

Realization of the Low Cost and High Performance MySQL

Cloud Database
Wei Cao

Alibaba Cloud Computing Ltd.

No. 969，Wenyi Road , Hangzhou,

Zhejiang Province,China
+86-13361805660

mingsong.cw@taobao.com

Feng Yu
Alibaba Cloud Computing Inc.

No. 969，Wenyi Road,Hangzhou,

Zhejiang Province,China
+86-18605888505

chuba@taobao.com

Jiasen Xie
Alibaba Cloud Computing Inc.

No. 969，Wenyi Road,Hangzhou,

Zhejiang Province,China
+86-18691498815

jiasen.xjs@alibaba-inc.com

ABSTRACT

MySQL is a low cost, high performance, good reliability and open

source database product, widely used in many Internet companies.

For example, there are thousands of MySQL servers being used in

Taobao. Although NoSQL developed very quickly in past two

years, and new products emerged in endlessly, but in the actual

business application of NoSQL, the requirements to developers

are relatively high. Moreover, MySQL has many more mature

middleware, maintenance tools and a benign ecological circle, so

from this perspective, MySQL dominates in the whole situation,

while NoSQL is as a supplement. We (the core system database

team of Taobao) have done a lot of work in the filed of MySQL

hosting platform, designed and implemented a UMP (Unified

MySQL Platform) system, to provide a low cost and high

performance MySQL cloud database service.

1. INTRODUCTION
UMP (Unified MySQL Platform) system is a low cost and high

performance MySQL cloud scheme, which is developed by the

core database team of Taobao. It's key module is realized by the

Erlang programming language. The system including controller

server, proxy server, agent server, API/Web server, analysis and

optimization server and log analysis server is depended on the

Mnesia[1], LVS, RabbitMQ[2], ZooKeeper[3] and other open

source components.

Developers can apply for MySQL instance resources from the

platform, and access the data through a single entrance provided

by the platform. UMP system maintains and managements a

resource pool, to provide master-slave hot standby, data backup,

disaster recovery, R/W splitting, database sharding and other

service to user transparently.

UMP System reduces the overall cost by a variety of resource

virtualization methods, such as, sharing one MySQL instance for

multiple small users, letting medium-sized users have a MySQL

instance themselves and multiple MySQL instances sharing the

same physical machine. In the aspect of resource isolation, UMP

system realizes resource virtualization and guarantees the quality

of service for users by restricting MySQL process resources

through the Cgroup, and limiting QPS in proxy server. In addition,

with the integrated use of SSL, IP white list, user log and SQL

intercept, UMP system can protect the security of user data.

This paper is organized as follows. Section 2 introduces the

overall design of UMP system, the session 3 depicts the system

interactions, the session 4 discusses UMP’s high availability, the

session 5 tells the implementation of the key system function, the

session 6 summarizes the whole text.

2. DESIGH OVERVIEW
To meet the needs of most users, UMP system is designed to serve

users transparently, that means users are not aware of perceiving

the events of downtime, disaster recovery, flash disconnect and

R/W splitting. Our goal is to provide a unified interface, which

shields the underlying implementation land provides high

availability of services.

2.1 Architecture
The architecture of the first edition of UMP system is based on

mysql-proxy 0.8. We have fixed several bugs of mysql-proxy, and

made some modifications on the state machine which deals with

user connections and database connections in the proxy plug-in.

We also developed Lua script to implement some functions, such

as obtaining the user authentication information and the address

of back-end database from a central database, establishing a

connection to the backend database, forwarding packets, and etc.

However, in the process of developing and deploying the first

edition, we realized a few problems.

First, mysql-proxy 0.8 only provides simple and crude supports

on multithreading where multiple threads share the same message

queue and listen to the same socket pair channel, which often

causes "Thundering Herd" phenomenon. In addition, mysql-proxy

uses global Lua lock, which means only one worker thread can

execute Lua scripts (although improvements will be made in

version 0.9). As a result, the performance of mysql-proxy under

multi-threaded mode is far from keeping linear growth to the

number of CPU cores.

