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ABSTRACT
The increasing amount of available unstructured content
together with the growing number of large non-relational
databases put more emphasis on the content-based retrieval
and precisely on the area of similarity searching. Although
there exist several indexing methods for efficient querying,
not all of them are best-suited for arbitrary similarity mod-
els. Having a metric space, we can easily apply metric access
methods but for nonmetric models which typically better
describe similarities between generally unstructured objects
the situation is a little bit more complicated.

To address this challenge, we introduce SIMDEX, the
universal framework that is capable of finding alternative
indexing methods that will serve for efficient yet effective
similarity searching for any similarity model. Using trivial or
more advanced methods for the incremental exploration of
possible indexing techniques, we are able to find alternative
methods to the widely used metric space model paradigm.
Through experimental evaluations, we validate our approach
and show how it outperforms the known indexing methods.

1. INTRODUCTION
Looking up the right information in large databases within

an acceptable time frame is crucial in almost every area.
For structured data such as relational databases and simple
unstructured content types such as text documents, the effi-
cient querying methods based on various indexing methods
are known for decades. On the other hand, the currently
popular multimedia objects, social network data, medical,
biometric, or scientific databases, are more difficult to search
or explore due to higher complexity of stored objects. There-
fore, we use content-based retrieval [6, 16] which for querying
purposes converts the objects from their native formats to
more appropriate forms, i.e. object descriptors.

If we further apply appropriate similarity model, we can
search for most similar objects to the given query object
based on the relevancy between any pair of object descrip-
tors which will describe the area of similarity search [23].
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The choice of the best similarity model depends heavily
on the type of the dataset and the application we deal with.
The widely known metric space model [23] has been consid-
ered as the best choice for many applications because of its
simplicity. The fixed properties of identity, positivity, sym-
metry, and especially the triangle inequality create a basis
for metric access methods [5, 23, 17] (also known as metric
indexes) used for indexing databases.

However, for various domains the metric indexing is not
convenient because it does not necessary reflect the complex-
ity of objects. So, there emerge similarity models that are
more robust, better fit to a particular problem, or more pre-
cisely describe objects’ relationships. They typically involve
a similarity function that violates one or more metric pos-
tulates, which makes it difficult or even impossible to apply
metric indexing principles. In Figure 1, we depict samples of
such nonmetric similarity models [22] that use local features
for images [14] and alignments of protein structures [9].

Although database researchers try to solve the indexing is-
sues by employing new and usually more complex methods,
they do not investigate the applicability of their techniques
to specific domains. The much larger domain expert commu-
nities of various kinds associate people who use specialized
similarity search applications and who expect the simplicity
of the models, so they can apply them immediately. They
focus mainly on the enhancements and customizations of
the similarity model to better fit to their problem and are
reluctant to use up-to-date more efficient database indexing
methods, as they are either complex or difficult to employ.

Therefore the final solution for most applications usually
degrades to simple but slow sequential scanning instead of
various more sophisticated concepts. Though this is accept-
able only to small sized databases, as for larger datasets the
efficiency will eventually become a critical factor.

Our research aims to connect these two distinct worlds by
enabling the domain experts to use advanced indexing tech-
niques in a simple way. Driven by the efficiency, we propose
the concept of SIMDEX – a universal framework that is ca-
pable of finding alternatives to metric indexing for any given
database using just the pair-wise similarities (or distances)
between objects. We focus on the efficiency (speeding up
the queries), effectiveness (precision of the query results),
and simplicity (the final results are easy-to-use).

Our contribution here is twofold. The domain experts
receive a relatively simple tool for discovering alternative
indexing methods for speeding up their similarity queries
while database researchers will finally be able to apply the
advanced concepts also outside of their expertise area.
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(a) Image similarity (b) Protein similarity

Figure 1: Sample similarity models

In the following text, we describe the previous attempts
to provide alternative ways of database indexing (Section 3),
precisely describe how SIMDEX Framework differs from them
(Section 4), depict two variants of framework‘s exploration
phase (Sections 4.2 and 4.4), and validate their performance
through experimental evaluations (Sections 4.3 and 4.5).

