
Efficiency and Security in Similarity Cloud Services

Stepan Kozak
(supervised by Pavel Zezula)

Masaryk University, Brno, Czech Republic

xkozak1@fi.muni.cz

ABSTRACT
With growing popularity of cloud services, the trend in the
industry is to outsource the data to a 3rd party system that
provides searching in the data as a service. This approach
naturally brings privacy concerns about the (potentially sen-
sitive) data. Recently, quite extensive research of outsourc-
ing classic exact-match or keyword search has been done.
However, not much attention has been paid to the outsourc-
ing of the similarity search, which becomes more and more
important in information retrieval applications.

In this work, we propose to the research community a
model of outsourcing similarity search to the cloud envi-
ronment (so called similarity cloud). We establish privacy
and efficiency requirements to be laid down for the similar-
ity cloud with an emphasis on practical use of the system
in real applications; this requirement list can be used as a
general guideline for practical system analysis and we use
it to analyze current existing approaches. We propose two
new similarity indexes that ensure data privacy and thus are
suitable for search systems outsourced in a cloud. The bal-
ance of the first proposed technique EM-Index is more on
the efficiency side while the other (DSH Index) shifts this
balance more to the privacy side.

1. MOTIVATION
With the rapid growth of the volume and diversity of dig-

ital data produced by all kinds of commercial, scientific and
leisure-time applications, the retrieval in large data sets be-
came one of the key IT tasks nowadays. The complex data
types, such as multimedia or various sensor data, introduce
a natural requirement to be searched not only by their meta-
data but also by the content of the data itself. This is typ-
ically beyond the capabilities of classic exact match or key-
word search techniques and thus the use of various similarity
search technologies increases significantly in current appli-
cations. A considerable research effort has been invested in
this topic resulting in both theoretical background [24] and
large-scale practical results [17, 3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

However, the similarity search is a very resource demand-
ing process and the underlying technologies are rather com-
plex. Therefore, there is a strong motivation to develop a
general method that would provide the similarity search as a
service to make the similarity search technology easily avail-
able to the users (data owners). As the popularity of cloud
services is on the rise, the natural approach is to outsource
this task to the cloud environment in a Software as a Ser-
vice (SaaS) manner. We refer to this concept as similarity
cloud [12]. This approach provides many advantages for the
owners of the data, such as low initial investments, low stor-
age costs and a very good scalability. Also, the cloud service
should transfer the computational burden from the clients
to the servers which would enable the clients to be simpler
devices (such as cell phones).

On the other hand, the principle of cloud outsourcing fun-
damentally assumes that the data is provided to third party
repositories that are shared between multiple tenants and
which cannot be fully controlled by the data owner. The
outsourced data may be sensitive (e.g. medicine data), con-
fidential, or otherwise valuable (e.g. collected from a scien-
tific research) and thus the privacy of the data is of high
importance. Hence, besides providing effective and efficient
searching, the similarity cloud also has to employ mecha-
nisms to ensure data owner’s privacy requirements not only
by standard access permissions, but, more importantly, by
securing the content of the indexed data in a potentially
hostile third-party environment.

Ensuring privacy of the outsourced search is a widely stud-
ied topic in the context of classic databases. There has been
a lot of focus on symmetric searchable encryption schemes
that can form basic building blocks of secure cloud storages.
Such schemes allow data owners to encrypt the data in such
a way that it is possible to perform selective data retrieval
(search) over the encrypted collection while the data pri-
vacy is ensured. Recently, Kamara et al. [11] described the
requirements of a practical secure cloud storage considering
the general case of relational databases and they proposed
a symmetric searchable encryption for this scenario [10].

These general principles can also be applied in the context
of similarity search, however, this area has several specifics
which make the outsourcing more complex. First of all, the
similarity search often deals with more than “one level” of
the data to be processed: The raw data (for example a set of
images) is typically preprocessed to obtain so called features
(descriptors) that are indexed and searched (for example
SIFT features from images [14]). From the privacy point of
view, it is crucial to ensure privacy of both the raw data

1450

and the indexed data objects (features), which may be, in
some cases, equal to the raw data objects or can be highly
correlated with them.

