
12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 1

External Modeling Framework and the OpenUTF1

Jeffrey S. Steinman, Ph.D.
Craig N. Lammers
Maria E. Valinski

Wendy L. Steinman

WarpIV Technologies, Inc.
5230 Carroll Canyon Road, Suite 306

San Diego, CA 92121

(858) 605-1646

steinman@warpiv.com, craig.lammers@warpiv.com, maria.valinski@warpiv.com, wendy.steinman@warpiv.com

Key Words:
External Modeling Framework, EMF, Forces Modeling and Simulation, Open Unified Technical Framework, Parallel
and Distributed Modeling and Simulation, High Performance Computing, Multicore, Manycore, WarpIV Kernel

ABSTRACT: The Open Unified Technical Framework (OpenUTF) provides an External Modeling Framework
(EMF) that offers support for all of its standard modeling constructs within an encapsulated object that can be created
and used by non-OpenUTF applications. Acting like a proxy to simulations executing in the OpenUTF, the EMF
coordinates robust and repeatable event processing and state management in logical time between external
applications and the core parallel and distributed OpenUTF simulation. Like the High Level Architecture (HLA),
applications can optionally use their own simulation engines to coordinate their internal event processing with
OpenUTF simulations using the EMF. Applications can also integrate with standard OpenUTF-compliant models that
execute directly within the EMF. Because the EMF and HLA provide similar functionality, it is straightforward to
implement an HLA interface as a wrapper for the EMF to facilitate direct HLA interoperability between external
systems and simulations executing within the OpenUTF.

All events within the EMF are processed conservatively in logical time. Yet, the EMF supports rollbackable and
rollforwardable state management as events are internally processed, not for the purpose of handling straggler
messages to maintain causality, but for performing state reconstruction at any logical time in the past, present, or
future. The EMF provides publish and subscribe services along with standard methods to access remote objects and
their attributes. One very common use of the EMF is to support live or offline visualization and analysis capabilities for
OpenUTF simulations. With a VCR-like set of controls, graphics-based applications can freely move forward and
backward to any simulated time in the past or present to visualize the state of the simulation while it is executing. All
received messages are time tagged and can optionally be logged for playback when running live. This facilitates
powerful after-action-review visualization and analysis with complete state reconstruction at any point in time. The
EMF provides the foundation for supporting analysis, command and control, integration with real systems, warfighter
training, test & evaluation, and formal verification validation & accreditation use cases.

This paper first provides historical background on previous EMF implementations that were developed for the
Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES), leading to its current
implementation within the WarpIV Kernel. The paper then describes the current set of EMF services that are provided
for the OpenUTF, its high-level design, and its recent implementation. This topic is important to the Simulation
Interoperability Standards Organization (SISO) because the EMF is a core architectural component of the OpenUTF
that is being investigated by the Parallel and Distributed Modeling & Simulation Standing Study Group (PDMS-SSG)
for future standardization.

1 Approved for public release, 12-MDA-6532 (24 January 12).

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 2

1.0 Introduction

The External Modeling Framework (EMF) has undergone
several generations of innovation, design, and
development, leading to the current capability that resides
within the WarpIV Kernel implementation of the Open
Unified Technical Framework (OpenUTF). The EMF
provides a technical foundation for interfacing remote
systems that are potentially distributed across wide area
networks with an optimistic simulation executing on
parallel and distributed computers. Examples of such
remote systems might include (a) visualization and
analysis tools, (b) hardware-in-the-loop, (c) simulations
executing on remote machines, (d) real-world software
systems and applications, (e) training systems, and/or (f)
distributed test articles being verified and validated within
a robust and scalable OpenUTF-based testbed for correct
operation.

Figure 1: EMF in the OpenUTF. In this example a 16-node
OpenUTF simulation executes in parallel. Each node has a
Simulation Client that connects through a TCP/IP Socket to the
Network Server. In addition, each External Application has an
EMF and an External Client that also connects to the Network
Server. All connections to the Network Server are two-way,
which coordinates message traffic between External
Applications and the OpenUTF Parallel Simulation. Note that
External Applications never communicate directly with one
another. Message traffic includes initialization data, time
requests and advances, two-way event scheduling, Federation
Object discovery/removal and attribute updates.