Second, the framework of mysql-proxy limits our extension for

UMP system, such as achieving the user's connection limit, QPS

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08

1742

limit, master-slave switch, R/W splitting, database sharding, and a

series of other functions.

As a result, we decided to rewrite a proxy server to replace the

mysql-proxy by using the Erlang programming language. Figure 1

shows the architecture of the current UMP system. The system

includes controller server, proxy server, agent server, API/Web

server, log analysis server and information statistical server. Also

some open source components are involved, such as LVS,

RabbitMQ, ZooKeeper and so on. The entire project currently has

50,000 lines' Erlang code, 30000 lines' C/C++ source code, and

20000 lines' source code in other languages.

Erlang is a structured, dynamic and functional programming

language. OTP is a framework and platform for the development

of distributed and high fault-tolerant Erlang applications. The

reason why we used Erlang language to rewrite the proxy server

was that Erlang/OTP perfectly abstracts the required elements for

developing a distributed, highly fault-tolerant application,

including network programming framework, serialization and de-

serialization, fault tolerance and hot deployment.

2.2 Interface
We developed a single unified entrance to meet the user’s needs

which performing all operations through webpages, including

create and delete instances, DB control, promotion and demotion,

transfer, and etc.

The API/Web server provides the system management interface

for users, which is based on open source projects called Chicago

Boss and Mochiweb. Mochiweb provides the http/https service,

while Chicago provides MVC frameworks like Rails Chicago.

Chicago has good support for concurrency, each request of it

occupies a lightweight Erlang process.

In addition, the interfaces we designed is compatible with the

interfaces of AWS.

2.3 Proxy
The first important reason why we developed the proxy is to fix

the defects from mysql-proxy, and the other one is to realize a

transparent service mechanism. At the same time, we can add

some features on proxy, such as flow control and log analysis.

The proxy server provides the service to access the MySQL

database for users, which fully implements the MySQL protocol.

The users can use the existing MySQL client to connect to the

proxy server, and then the proxy server gets the authentication

information of users, resources quotas limit (for example the

maximum number of connections, QPS, IOPS, etc.) by user name,

as well as the address of MySQL instance (list), after that it

transmits the user's SQL queries to the correct MySQL instance.

In addition to the basic functions of data routing, the proxy server

also implements the following functions, including limiting

resource, shielding MySQL instance faults, R/W splitting,

database sharding, recording user access logs, and etc. The proxy

servers are stateless in order to provide high availability service.

2.4 Metadata
We store the metadata which is used by the UMP system in the

metabase of the controller server. The stored metadata is mainly

including cluster membership information, user configuration and

status information, the mapping between MySQL instances, task

 Log Analysis Server

 Expert System

 Information Statistics

 ZooKeeper
High Availability

Member Management

User

LVS

 Agent Server
Task Execution

Instance Control

Monitor

 Proxy Server
Data Route

Resource Control

Database Sharding

Flow Control

Log Analysis

Controller Server

 RabbitMQ
Communication

 API / Web Server
Configuration

Portal

State Query

Metadata

Cluster Management

Instance Management

Message Queue

Disaster Recovery

Data Backup

Database Expansion

Dual Master

MySQL

Cluster

UMP Cluster

Basic Services

Figure 1. Architecture diagram of UMP system.

1743

information, and backup migration information. In order to

achieve distributed storage of metadata, we put the operations of

reading and writing metadata into a set of Mnesia distributed

database services. Other server components can obtain the

corresponding data only by sending a request to the controller.

2.5 Controller
UMP needs a perfect management and control service for the

backend cluster, so our controller server provides a variety of

management services for UMP cluster, including metadata storage,

cluster membership management, MySQL instance management,

backup, migration, expansion and other functions.

The cluster membership management, including cluster

management division, host distribution, logical group

configuration, and etc. is used to carry out overall control of

instances, such as upgrade and migration. The management

operations of a MySQL instance, like creation, deletion, migration

and expansion, are all encapsulated into a task respectively, these

tasks will be broken down into idempotent sub-steps according to

business needs, that means even the same steps are executed

repeatedly by the agent server, there are not any side effects, so it

offers retry operation when the task fails. The agent server is

deployed on a machine running MySQL processes, used to

manage MySQL instances on the physical machine, performing

the actual operation, such as create, delete, backup, migration and

master-slave switching.

