
Towards Maximum Independent Sets on Massive Graphs

Yu Liu† Jiaheng Lu § Hua Yang† Xiaokui Xiao‡ Zhewei Wei†

†DEKE, MOE and School of Information, Renmin University of China
§ Department of Computer Science, University of Helsinki, Finland

‡School of Computer Engineering, Nanyang Technological University, Singapore

ABSTRACT
Maximum independent set (MIS) is a fundamental problem in graph
theory and it has important applications in many areas such as so-
cial network analysis, graphical information systems and coding
theory. The problem is NP-hard, and there has been numerous s-
tudies on its approximate solutions. While successful to a certain
degree, the existing methods require memory space at least linear
in the size of the input graph. This has become a serious concern in
view of the massive volume of today’s fast-growing graphs.

In this paper, we study the MIS problem under the semi-external
setting, which assumes that the main memory can accommodate
all vertices of the graph but not all edges. We present a greedy
algorithm and a general vertex-swap framework, which swaps ver-
tices to incrementally increase the size of independent sets. Our
solutions require only few sequential scans of graphs on the disk
file, thus enabling in-memory computation without costly random
disk accesses. Experiments on large-scale datasets show that our
solutions are able to compute a large independent set for a massive
graph with 59 million vertices and 151 million edges using a com-
modity machine, with a memory cost of 469MB and a time cost of
three minutes, while yielding an approximation ratio that is around
99% of the theoretical optimum.

1. INTRODUCTION
The maximum independent set (MIS) problem is a longstanding

problem in graph theory. An independent set is a set of vertices in a
graph, such that no two vertices in the set are connected by an edge.
That is, each edge in the graph has at most one endpoint in the set.
A maximal independent set is an independent set such that adding
any other vertex to the set forces the set to contain an edge. A
graph may have many maximal independent sets of different sizes;
the largest maximal independent set is referred to as the maximum
independent set, and its size is referred to as the independence num-
ber. For example, in Figure 1, {v1, v2} is a maximal independent
set, while {v2, v3, v4, v5} is the maximum independent set, and
the independence number of the graph equals four.

The MIS problem is closely related to a number of fundamen-
tal graph problems [5, 11, 14, 20], such as maximum common in-

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 42nd International Conference on
Very Large Data Bases, September 5th September 9th 2016, New Delhi,
India.
Proceedings of the VLDB Endowment, Vol. 8, No. 13
Copyright 2015 VLDB Endowment 21508097/15/09.

 !"#$!%&'!(#&)*+,+)*+)-#.+- /"#$!%&'0'#&)*+,+)*+)-#.+-

Figure 1: An example to illustrate that {v1, v2} is a maximal inde-
pendent set, but {v2, v3, v4, v5} is a maximum independent set.

duced subgraphs, minimum vertex covers, graph coloring, and
maximum common edge subgraphs, etc. Its significance is not
just limited to graph theory but also in numerous real-world ap-
plications, such as indexing techniques for shortest path and dis-
tance queries [11, 17], automated labeling of maps [22], informa-
tion coding [9], signal transmission analysis [24], social network
analysis [13], and computer vision [27]. In particular, the state-
of-the-art techniques [11,17] for shortest path and distance queries
require building some graph indexing structures, the construction
of which requires repeatedly invoking a sub-routine for solving the
MIS problem. In addition, in the map labeling problem (which
seeks to accurately assign a set of labels to various regions in a
map), a major challenge is to avoid assigning conflicting labels to
the same region; this challenge can be solved by computing the
MIS of an intersection graph [22] constructed based on the map
and the label constraints.

The MIS problem is known to be NP-hard, and does not ad-
mit a constant factor approximation (for general graphs) [14, 20].
In particular, Hastad [16] shows that for any ε > 0, there is
no polynomial-time n1−ε approximation algorithm for the maxi-
mum independent set problem, unless NP=ZPP. Halldórsson and
Radhakrishnan [14] show that for general graphs of bounded de-
gree ∆, the greedy algorithm produces ∆+1

3
-factor approxima-

tion result for the MIS problem. The approximation factor can
be improved to 2d̄+3

5
using the fractional relaxation technique of

Nemhauser and Trotter [19], where d̄ is the average degree of the
graph. The best approximation ratio known for the MIS problem
is O(n(log log n)2/(logn)3) [10]. In addition, there are several
studies on exponential-time exact algorithms: Robson [20] solves
the problem in time O(20.276n) using exponential space, which is
recently improved to O(1.2002n · nO(1)) by Xiao [26].

All the above algorithms require memory space linear in the size
of the input graph. This requirement, however, is often unrealistic
for the large graphs (e.g., social networks, web graphs) commonly
seen in modern applications. To address this issue, in this paper, we
study I/O efficient semi-external algorithms for the MIS problem.

2122

Methods@ I/O or CPU bound Approx. Ratio
Xiao [26] CPU: O(1.2002|V | · |V |O(1)) Optimal

Halldórsson [14] CPU: O(|V |log|V |+|E|) (2d̄+ 3)/5
Zeh [27] I/O: O(sort(|E|+|V |)) No bound
Greedy I/O: |V |+|E|

B
(logM

B

|V |
B

+ 2) Proposition 2
One-k-swap I/O: O(scan(|V |+ |E|)) Proposition 5
Two-k-swap I/O: O(scan(|V |+ |E|)) Better

Table 1: Time and I/O cost and performance (d̄: the average degree)

In particular, we assume that the main memory can accommodate
all vertices, but not all edges, of the input graph. This assumption
is valid even for a massive graph with one hundred million vertices.
In particular, assume that we use a 4-byte integer to represent one
vertex ID, the memory cost for storing all vertices is only 0.4G
bytes, which is much smaller than the memory size of a commodity
machine nowadays.

1.1 Main results
This paper makes several contributions as follows. First, we de-

velop a semi-external greedy algorithm for the MIS problem, which
constructs an independent set by performing one sequential scan of
the disk file of the input graph, avoiding expensive random disk
accesses. This algorithm is simple, and yet, as our empirical exper-
iments show, it yields a good approximate ratio against most real
data sets.

Second, we develop a one-k-swap algorithm, which takes the
independent set computed from our greedy algorithm and swap-
s vertices to enlarge the independent set. Although similar ideas
of node-swap are mentioned in previous work (e.g., [18]), we are
facing a new challenge under the semi-external setting: we need to
guarantee the completeness and correctness of the swaps by relying
on only sequential scans of disk files with a limited amount of main
memory. Towards addressing the challenge, we develop a mecha-
nism to solve a problem called “swap conflict”, which ensures that
all one-k-swaps are correctly performed with only few sequential
scans of adjacent files of graphs.

Third, we propose a two-k-swap algorithm, which exchanges t-
wo vertices in the independent set with other k (k ≥ 3) vertices that
are not in the independent set. Two-k-swap supports a wider range
of swaps, and thus, further increases the size of the independent
set. Table 1 shows a summary on computing complexity and per-
formance of different approaches for maximum independent sets.

Fourth, we provide in-depth theoretical analysis of our algo-
rithms under the well-adopted Power-Law Random (PLR) graph
model [3]. We show that, under mild assumptions on the input
graph, our algorithms can return a solution with an expected ap-
proximation ratio of 99%. Furthermore, this performance can be
achieved with a limited number of sequential scans, which is high-
ly desirable under the semi-external setting.

Finally, we experimentally evaluate our algorithms using sever-
al large-scale real and synthetic datasets. For example, to process
the Facebook graph with 59 million vertices (1.57GB in disk),
our two-k-swap algorithm requires only 469M bytes of the main
memory to achieve the 99% approximation ratio. For the Twitter
graph with 2.4 billion edges (9.41GB), the two-k-swap algorith-
m consumes 524MB main memory and less than an hour, while
achieving the 97% approximation ratio. We also made experiments
for a large Clueweb12 data with 42 billion edges (169GB), which
requires 5.7GB in the main memory to obtain the 97% ratio. There-
fore, to our knowledge, this is the first comprehensive result in the

literature that demonstrates memory-efficient and time-efficient al-
gorithms for the MIS problem on billion-edge real graphs.

The remainder of this paper is organized as follows. Section
2 discusses the preliminaries and the problem statement. Section
3 provides the related work. Section 4 describes the greedy ap-
proach and we present the one-k-swap and two-k-swap algorithms
in Section 5 and Section 6 respectively. We report our experimental
results in Section 7 and conclude this paper in Section 8.

2. PRELIMINARIES
In this section, we first formulate the research problem, and then

introduce the Power-Law Random (PLR) graph model, which will
be used to analyze the performance of our algorithms later.

2.1 Problem Statement
Let G = (V,E) be a simple undirected graph with vertex set V

and edge set E. The neighborhood of a vertex v ∈ V (i.e., the set
of vertices adjacent to v) is denoted N(v), and the degree of v (i.e.,
the number of its neighbors) deg(v). We use the adjacent lists to
represent a graph and sort the adjacent list of each vertex in the
ascending order of vertex degrees.