Figure 1 depicts the conceptual operation of the EMF
operating as the remote interface for external applications
as they interact with an OpenUTF parallel simulation.
Note that any number of external applications can be
supported with dynamic connectivity. External

applications can reside wherever network connectivity is
provided.2

This rest of this section describes the evolution of each
EMF implementation within its historical context.

1990-1993: Jet Propulsion Laboratory and CalTech

The first implementation of the EMF3 was developed at
the Jet Propulsion Laboratory (JPL) between 1990 and
1993. This early implementation was groundbreaking in
several ways. It introduced all of the core technologies for
synchronizing external systems such as graphical
visualization tools and hardware-in-the-loop test articles
with optimistic simulations executing on parallel
computers. While primitive in several ways,4 this first
implementation pioneered the robust technical foundation
for supporting remote visualization of parallel and
distributed Missile and Air Defense simulation
applications executing within the Synchronous Parallel
Environment for Emulation and Discrete Event
Simulation (SPEEDES) on supercomputers.5

This early EMF abstracted (a) all of the communications
between external visualization tools and other remote
applications with the simulation, (b) coordinated two-way
event processing in logical time between remote
applications and the parallel simulation, (c) managed the
equations of motion of all entities in the simulation for
remote applications, (d) provided rollforward and rollback
state management, (e) supported data logging for later
playback, visualization, and analysis, and (f) provided
fault tolerant mechanisms to handle external systems
unexpectedly disconnecting from the simulation.

1996-2000: Missile Defense and Wargame 2000

As publish and subscribe simulation technologies, such as
those articulated by the High Level Architecture (HLA),
matured in the late 1990’s, a next generation EMF was

2 The EMF does not currently address multi-level security. This

could be a very interesting topic for future research.
3 The actual implementation was never given a formal name.
4 An extremely simple event-processing engine was developed

to manage rollbackable/rollforwardable internal event
processing. Equations of motion and a few other attributes
were specifically managed in a formal way.

5 A nation-wide distributed missile defense simulation was
demonstrated in 1993. The core optimistic simulation
executed on several locally interconnected super computers at
the Joint National Test Facility in Colorado Springs. A battle
planner executed remotely on large supercomputer at the Los
Alamos National Laboratory (LANL) in New Mexico. A
flight simulator with real-time 3D terrain rendering executed
at the Jet Propulsion Laboratory in California to find and
destroy Transporter Erector Launchers (TEL) based on
simulated tracks. Full visualization was performed at the
Naval Research Laboratory (NRL) in Washington DC.

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 3

developed for SPEEDES that was based on Object
Proxies.6 This new EMF, known as the Object Proxy
State Manager (OPSM), provided a much better
foundation for supporting logical-time synchronization
and external state management with an executing
SPEEDES simulation. Object Proxies encapsulated state
attributes into an object that could be published and then
discovered by subscribing entities. Attribute update and
reflection techniques were automated through cleverly
devised operator overloading techniques. The Object
Proxy subscription capabilities were extended into the
OPSM, along with rollback and rollforward support. This
provided a generic mechanism for external applications to
obtain the state of the simulation at any point in time.7

2000-2004: Joint Simulation System (JSIMS)

SPEEDES became the Common Component Simulation
Engine (CCSE) for the Joint Simulation System (JSIMS)
in 2000. With hundreds of new model developers
spanning multiple agencies, industrial organizations, the
joint armed forces, and intelligence communities, it
became clear that a more capable publish and subscribe
framework was needed to meet JSIMS requirements. A
more flexible and scalable framework based on
Federation Objects, Hierarchical Grids, and internal
Object Persistence was developed to meet the new
demanding requirements posed by JSIMS.8 A new EMF
system was developed to support external tools such as
the Model Diagnostic Driver Interface (MDDI) that was
heavily used for two-way monitoring and controlling
battlefield entities.

2001-Present: Open Unified Technical Framework

Development of the WarpIV Kernel9 began in early 2001
as the next-generation replacement for SPEEDES. Based

6 A simple HLA interface was developed to the 1996-2000

EMF to demonstrate how external HLA simulations could
directly interface with SPEEDES. The first HLA High
Performance Computing Run Time Infrastructure (HPC-RTI)
prototype was based on this EMF. Later versions of the HPC-
RTI built for SPEEDES and the WarpIV Kernel provided
native interfaces where federates executed as nodes within the
parallel simulation execution.