2.6 Communication
The communication between nodes in UMP system (excluding the

transfer of large data in SQL queries, logs and other streams, these

go directly to these TCP's) are all through RabbitMQ, which is

used as a messaging middleware to ensure the reliability of the

message communication.

When initialized, the cluster will create a queue for each node in

the cluster in RabbitMQ, which is used as a “mailbox” for each

node. When a node want to send a message to other node, it just

write a message to the "mailbox" of the other side, regardless of

whether the other node is online or not, then the RabbitMQ client

running on the other side will receives the message ,and call the

appropriate handling routine. After the message is processed, the

client will return an ACK packet to RabbitMQ, and the RabbitMQ

will delete this message from the "mailbox". We can achieve RPC

based on RabbitMQ, the client also writes a message to the

sender's Reply "mailbox" in addition to send a ACK packet to

RabbitMQ to delete the Request message. RabbitMQ is

transaction supported, it can guarantee delete Request and reply

message are done in an atomic operation, hereby providing a

reliable communication service.

3. SYSTEM INTERACTIONS
Our design should simplify all operation since the UMP system

contains multiple components. As a result, we created this

cooperation job system with multiple components to help users to

do with instance controlling, disaster recovery, dilatation and

other functions.

3.1 Control Order
The controlling operation designed in UMP system is launched by

API/Web servers, processed by a series of servers and finally sent

to the machine holding MySQL instance to do the work. Task

processing and scheduling is transparent to users and the unitized

interface brings a convenient experience to users.

In Figure 2, we illustrate this process by following the control

flow of instance-create through these numbered steps.

1. The clients launch a creating-instance task by accessing the

API/Web server.

2. When the controller server receives the notice from API/Web

server, it initializes the context of working flow and assigns the

steps of the task to memory.

3. The steps to be executed will be distributed to corresponding

agent server according to business. The agent server runs the steps

and creates a MySQL instance in physical machine.

4. The progress and result that the agent server ran the task will all

be fed back to controller server.

5. As soon as the feedback is received by controller server, it will

record the behavior and result of the execution to meta database.

So will these information be displayed on Web Console UI.

Others controlling processes are similar as above, and controller

server can do work concurrently between different instances.

3.2 Data Flow
Data, which refers to the DML statements or Query statements

that manipulate the database here, is separated with control flow

in system. This will achieve better controlling and management.

Data chain flows through LVS first, converting user's link string

to VIP and VPORT, which help to build connection to the server.

After the data flow passes LVS and reaches proxy server, the

router function will do its work and transfer user's SQL statement

to the right SQL instance. The data will be recorded in user access

log while passing proxy server which will be processed after

fetching by the log analysis server.

3.3 Operation and Maintenance
In order to better understand cloud database running status, UMP

party provides an operational log system, mainly is the collection

Client

LVS

MySQL

API\WEB

Controller

Agent

Log

Analysis

Expect

System

Proxy

1

2

3
4

5

Legend:

Data

Control

Figure 2. Control order and data flow.

1744

and analysis of relevant logs and presented to the system

management interface, including log analysis, expert system, etc.

3.3.1 Portal
Considering the interaction of unity, the portal is present in the

system management interface of API/Web server. The user’s

access information is fetched by log analysis server and the

optimization information provided by expert system will be sent

to the Portal on the rendering.

The information statistics server will show the connection

numbers, QPS numerical and MySQL instance status on the

Portal, for the future implementation of elastic resource allocation

and the automated MySQL instance migration provides gist.

3.3.2 Log Analysis
For the convenience of users to analysis their operation of SQL

statements, log analysis server will store and analyze the users

access logs incoming by proxy server, for the execute slower logs

abstract the sentence mode，and implement real-time indexes for

user query over a period of slow logs and statistics.