The second difference from the standard search techniques
lies in the core of the similarity search – there exist an in-
finite number of (dis)similarity functions that can be used
with a wide variety of data types. When searching the data,
the similarity query typically contains an example object
(query object) and the search should return the data ob-
jects that are the “most similar” to the example according
to the specified similarity function. Since our goal is to de-
velop a solution for a wide class of the similarity functions
(specifically, metric functions), we cannot assume practically
anything about the specific similarity. To a large extent, we
have to consider the data and the function as black box and if
the precise similarity of two objects should be measured, the
only way is to provide the function with the original unen-
crypted data objects. This is a difference from the standard
solutions where the knowledge of the data structure and the
search model can be exploited better.

There has been some recent research focusing on the prob-
lem of outsourcing similarity search [13, 23, 12], however,
none of these works consider the problem in the wide con-
text of complex requirements of a practical similarity cloud
system. Specifically, the authors focus mainly on the secu-
rity aspects of the system and do not thoroughly evaluate
the efficiency of their schema (client side, server side and
their communication). Also, the authors do not consider
the typical case in real applications where the data is dy-
namic and need to be updated often after the encrypted
index is built. The aim of this work is to fill these gaps and
to provide general definitions and requirements of the prac-
tical similarity cloud system as well as to propose techniques
suitable for use in real applications.

First, we describe and “delimit” the wide problem of pro-
viding the (metric-based) similarity search as a service via
outsourcing to the cloud environment (Section 2). Namely,
we define a general architecture of the similarity cloud and
its efficiency and security requirements. In Section 3, we de-
scribe existing related approaches and we discuss their levels
of privacy and efficiency in the wider context of our general
scheme. Further in Section 4, we propose our own solutions.
The paper is concluded in Section 5.

2. CONCEPT OF SIMILARITY CLOUD
Let us introduce and describe the concept of similarity

cloud as we see it and propose it to the research community.
First, we mention fundamental terms used in the field of
similarity search, then we describe the general model of the
similarity cloud, and finally we formulate requirements that
should be met by a successful similarity cloud.

The concept of similarity search is applicable to a wide
range of data types together with a practically infinite num-
ber of various similarity functions. We adopt the general
model of data that is suitable for many applications. The
model is based on mathematical abstraction of metric space.
The metric space is an ordered pair M = (M,d), where M
is a domain of data objects and d is a total distance func-
tion d : M ×M −→ R satisfying metric postulates of non-
negativity, identity, symmetry, and triangle inequality [24].
The set of indexed objects X ⊆ M is typically searched by
the query-by-example paradigm, for instance by the range
query Range(q, r) = {o ∈ X | d(q, o) ≤ r}, q ∈ M or by the

nearest neighbors query k-NN(q) covering k objects from X
with the smallest distances to given q ∈ M . The following
terminology is used throughout this paper:

Raw data is the original data to be indexed and searched,
e.g., binary image files or other multimedia data. The do-
main of this data will be denoted as R.

Metric space objects are features extracted from the raw
data; each MS object o ∈M is paired with the corresponding
raw object oraw ∈ R by a unique ID; they are compared by
a metric function d.1

Data owner is a subject outsourcing the search service;
authorized client is any entity authorized by the data owner
to use the search service (entity having the secret key).

By term server(s) we refer to the server(s) of the 3rd

party similarity cloud providing the services; from the data
owner’s point of view, the servers are not trusted because
they are not fully under the data owner’s control.

Trapdoor is an operation token generated by a “one-way”
trapdoor function; in our setting, the trapdoor is used for
communication between individual parties (in order to pro-
cess a specific operation – search, insert, etc.) and thus it
can be captured by an attacker; therefore, this token has to
leak as little information as possible, but still contain enough
information for the server to process the task.

2.1 General model
In the classic search paradigm, the search is realized di-

rectly in the actual raw data, whereas in the case of metric-
based similarity search, the raw data often has to be pre-
processed to extract the metric space objects which are the
objects being indexed and searched. This difference between
the classic and the similarity search approaches is even more
significant from the privacy point of view, because the raw
data and MS objects are usually highly correlated. Hence
we need to ensure privacy not only for the raw data itself,
but also for the MS objects.

