, “On the Computation of Multidimensional

Aggregates”, Proceedings of the 22nd VLDB Conference,

Mumbai (Bombay), India, 1996.

[8] Map Join Optimization, Apache Hive,

https://cwiki.apache.org/Hive/joinoptimization.html

[9] C. Zuzarte, et al, “WinMagic: Subquery Elimination Using

Window Aggregation”, Proceedings of the 2003 ACM

SIGMOD Conference, San Diego, USA.

[10] Y. Cao, et al, “Optimization of Analytic Window Functions”,

Proceedings of the 38th VLDB Conference, Istanbul, 2012.

[11] Y. Xu, et al, “Handling Data Skew in Parallel Joins in

Shared-Nothing”, Proceedings of the 2008 ACM SIGMOD

Conference, Vancouver, BC, Canada.

[12] C. Kim, et al, “Sort vs. Hash Revisited: Fast Join

Implementation on Modern Multi-Core CPUs”, Proceedings

of the 35th VLDB Conference, Lyon, France, 2009.

[13] Y. Ye, et al, “Scalable Aggregation on Multicore

Processors”, Proceedings of the 7th International Workshop

on Data Management on New Hardware, Athens, 2011.

[14] J. Gray, et al, “Data Cube: A Relational Aggregation

Operator Generalizing Group-By, Cross-Tab and Sub-

Totals”, Data Mining and Knowledge Discovery, 1997.

[15] V. Harinarayan, et al, “Implementing Data Cubes

Efficiently”, Proceedings of the 1996 ACM SIGMOD

Conference, New York, USA.

fact size Hash-Hash ADDM Improvement

16m 1.32 0.06 22x

64m 5.37 0.15 36x

256m 20.74 0.45 46x

Table 6. ADDM Performance

1113