2. SIMILARITY SEARCHING
The principles of similarity search [23] are based on the

extraction of important objects features (object descriptors)
combined with the similarity measure used for querying.
The most popular queries are the range query that for a
query object q returns all database objects oi that are sim-
ilar to the query to some extent (defined by the radius r),
and the kNN queries that return k most similar objects.

To properly rank the results, we need a similarity model
that specifies the relevancy between any pair of objects. In
this context, distances and similarities are interchangeable,
as the increasing similarity (s) gives decreasing distance (δ)
between any two objects from the database.

For many applications, the widely known metric space
model [23] has been considered as the best choice for index-
ing, mainly because of its simplicity and fixed properties:

δ(x, y) = 0 ⇔ x = y identity
δ(x, y) > 0 ⇔ x 6= y positivity

δ(x, y) = δ(y, x) symmetry
δ(x, y) + δ(y, z) ≥ δ(x, z) triangle inequality

The combination of these properties enables to index any
database using metric access methods, also known as metric
indexes [5, 23, 17]. Here, we put the strong focus on the
query performance efficiency measured by the number of
distance computations (DCs) used for ranking the database.

To eliminate as many DCs as possible, we leverage cheaper
measures for distance value estimations – the lowerbounds.
For any valid lowerbound expression LB it holds

LB(δ(q, o)) ≤ δ(q, o) (1)

where q is the query object, o is a database object, δ(q, o)
is the distance between q and o, and LB is its estimation.
The tighter/better the lowerbound is, the more objects it fil-
ters out without computing the generally expensive distance
δ(q, o) and thus saves the evaluation time. To compute the
lowerbound, we often use reference objects pi called pivots
which create the basis for various indexes, e.g. LAESA [15].

The well-known triangle lowerbound LB4 applies to the
metric spaces and it uses a single pivot p:

LB4(δ(q, o)) = |δ(q, p)− δ(p, o)| ≤ δ(q, o) (2)

It is a cheap and effective lowerbound method however for
nonmetric distances it usually leads to false dismissals [20].

3. RELATED WORK
To overcome the problems with indexing databases with

nonmetric similarity models, we can either modify the model
(by customizing the similarity measure), or completely change
the indexing schema. These two main approaches have been
recently studied in more details [19, 20, 10, 1, 14] and pro-
vide the foundation for indexing nonmetric models.

One of the very first methods dealing with the nonmetric
models was TriGen algorithm [19, 20] which tries to con-
vert nonmetric similarity spaces to semi-metric or metric
ones. Based on a given database sample, the algorithm
tunes the modified distance g(δ) with respect to the rate
of non-triangular triplets (T -error). After a fixed number
of iterations, we get the T -modifier for which the intrinsic
dimensionality ρ [5] is minimized.

The modified distance g(δ) determined by TriGen can be
immediately employed by the pivot table [23] for exact but
slower (T -error is zero; ρ gets bigger) or approximate but
fast (T -error is positive, ρ gets smaller) similarity search.
As it was later discovered, the application of TriGen might
lead to either large retrieval error or low indexability [22].

A similar concept based on the Lambda Tuning Algorithm
has been studied for the nonmetric databases in which the
triangle inequality does not hold [1]. Authors focused on
tuning nine fuzzy T-norm operators with the connection
to the pivot table indexing. As they state, these alterna-
tive methods provide increased efficiency but together with
higher error rate. The main reasons are (1) the discrepancy
between the λ parameter tuned on the sample database for
the given error rate and the notable error that λ produced
on similarity queries within the whole database, and also (2)
required bidirectional distance-to-similarity conversions.