This two-level nature of the similarity search inherently
introduces several relatively independent problems. First,
how to extract the MS objects on the server side while pre-
serving the privacy of the raw data, second, how to pro-
vide efficient, privacy-preserving similarity search over the
extracted MS objects, and third, how to securely store the
raw data objects and provide them to the authorized clients.
The similarity cloud is composed of three theoretically inde-
pendent servers: secure storage of the (encrypted) raw data,
server that extracts MS objects from the raw data, and the
indexing server that organizes and searches the MS objects
in a similarity manner. The general scheme of the similar-
ity cloud is schematically depicted in Figure 1. Our model
builds on the Similarity Searchable Symmetric Encryption
which has been published by Kuzu et al. in the context of
their Secure LSH Index [13] and generalized in the work of
Tang [21]. However, their definition does not reflect an im-
portant requirement of “dynamicity” of the scheme (i.e. the
technique should support efficient insertions and deletions
of items after the index is built). We consider this update
operations crucial for any practical scheme. Also, the model
by Kuzu et al. does not consider the two-level character of
the data searched by similarity (raw data vs. MS objects).

1In some cases, the raw data and the MS objects are identi-
cal (for instance, gene sequences or other biomedical data);
in other cases, several MS objects are extracted from one
raw object.

1451

(v , ..., v)1 n

Metric space object Indexing server

Extraction server

Storage server

Raw data object

(1) encrypted raw data

(4) decrypt MS object

(2) encrypted raw data

Data owner Authorized client

(3) encrypted MS object

(5) insert trapdoor

Query object

(v , ..., v)1 n

Extracted MS object

(1) encrypted query object

(2) encrypted MS object

(3) search trapdoor

(4) candidate set
(5) Refine cadidate set

{o1, o2, ... }

(6) IDs of resulting data

Insert phase Search phase

(7) encrypted raw data

Figure 1: Similarity Cloud Scheme

The search query processing within the similarity cloud
can be described as follows: Let qraw ∈ R be a raw data
query object which is to be searched in the similarity cloud.
First, the MS query object q is extracted from qraw using
the extraction server, this q is then used to obtain the search
trapdoor on the client side. The trapdoor information is
then sent to the indexing server which retrieves the candi-
date set of encrypted MS objects and sends them back to
the client. Finally, this candidate set is decrypted and re-
fined by the client and the result object IDs are passed to
the storage server to obtain corresponding encrypted raw
data which are decrypted to obtain the final query result.

Updates to the system are realized as follows: Let oraw
be the raw data object to be inserted into the system. First,
the MS object o is extracted from oraw (using the extraction
server) and the original object oraw is encrypted and sent to
the storage server. Then, the insert trapdoor is generated
from o and sent to the indexing server to update the index
structure. Algorithm for data removal would be analogous.

Please, note that this scheme is general and in some sce-
narios not all the entities are employed. If the raw data
space is directly the search metric space, e.g. strings with
edit distance, then the extraction phase is skipped. In some
cases, the raw data may not be stored on a separate server,
but as a part of the secure index on the indexing server.2

2.2 Similarity Cloud Assessment Criteria
We expect the problem of secure similarity search to be-

come more and more relevant and more authors proposing
new techniques. To compare the techniques and to evaluate
whether the specific technique is suitable for specific needs
of particular data owner, we introduce a set of criteria as a

2This is always possible, however merging these two func-
tions has usually the disadvantage of revealing the corre-
spondence between the search trapdoors and the encrypted
result for such trapdoor. This makes the scheme more vul-
nerable to the statistical attacks.

guide according to which the similarity cloud solutions could
be evaluated.

Usability criteria. From the usability point of view, it is
important to answer the following questions about a specific
similarity cloud technology: Can the solution be used for
generic metric space or for a smaller class of data types?
What kind of queries does the scheme support (range, k-
NN, approximate k-NN)? Is the scheme dynamic (efficient
insert, delete operation)?

Once the data owner found a solution satisfying the usabil-
ity requirements, the main evaluation criteria of the scheme
would be the level of privacy and system efficiency.

Security criteria. From the privacy point of view, servers
of the cloud provider should learn as less information about
the outsourced data as possible. The overall privacy of the
system can be analyzed per partes in the following way:

Extraction privacy considers the information about raw
data which leaks during the extraction on the remote server.

Privacy of the indexing process evaluates the amount of
information the server can learn about the MS objects from
the insert trapdoors received during index build or updates.