7 Like its predecessor implementation, the 1996-2000 EMF
offered a very simple event-processing engine. However, now
state management was more formalized with object proxies.

8 The 2000-2004 EMF coupled a very simple event processing
engine with a much more elaborate Federation Object
framework for managing state information.

9 The WarpIV Kernel implementation of the OpenUTF core
infrastructure contains more than 400,000 lines of C++, Java,
and Python code. It executes on all mainstream platforms
(Linux, Mac OS X, Windows, Solaris, HP-UX, etc.) and
compilers. The WarpIV Kernel is provided freely with source
code to U.S. organizations for non-commercial use.

on three open system architectures,10 the WarpIV Kernel
evolved over the next decade into what is now the core
infrastructure of the Open Unified Technical Framework
(OpenUTF). The core technology layers of the OpenUTF,
including the new EMF, are shown in Figure 2.

Figure 2: Technology layers of the OpenUTF.

Leveraging lessons learned from JSIMS, a new, more
capable, and easier-to-use publish and subscribe
framework was developed. Built on the OpenUTF Object
Request Broker (OpenUTF-ORB) client/server distributed
communications framework, a new network-based EMF
was developed to support optimized communications,
robust time management, two-way event processing, and
the extended Federation Object capabilities.

Besides providing much-optimized internal state and
rollback management techniques,11 the new EMF now
offers support for the full OpenUTF modeling constructs
within its internal event-processing infrastructure. This
means that in addition to providing logical time and
publish and subscribe state management, the EMF can
also be used to host general-purpose sequential simulation
applications that remotely connect and interact with an

10 The OpenUTF is comprised of three architectures that are

being investigated by the Simulation Interoperability
Standards Organization (SISO) Parallel and Distributed
Modeling & Simulation Standing Study Group (PDMS-SSG).
These architectures are: (1) Open Modeling & Simulation
Architecture (OpenMSA), which is a layered architecture that
encapsulates each critical technology necessary for supporting
parallel and distributed modeling and simulation applications,
(2) Open System Architecture for Modeling & Simulation
(OSAMS), which defines the set of programming interfaces
for model developers, and (3) Open Cognitive Architecture
Framework (OpenCAF), which provides a foundation for
cognitive models representing intelligent human behaviors.

11 Prior implementations of the EMF saved all event data such
as messages and event structures when supporting rollback
and rollforward capabilities. The OpenUTF EMF now cleans
up all event data and only stores rollback items that are
related to the event. This significantly reduces memory
consumption within the EMF.

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 4

OpenUTF simulation executing optimistically on parallel
and distributed computing resources. This is a significant
improvement over prior EMF implementations.12

2.0 EMF Services

Code Segment 1 provides an example of a test program
using the EMF. Normally, the EMF is constructed by the
application in its main program. The EMF execution
mode is then typically established.13 Then the application
subscribes to external events and/or Federation Objects
that are produced by the simulation. Once these
initialization steps are completed, applications are free to
advance time and obtain state information about the
federation objects that are discovered.14

Code Segment 1: Example application using the EMF.

// Example application

#include “WpEmf.H”
#include “WpExecute.H”

#define START_TIME 0.0
#define END_TIME 3600.0
#define LOOKAHEAD 10.0

int main(int argc, char **argv) {

// Construct the Emf

 WpEmf *emf = WpCreateEmf(argc, argv);

// Set the EMF to live mode and generate a
// log file. The log file name is optional
// and if left out, no log file is
// generated. Note that the EMF is set to
// playback mode by using the interface
// emf->SetPlayback(“LogFile”);

 emf->SetLive(
 START_TIME,
 LOOKAHEAD,
 "LogFile"
);

// Subscribe to events and Federation
// Objects. In this example, “Fo” is the

12 The new EMF supports the full OpenUTF modeling

framework, which provides a great way for legacy
applications to migrate models into the OpenUTF.

13 Examples of execution modes are Live (with or without
generating a log file) and Playback.

14 The EMF is currently single-threaded, which means that live
interactive applications involving humans in the loop must be
careful to advance time in a manner that doesn’t block inside
the EMF. The advance time method is a non-blocking call
that advances time as far as it can (or to the requested time if
supplied as an argument) within a single iteration. Blocking
during time requests is not an issue when operating the EMF
in Playback mode.