An independent set in G is a subset of pairwise non-adjacent
vertices. A maximal independent set is an independent set such
that any vertex not in the set is adjacent to at least one vertex in
the set. A maximum independent set is an independent set of the
largest possible size for a given graph G. This size is referred to
as the independence number of G. The problem that we study is
defined as follows.
Problem Statement: Compute an independent set as large as pos-
sible for an undirected graph G(V,E) with limited memory M .
Here, c|V | ≤M ≪ |G|, where c is a small constant number (e.g.,
c = 2 or 3), |V | is the number of vertices, and |G| is the space for
the entire graph G.

2.2 PowerLaw Random Graph Model
Considerable research has focused on discovering and modeling

the topological properties of various large-scale real-world graph-
s, including social graphs and web graphs. In what follows, we
consider a power-law random graph P(α, β) [3] with the following
degree distribution parameterized with two given values α and β:
For any x, the number of vertices in G with degree x equals y, such
that logy = α - βlogx. In other words, we have

|v : deg(v) = x| = y =
eα

xβ
(1)

It can be verified that α is the logarithm of the size of the graph
and β can be regarded as the log-log growth rate of the graph. Giv-
en a degree sequence for each vertex v, we use the following three
steps to construct a random graph model: (1) Form a set L contain-
ing deg(v) distinct copies of each vertex v; (2) Choose a random
matching of the elements of L; (3) For two vertices u and v, the
number of edges joining u and v is equal to the number of edges in
the matching of L joining copies of u to copies of v. This random
graph model will be used in the following sections to investigate
the expected approximate ratio of various algorithms.

3. RELATED WORK
As mentioned in Section 1, the MIS problem is NP-hard and

does not admit a constant factor approximation for general graphs.
Furthermore, Shen et al. [21] shows that the problem is APX-hard
even for power-law random graphs. In this section, we first review
the existing in-memory algorithms for the MIS problem, and then
discuss related work on external algorithms.

2123

In-memory algorithms. A brute-force algorithm requires O(2n)
time by examining every vertex subset and checking whether it is
an independent set. The complexity is reduced to O(20.276n) by
Robson [20] with a modified recursive algorithm. This result is
recently improved by Xiao et al. [26] to O(1.2002n ·nO(1)). These
exact methods are applicable to problem instances of very limited
sizes. For larger cases, various heuristics have been proposed. The
most representative heuristics include tabu search [24], stochastic
local search [4], simulated annealing [12], variable neighborhood
search [15], and evolutionary algorithms [8].

Approximating the MIS problem with theoretical bounds has
been extensively studied [5]. Wei [25] presents an algorithm which
can produce an

∑
v∈V

1
deg(v)+1

approximation. Halldórsson and
Radhakrishnan [14] show that for general graphs of bounded de-
gree ∆, the greedy algorithm produces a ∆+1

3
-factor approxima-

tion. The approximation factor can be improved to 2d̄+3
5

using
the fractional relaxation technique of Nemhauser and Trotter [19],
where d̄ is the average degree of the graph. In terms of the number
of vertices in graphs, Feige shows the currently known best approx-
imation ratio: O(n(loglogn)2/(logn)3) [10].

In general, existing approximate solutions are more efficient than
the exact methods, but they assume that the whole graph always
fits in the main memory, which may not be true for the current
fast-growing graphs such as social graphs often containing billions
of edges. In this paper, we present algorithms that are scalable to
graphs with 42 billion edges using a single commodity PC.

External algorithms. I/O-efficient graph algorithms have received
considerable attention because massive graphs arise naturally in
many applications. Vitter [23] presents an excellent survey of the
state-of-the-art algorithms and data structures for external mem-
ory. Although there are a vast number of studies for maximum
independent set in memory, very few of them study I/O efficien-
t algorithms. In particular, Abello et al. [2] propose randomized
algorithms for the problem of maximal independent set; their I/O-
complexity is O(sort(|E|)) with high probability. Zeh [27] pro-
poses the first deterministic external algorithm for the maximal in-
dependent set problem, which is implemented with time-forward
processing using an external priority queue. The I/O-complexity
is O(sort(|V |+|E|)). Note that these algorithms all focus on the
maximal independent set problem, and they cannot provide any
guarantee on the performance of maximum independent set. To the
best of our knowledge, we present the first comprehensive study to
bridge the theory and practice in maximum independent sets with
the semi-external setting for massive graphs.

4. GREEDY ALGORITHM
In this section, we propose a semi-external greedy algorithm for

maximum independent sets and analyze its performance ratio based
on the PLR graphs introduced in Section 2.2.

4.1 Algorithm Description
Algorithm 1 presents the pseudo-code for a greedy algorithm fol-

lowing the semi-external model. The high-level idea is to repeat-
edly add vertices with small degrees to the independent set IS if
none of their neighbours is added to IS, until no more vertices can
be added. In particular, given a sorted adjacent file by the ascend-
ing order of the degree of vertex, the algorithm first initializes the
states of all vertices to be INITIAL (Lines 1-2), which means that
these vertices ares still unvisited. Then Lines 3-8 update the states
of its neighbours until all vertices are visited, where N(u) denotes
the set of vertices adjacent to u. Finally, a maximal independent set
is returned for all IS vertices.

Algorithm 1 needs a preprocessing phase to sort the vertices by
degrees and then scans the adjacent lists only once. Note that if we
were to sort |V |+ |E| keys in external memory, the I/O cost would
be sort(|V |+|E|) = |V |+|E|

B
logM

B

|V |+|E|
B

, where B is the block
size and M is the main memory size. However, since there are only
|V | adjacent lists and each list fits in the main memory based on
the semi-external model, we can reduce the number of passes in
the sorting algorithm with the following partition scheme. We first
make a scan to partition the adjacent lists into groups, each of size
B. Then we sort the adjacent lists in each group with one pass1, and
run external memory sorting algorithm on the |V |/B groups. This
will reduce the number of passes to logM

B

|V |
B

, and thus the I/O

cost is |V |+|E|
B

(logM
B

|V |
B

+ 1). Finally, the scan cost is |V |+|E|
B

.

Therefore, the total IO cost is |V |+|E|
B

(logM
B

|V |
B

+ 2).

Algorithm 1: Semi-external Greedy Algorithm
Input: A sorted adjacent-list file for graph G
Output: A maximal independent set of G

1 for v ∈ V of G do
2 State[v]← INITIAL;

3 for v ∈ V of G do
4 if State[v]=INITIAL then
5 State[v]← IS;
6 for each u in N(v) do
7 if State[u]=INITIAL then
8 State[u]←∼IS;

9 Return all vertices whose states are IS;

Remark. We compare the above algorithm with the existing in-
memory greedy algorithm [14], called DynamicUpdate hereafter.
The main difference between DynamicUpdate and the above al-
gorithm is that if any vertex v is added to the independent set, then
DynamicUpdate needs to remove v and its neighbors from the
graph, and dynamically update the degrees of affected vertices, it-
erating the remain graph until empty. Therefore, DynamicUpdate
would incur the frequent random accesses to update the degrees of
vertices in the semi-external setting. In the above greedy algorithm,
however, we adopt a lazy strategy to avoid expensive random ac-
cesses. As shown in the empirical results of Section 7, unlike Dy-
namicUpdate, our greedy algorithm is scalable to massive graphs.

4.2 Performance Analysis
We analyze the approximation ratio of Algorithm 1 in the follow-

ing paragraphs based on the random P(α, β) graphs. According to
Equation (1) in Section 2.2, vertices and edges of the graph can be
calculated by the following formula:

|V | =
∑∆

x=1
eα

xβ = ζ(β,∆)eα,

|E| =
∑∆

x=1
eα

xβ−1 = ζ(β − 1,∆)eα,
(2)

where ζ(x, y) =
∑y

i=1
1
ix

and ∆ = ⌊e
α
β ⌋ is the maximum degree

of the graph. Intuitively, the greedy algorithm prefers to select ver-
tices with small degrees, and thus most of vertices with degree 1
are added to IS, and some of vertices with degree 2, 3 and so on.
In this way, Lemma 1 quantifies the expected portion of vertices for
the degree i which can be added to IS.
1This sorting can be completed with only one pass, because we
assume M≥B2, which is known as the tall-cache assumption [7].

2124

LEMMA 1. Given a power law graph P (α, β), the expected
number of independent vertices with degree i returned by Algo-
rithm 1, denoted as GRi(α, β), is

GRi(α, β) ≥
⌊ eα

iβ
⌋∑

x=1

(
ix
eα

+ ζ(β − 1,∆)− ζ(β − 1, i)

ζ(β − 1,∆)

)i

(3)

where ∆ = ⌊e
α
β ⌋ is the maximum degree of the graph.

The proof can be found in the appendix. Based on Lemma 1,
summing up for all degrees from 1 to ∆ immediately implies the
expected number of the independent set.