Search privacy takes into account possible information
leakage from the search trapdoors (the server should not
be able to get any information about the query parameters,
especially the query object itself; moreover, only authorized
clients can issue a meaningful query, i.e. the search trapdoor
can be generated only by authorized clients).

Finally, query result privacy measures correlation between
the search trapdoor and the resulting candidate set should
not reveal any useful information to the server.

The resistance of the scheme can be evaluated using stan-
dard attack scenarios: Ciphertext-only Attack, Known Plain-
text Attack or (Adaptive) Chosen Plaintext Attack [15].

In the real-world scenarios, it is also desirable if the scheme

1452

provides guarantees on the data integrity (i.e. the scheme
provides protocols by which the data owner can detect any
unauthorized modification of the data or modification of the
query answer by any potential adversary). The efficient ver-
ification protocols has been addressed in work of Goodrich
et al. [6]. Also, the key management options of the scheme
may become important, specifically, an option of (efficient)
revoking of the secret keys for clients the data owner do not
want to be authorized for the search anymore (without the
need of re-encrypting and re-indexing the whole data).

Efficiency criteria. When evaluating efficiency of search
operations, we should always consider the client-server na-
ture of the system. In real scenarios, the time spent on the
client is of a higher importance than the time of the query
processing on the server(s). As the clients can be simple
mobile devices with limited computational resources, it is
crucial to move as much work as possible to the server side.
Also the communication costs between client and server play
an important role. These efficiency criteria should be also
considered for the index build and update operations. Espe-
cially, an important aspect is, whether the scheme allows to
add (or remove) an object without the need of re-indexing
the whole data set.

Intuitively, the security requirements go against the effi-
ciency objectives. If most of the computations should be
performed on server side, the server has to have enough in-
formation about the data to process such task efficiently.
Hence, the right balance between the security and efficiency
should be found for each specific application setting.

3. EXISTING SOLUTIONS
The problem of outsourcing similarity search has been re-

cently studied in several publications. The authors have
focused on two separate problems which need to be solved
on the way towards the secure similarity cloud. First, se-
cure outsourcing of the MS objects extraction and second,
building efficient secure structures for metric space indexing.

Pioneering work on secure extraction of image features in
the 3rd party cloud environment has been published in a se-
ries of consecutive papers by Hsu et al. [7, 8, 9]. Using a ho-
momorphic Paillier encryption scheme [20], the authors con-
structed so called privacy-preserving SIFT (Scale-invariant
Feature Transform) which gives comparable results as the
original SIFT but also provides the data owner with privacy
guarantees and it is therefore suitable to be employed within
the similarity cloud. For more details we refer the reader to
the original publications [7, 8, 9].

Further in this work, we focus on the second issue – devel-
opment of a secure similarity index. This has been recently
addressed by several authors [13, 23, 12, 22]. In this section,
we overview the proposed techniques in detail.

3.1 Encrypted Hierarchical Index
Encrypted hierarchical index (EHI) [23] is a relatively gen-

eral concept where the server simply serves as the storage of
encrypted nodes of any indexing structure. Client in turn re-
quests encrypted nodes from the server which are necessary
for search operation, decrypts them and proceeds further
until the sufficient result is found.

According to the authors, the EHI method reaches per-
fect security, because a potential attacker cannot gain any
information either about the data itself or about the search

space, since everything is stored encrypted, in a flat struc-
ture of encrypted nodes. However, assuming that the in-
dexing and searching algorithms are public, an attacker (i.e.
the server) can learn the hierarchy of the underlying struc-
ture after several search operations, because the client typ-
ically iteratively requests all descendants of the currently
processed node.

Naturally, the high security level of EHI comes at the
cost of high communication (a lot of traffic is between client
and the server) and of a relatively low search efficiency.
Since all nodes of the indexing structure are encrypted, all
time-consuming search operations have to be realized on the
client side, and also the client has to perform a lot of en-
cryption/decryption operations. Moreover, this scheme does
not support efficient index updates. To insert/remove items
to/from the index, the client has to either keep or request
a significant part of the index so it can be updated, re-
encrypted and uploaded to the server. For instance, if the
root of the index is to be split, this operation could be ex-
tremely costly.