// base class of all federation objects
// which means that the EMF will subscribe
// to all objects. Multiple calls to
// subscribe are permitted. The EMF can
// subscribe to all events using the
// call emf->SubscribeAllEvents();

 emf->SubscribeFo("Fo");
 emf->SubscribeEvent("AppleEvent");
 emf->SubscribeEvent("OrangeEvent");

// OpenUTF simulations can have initial
// named pauses to allow one or more
// external applications to launch before
// advancing time. Pauses are removed by
// making a call to resume from a pause.

 emf->Resume(“StartUp”);

// Now begin advancing time in a manner
// that paces with the simulation. The
// lookahead value passed in the SetLive
// method ensures that the EMF never lags
// behind the simulation by more than the
// lookahead value.

 double time = START_TIME;
 while (time < END_TIME) {

// Loop over all of the Federation Objects
// and obtain relevant state information.

 WpFo *fo = WP_EMF_FO_MGR.
 GetFirstRemoteFo(“Aircraft”);

 while (fo != NULL) {

// do something with the Federation Object
// such as obtain its position and
// orientation to draw the screen. Then
// get the next Federation Object.

 fo = EMF_FO_MGR.GetNextRemoteFo();
 }

// Advance time without blocking. Note that
// applications can provide an optional
// time argument to limit how far the Emf
// advances time within one non-blocking
// iteration.

 time = emf->AdvanceTime();
 }

// Now for fun, go backward and forward in
// time. The internal state of the Emf
// will reflect the state of the simulation
// at the requested times.

 emf ->RequestTime(100.0);
 emf ->RequestTime(500.0);
 emf ->RequestTime(1000.0);
 emf ->RequestTime(200.0);

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 5

// Here is an example of the Emf looping
// in 1 second simulated time steps from
// the start time to the end time of the
// simulation.

 for (time = START_TIME;
 time < END_TIME,
 time++) {

// Request the desired time.

 emf->RequestTime(time);

// Get state information about each
// simulated entity and then update the
// display.

 }

// Before exiting the application, destroy
// the EMF. Then, return a clean error code
// from the main program.

 WpDestroyEmf(emf);
 return 0;
}

Applications can directly schedule events for any of the
objects that are modeled within the EMF using the full
capabilities of the OpenUTF standard modeling
framework. To maintain causality, applications must
never schedule events with time tags that are in the past of
their previous largest time request.

In addition, the application can schedule simple events15
for any object residing within the OpenUTF parallel
simulation. The time value must never be less than the
previous largest time request plus lookahead. The
following EMF methods are supported.

void WpEmf::ScheduleEvent(
 double time,
 const char *eventName
);

void WpEmf::ScheduleEventClass(
 double time,
 const char *eventName,
 void *data,
 int dataBytes

15 Simple events use a string argument to define the name of the

event and come in four flavors: (a) no arguments, (b) a flat
fixed-size class argument, (c) a variable-length buffer, and (d)
arbitrary user data stored in a run-time class that provides
name-value pairs. Event-handling methods are provided by
the application as arbitrary methods on arbitrary objects. They
are dynamically registered and unregistered during the
execution of the simulation. Similarly, subscribe and
unsubscribe methods within the OpenUTF provide a scalable
mechanism for simple events to automatically be routed to the
right subscribing objects.

);

void WpEmf::ScheduleEventData(
 double time,
 const char *eventName,
 void *data,
 int dataBytes
);

void WpEmf::ScheduleEventRtc(
 double time,
 const char *eventName,
 WpRunTimeClass *rtc
);

void WpEmf::ScheduleEventRtc(
 double time,
 const char *eventName,
 WpRunTimeClass &rtc
);

Similar interfaces are provided for EMF applications to
schedule events for the simulation as tightly in time as
possible. These interfaces simply leave out the time
parameter in the event-scheduling interfaces. The EMF
automatically schedules the event with a time value set to
the previous largest time request.

void WpEmf::ScheduleEvent(
 const char *eventName
);

void WpEmf::ScheduleEventClass(
 const char *eventName,
 void *data,
 int dataBytes
);

void WpEmf::ScheduleEventData(
 const char *eventName,
 void *data,
 int dataBytes
);

void WpEmf::ScheduleEventRtc(
 const char *eventName,
 WpRunTimeClass *rtc
);

void WpEmf::ScheduleEventRtc(
 const char *eventName,
 WpRunTimeClass &rtc
);