PROPOSITION 2. Given a power law graph P (α, β), the ex-
pected size of the independent set, denoted as GR(α, β), returned
by the Greedy algorithm, can be computed as follows

GR(α, β) =

∆∑
i=1

GRi(α, β) (4)

β 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
ratio 0.987 0.986 0.987 0.983 0.983 0.984 0.986 0.986 0.986 0.988 0.988

Table 2: Performance ratios of Algorithm 1 with varied β

Remark. Table 2 demonstrates the performance ratio of the greedy
algorithm, which varies parameter β from 1.7 to 2.7 and fixes the
number of vertices to 10 million to simulate a massive graph. Note
that we now cannot obtain the exact independent number if NP ̸= P.
Therefore we develop an algorithm to calculate its theoretical upper
bound. The detail of our algorithm is shown in the Appendix (see
Algorithm 5), which is modified for the semi-external model from
the approach in [13]. In our implementation, for each β value, we
generate ten random graphs and compute their optimal bounds with
Algorithm 5. Then the average number is computed as the final
independence number. The size of the independent set from the
greedy algorithm is computed by Proposition 2. It can be seen from
Table 2 that the ratios are always greater than 0.98, that means the
greedy one is a simple yet delightful algorithm, which can return a
large independent set with 98.3%-98.8% of the optimum.

5. ONEKSWAP ALGORITHM
In this section, we propose a new algorithm, called one-k-swap,

which finds a larger independent set than the greedy algorithm. In
particular, we first characterize the challenges to perform the swap
operations based on the semi-external framework. Then we intro-
duce our algorithm and analyze its effectiveness and efficiency.

5.1 Intuition
In this work, one of our key observations is that we can obtain

a larger independent set through swap operations. For example,
recall Figure 1. Assume that the independent set includes vertices
{v1, v2} in Figure 1(a). Then we can exchange v1 with v3, v4, v5
to increase the size of the independent set. In the literature, Khanna
et al. [18] proposed two types of swaps called 0 ↔ 1 swap and
1↔ 2 swap. 1↔ 2 swap means to exchange one independent-set
(IS) vertex with two non-IS vertices, and 0 ↔ 1 swap adds a new
IS vertex. It turns out that any 1↔ k (k ≥ 3) swap is equivalent to
a combination of one 1 ↔ 2 swap and some 0 ↔ 1 swaps. Swap
is conceptually simple, but there are two technical challenges to
design a swap-based algorithm based on the semi-external model:

(1) Costly random accesses. The first challenge is expensive
random accesses to decide whether a swap operation can be per-
formed correctly to guarantee an independent set. To understand
this, see Figure 1 again. In order to decide whether v1 can be ex-
changed by v3, v4 and v5, one has to access the adjacent lists of
those vertices to ensure that there is no edge among v3, v4 and v5.
Otherwise, this 1↔ 3 swap cannot be performed.

(2) Swap conflict. The second challenge is swap conflict. We
use the example in Figure 2 to illustrate it. Assume that v1 and v4
are in the independent set. Then v1 can be exchanged by v2 and v3;
and v4 can be exchanged by v5 and v6. But these two swaps cannot
be performed simultaneously. That means, they conflict with each
other. Therefore, we need a mechanism to allow one and only one
swap to be successfully performed at this example.

Figure 2: An example to illustrate swap conflict.

5.2 Data Structure

Notation Status Explanation
I IS in the independent set.
N Non-IS not in the independent set.
A Adjacent adjacent to only one IS node.
C Conflict being non-IS in the next iteration.
P Protected being IS in the next iteration.
R Retrograde being non-IS in the next iteration.

Table 3: Summary of the notations for states

To address the above two technical challenges, we define six s-
tates for each vertex to record their status during swaps. In par-
ticular, an IS vertex is currently in the independent set. A non-IS
vertex is not in the independent set now. An adjacent vertex is a
non-IS vertex which is adjacent to only one IS vertex. A protected
vertex is an adjacent vertex, which can be swapped to an IS vertex
in the next iteration. A conflict vertex is also an adjacent vertex,
but it cannot be swapped to an IS vertex in the next iteration. Fi-
nally, a retrograde vertex is an IS vertex which will be swapped to
a non-IS vertex in the next iteration. Therefore, there are six states:
{I,N,A, P,C,R}, as shown in Table 3. In addition, for each adja-
cent vertex v, we maintain a set ISN(v) to record its IS-Neighbour.
Note that the size of an ISN set for each vertex is always one, as
each adjacent vertex has only one IS neighbour, For example, see
Figure 2 again. ISN(v2)=ISN(v3)=v1, and ISN(v5)=ISN(v6)=v4.

DEFINITION 1. (1-2 swap skeleton) Given a graph G, we
say that there is a 1-2 swap skeleton (u, v, w) if state(u)=
state(v)=“A”, and state(w)=“I”, ISN(u)= ISN(v)=w, and there is
no edge between u and v in G.

Recall Figure 2. Suppose that the states of v2, v3, v5, v6 are “A”
and those of v1, v4 are “I”. Then both (v2,v3,v1) and (v5,v6,v4) are
1-2 swap skeletons. Note that a 1-2 swap skeleton is only a valid
swap candidate, which is not necessarily swapped in our algorithm.
For example, only one of 1-2 swap skeletons between (v2,v3,v1)
and (v5,v6,v4) can swap, as they conflict with each other.

2125

Figure 3 shows a state transition diagram. Transition conditions
are labeled on the path. We use the following example to illustrate
the transition of states.

EXAMPLE 1. This example provides the intuition how we re-
solves the above two challenges based on the state transition. See
Figure 2 again. Suppose that v1 and v4 are in the initial indepen-
dent set. Assume that the access order of vertices is: v1, v4, v2,
v6, v3 and v5. Then we need to scan the file three times (with-
out any random access). In the first scan, state(v1)=state(v4)=“I”
and the states of all other vertices are “A”, ISN(v2)=ISN(v3)=v1;
ISN(v5)=ISN(v6)=v4. Then in the second scan, the states of v2 and
v3 are changed to “P” and state(v1)=“R”. That means v2 and v3
can exchange v1 in the independent set. Subsequently the state of
of v6 is changed from “A” into “C”, because the neighbour of v6 is
v3 whose state is “P”. Intuitively, since v2 is read before v6, v2 has
the right of preemption for swap and v6 cannot swap, which in turn
resolves the swap conflict. Finally, in the third scan, the state of v1
is changed to “N”; and those of v2 and v3 become “I”. Therefore,
a larger independent set v2, v3 and v4 is correctly identified.

A NC

RP I

of IS neighbors Į 1

of IS neighbors = 1a neighbor is “P”

a 1
-k-
swa
p s
kel
eto
n

1-k-swap a 1-k-swap skeleton

1
-k
-s
w
ap

Figure 3: State transition diagram.

5.3 Onekswap algorithm
Based on the above motivation, we are ready to describe the one-

k-swap algorithm. The main driver is clear: it repeatedly scans the
adjacent file in the disk and updates the states of vertices in the
main memory until no more swaps can be performed. Finally, all
vertices with states “I” are returned as an independent set.

We now go through Algorithm 2. First, the vertices that have on-
ly one IS neighbour have the potential to swap (Line 1-3). Then the
algorithm proceeds in three phases: pre-swap (Line 7-14), swap
(Line 15-19) and post-swap (Line 20-28). (1) In the pre-swap
phase, there are three cases for vertex u: (i) u has conflicted with
other swap candidates (Line 9-10); or (ii) there is a new 1-2 swap
skeleton for u (Line 11-12); or (iii) there will be a 0-1 swap for
u (Line 13-14). (2) In the swap phase, more vertices are added
to the independent set. (3) Finally, in the post-swap phase, some
1-0 swaps are performed to guarantee that the returned result is a
maximal set.

EXAMPLE 2. We use the example in Figure 4 to illustrate the 1-
k swap algorithm. Suppose, the initial independent set includes five
vertices: v1, v4, v8, v12, v14. Then we run the 1-k swap algorithm
to get a larger IS. Figure 4(c) shows the vertex IDs sorted by
degrees and Figure 4(d) shows the state transition. In Line 1-3,
six vertices have the state “A”. Then in Line 11-12, (v2, v3, v1)
and (v7, v9, v4) are identified a 1-2 swap skeleton. The states of
three vertices v5, v6 and v10 are changed to “C” due to the swap
conflict. In line 22-23, two 1↔2 swaps are performed. Finally, in
Line 28, several vertices are labeled as “N” again. Therefore, a
larger independent set includes v2, v3, v7, v8, v9, v12, v14, shown
in Figure 4(b).