3.2 Metric Preserving Transformation
Another solution proposed in the work of Yiu et al. [23] is

called Metric-Preserving Transformation (MPT) which uses
an order-preserving encryption [1]. The main advantage of
this approach is that although original distances are not kept
on the server side in plain form, the distance comparisons
can be correctly evaluated at the server side and therefore a
simple filtering during the search phase is possible. However,
to reach sufficient security level (of the encrypted distances),
it is necessary to have a significant sample of the indexed
data before the indexing structure is built. This could be a
problem for dynamically changing data sets.

The secret key of the proposed technique contains a set
of anchor objects (pivots) and each data object is assigned
to its closest pivot [23]. This indexing structure actually
reveals information about the search space by not hiding the
number of items belonging to individual anchors (buckets).
Since the radius of each bucket is encrypted using an order-
preserving function, it is possible to compare bucket sizes
(radii), observe the ratio between these sizes and radii, and
thus identify dense areas in the data space. In the context
of adaptive chosen plaintext attack, we can actually see a
way to compromise the secret key of the scheme (i.e. reveal
the anchor objects). The attacker can exploit the order-
preserving function properties in the following way: For each
pair of known objects o1, o2 belonging to the same anchor
a1, we know their encrypted distance to the anchor and
we can determine which object is closer to the anchor just
by comparing the encrypted distances. Therefore, we can
determine to which side of the hyperplane defined by o2 and
o1 anchor a1 belongs. With more and more known objects,
the attacker is able to locate a1 more and more precisely.

3.3 Secure LSH Index
The latest published secure index suitable for metric-based

similarity search is the Secure LSH Index (SLSH) [13] based
on the concept of locality sensitive hashing (LSH) [5].

Main advantage of the SLSH index is its provable adaptive
semantic security where the amount of information leaking
to a 3rd party is clearly defined and it is proved to be the
maximum amount that can leak. A disadvantage is the ne-
cessity of having a specific family of LSH functions for given

1453

search space. Unfortunately, there are many spaces used in
applications for which no LSH family is known, for instance
metrics for evaluation of the multimedia data similarity such
as Quadratic Form Distance (QFD) [24].

In such metric spaces it is not possible to directly apply
SLSH indexing technique and there has to be an extra initial
phase which transforms the objects from the original metric
space to a different space with a known LSH family. This
phase slows down the whole process (especially the index
building phase) and, more importantly, the embedding into
a different metric space inherently introduces an imprecision
in the similarity search process. Further, the authors of Se-
cure LSH index do not explicitly consider the scheme in the
dynamic environment where objects are frequently added to
or removed from the indexed set.

4. PROPOSED SOLUTIONS
The above described techniques differ not only in the level

of privacy and efficiency, but also in the operations natively
supported. The supported type of queries of individual
approaches (including the EM-Index and Dynamic Secure
Hash-based Index (DSHI) introduced later in this paper)
are summarized in Table 1.

Table 1: Operations supported by the approaches
k-NN Approx. Range Update

k-NN query

EHI [23] + + + -
MPT [23] + - - partially
FDH [23] - + - +
SLSH [13] - + - partially

EM-Index + + + +
DSHI - + - +

In our work, we aim at creating a general secure metric-
based similarity index that would meet most of the criteria
defined in the Section 2.2. Currently we work on two inno-
vative approaches, the Encrypted M-Index (EM-Index) and
the Dynamic Secure Hash-based Index (DSHI). Within the
context of Similarity Cloud as defined in Section 2, our ap-
proaches implement all methods of client and indexing server
and they seek a balance between the efficiency and privacy
requirements.3 The important feature of our techniques is
the support of efficient dynamic operations.

4.1 Encrypted M-Index
Encrypted M-Index (EM-Index) is a general technique

that adds the data privacy level to any metric indexes that
are based on permutations of a fixed set of reference objects
(pivots) [2, 18]. Specifically, an object o ∈ X is indexed by
identifiers of several closest pivots from o ordered by the dis-
tance from o (we will denote this as pivot permutation). We
introduce our approach as an extension of one of these struc-
tures called M-Index [16, 18], which partitions the search
space using dynamic Voronoi partitioning and enables both
precise and approximate similarity search.

3Please note that neither EM-Index nor DSHI provide a
mechanism for outsourcing raw data features extraction; we
assume this extraction service to be available as a part of
the client or outsourced to a separate extraction server.