The default configuration of the EMF is to save rollback
information for each event that is internally processed to
support forward and backward time requests. For external
EMF applications that do not require this capability (i.e.,
external systems that need to connect to the simulation
and interact during execution), a method is provided to
disable rollbacks. This method slightly reduces processing
overheads, but can significantly reduce memory

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 6

consumption for large simulations with frequent attribute
updates.

void WpEmf::DisableRollback();

Three additional methods are provided to pause, resume,
and kill the simulation. Pauses are named by remote
applications to support pause and resume requests from
multiple sources. The EMF automatically appends socket
file descriptors to the pause names to ensure uniqueness
between distributed systems.

3.0 Technology of the EMF

The EMF provides robust and scalable technical solutions
to several challenging distributed synchronization issues.
Some of the more interesting technical issues and their
solutions are discussed in this section.

– Synchronizing Messages with Time Updates –

The first issue involves how to coordinate time updates
with time-tagged messages16 that are flowing from a
parallel optimistic simulation executing within the
OpenUTF to one or more connected EMFs.

The solution is straightforward. First, a message is only
released when the event that generated the message is
committed. The simulation client that resides within each
node of the OpenUTF automates this. Only valid
messages are released to external systems. Messages are
routed through the Network Server to EMFs based on
subscriptions. Messages potentially flow from each node
through the Network Server to the external systems where
they are internally scheduled as EMF events as they are
received. The EMF can only safely process events up to
the time granted by the OpenUTF simulation. The EMF
must never process events out of order. So events
scheduled by various OpenUTF simulation nodes are
received in arbitrary order by the EMF. Received
messages must be coordinated with time update messages
in a manner that guarantees no further messages will be
received with time tags less than the time update. The
solution is shown in Code Segment 2.

Code Segment 2: Actual code within the OpenUTF to
synchronize time-tagged messages that were generated during
event processing for external systems with time updates. Note
that these steps are only performed if the simulation is
configured at run time to support interactions with external
systems.

// If the simulation client on this node

16 Time tagged messages represent all events coming from the

simulation to external systems using the EMF. Event types
can be simple events, Federation Object discovery or removal,
and attribute updates.

// has sent any messages during the current
// GVT cycle, reset the number and then
// perform a flush operation with the
// Network Server.

if (0 < SIM_CLIENT.GetNumMessagesSent()) {
 SIM_CLIENT.ResetNumMessagesSent();
 SIM_CLIENT.Flush();
}

// Synchronize with all nodes to guarantee
// that external time is not updated until
// all messages from each node have been
// received by the Network Server.

WpBarrierSync();
SIM_CLIENT.UpdateExtTime();

During each Global Virtual Time (GVT) event-processing
cycle, each node keeps track of how many external
messages are sent. Before sending the time update
message to the Network Server, each node that sent at
least one messages makes a two-way17 flush call to the
Network Server. This ensures that all messages sent by
the node have been received and processed by the
Network Server. Then, each node performs a high-speed
barrier sync to ensure that all messages have been
received and processed by the Network Server, where
they are forwarded to external systems as appropriate.
Then, the simulation client sends the time update message
to the Network Server if it is node zero, which is then
forwarded to the external systems. This ensures correct
behavior because all messages were sent, received, and
processed prior to the time update message, and because
the Network Server processes and forwards messages in
the order that they were received.

– Use of Lookahead –

Lookahead is required for maintaining worst-case lag
between external applications and the OpenUTF
simulation. Lookahead applies only to events being
scheduled from the EMF to the OpenUTF simulation. No
lookahead is required for events that are scheduled from
the OpenUTF to the EMF. Each external application can
have its own lookahead value. In addition, EMFs can
change their lookahead value during execution if
necessary. However, external applications must never
schedule events tighter in time than any previously
established time barrier18 for the OpenUTF. If this ever

17 Two-way message services within the OpenUTF-ORB blocks

the application until the return message, potentially containing
the results of the service, is received. In the case of the Flush
service, no data is returned. Flush simply ensures that all
messages sent by the client have been received and processed
by the server.

18 Time barriers limit GVT from advancing beyond the time
value specified in the barrier. Time barriers are used for
supporting pause and resume capabilities, throttling GVT to

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 7

occurs, the scheduled event time is automatically adjusted
to be the barrier time plus lookahead.