Algorithm 2: One-k-swap Algorithm
Input: An adjacent-list file of graph G and an initial

independent set
Output: A larger independent set of G

1 for node u ∈ G do
2 if u has only one adjacent IS vertex, say e then
3 state(u)← (A); ISN(u)← e ;

4 canSwap=TRUE;
5 while canSwap do
6 canSwap=FALSE;
7 for node u ∈ G do
8 if state(u)=A then
9 if u has a neighbour with state “P” then

10 state(u)← C;

11 else if there is a 1-2 swap skeleton (u, v, w) ∈ G
then

12 state(u)← P ; state(w)← R;

13 else if ISN(u)=w ∧ state(w)=R then
14 state(u)← P ;

15 for node u ∈ G do
16 if state(u)=P then
17 state(u)← I;

18 else if state(u)=R then
19 state(u)← N ; canSwap= TRUE;

20 for node u ∈ G do
21 if state(u)=N then
22 if all neighbours of u are “C” or “N” then
23 state(u)← I;

24 else if state(u)=C ∨ state(u)=A then
25 if u has only one IS adjacent vertex, say e then
26 state(u)← A; ISN(u)← e ;

27 else
28 state(u)← N ;

29 Return all vertices whose states are “I”;

5.4 Performance Analysis
The one-k-swap algorithm is sound and complete in that every

swap is performed correctly to maintain an independent set and
there exists no vertex which can perform one-k-swap to increase the
size of the independent set any more. The soundness is because we
can always detect the swap conflict with the proper state transition
and the completeness is because, for every valid 1↔k swap, it must
contain a 1-2 swap skeleton.

In the one-k swap algorithm, one round of swap needs three it-
erations of scan, where in an iteration it needs to access the ad-
jacent file of vertices sequentially. Thus the total number of I/O
accesses depends on the number of rounds of swaps. Unfortunate-
ly, in the worst-case scenario, the number of rounds is linear to the
number of vertices. Figure 5 shows an example, called a cascade-
swap graph, where only one 1-2 swap can occur in one round of
swaps. Therefore, this graph needs three rounds of swaps. That is,
v7 → {v8, v9}, v4 → {v5, v6}, and v1 → {v2, v3}. In the worst
case, the number of the round of swaps is n/3 for a cascade-swap
graph with n vertices. However, in practice, this worst case occurs
rarely. In the following, under the prominent power-law random

2126

Degree 1 21 2 42 4 4 4 5 64

ID 8 112 2 1014 4 5 13 3 711

(c): Graph vertices sorted by degrees in ascending order.

ID 1 32 4 65 7 98 10 1211 1413

Initial I NN I NN N NI N IN IN

Line 1- 3 I AA I AA A AI A IN IA

(d): State transitions in the one-k-swap algorithm.

4

6

Line 8-14 R PP R CC P PI C IN IA

4

9

Line 15-19 N II N CC I II C IN IA

Line 20-28 N II N NN I II N IN IN

(a): The graph before the one-k-swap algorithm.

(b): The graph after the one-k-swap algorithm.

Figure 4: An example graph to illustrate the one-k-swap algorithm.

P(α, β) model, we study the performance of the one-k-swap algo-
rithm through only one round of swap.

To analyze the number of vertices which are added to the inde-
pendent set in the first round of swap, we first build a lemma to
estimate the maximum degree of vertices which can contribute to
1-k swaps. The intuition here is that the degree of some non-IS
vertex is too large to become an IS vertex through 1-k swap.

LEMMA 3. Let ds denote the maximal degree of vertices which

contribute to 1-k swaps. Then ds ≤ α+lnζ(β,e
α
β)

lnc′(α,β)
with high

probability, where c(α, β) =
∑∆

i=1 iGRi(α,β)

eα
and c′(α, β) =

ζ(β−1,∆)
ζ(β−1,∆)−2c(α,β)

, and ∆ is the maximum degree of the graph.

The following lemma indicates that in the first round of swap,
the degrees of new vertices which are added to IS in a 1-k swap
are always no less than those removed from IS.

LEMMA 4. Let ISN−1(v)={u|v = ISN(u)}. For any vertex
v in the independent set of the greedy algorithm, then deg(v) ≤
min{deg(u)|u ∈ ISN−1(v)}.

Based on the above lemma, given any 1-2 swap skeleton (u,v,w),
the degree of w is no greater than those of u and v. Then we con-
sider three cases: 1) deg(u)=deg(v)=deg(w); 2) deg(w)=deg(v),
deg(u)>deg(w) or deg(w)=deg(u), deg(v)>deg(w); 3)
deg(v)>deg(w), deg(u)>deg(w). For each case, we quantify
the number of new vertices added into the independent set from
degree 2 to ds by converting them to the “bins and balls” problem.

PROPOSITION 5. Given a power law graph P (α, β), in the first
round of swap, the expected number of new IS vertices, called

Figure 5: An example to illustrate cascading 1-2 swaps: v7 →
{v8, v9}, v4 → {v5, v6}, and v1 → {v2, v3}.

Swap Gain (SG), for the one-k swap based on the greedy algorithm
can be computed as:

SG(α, β) =

ds∑
i=2

(T (i, i, i) +

ds∑
j=i+1

T (j, i, i) +

ds∑
p=i+1

ds∑
q=p

T (p, q, i))

(5)
where T (x, y, i) is the number of new vertices added to the IS set
by exchanging vertices with degree i to those with degrees x and y.
The detailed formula can be found in Equation (15) of Appendix.

 0.99

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

A
p

p
ro

x
im

at
io

n
 R

at
io

β

One-k-swap

Figure 6: Performance ratio for one-k-swap

Figure 6 shows the performance ratio of the one-round one-k-
swap algorithm by varying β from 1.7 to 2.7 and fixing the number
of vertices as 10 million again. The size of the independent set
is computed by Proposition 5. As shown in Figure 6, the perfor-
mance ratio is near-optimal ≥ 99.5% for all datasets. In addition,
compared to Table 2, we observe that this one-round one-k swap is
better than the greedy algorithm by a margin 1.5%. Note that this is
a noticeable improvement as there is no algorithm that can improve
it more than 2% (as the performance of the greedy one is around
98%).

The one-k-swap algorithm needs to scan the adjacent file of the
graph multiple times. As shown in theory above and in the ex-
perimental results later (Section 7.4), the number of iterations can
be limited to a small constant to achieve more than 99.5% perfor-
mance ratio. Therefore, the I/O cost is O(scan(|V | + |E|)) and
the memory cost is 2|V | for the state array and the ISN set.

Finally, to study the time complexity of one-k-swap, the crux
is to analyze the costly step in Line 11 that determines if a ver-
tex u involves a 1-k-swap skeleton (u, v, w). Instead of locating a
specific vertex v associated with u, we only need to know if such
v exists. Assume that there are x adjacent vertices u′ of u, s.t.
ISN(u′)=ISN(u)=w, and state(w)=“I”. Let y = |ISN−1(w)|.
If y > x, then there exists at least one vertex v, s.t. ISN(v)=w
and there is no edge between u and v. According to Definition 1,
(u, v, w) is a 1-k-swap skeleton. In practice, we can reuse the ISN
data structure to record the number y for w, as ISN entries for w’s
are not previously used, and this would not incur any extra main
memory cost. With this approach, the time complexity of Line 11
reduces to O(degree(u)). Therefore, summing up for all vertices,
the total computing cost of one-k-swap is O(|V |+ |E|).

2127

Algorithm 3: Two-k-swap Algorithm
Input: Graph G and an initial independent set
Output: A larger independent set for G

1 for node u ∈ G do
2 if u has one or two IS neighbours, say S then
3 state(u)← A; ISN(u)← S ;

4 canSwap← TRUE ;
5 while canSwap do
6 canSwap← FALSE ;
7 for each vertex u ∈ G do
8 if state(u)=A then
9 Pre-swap(u);

10 for vertex u ∈ G do
11 if state(u)=P then
12 state(u)← I;

13 else if state(u)=R then
14 state(u)← N ; canSwap← TRUE;

15 for vertex u ∈ G do
16 if state(u)=C or A or N then
17 if u has one or two IS neighbours, say S then
18 state(u)← A; ISN(u) = S ;

19 else
20 state(u)← N ;

21 if state(u)=N then
22 if all neighbour nodes of u are C or N then
23 state(u)← I;

24 Return all nodes whose states are “I”;

6. TWOKSWAP ALGORITHM
To further enlarge the independent set, a natural step is to ex-

tend the one-k-swap algorithm to support two-k swaps, which ex-
changes two IS vertices with three or more non-IS vertices. In the
next paragraphs, we describe a new algorithm, called two-k-swap.

6.1 Data structure and definitions
Similar to the one-k-swap algorithm, there are still six states in

two-k-swap for each vertex to present different status, including {I,
N, A, P, C, R}. But, the definition of state “A” is changed, where
a non-IS vertex may be adjacent to one or two IS vertices. Thus,
an ISN set now may include two IS vertices. We next define swap
candidates based on ISN sets.

DEFINITION 2. (Swap Candidates) Given a graph G, we say
that a vertex pair (u1, u2) is a swap candidate for two IS vertices
w1 and w2, denoted as (u1, u2) ∈ SC(w1,w2), if ∀i, state(wi) =
“I”, state(ui)=“A”, ISN(ui)⊆{w1, w2}, and |ISN(u1)|=2, and
there is no edge (u1, u2) ∈ G.

DEFINITION 3. (2-3 swap skeleton) Given a graph G, we say
that (u1, u2, u3, w1, w2) is a 2-3 swap skeleton if both (u1, u2) and
(u1, u3) are swap candidates for w1 and w2, and there is no edge
(u2, u3) ∈ G.