Completely different approach of dealing with nonmetric
similarity models was introduced with the concept of Ptole-
maic indexing [10, 14]. Instead of tuning the distance or
data to comply with metric space properties, authors re-
place the problematic triangle lowerbound (Equation 2). To
construct lowerbounds, they use Ptolemy’s inequality which
for any database objects x, y, u, and v defines the following
relation

δ(x, v) · δ(y, u) ≤ δ(x, y) · δ(u, v) + δ(x, u) · δ(y, v) (3)

If the distance function δ holds the properties of identity,
positivity, symmetry, and satisfies Ptolemy’s inequality, we
can use ptolemaic lowerbound (LBptol). To do so, we first
define the candidate bound δC using two pivots p and s:

δC(q, o, p, s) =
|δ(q, p) · δ(o, s)− δ(q, s) · δ(o, p)|

δ(p, s)
(4)

For simplicity, we let δC(q, o, p, s) = 0 if δ(p, s) = 0. Con-
sidering a set of pivots P, we maximize the candidate bound
δC over all pairs of distinct pivots which results in:

LBptol(δ(q, o)) = max
p,s∈ P

δC(q, o, p, s) ≤ δ(q, o) (5)

Although this lowerbound is valid for signature quadratic
form distance [14] applied to the effective matching of image
signatures [4], it is in general difficult to determine which
preconditions must be met, so the ptolemaic technique will
perform better than any other approach such as the triangle
lowerbound.
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Algorithm 1 Iterative Exploration SIMDEX (S, δ)

Require: database sample S, distance function δ
1: Mδ,S ← new distance matrix (δ, S)
2: candidates ← GenerateExpressions()
3: for all Ei in candidates do
4: if validate(Ei) equals false then
5: candidates.Remove(Ei) {validity check fails}
6: end if
7: if ProbabilityTest(Ei,Mδ,S) < 100% then
8: candidates.Remove(Ei) {probability test fails}
9: end if

10: end for
11: return candidates

4. SIMDEX FRAMEWORK
The idea of ptolemaic indexing shows that finding new

axioms suitable for indexing could be a solution to speeding
up (exact) similarity search in other way than mapping the
problem to the metric space model. To automate the whole
process of axiom exploration, we introduce the concept of
SIMDEX – a universal framework for finding alternative in-
dexing methods for arbitrary similarity models [21, 3, 2].

4.1 Framework Overview
The input for SIMDEX is a distance matrix containing

pair-wise distances between objects from a database sample
(S) computed with a black-box distance function (δ). The
resulting output is a set of lowerbounding expressions (we
call them axioms) valid in the given similarity space that are
used for indexing and effective similarity search. Moreover,
the axioms are obtained in their lowerbounding forms, so
they can be immediately used for filtering purposes in the
same way as ptolemaic indexing was implemented [14].

Our approach does not use a single canonized form and
a tuning parameter, but it generates candidate lowerbound
expressions that are validated against the distance matrix.
We evaluate two distinct approaches, namely the iterative
search [21] and the inequality symbolic regression [21, 3, 2].
Both of them apply a similar concept and differ only in the
way of creating candidate lowerbounds for testing

Note that, we do not study whether the input similarity
model is valid or whether the query results make any sense.

4.2 Iterative Method
This technique allows us to iteratively construct and test

the expressions, so we algorithmically explore axiom spaces
specified in a syntactic way [21]. We define a grammar
for generating candidate expressions; it includes a reason-
able number of terminals such as object descriptor variables
(q, o, p1, p2, . . .) and constants (ci) together with the non-
terminal functions (+, ∗,−, /, with additional unary/binary
math functions min, max, sin, cos, pow,. . . ). All these items
are mutually combined to build more complex, yet mathe-
matically correct expressions.

Nevertheless, all candidates are in the standardized form:

Ei ≡
[
δ(q, o) ≥ LB

]
(6)

where δ(q, o) is the real distance between the given query
object q and a database object o, and the right-hand side
LB is a nonterminal which is additionally expanded.