Large values of lookahead promote more concurrent and
scalable operation, but at the expense of limiting how
tightly in simulated time external systems can interact
with the OpenUTF. The current approach suffers from
time creeping when lookahead values become very small.
This issue was successfully addressed in earlier EMF
implementations and will eventually be remedied in the
OpenUTF implementation. The solution to the problem is
to allow time to jump when there are no events scheduled
between external systems and the OpenUTF. This
technique can only be used for logical execution modes.
Real time interactive simulations must always support
spontaneous events that can be generated without
warning.

– Fault Tolerance and Time Barriers –

Time barriers provide a formal way for external
applications to limit Global Virtual Time (GVT) in the
OpenUTF. Time barrier messages are sent to node zero of
the OpenUTF from each EMF as they internally advance
their logical time. Time barriers limit GVT from
advancing beyond the granted time plus lookahead.

An important issue is how to handle situations when the
external system unexpectedly disconnects19 from the
OpenUTF without cleanly removing any of its time
barriers. If not handled correctly, the simulation would
hopelessly be stuck from advancing beyond the time of
the barrier. Fortunately, the Network Server is notified
when an external system unexpectedly disconnects its
socket connection. The Network Server keeps track of all
time barriers and smartly removes them from node zero of
the OpenUTF when external systems disconnect.

– Internal Management of Logical Time –

The EMF supports the ability to process internal events,
roll them back in time when earlier times are requested,
and then roll those events forward as necessary when
forward time advances are requested. Supporting all of
this produces some interesting challenges in managing the
set of unprocessed pending events with those events that
have been processed, but potentially rolled back.

the wall clock in support of scaled time operation, and for
supporting robust time management between external systems
and the OpenUTF. The EMF establishes time barriers for the
OpenUTF based on its granted time plus the lookahead value.

19 External systems can unexpectedly disconnect due to software
crashes, hardware failures, network problems, power outages,
or improper shutdown of an external system as it completes
its task.

Figure 3: Event management within the EMF. This figure
shows messages generated by the OpenUTF that are sent
through the simulation client that resides on each node.
Messages flow through the Network Server to the External
Client that resides within the EMF. These messages are queued
up as unprocessed events. As events are processed, their
rollback information is saved in a queue for rollback and
rollforward support. Moving forward and backward in time
requires the EMF to manage all of this in a robust manner.

For example, suppose the application first requests to
advance to time 1000 and subsequently requests going
back to time 500. All events processed between time 500
and 1000 must be rolled back in the reverse order that
they were processed. Then, suppose the external
application requests to advance time to 1200. The EMF
must roll forward those events that were previously rolled
back from time 500 to time 1000 in forward order and
then process any unprocessed events up to time 1200. Of
course, all new event processing must be performed using
lookahead and time barriers that coordinate with the
OpenUTF simulation because there may be new events
received by the EMF from the simulation during event
processing between time 1000 and 1200.

The EMF provides four private methods that are not
visible to applications to handle this.

void WpEmf::GoToTime(double time);
void WpEmf::ProcessUpToTime(double time);
void WpEmf::RollforwardToTime(double time);
void WpEmf:: RollbackToTime (double time);

The GoToTime method compares the requested time
argument to the CurrentTime value that is maintained by
the EMF as time requests are made. If the requested time
is less than the current time, then the RollbackToTime
method is called. If the requested time is greater than the
current time, the RollforwdToTime method is called,
followed by a call to the ProcessUpToTime method.

Two easy-to-use time-related EMF services are provided
to external applications.

double WpEmf::AdvanceTime(
 double time=WP_INFINITY

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 8

);

double WpEmf::RequestTime(
 double time,
 int maxIterations=1000000000
);

The RequestTime service attempts to move to the
requested time argument. It always succeeds when rolling
back to earlier time values or when rolling forward to
already-processed event times. When requesting time
beyond prior grants, the AdvanceTime method tries to
process events in coordination with the OpenUTF in time
barrier cycles. If the maximum specified number of
iterations is exceeded, the returned time is simply a best
effort attempt. So, the granted time might not always be
the same as the requested time.

The AdvanceTime method simply calls the RequestTime
method using a maximum number of iterations of one.
The AdvanceTime method should be used as opposed to
RequestTime for interactive simulations that cannot
afford to block while waiting for time to advance.