See Figure 7(a). Suppose that the states of v4, v5, v6, v8 are “A”
and those of v2, v3 are “I”. There are four 2-3 swap skeletons in this
figure, that is, (v4,v5,v6,v2,v3), (v4,v5,v8,v2,v3), (v4,v6,v8,v2,v3),
and (v8,v5,v6,v2,v3). It turns out that, as shown later, our algorithm
performs a 2↔4 swap for this example.

Algorithm 4: Pre-swap(u)

1 if ∃v, s.t.(u, v) is a swap candidate for w1, w2 then
2 Add (u, v) to the set SC(w1, w2);

3 if there is an adjacent vertex of u with “P” then
4 state(u)← C;

5 else if ∃v1, v2, w1, w2 ∈ G, s.t. (v1, v2, u, w1, w2) is a 2-3
swap skeleton then

6 state(u), state(v1), state(v2)← P ;
7 state(w1), state(w2)← R;
8 Free the space for SC(w1,w2);

9 else if ∃v, w ∈ G, s.t. (v, u, w) is a 1-2 swap skeleton then
10 state(u)← P ; state(w)← R;

11 else if ∃u, s.t. ∀w, ISN(u)⊇{w} ∧ state(w)=R then
12 state(u)← P ;

Degree 1 22 2 2 2 2

Vertexid 1 32 4 5 6 8

3

7

Figure 7: An example to illustrate the 2-k-swap algorithm

6.2 Algorithm Twokswap
Algorithm 3 shows the pseudo-code of two-k-swap, which incre-

mentally enlarges an independent set by performing 2-k swaps and
1-k swaps, and iterating on the graph until no more swaps can be
performed.

In particular, Line 1 to 3 find the vertices with state “A” which
are potential to swap. Similar to the one-k-swap algorithm, there
are three phases at each round: Pre-swap (Line 7-9), Swap (Line
10-14) and Post-swap (Line 15-23). In the Pre-swap phase (see Al-
gorithm 4), Line 1-2 add a vertex pair to the SC set, which will be
used to find a 2-3 swap skeleton. Subsequently, there are four cases
for any adjacent vertex u, (i) u has conflicted with other swap can-
didates (Line 3-4); (ii) u contributes to a 2-3 swap skeleton (Line
5-8); (iii) u contributes to a 1-2 swap skeleton (Line 9-10); (iv)
u contributes to a 0-1 swap (Line 11-12). In the Swap phase, we
perform the swap by changing the state of vertices. Finally in the
Post-swap phase, Line 16 to 18 add more vertices with state “A”
and Line 21-23 perform 0↔1 swap to guarantee a maximal inde-
pendent set.

EXAMPLE 3. We use this example to illustrate the two-k-swap
algorithm (see Figure 7). Suppose there are three vertices v1, v2
and v3 in the initial independent set. The access order of vertices
is shown in Figure 7(c). Then we go through the algorithm. In
Line 1-3, v4, v5, v6, v7 and v8 are labeled as “A”. Subsequent-
ly, after v4 and v5 are read, the vertex pair (v4,v5) is added into
SC(v2,v3). Then after v6 is accessed, (v4,v5,v6,v2,v3) is identified
as a 2-3-swap skeleton (Line 5-8 in Algorithm 4). The state of v8
is changed to “P”, since ISN(v8)={v2,v3}, which are labeled as

2128

“R” now (Line 11-12 in Algorithm 4). The state of v7 is changed
to “C”, because it conflicts with v5 and v6. Then in Line 10-14, a
2↔ 4 swap is performed. Finally, in the Post-swap, the state of v7
is changed to “N” (Line 20). Therefore, a larger independent set
includes v1, v4, v5, v6 and v8.

Similar to the one-k-swap algorithm, two-k-swap can stop with-
in limited number of iterations to guarantee the efficiency. There-
fore, the I/O cost is O(scan(|V | + |E|)). The memory cost for
the state array and the ISN set is no more than 3|V |, as each IS-
N set contains at most two vertices. The analysis for the auxiliary
structure SC is more complicated, because the size of SC depends
on the number of potential 2-3 swap skeletons during one round of
swap. A careful study based on P(α, β) random graphs shows that
with high probability, the total number of vertices in SC is no more
than |V | − eα. Therefore, the total memory cost of two-k-swap is
bounded by 4|V | − eα.

LEMMA 6. Given a power law graph P(α, β), with high proba-
bility, the number of vertices in SC sets in the two-k-swap algorithm
is no more than |V | − eα.

Finally, we analyze the time complexity of the two-k-swap
algorithm. Conceptually, the most costly steps are Lines 1
and 5 in Algorithm 4. In line 1, the worst-case cost is
degree(u)+degree(w1)+degree(w2), since for each v ∈ ISN(w1)
or ISN(w2), we check if there is an edge between u and v by Def-
inition 2. Further, the cost of Line 5 is degree(u)+|SC(w1, w2)|.
It is easy to see that |SC(w1, w2)| ≤ degree(w1)+degree(w2).
Therefore, by summing all vertices, the total cost is O(|V | +
|E|+

∑
i degree(wi)), where wi is any vertex which is added to SC

sets. It turns out that, based on P(α, β) random graphs, degree(wi)
= O(log|V |) (whose proof is deferred to the Appendix). Note that
the number of wi is obviously less than |V |. Therefore, the total
time cost is O(|V |log|V |+ |E|).

7. EXPERIMENTAL RESULTS
In this section, we set out to verify the effectiveness and efficien-

cy of various algorithms in our framework. First, we look at the ef-
fectiveness of algorithms, that is how large the proposed algorithms
can find an independent set. Next, we examine the efficiency and
the memory cost of algorithms, that is how fast and what cost to
obtain a large independent set. Finally, we evaluate the accuracy of
our theoretical analysis based on PLRG model.

In our experiments, we implemented six algorithms: DYNAM-
ICUPDATE, STXXL, BASELINE, GREEDY, ONE-K-SWAP and
TWO-K-SWAP, where DYNAMICUPDATE is an in-memory greedy
algorithm [14] described in Section 4.1; STXXL is an external
algorithm [23, 27] based on the open source library STXXL [1];
and BASELINE is similar to GREEDY (Algorithm 1), but without
having a global ordering of the vertices by degrees. Among these
six algorithms, DYNAMICUPDATE, STXXL, and BASELINE are
three existing methods and GREEDY, ONE-K-SWAP and TWO-K-
SWAP are three new algorithms proposed in this paper.

7.1 Datasets and Environment
Table 4 shows ten real-life datasets in our experiments. These

datasets [6] differ from each other in terms of graph-size, data-
complexity, average-degree and degree-distribution. Our goal in
choosing these diverse sources is to understand the effectiveness
and efficiency of our algorithms in different real environments.

Besides the real data sets, we also generated a set of synthetic
data sets based on the power-law P (α,β) model, which vary β from

Data Set |V | |E| Avg. Deg Disk Size
Astroph 37K 396K 21.1 3.3MB
DBLP 425K 1.05M 4.92 11.2MB

Youtube 1.16M 2.99M 5.16 31.6MB
Patent 3.77M 16.52M 8.76 154MB
Blog 4.04M 34.68M 17.18 295MB

Citeseerx 6.54M 15.01M 4.6 164MB
Uniport 6.97M 15.98M 4.59 175MB

Facebook 59.22M 151.74M 5.12 1.57GB
Twitter 61.58M 2405M 78.12 9.41GB

Clueweb12 978.4M 42.57G 87.03 169GB

Table 4: Datasets and their characteristics

1.7 to 2.7 and fix the number of vertices to 10 million to simulate
the real life data sets [3, 21].

All the algorithms were implemented in C++ and the experi-
ments were performed on a Core i5 CPU 4.0GHz running Windows
7 operating system with 8GB RAM and a 500GB hard disk.

7.2 Independent set size of various algorithms
The first set of experiments was performed to test the effective-

ness of various algorithms to find a large independent set. Table 5
shows the results of six algorithms, including DYNAMICUPDATE,
STXXL, BASELINE, GREEDY, ONE-K-SWAP and TWO-K-SWAP.
We have the following observations: (1) Due to the swap opera-
tions, TWO-K-SWAP and ONE-K-SWAP significantly increase the
sizes of the independent sets over BASELINE and GREEDY. For
example, consider Facebook data with 151 million edges, the sizes
of the independent sets from ONE-K-SWAP and TWO-K-SWAP are
more than three times larger than those of other algorithms. (2)
GREEDY returns a larger independent set than BASELINE for most
data sets, thanks to the pre-process sorting phase by degrees; (3)
DYNAMICUPDATE is not scalable to large data sets, because it is
an in-memory algorithm. But for small data sets which fit in the
main memory, DYNAMICUPDATE returns a larger independent set
than GREEDY. (4) STXXL is an external algorithm, which can
process a large graph. But ONE-K-SWAP and TWO-K-SWAP have
much better performance than STXXL. For example, consider the
largest Clueweb12 data, ONE-K-SWAP and TWO-K-SWAP return
more than 700 million independent vertices, but STXXL finds less
than 500 million ones.