3.3.3 Expert System
Often some users want to know the slow logs which impact their

business performance, our expert system will provide the SQL

statement analysis and optimization services not only collect the

slow logs of MySQL instance for users，but also integrates and

analysis these logs, refining to every slow logging statements,

analyze the slow reason, and provide our optimization scheme.

4. HIGH AVAILABILITY
As described above, UMP system has many components. The

high availability of some key components among them is

particularly important. Also their quality of service determines the

overall performance of the system and the impact on user.

4.1 Dual Master Replication
For each user system, UMP maintains master and slave MySQL

instance with structure of dual master. The proxy will guarantee to

write data to master instance. When the database fails, controller

server will detect this event and launch a master-slave switching

operation, which will inform all proxy server to perform the

switching through the RabbitMQ.

When the fault master instance online again, controller server will

stop writing slave instance until master and slave databases are

consistent and inform the proxy server to switch the write

operation to the master instance. This process will make users feel

cannot write for a short period of time.

System performs a transparent recovery process to users, so users

cannot perceive the master instance downtime and launch event.

The proxy provides a persistent connection for user in order to

reduce the times of flash disconnection to some extent.

4.2 Controller Leader
In order to achieve high availability, the system will deploy

multiple controller servers. They will elect a leader by the

distributed lock algorithm provided by the ZooKeeper, which is

responsible for scheduling and monitoring various system tasks,

such as create or drop instance, backup and migration. These tasks

would be divided into multiple steps, and would involve multiple

components in the system, such as the main library, the library

and the proxy server. In order to provide the function of rollback,

we adopt a similar workflow way to achieve it. Each system tasks

is divided into Erlang process of multiple stages, after each step

and before executing the next step, the middle state is persisted to

the Mnesia. If the task is stopped because of a node failure, the

leader will detect and re-initiate the task that will go on from the

last failed "breakpoint".

4.3 Stateless Proxy
The proxy servers are stateless, so proxy server downtime will not

affect the other servers in the system, which will only disconnect a

user from the proxy server. Multiple proxy servers using LVS HA

program to achieve load balancing, user application will be re-

directed to other LVS's proxy after re-connecting, so as to provide

high availability level expansion.

5. IMPLEMENTATION
Platform reduces cost through running multiple MySQL instances

on a single physical machine, and realizes resource isolation,

distribution according to needs and limitations of CPU, memory

and IO resources control. The inner maintenance and resource

pool management of UMP system provides a series of service

such as master-slave hot standby, data backup, migration, R/W

splitting, database sharding and data security transparently.

5.1 Resource Control
Referring to the resource management method in some cloud

computing system such as the VMware DRS, we implemented a

resource pool mechanism to manage the database on the server's

CPU, memory, disk and other computing resources. In addition to

not affect the user experience, we realized the resource isolation

mechanism for MySQL instance.

5.1.1 Resource Allocation
Allocated instance is the unit of resource pool, the administrator

can deploy in what rooms, according to the application need to be

separately specified computing resources of the library, from the

library's resources pool, instance management services choose the

lighter server from the resource pools to create an instance of

server. Moreover, combined with Cgroup will further resources to

facilitate the management and isolation, at the same time it can

limit the upper limit of each process group.

Now the system supports three kinds of specifications of the users:

small flow users that share the same MySQL instance, medium-

sized users that possesses a MySQL instance alone and possession

of multiple independent MySQL instance depots table users. For

different users, we provide different kinds of service of dynamic

expansion and contraction.

5.1.2 Resource Isolation
Isolating resource is particularly important when multiple users

share one MySQL instance or multiple MySQL instances share

the same host. Currently, we implement the function of resource

isolation through combing the use of Cgroup on the database

servers to limit MySQL instances resource and the limiting of

QPS on proxy servers.

1745

Firstly, we use the cpuset, memcg and blkio sub-modules of

Cgroup to limit the maximum CPU usage, memory and IOPS that

would be used by MySQL process. Secondly, we increase the

delay on proxy server to limit the user QPS and reduce the system

resources consumed.