After we construct the set of candidate expressions, each
expression Ei is validated – it cannot be computationally
too expensive, the expanded LB form cannot contain the dis-
tance δ(q, o), while it should include combinations of δ(q, pi)
and δ(pi, o), where pi stands for a reference object (a pivot).

Only such candidate expressions that meet all the above
requirements are further considered for testing. Algorithm 1
depicts the simplified version of the iterative method.

4.3 Iterative Method Evaluation
To validate the iterative exploration of lowerbound ex-

pressions, we built SIMDEX prototype and applied it to the
real-world datasets. We focus on the nonmetric similarity
models in which metric postulates used for indexing and
querying produce notable errors.

We trace several parameters in order to find out the vi-
tality of SIMDEX Framework. First, we study the Average
Precision over all query evaluations using a specific lower-
bounding method which gives us the quality of query results.
More precisely it returns the number of items in the query
result that are identical to the items in the query result from
the sequential (SEQ) scan divided by the total number of
items in the result. One might see this as the application of
Jaccard distance [20] to the query result sets.

Next, we focus on the Average DC ratio that represents
the query efficiency. This gives us the comparison between
the average number of distance computations given by a
query with a specific lowerbound and DCs produced by the
SEQ scan. We select the average number of DCs as it is a
relatively good measurement for query efficiency not depen-
dent on the hardware used. We suppose that the SEQ scan
always returns appropriate results (the ground truth).

In our experiments, we explore the axiom space given by
the distance matrix (25 × 25 objects), and we test more
than 50,000 candidate expressions. Next, we evaluate the
indexing test based on 100 random kNN queries (k = 10)
using the best candidate lowerbound expressions from the
first step for pivot table (with 10 pivots) filtering as was
recently proposed [14].

We evaluated various similarity models even though only
a few gave us interesting results that we will describe in more
details. For CoPhIR1 dataset with nonmetric L0.5 distance
[20], the best discovered lowerbound expression is

δ(q, o) ≥ LB1.85
4 (δ(q, o)) = |δ(q, p)− δ(p, o)|1.85 (7)

Although this candidate does not dominate in the number
of distance computations (see Figure 2) it clearly produces
no errors compared to other approaches (Figure 3) together
with 55% of DCs given by the SEQ scan.

We also discuss color histograms from Corel Image Fea-
tures2 dataset using nonmetric Jeffrey Divergence [22] which
gave us expressions such as

#18690 δ(q, o) ≥ (δ(q, p)− δ(o, p))2 = LB2
4(δ(q, o)) (8)

#18906 δ(q, o) ≥ (δ(q, p1)− δ(o, p1)) · (δ(q, p2)− δ(o, p2)) (9)

The squared triangle inequality (Equation 8) is only slightly
more precise than LB4(see Figure 5). However, we achieved
a relative success with #18906 (Equation 9) – we got 99.8%
precision with only 5% of DCs compared to SEQ scan. Even
though LB4 still dominates in the number of DCs (Fig-
ure 4), it produces notable error rates.
1http://cophir.isti.cnr.it/
2http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures
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These results verify the viability of the straightforward
approach. They also reveal challenges we need to address
to improve the performance such as (1) the discovery of a
complex axiom takes some time when constructing all ex-
pressions iteratively; (2) despite using various enhancements
[21], we struggle with testing only unique expressions as
there exist infinite forms of a single math expression; and
(3) there is always a trade-off between testing larger sam-
ples (for more precise results) or testing more candidates.

As the iterative exploration did not give us the expected
results, we investigated other possibilities to further enhance
the performance of SIMDEX Framework. For this purpose,
we explore the interesting area of genetic algorithms [12, 13].

4.4 Using Inequality Symbolic Regression
Even if we limit the grammar-based generation of the

candidate expressions, we are still handling an exponential
problem. We address this issue and our objective is to guide
the exploration to the most promising candidates first. To
achieve this, we develop the exploration phase based on the
genetic programming (GP) principles [12] which were intro-
duced to solve computationally intensive problems for which
simpler algorithms or random optimizations do not work.