Performance ratio We then sought to analyze how the perfor-
mance of algorithm is compared to the optimum. Figure 8 shows
the performance ratios of our three algorithms bases on the syn-
thetic data sets. As we can see, all three algorithms achieve good
ratios, and ONE-K-SWAP and TWO-K-SWAP are even better than
GREEDY. With the increase of β, the ratio grows. This is expected,
as bigger β, less edges in the graph, and better performance for all
algorithms. Figure 9 compares the results of TWO-K-SWAP to the
optimal bound for real data sets. We observe the similar trend that,
for most data sets, such as Facebook, CiteSeerx and Uniport, the
size of independent set returned from TWO-K-SWAP reaches 99%
that of the optimal bound. Therefore, in practice our algorithms can
achieve near-optimal results.

7.3 Running time and memory cost
Now that we have established that the semi-external algorithms

proposed in this paper are a good approximation for the maximum
independent sets, we turn to evaluate how fast we can obtain such
large independent sets for massive graphs.

2129

Data Set DynamicUpdate Baseline One-k-swap Two-k-swap Greedy One-k-swap Two-k-swap
/STXXL (after Baseline) (after Baseline) (after Greedy) (after Greedy)

Astroph 17,948 18,772 18,972 19,036 15,439 16,954 16,970
DBLP 260,984 218,344 258,850 259,198 260,872 273,853 273,853

Youtube 880,876 760,318 865,810 877,905 877,905 881,948 881,962
Patent 2,073,042 1,964,735 2,023,396 2,107,487 2,024,859 2,085,404 2,086,982
Blog 2,116,524 1,693,937 2,004,349 2,063,290 2,094,881 2,151,552 2,151,578

Citeseerx 5,750,794 5,711,727 5,747,513 5,749,859 5,726,927 5,749,983 5,750,026
Uniport 6,947,630 5,840,371 6,932,723 6,938,038 6,943,512 6,947,592 6,947,593

Facebook N/A 18,893,989 57,269,875 57,986,375 58,226,290 58,232,256 58,232,269
Twitter N/A 36,072,163 46,978,395 48,059,663 48,121,173 48,742,356 48,742,573

Clueweb12 N/A 499,444,213 703,485,927 725,810,643 606,465,512 723,673,169 729,594,728

Table 5: Number of vertices in the independent sets return by various algorithms

 0.99

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

A
p
p

ro
x
im

at
io

n
 R

at
io

β

Greedy
One-k-swap
Two-k-swap

Figure 8: Performance ratio of three algorithms

104

105

106

107

108

109

Astroph Dblp Youtube Patent Blog Citeseerx UniportFacebook Twitter Clueweb

#
 o

f
v

er
ti

ce
s

in
 I

S
 (

lo
g

 s
ca

le
)

Datasets

Two-k-swap
Optimal bound

Figure 9: Two-k-swap and the optimal bound.

Table 6 investigates the computing time and the memory cost of
each algorithm using different data sets. For most data sets, our
three algorithms complete within few minutes. For example, there
are 151 million edges and 59 million vertices in Facebook data,
the ONE-K-SWAP and TWO-K-SWAP take less than 3 minutes.
Consider the biggest Clueweb12 data, which has 42 billion edges
and 978 million nodes, ONE-K-SWAP and TWO-K-SWAP consume
8.8 hours and 10.4 hours respectively. This is reasonable since even
one sequential scan of such big graph takes more than one hour.

Table 6 also shows the memory consumption of each algorithm,
including the memory cost for the auxiliary structures: ISN and
SC sets. For example, the Twitter graph is 9.41GB in the disk,
but the memory consumption in our approach is limited to 524M.
This demonstrates the memory-efficiency of our approach. Figure
10 gives a deep study on the ratio between the maximal number
of vertices in SC (for the TWO-K-SWAP algorithm) and the total
number of vertices. The ratios are relatively stable, which indicates
that |SC| ≈ 0.13|V | in practice.

7.4 Iteration times

β 1.7 1.91.8 2.0 2.1 2.2 2.3

|SC|/|V| 0.14 0.120.13 0.12 0.13 0.13 0.13

2.4

0.13

2.5 2.72.6

0.13 0.130.13

Figure 10: SC size with varied β

Data Set One-k swap Two-k swap
Astroph 6 3
DBLP 2 2

Youtube 4 4
Patent 7 6
Blog 5 8

Citeseerx 9 3
Uniport 9 4

Facebook 3 2
Twitter 6 4

Clueweb12 6 8

Table 7: Number of rounds in two algorithms

The third set of experiments was conducted to study the effect
of each iteration of scan in ONE-K-SWAP and TWO-K-SWAP algo-
rithms. Table 7 shows the total number of rounds, which is indicat-
ed by the running number of WHILE-LOOPs in Line 5 for each al-
gorithm. Each round needs three iterations of sequential scans. We
have the following observations: (1) The number of rounds varies
from 2 to 9 for various data sets. But this number is not directly
proportional to the size of graphs. For example, Facebook is much
bigger than Astroph, but the number of rounds of Facebook is on-
ly half of that of Astroph (3 versus 6). (2) A surprising finding is
that TWO-K-SWAP often takes less rounds than ONE-K-SWAP. In-
tuitively, TWO-K-SWAP handles more swap cases and is supposed
to run more rounds than ONE-K-SWAP. But the empirical results in
Table 7 is somewhat surprising. This can be explained that TWO-K-
SWAP also includes the operation of one-k swaps, therefore TWO-
K-SWAP can perform more swaps than ONE-K-SWAP in one round
and thus stops earlier than ONE-K-SWAP. For example, for Twit-
ter data, ONE-K-SWAP needs 6 rounds (while adding 621,183 new
vertices into the independent set), but TWO-K-SWAP only needs 4
rounds to finish all swaps (adding 621,400 new vertices).

Early Stop: Table 8 shows the number of swapped vertices in first
three rounds for various data sets in the ONE-K-SWAP algorithm.
Due to the space constraint, we only report the results for ONE-K-
SWAP whenever the results on TWO-K-SWAP exhibit similar trend.
An interesting finding is that for all real data sets, more than 97%
swaps have been finished within three rounds. This experiment

2130

Time Memory cost
Data Set DU STXXL Greedy One-k Two-k DU STXXL Greedy One-k Two-k
Astroph 129ms 73.6ms 57ms 347ms 237ms 4.43MB 25KB 4.5KB 149.1KB 329.7KB
DBLP 0.75s 1.40s 0.56s 1.36s 1.39s 128.3MB 0.25MB 51.9KB 1.65MB 3.55MB

Youtube 1.93s 2.67s 1.15s 3.78s 4.76s 239.1MB 1MB 141.6KB 4.59MB 9.69MB
Patent 21.3s 22.0s 4.6s 27.8s 36.7s 692.2MB 2MB 460.2KB 14.9MB 31.7MB
Blog 28.8s 30.0s 6.2s 35.7s 45.3s 841.9MB 2MB 493.2KB 15.9MB 34.4MB

Citeseerx 22.0s 16.0s 6.4s 25.7s 20.8s 1258.4MB 2MB 798.3KB 25.7MB 52.4MB
Uniport 18.6s 20.9s 2.2s 19.9s 18.5s 1242.7MB 2MB 850.8KB 27.5MB 55.4MB

Facebook N/A 187.2s 47.9s 153.0s 160.8s N/A 25MB 7.06MB 234.2MB 468.9MB
Twitter N/A 18min 8min 39min 55min N/A 25MB 7.34MB 242.2MB 524.1MB

Clueweb12 N/A 1.95h 1.65h 8.8h 10.4h N/A 200MB 116.6MB 3.75GB 5.73GB

Table 6: Efficiency of various algorithms for real data sets (DU denotes DynamicUpdate)

demonstrates that the swap algorithm can stop earlier without much
compromise for the results.

7.5 Evaluation on estimated bounds
Finally, we made experiments to evaluate the accuracy of the es-

timation (i.e. by Proposition 2 and 5) for the performance of our
algorithms. Each algorithm is repeated 10 times and the average
size of independent set is reported here. Table 9 shows the estima-
tion results by the GREEDY algorithm (by Proposition 2), the real
size of the independent set and the accuracy (= Estimation/Real).
We have the following observations. First, our theoretical estima-
tion is very tight. For all data sets, the accuracy is more than 98.7%.
Second, consistent with our proof, this is a lower bound. Finally,
very surprisingly, we find that the bigger the β, the smaller the size
of independent set in GREEDY. This is somehow unexpected since
the larger β means less edges in the graph and thus more vertices
are supposed to be added into the independent set. (Note the total
number of vertices in the graph is fixed.) But the empirical results
are the contrary. After the deep thinking, we find that bigger β,
more vertices with degree one are added into IS, but less vertices
with degree > 1. The overall result is that the reduction surpasses
the increase. Therefore, the total size of independent sets decreases.