5.2 R/W Splitting
We also realized read/write splitting transparent to users. proxy

server will analyze the incoming user SQL statements, will write

sent to the master library, read operation load balance distribution

to master and slave library. In order to avoid reading before the

consistent master-slave synchronization, any data within 300

milliseconds after each write operation to read will be forced to

distribute to the master library. Through master-slave multi-

threaded replication technology, 300 milliseconds can basically

guarantee the data from the master library synchronous to slave

library, and this value can be regulated in the configuration.

Besides, in order to share the pressure of reading and writing,

system realized the read-only instance, users can put read-only

data into read-only instance, so as to reduce the pressure of the

master library.

5.3 Database Sharding
The user can specify the user type as multi-instances based on the

requirements. This multi-instances type users need to add the

rules of database sharding into SQL comments when they are

creating tables. The implementation procedure of the database

sharding is shown in Figure 3.

Firstly, the proxy server will parse the user incoming SQL

statements to extract the information which is needed to rewrite

and distribute the SQL statements.

 Secondly, the SQL statement is rewritten in the form of sub-

statement to be executed on each of the separated table. This

mainly include replacing the table names and where conditions.

And then the sub-statements are sent to each sub-table to be

executed concurrently.

Finally, the result returned from each sub-table is received and

merged. To avoid the size of query result set becoming too large,

we limit the number of results rows of each MySQL instance by

setting the buffer size. At the moment all the sub-tables returned

some results the merge sort begin to be performed, and then the

merged result is returned to the user.

In order to improving the performance, we used C++ to achieve

the parsing and rewriting of the SQL statement and the merging of

the results returned from MySQL servers, which is called by the

Erlang language state machine through the NIF interface.

5.4 Data Security
User and enterprise security department will be more concerned

about the security of their data, we implemented a variety of

methods to ensure the safety of the user data:

1. UMP supports the SSL protocol. The proxy server realized the

whole MySQL client/server protocol, which can establish an

encrypted connection with the client.

2. System generates a list of IP address which is used to access to

database by setting up white list. Our users can configure their

application server address into the white list in order to increase

the security of the account.

3. The proxy server will put all user database operation record to

log analysis server, so security department can export log text on a

regular basis and scan security vulnerabilities.

4. The proxy server can intercept various types of SQL statements

according to the requirement of the security department, such as

‘select *’ statement on a full table, statements whose result is

beyond limit, etc.

6. CONCLUSIONS
Some components in UMP system, such as the proxy server and

the server log analysis, has been used in the Poly Tower Platform

of Tmall to provide secure data cloud services for electricity and

ISV. In addition, the UMP system is also used in the decorating

platform of Taobao shop to provide data services for developers.

In the next stage, we hope the UMP system can further reduce the

cost of internal data storage.

In engineering practice, we adhere to the principle of not

reinventing the wheel through taking advantage of open source,

mature technology and tools. For example, we implemented the

high-performance proxy server on the Erlang network

programming framework and the messaging middleware based on

RabbitMQ, we manage the server heartbeat using ZooKeeper, and

we also make full use of mature tools in the internal group, such

as data backup, migration, programs of capacity expansion or

contraction and other bin log tools. This principle allows us to

concentrate on reducing costs and improving user experience with

the limited resources.

7. REFERENCES
[1] Mattsson H, Nilsson H, Wikström C. Mnesia—A distributed

robust DBMS for telecommunications

applications[M]//Practical Aspects of Declarative Languages.

Springer Berlin Heidelberg, 1998: 152-163.

MySQL Protocl

MySQL Protocl

SQL Parse

Merge Sort

MySQL Rewrite

 Distribute

Queries

Logic Control Layer

Buffer Control

Figure 3. Process of database sharding.

1746

[2] Kramer J. Advanced message queuing protocol (AMQP)[J].

Linux Journal, 2009, 2009(187): 3.

[3] Hunt P, Konar M, Junqueira F P, et al. ZooKeeper: Wait-free

Coordination for Internet-scale Systems[C]//USENIX

Annual Technical Conference,2010, 8: 9.

1747