After building the initial population of random solutions
for the given problem (lowerbounds in our case),we apply ge-
netic operations [13] to build consequent generations which
will lead to the perfect solution. These operations include:

• reproduction – the expression remain unchanged and
is just copied to the next generation

• mutation – the expression is mutated at the random
point and a new expression is derived

• crossover – two expressions are recombined at random
points (two new offspring expressions appear)

• alter architecture – the new expression is created by
changing a single unary or binary operation
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After a fixed number of iterations or when a stop condition
is satisfied, the algorithm returns the best-so-far individual
which corresponds to the final resulting expression.

Inspired by the success of the software tool Eureqa [18],
we focus on the symbolic regression [12, 11] which searches
for the mathematical expression that fits to the given sample
of real-valued numeric data. It looks for the perfect model
that provides a linear combination of independent variables
with corresponding numeric coefficients and that minimizes
the measured error rate.

In our scenario, we use inequality symbolic regression [2]
which searches for inequalities LB ≤ δ(q, o) with a specific
error measure that minimizes the differences between the
lowerbound and the real (computed) distance:

AvgDifference(LB) =
1

|T |
∑
t∈T

(δ(q, o)− LB(t)) (10)

where t is the tuple of values for independent variables,
δ(q, o) is the computed distance between the query (q) and
object (o) variables and LB(t) corresponds to the lower-
bound computed with the values from the tuple. The lower
the error measure, the better the candidate lowerbound es-
timates the real distance.

We also check for the lowerbound correctness which means
that all results comply with the perception LB ≤ δ(q, o). We
also skip candidates for which LB ≤ 0 (zero filtering power),
and dismiss all other inappropriate candidates.

We apply a specific fitness function defined as:

fitness(LB) =
SuccessRatio(LB)

AvgDifference(LB)
(11)

where SuccessRatio(LB) is the percentage of successful
tuple evaluations, and AvgDifference(LB) corresponds to
the average difference between the real distance and the
tested lowerbound (see Equation 10).
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Finally, we provide the high-level overview of the GP-
based exploration. In Figure 6, we depict all components
and how they interact with each other. For more details, we
refer readers to the recent research [2, 3].

4.5 GP-based Experimental Evaluation
For experiments, we use the terminal set which includes

distances between random pairs of six independent database
objects (query q, object o, and pivots p1 . . . p4) and random
numeric constants from the interval [-5, 5]. The function
set consists of unary functions (abs, sqr) and the binary
functions (+, -, *, /, min, max).

Regarding the specific settings for GP-based exploration,
we use the population size of 800 individuals that evolve
within 1,000 generations using the standard tournament se-
lection with re-selection enabled. The genetic operations
occur with probabilities: 5% mutation, 10% reproduction,
10% alter architecture, and 75% recombination.

As the evaluation function, we apply random sampling of
n-tuples with a fixed number of 8,000 tuples for each n (the
number of independent variables in the lowerbound). This
enables us to use larger distance matrix consisting of pair-
wise distances between 1,000 randomly selected objects.

In all cases, we repeat the individual run of the genetic
algorithm and provide results for the best run. In each run,
we always save the top 10 individuals with best results to
compare with previous/further results.

Although we evaluated various similarity models, we again
pick two representational datasets to depict results of GP-
based SIMDEX. We select

• PolygonSet which is a synthetic dataset of 250,000
polygons in 2D space, each consisting of 5 to 15 ver-
tices measured by Hausdorff distance [23] using L2 as
the ground distance.

• Color histograms from Corel Image Features dataset
using nonmetric Jeffrey Divergence

For indexing tests, we performed 100 randomly chosen
kNN queries with k = 10 and averaged the results over three
database sizes (100,000; 150,000; and 200,000) for Polygon-
Set, and over two database sizes (10,000 and 20,000) for
Corel Image Features. We used pivot tables with 10 pivots.