β Edges Estimation Real Accuracy
1.7 215M 8,102,389 8,147,721 99.4%
1.8 118M 7,896,164 7,953,889 99.3%
1.9 72M 7,650,663 7,721,332 99.1%
2.0 49M 7,394,070 7,474,477 98.9%
2.1 36M 7,147,342 7,235,191 98.8%
2.2 29M 6,922,329 7,012,683 98.7%
2.3 24M 6,723,585 6,813,139 98.7%
2.4 21M 6,550,682 6,635,854 98.7%
2.5 18M 6,400,913 6,478,349 98.8%
2.6 17M 6,270,900 6,341,388 98.9%
2.7 15M 6,157,404 6,220,084 99.0%

Table 9: Accuracy of estimation for Greedy varying β

Summary From the comprehensive performance evaluation we
have the following: (1) ONE-K-SWAP and TWO-K-SWAP algo-
rithms, coupled with the ability of the optimization to swap ver-
tices, lead to a large independent set (with high performance ra-
tios: 96%-99.9%) using the limited main memory for massive
graphs; (2) The performance advantage of swap operations is more
pronounced based on the results of the Baseline or the STXXL
approach; (3) The swap algorithms can stop earlier within three
rounds of swaps (while completing 97%-100% swaps) to achieve a

good balance in the tradeoff between the efficiency and the effec-
tiveness of algorithms.

8. CONCLUSIONS AND FUTURE WORK
This work has studied the problem of the maximum independent

set on massive graphs. Our solution starts with studying a delight-
fully simple yet effective greedy approach. We then propose two
swap-based solutions, called ONE-K-SWAP and TWO-K-SWAP al-
gorithms. We demonstrate that our algorithm can compute an in-
dependent set which is closely to the theoretical optimal bound for
massive real-life graphs using very limited main memory. To the
best of our knowledge, it is the first to provide a set of efficient
solutions for MIS with the semi-external setting. There are several
open directions for future work. We plan to investigate how our
solutions can be extended to the incremental massive graphs with
frequent updates. In long term, our efforts will aim at a proposal to
study other graph problems like minimum vertex covers and graph
coloring for massive graphs with a single commodity PC.
Acknowledgement: This research is partially supported by 973
Program of China (2012CB316205), NSF China (61472427) and
the research fund from the University of Helsinki, Finland.

9. REFERENCES
[1] An implementation of the C++ standard template library STL for

external memory computations. http://stxxl.sourceforge.net.
[2] J. Abello, A. L. Buchsbaum, and J. Westbrook. A functional

approach to external graph algorithms. Algorithmica, 32(3):437–458,
2002.

[3] W. Aiello, F. R. K. Chung, and L. Lu. A random graph model for
massive graphs. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 171–180, 2000.

[4] D. V. Andrade, M. G. C. Resende, and R. F. F. Werneck. Fast local
search for the maximum independent set problem. J. Heuristics,
18(4):525–547, 2012.

[5] P. Berman and M. Fürer. Approximating maximum independent set
in bounded degree graphs. In SODA, pages 365–371, 1994.

[6] P. Boldi and S. Vigna. The WebGraph framework I: Compression
techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), pages 595–601, Manhattan, USA, 2004.
ACM Press.

[7] G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness.
In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, June 9-11, 2003, San Diego, CA, USA, pages 307–315,
2003.

[8] M. Brunato and R. Battiti. R-EVO: A reactive evolutionary algorithm
for the maximum clique problem. IEEE Trans. Evolutionary
Computation, 15(6):770–782, 2011.

[9] S. Butenko, P. M. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk.
Finding maximum independent sets in graphs arising from coding

2131

Data Set One round Swap ratio Two rounds Swap ratio Three rounds Swap ratio 1-k swap 2-k swap
Astroph 716 72.69% 909 92.28% 960 97.46% 297ms 437ms

Dblp 131 100% 131 100% 131 100% 1.3s 2.0s
Youtube 2,466 98.13% 2,511 99.92% 2,513 100% 3.7s 6.1s
Patent 37,415 90.63% 40,756 98.72% 41,177 99.74% 16.9s 36.6s
Blog 20,629 96.90% 21,253 99.84% 21,286 99.99% 32.3s 49.8s

Citeseerx 16,096 85.51% 18,085 96.08% 18,597 98.80% 17.3s 29.8s
Uniport 3,941 86.54% 4,392 96.44% 4,505 98.92% 16.2s 26.3s

Facebook 4,906 99.98% 4,907 100% 4,907 100% 112s 208s
Twitter 1,164,794 90.10% 1,254,881 97.07% 1,276,892 98.78% 20min 46min

Clueweb12 106,682,409 91.02% 112,929,577 96.35% 115,601,912 98.63% 8.8h 10.4h

Table 8: Numbers of new IS vertices, swap ratios and the running time.

theory. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC), March 10-14, 2002, Madrid, Spain, pages
542–546, 2002.

[10] U. Feige. Approximating maximum clique by removing subgraphs.
SIAM J. Discrete Math., 18(2):219–225, 2004.

[11] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label: an
independent-set based labeling scheme for point-to-point distance
querying. PVLDB, 6(6):457–468, 2013.

[12] X. Geng, J. Xu, J. Xiao, and L. Pan. A simple simulated annealing
algorithm for the maximum clique problem. Inf. Sci.,
177(22):5064–5071, 2007.

[13] M. K. Goldberg, D. Hollinger, and M. Magdon-Ismail. Experimental
evaluation of the greedy and random algorithms for finding
independent sets in random graphs. In Experimental and Efficient
Algorithms, 4th InternationalWorkshop, pages 513–523, 2005.

[14] M. M. Halldórsson and J. Radhakrishnan. Greed is good:
approximating independent sets in sparse and bounded-degree
graphs. In STOC, pages 439–448, 1994.

[15] P. Hansen, N. Mladenovic, and D. Urosevic. Variable neighborhood
search for the maximum clique. Discrete Applied Mathematics,
145(1):117–125, 2004.

[16] J. Håstad. Clique is hard to approximate within n1-epsilon. In FOCS,
pages 627–636, 1996.

[17] M. Jiang, A. W. Fu, R. C. Wong, and Y. Xu. Hop doubling label
indexing for point-to-point distance querying on scale-free networks.
PVLDB, 7(12):1203–1214, 2014.

[18] S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On syntactic
versus computational views of approximability. SIAM J. Comput.,
28(1):164–191, 1998.

[19] G. L. Nemhauser and W. T. Trotter. Vertex packing structural
properties and algorithms. Mathematical Programming, 8:232–248,
1975.

[20] J. M. Robson. Algorithms for maximum independent sets. J.
Algorithms, 7(3):425–440, 1986.

[21] Y. Shen, D. T. Nguyen, and M. T. Thai. On the hardness and
inapproximability of optimization problems on power law graphs. In
Combinatorial Optimization and Applications - 4th International
Conference, pages 197–211, 2010.

[22] T. Strijk, B. Verweij, and K. Aardal. Algorithms for maximum
independent set applied to map labelling. Technical report,
Universiteit Utrecht, 2000.

[23] J. S. Vitter. Algorithms and data structures for external memory.
Foundations and Trends in Theoretical Computer Science,
2(4):305–474, 2006.

[24] P. Wan, X. Jia, G. Dai, H. Du, and O. Frieder. Fast and simple
approximation algorithms for maximum weighted independent set of
links. In IEEE INFOCOM, pages 1653–1661, 2014.

[25] V. K. Wei. A lower bound on the stability number of a simple graph.
Technical report, Bell Labs Technical Journal, 1981.

[26] M. Xiao and H. Nagamochi. Exact algorithms for maximum
independent set. In Algorithms and Computation - 24th International
Symposium, pages 328–338, 2013.

[27] N. Zeh. I/O-efficient algorithms for shortest path related problems.
Technical report, PhD thesis, Carleton University, 2002.

APPENDIX
1. Algorithm for the bound of the independence number.

Algorithm 5: Upper bound for the independence number
Input: A sorted adjacent-list file for graph G
Output: Upper bound B for the independence number of G

1 for v ∈ V of G do
2 State[v]← unV isited;

3 for v ∈ V of G do
4 if State[v]=unV isited then
5 N ← 0; State[v]← visited;
6 for u ∈ Ad(v) do
7 if State[u]=unVisited then
8 N ++; State[u]← visited;

9 B = B+max{N ,1};

10 Return B;

The purpose of the above algorithm is to calculate the upper
bound of independent number of a graph. This algorithm is effi-
cient, as it requires only one pass of the adjacent file.