Our solution exploits the fact that the prefix of pivot per-
mutation is the only information necessary for navigation
within the M-Index Voronoi cell tree [16]. Especially, no
other distances are computed during the insertion phase and
the algorithms for retrieving candidate set SC for all con-
sidered types of similarity queries also need only the per-
mutation prefixes or query-pivot distances. Therefore, the
general idea of EM-Index is to make the distance function
and the pivot set part of the private information known by
the data owner (and shared with authorized clients); the
second part of this secret key is a symmetric cipher key to
encrypt the MS object data. The indexing server manages
a dynamic Voronoi cell tree and stores the encrypted MS
objects.

The prefix of pivot permutation is the main part of the
trapdoor information for all insert, remove and search op-
erations (range, k-NN and approximate k-NN queries). Ad-
ditionally, the trapdoor for precise k-NN and range queries
contains also the full object-pivot distances. Naturally, for
the insert operation, the encrypted MS object data is also
part of the trapdoor (an arbitrary symmetric cipher such
AES, for instance, can be used).

One of advantages of the EM-Index (comparing to other
approaches) is that all the indexing server procedures are
standard, unmodified operations of the M-Index (or any
other pivot-permutation technique). Thus, our approach
can be used to introduce privacy guarantees to an exist-
ing index without any implementation changes of the work-
ing methods. We refer the reader to the already published
paper [12] for more detailed description of the EM-Index,
analysis of its security, and experimental evaluation of its
efficiency using a prototype implementation [4].

4.2 Dynamic Secure Hash-based Index
The EM-Index is a general, scalable and efficient solution,

however it may not be sufficient from the privacy point of
view in some scenarios [12]. Therefore we propose the Dy-
namic Secure Hash-based Index (DSHI), where the balance
between privacy and efficiency is more on the privacy side.

Currently, we are working on the DSHI proposal with the
aid of the SLSH index introduced in Section 3.3 (in the two-
server variant with a Paillier cryptosystem) [13]. As men-
tioned above, there are two main issues about the original
SLSH index to be tackled. The first problem is that for met-
ric spaces without a family of LSH functions, there has to be
an initial phase of metric space embedding. This introduces
further search imprecision and it negatively affects efficiency
of the index building phase (and also search phase). To ad-
dress this issue, we could again take the advantage of the
indexing technique M-Index [18] which internally defines a
generic hashing function satisfying the general LSH proper-
ties [19]. We plan to use several orthogonal M-Indexes as
the LSH functions which would enable to use the rest of the
technique for all the metric spaces.

The second problem of the original SLSH is inefficiency
of update operations. We will propose a modification of
the index that, exploiting the two-server variant of SLSH
approach [13] together with Paillier cryptosystem [20], en-
ables to to implement efficient dynamic operations (inser-
tions, deletions) on the top of the M-Index-based SLSH.
Both proposed extensions of the original SLSH preserve its
privacy guarantees but add the necessary functionality to be
better applicable in practical similarity cloud solutions.

1454

5. CONCLUSIONS AND FUTURE WORK
We proposed a general concept of providing similarity

search as a service. This similarity cloud definition focuses
on preserving the efficiency of the search while ensuring pri-
vacy of the data passed from the data owner to the 3rd
party cloud provider. Following the concept of similarity
searchable encryption, we formally defined its security re-
quirements. We provided extensive summary of currently
existing solutions and evaluated them against the practical
requirements of the similarity cloud.

Further, we briefly introduced a new method that can
be used to ensure data privacy in similarity search systems
outsourced in a cloud. This technique EM-Index exploits ex-
isting efficient metric indexes based on a fixed set of pivots.
Except for precise and approximate k−NN queries, it also
supports precise evaluation of the range queries and efficient
update operations. Currently, we work on a new Dynamic
Secure Hash-based Index which would guarantee higher pri-
vacy level while still being suitable for dynamically changing
data (i.e. technique supporting efficient index updates which
we consider a must-have for a practical similarity cloud).

The ultimate goal of our research is to provide a com-
plex, scalable similarity cloud solutions with provable secu-
rity where the balance between efficiency and level of privacy
can be shifted according to requirements of the specific do-
main and application.

6. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order

Preserving Encryption for Numeric Data. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 563–574,
2004.

[2] G. Amato and P. Savino. Approximate similarity
search in metric spaces using inverted files. In
Proceedings of the 3rd international conference on
Scalable information systems, page 28, 2008.