We evaluate the effectiveness of selected lowerbounds by
comparison with traditional triangle and ptolemaic lower-
bounds and, if applicable, with TriGen algorithm [19, 20].

The PolygonSet dataset represents the metric similarity
space because we select L2 distance as the ground distance
for the main Hausdorff distance [23]. We observe this fact
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in Figure 7 which shows how the precision relates to the av-
erage DC ratio. The triangle lowerbounding LB4 provides
100% precision together with the dramatic improvement of
number of DCs. We admit that the Ptolemaic method was
faster but it provided a critically low precision of 49%.

Then, we evaluated two newly discovered lowerbounds;
the filtering power of the lowerbound #10

δ(q, o) ≥ |min (δ(p2, p1) · 3.2683, δ(o, p1)− δ(p1, q))|

is the same as the LB4 while the lowerbound #5

δ(q, o) ≥
∣∣∣∣min(2.3192,

−4.9608

δ(o, p1)2

)
− (δ(o, p2)− δ(p2, q))

∣∣∣∣
performs slightly better than the previous two techniques.

Apparently, the improvements were hardly noticeable.

The second dataset Corel Image Features is nonmetric,
therefore we apply also TriangleFP lowerbound which is
the triangle lowerbounding using the modified distances ob-
tained by the TriGen algorithm. For our data, we use 100,000
triplets in 24 iterations to find the best Fractional Power
(FP) modifier [19, 20] with the weight w = 0.802037.

We present the overall results in Figure 8. Although there
is a huge speed-up, the very low precision of the triangle
lowerbounding (only 48%) verifies that the similarity model
is nonmetric. The ptolemaic method is a bit faster but with
even worse quality of 24% correct results.

It is remarkable to show the comparison of these standard
methods with the newly discovered lowerbound #50

δ(q, o) ≥ min
(∣∣∣∣ δ(o, p1)− δ(p1, q)
max(4.3194, δ(p2, q))

∣∣∣∣ , δ(q, p1)

)
It provides 99.8% precision rate using less than 35% of DCs
from SEQ scan. We acknowledge that this is not a perfect
fit, however it indicates a pretty good result.
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More spectacular results gives the lowerbound #49

δ(q, o) ≥ min
(
δ(p1, q) · (δ(o, p2)− δ(p2, q))2

2.0993
, δ(o, p3)

)
as it is the perfect solution in this case. It delivers 100%
precision together with the consumption of only 23.77% of
DCs compared to SEQ scanning.

To be fair in the evaluation, we compare our results with
TriangleFP lowerbounding. The result of TriGen algorithm
clearly works here, as it holds 100% precision while using
24.01% of sequential DCs for the evaluation.

These experiments validates that if properly configured
the GP-based SIMDEX is capable of discovering valid alter-
native indexing methods that are comparable or even better
than the existing concepts. This also verifies our approach of
searching for new axioms valid in arbitrary similarity spaces.

5. CONCLUSIONS
In this paper, we focus on the query performance and

database indexing for content-based retrieval. In this area,
the applied similarity models are generally nonmetric which
raises an issue, as the classical metric indexes cannot be used
and the query evaluations degrade to slow sequential scan-
ning. We address this challenge by introducing SIMDEX
Framework which is capable of discovering alternative in-
dexing methods for arbitrary similarity models, not limited
to metric ones. We outline the basic idea of iterative explo-
ration of lowerbound candidates, followed by more advanced
technique based on the genetic programming. Driven by the
efficiency, we demonstrate the validity and applicability of
SIMDEX and showed how it, in most cases, outperforms the
existing indexing methods.

However, there are still some issues we need to address
such as testing only unique expressions or better n-tuples
sampling. Besides the currently used multi-core CPUs with
multi-threading, we plan to apply also other parallelism
techniques to explore greater spaces (e.g., boosting the GP-
based concept with the island-population model [7, 8]).
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