2. Proofs for lemmas and theorems.
Proof of Lemma 1. (Sketch) The GREEDY algorithm prefers to
select vertices with small degrees. Given any vertex v with degree
i, if all i adjacent vertices of v have larger degrees than v, then v
will be selected to the independent set in GREEDY. Assume that v
denotes the xth vertex of degree i, Therefore, the possibility that v
is added to the independent set is at least

(
(eα

iβ−1 − ix) +
∑∆

s=i+1
eα

sβ−1∑∆
s=1

eα

sβ−1

)

i

(6)

where ∆ = ⌊e
α
β ⌋ is the maximum degree of the graph. Summing

up the possibilities of all ⌊ e
α

iβ
⌋ vertices with degree i immediately

implies the expected number:

GRi(α, β) ≥
⌊ eα

iβ
⌋∑

x=1

(
(eα

iβ−1 − ix) +
∑∆

s=i+1
eα

sβ−1∑∆
s=1

eα

sβ−1

)

i

=

⌊ eα

iβ
⌋∑

x=1

(
ix
eα

+ ζ(β − 1,∆)− ζ(β − 1, i)

ζ(β − 1,∆)
)

i

(7)

which concludes the proof.

Proof of Lemma 3. It’s sufficient to prove

Pr(∃v|v ∈ I1k ∧ deg(v) ≥ ds) = o(
1

|V |) (8)

2132

where I1k denotes the new IS set after the 1-k swap algorithm. We
first observe that, for any d > 0,

Pr(∃v|v ∈ I1k ∧ deg(v) = d)

≤
⌊ eα

dβ
⌋∑

i=1

Pr(vi ∈ I1k ∧ deg(vi) = d)
(9)

Note that there are ⌊ e
α

dβ
⌋ vertices of degree d and let vi be the ith

vertex. If vi ∈ I1k, it has only one adjacent vertex in independent
set before swap. Let p = Pr(|N(vi)∩I1k| = 1|deg(vi) = d). Now

we give an upper bound of p. Let c(α, β) =
∑∆

i=1 iGRi(α,β)

eα
. Fur-

ther, it can be proved that
∑

v∈I1k
deg(v) ≥

∑
w∈IGreedy

deg(w).
Then

p ≤ d · c(α, β)
ζ(β − 1,∆)

(
ζ(β − 1,∆)− 2c(α, β)

ζ(β − 1,∆)
)
d−1

(10)

Let c′(α, β) = ζ(β−1,∆)
ζ(β−1,∆)−2c(α,β)

. For i ≥ d we have

Pr(∃v|v ∈ I1k|deg(v) = i+ 1)

Pr(∃v|v ∈ I1k|deg(v) = i)
<

1

c′(α, β)
(11)

Note that

Pr(∃v|v ∈ I1k|deg(v) ≥ d) ≤
∆∑

i=d

Pr(∃v|v ∈ I1k|deg(v) = i)

<
c(α, β)

dβ−1ζ(β − 1,∆)

c′(α, β)

c′(α, β)− 1
(

1

c′(α, β)
)
d−1

(12)

Let the right side of Inequality (12) equal 1
|V | , which implies the

upper bound ds as stated in Lemma 3.

Proof of Lemma 4. Prove by contradiction. Assume there exists
v′ ∈ I , u ∈ ISN−1(v′) s.t. deg(u) < deg(v′). Since there
is only one vertex in N(u) ∩ I , i.e, v′, according to the Greedy
algorithm, u should be selected into I , but not v′, a contradiction.

Proof of Proposition 5. (Sketch) Let Vi = {v|deg(v) = i} and
Ai = {u|deg(u) = i∧state(u) = A∧deg(ISN(u)) > 1}. Then
|Vi ∩ I| can be estimated by GRi(α, β), and |Ai| can be estimated
by
∑

v∈Vi
Pr(v ∈ Ai). Note that v ∈ Ai ⇒ v ∈ Vi − Vi ∩ I .

Hence,

Pr(v ∈ Ai|v ∈ (Vi − Vi ∩ I)) =
Pr(v ∈ Ai)

Pr(v ∈ (Vi − Vi ∩ I))

≈
i c(α,β)−1
ζ(β−1,∆)

(ζ(β−1,∆)−2c(α,β)

ζ(β−1,e
α
β)

)
i−1

∑i
j=1

(
i
j

)
(c(α,β)
ζ(β−1,∆)

)
j
(ζ(β−1,∆)−2c(α,β)

ζ(β−1,∆)
)
i−j

(13)

Further, let Ai,j = {v|v ∈ Ai ∧ ISN(v) ∈ Vj ∩ I}. Note
that j ≤ i by Lemma 4. By evenly distributing these vertices we
get |Ai,j | ≈ j|Vj∩I|∑i

x=2 x|Vx∩I| . Suppose there are m1 type-1 balls and
m2 type-2 balls. The number of bins is n and the size of each bin
is limited to d. Then Pr(m1,m2, n, d) denotes the probability of
an event that the first bin contains at least one type-1 ball and one
type-2 ball. Then

Pr(m1,m2, n, d) =

(
d
1

)(
n−d
m1−1

)(
d−1
1

)(
n−d−m1+1

m2−1

)(
n
m1

)(
n−m1
m2

) (14)

Therefore, the number of new vertices is:

T (x, y, i) = |Vi ∩ I|Pr(|Ax,i|, |Ay,i|, |Vi ∩ I|, i), x, y ≥ i (15)

Proof of Lemma 6. (Sketch) We first compute the maximal de-
gree d2k for vertices in SC. A non-IS vertex with large enough de-
gree should have more than two IS neighbours with high probabili-
ty. Let I denote the IS vertices after the Greedy algorithm. If a ver-
tex u has more than two adjacent vertices in I , then state(u)̸=“A”,
and thus u cannot contribute to any SC set. Thus, we have

Pr(|N(u) ∩ I| > 2|u /∈ I ∧ (deg(u) ≥ d2k)) = 1− o(
1

|V |)

=
Pr(|N(u) ∩ I| > 2 ∧ (deg(u) ≥ d2k))

Pr(u /∈ I ∧ deg(u) ≥ d2k)
=

∑d2k
i=3 pi∑d2k
i=1 pi

(16)

where pi ≈
(
d2k
i

)
(c(α,β)
ζ(β−1,∆)

)
i
(ζ(β−1,∆)−2c(α,β)

ζ(β−1,∆)
)
d2k−i

denotes
the probability that a non-IS vertex has i adjacent IS vertices. Note

that c(α, β) =
∑∆

i=1 iGRi(α,β)

eα
is defined in Lemma 3.

d2k <
α+ lnζ(β,∆) + 2ln ζ(β−1,∆)

ζ(β−1,∆)−c(α,β)

ln ζ(β−1,∆)−c(α,β)
ζ(β−1,∆)−2c(α,β)

(17)

Given a vertex pair (u, v) ∈ SC(w1, w2), there are two cases: 1)
both ISN(u) and ISN(v) equal {w1, w2} and; 2) only ISN(u)
equals {w1, w2}. For the first case, the total number of vertices
in SC is bounded by the number of all vertices which have two
adjacent IS vertices, i.e.,

∑d2k
i=2 |Vi − I| p2∑i

j=1 pi
.

For the second case, given a vertex v, ISN(v)={w1}, if a vertex
u can be added into SC set with v, then u should have two IS
neighbours and one of them is w1. Then the number of vertices of
u is bounded by

∑d2k
i=2 ibi ≤ bmax

∑d2k
i=2 i, where

bmax =
1

log ζ(β−1,∆)
ζ(β−1,∆)−2c(α,β)

c(α, β)

ζ(β − 1,∆)
(18)

So the total number of vertices in SC for the second case is
bounded by bmax

∑d2k
i=2 i|Vi − I| p1∑i

j=1 pi
.

Since |Vi − I| < |Vi|, by summing up two cases, we get

|SC| <
d2k∑
i=2

|Vi|
ibmaxp1 + p2∑i

j=1 pi
(19)

Therefore, |SC| <
∑d2k

i=2 |Vi| < |V | − |V1| = |V | − eα, which
concludes the proof.

Time Complexity of the TWO-K-SWAP Algorithm. As men-
tioned in the last paragraph of Section 6, we aim to prove that
degree(wi) = O(log|V |), that is the degree of each vertex in SC
is O(log|V |).

Note that the proof of Lemma 6 shows that degree(wi)≤ d2k.
Therefore, we need to prove that d2k = O(log|V |). See Equa-
tion (17). Note that α + lnζ(β,∆) = ln|V |. Since c(α, β) <
1
2
ζ(β − 1,∆), 2ln ζ(β−1,∆)

ζ(β−1,∆)−c(α,β)
< 2ln(2) ≈ 1.58. Note

that c(α, β) =
∑∆

i=1 iGRi(α,β)

eα
. It can be proved that c(α, β)

is monotonically increasing in α and monotonically decreasing
in β. For β ≤ 2.7 and a sufficient large α, say 15, it’s easy
to see that c(α, β) > 0.8ζ(β,∆) holds. Let d̄ = ζ(β−1,∆)

ζ(β,∆)
.

Hence, ln ζ(β−1,∆)−c(α,β)
ζ(β−1,∆)−2c(α,β)

> ln d̄−0.8
d̄−1.6

. Since 2 < d̄ < 20

for 1.7 ≤ β ≤ 2.7, ln d̄−0.8
d̄−1.6

∈ (0.04, 1.1). Therefore, d2k =
log(|V |)+(0,1.58)

(0.04,1.1)
= O(log|V |), as desired.

2133