[3] M. Batko, F. Falchi, C. Lucchese, D. Novak,
R. Perego, F. Rabitti, J. Sedmidubsky, and P. Zezula.
Building a Web-scale Image Similarity Search System.
Multimedia Tools and Applications, 47(3):599–629,
2010.

[4] M. Batko, D. Novak, and P. Zezula. MESSIF: Metric
Similarity Search Implementation Framework. In
Digital Libraries Research and Development, volume
4877 of LNCS, pages 1–10. Springer, 2007.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In
Proceedings of the 25th International Conference on
Very Large Data Bases, pages 518–529, 1999.

[6] M. T. Goodrich, R. Tamassia, and N. Triandopoulos.
Super-efficient verification of dynamic outsourced
databases. In Proceedings of the 2008 The
Cryptopgraphers’ Track at the RSA conference on
Topics in cryptology, pages 407–424, 2008.

[7] C. Hsu, C. Lu, and S. Pei. Homomorphic
Encryption-based Secure SIFT for Privacy-Preserving
Feature Extraction. In Proceedings of SPIE, volume
7880, page 12, 2010.

[8] C. Hsu, C. Lu, and S. Pei. Secure and robust SIFT
with resistance to chosen-plaintext attack. In
Proceedings of 2010 IEEE International Conference on
Image Processing, pages 997–1000, 2010.

[9] C. Hsu, C. Lu, and S. Pei. Image Feature Extraction
in Encrypted Domain with Privacy-Preserving SIFT.
IEEE Transactions on Image Processing, pages
4593–4607, 2012.

[10] S. Kamara, P. Charalampos, and R. Tom. Dynamic
Searchable Symmetric Encryption. In Proceedings of
the 2012 ACM conference on Computer and
communications security, pages 965–976, 2012.

[11] S. Kamara and L. Kristin. Cryptographic Cloud
Storage. In Proceedings of the 14th international
conference on Financial cryptograpy and data security,
volume 6054 of LNCS, pages 136–149, 2010.

[12] S. Kozak, D. Novak, and P. Zezula. Secure
Metric-Based Index for Similarity Cloud. In
Proceedings of the 9th VLDB Workshop on Secure
Data Management 2012, volume 7482 of LNCS, pages
130–147, 2012.

[13] M. Kuzu, M. S. Islam, and M. Kantarcioglu. Efficient
Similarity Search over Encrypted Data. In Proceedings
of the 2012 IEEE 28th International Conference on
Data Engineering, pages 1156–1167, 2012.

[14] D. Lowe. Object recognition from local scale-invariant
features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, pages
1150–1157 vol.2, 1999.

[15] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography, volume 106. 1997.

[16] D. Novak and M. Batko. Metric Index: An Efficient
and Scalable Solution for Similarity Search. In Second
International Workshop on Similarity Search and
Applications (SISAP 2009), pages 65–73, 2009.

[17] D. Novak, M. Batko, and P. Zezula. Generic similarity
search engine demonstrated by an image retrieval
application. In Proceedings of ACM SIGIR’09, page
840, New York, New York, USA, 2009.

[18] D. Novak, M. Batko, and P. Zezula. Metric Index: An
Efficient and Scalable Solution for Precise and
Approximate Similarity Search. Information Systems,
36(4):721–733, 2011.

[19] D. Novak, M. Kyselak, and P. Zezula. On
locality-sensitive indexing in generic metric spaces. In
Proceedings of the Third International Conference on
Similarity Search and Applications, pages 59–66, 2010.

[20] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. Proceedings of
the 17th international conference on Theory and
application of cryptographic techniques, pages 223–238,
1999.

[21] Q. Tang. Search in Encrypted Data: Theoretical
Models and Practical Applications. IACR Cryptology
ePrint Archive, page 648, 2012.

[22] B. Yao, F. Li, and X. Xiao. Secure Nearest Neighbor
Revisited. In Proceedings of 29th IEEE International
Conference on Data Engineering (to appear), 2013.

[23] M. L. Yiu, I. Assent, C. S. Jensen, and P. Kalnis.
Outsourced Similarity Search on Metric Data Assets.
IEEE Transactions on Knowledge and Data
Engineering, 24(2):338–352, 2012.

[24] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach,
volume 32. 2006.

1455