4.0 EMF and Next-generation Standards

The Parallel and Distributed Modeling & Simulation
Standing Study Group (PDMS-SSG) operates within the
Simulation Interoperability Standards Organization
(SISO) and provides a forum for investigating open
architecture standards, such as OpenMSA, OSAMS, and
OpenCAF. The EMF techniques described in this paper
heavily rely on the layered OpenMSA technologies. The
EMF is a necessary part of the set of OpenUTF
architecture standards that are coordinated by the
OpenUTF Users Group and broader participating
communities within SISO.

5.0 Summary and Conclusions

This paper first provided an introduction to the EMF by
describing its high-level capabilities and then discussing
historical implementations that date back to 1990. Each
EMF implementation provided significant enhancements
over previous efforts. The current EMF in the OpenUTF
is a fourth generation system that benefitted from lessons
learned over the past twenty years.

This paper then provided a high-level overview of the
services provided by the EMF with an example to
demonstrate its programming interfaces.

Finally, this paper discussed some of the key technical
solutions used by the EMF to support (a) robust time
management with optimistic simulations, (b) the role of
lookahead to provide concurrency between external
systems and the OpenUTF, (c) internal time management

techniques for integrating rollback, rollforward, and event
processing with time in the OpenUTF, and (d) fault
tolerance to ensure proper time management if external
systems using the EMF fail.

The EMF provides an extremely powerful, yet simple,
interface to integrate remote systems across arbitrary
networks with OpenUTF applications executing in
parallel. The EMF supports numerous types of external
applications including: (a) graphical visualization, (b)
distributed analysis, (c) hardware-in-the-loop, (d) training
systems, (e) support for legacy systems, (f) integration
with real-world applications, and (g) integration with test
articles using the OpenUTF as a robust testbed to support
verification, validation, and accreditation efforts.

Finally, the SISO PDMS-SSG will likely investigate the
EMF for future standardization within the OpenUTF.

6.0 Future Development

The EMF does not currently support publishing of its own
Federation Objects that are discovered by the OpenUTF
simulation, nor does it support the ability to modify the
attributes of remote Federation Objects that were
published by entities within the OpenUTF simulation.
These capabilities are straightforward to implement and
will be developed at a future date when user requirements
demand this feature.

An HLA interface may eventually be developed for the
EMF to support direct integration of OpenUTF
applications with legacy HLA federates.

7.0 Acknowledgements

The authors of this paper would like to thank Cynthia
Williams and the Missile Defense Agency (MDA) for
sponsoring the work described in this paper within the
scope of a current Phase II SBIR effort with WarpIV
Technologies, Inc. The EMF will provide remote
interfaces for several OpenUTF visualization and analysis
capabilities that will be developed on this effort.

The authors of this paper would like to thank Chris
Gaughan, Deputy Technology Program Manager of the
U.S. Army Research, Development and Engineering
Command (RDECOM) Modeling Architecture for
Technology, Research & EXperimentation (MATREX)
program. Mr. Gaughan is the Vice Chair of the PDMS-
SSG and is actively involved in bringing multicore
computing to Army Force Modeling Simulation (FMS)
and Chemical and Biological Defense (CBD) programs.

The authors of this paper would like to thank Bob
Pritchard, Program Manager of the Joint Virtual Network
Centric Warfare (JVNCW) program at SPAWAR

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 9

Systems Center Pacific, for his continued support of the
OpenUTF. Bob Pritchard is a strong advocate of the
PDMS-SSG and is a proponent of open source software
methodologies.

8.0 References

1. Blank Gary, Steinman Jeff, Shupe Scott, Wallace Jeff,
2000. “Design and Implementation of the HPC-RTI for the
High Level Architecture in SPEEDES 0.81.” In the
proceedings of the 2000 Spring Simulation Interoperability
Workshop. Paper 00S-SIW-153.

2. Clark Joe, Capella Sebastian, Bailey Chris, Steinman Jeff
and Peterson Larry, 2002. "The Development of an HLA
Compliant High Performance Computing Run-time
Infrastructure" In proceedings of the 2002 Spring
Simulation Interoperability Workshop, Paper 02S-SIW-016.

3. Lammers Craig, Valinski Maria, Steinman Jeff, 2009.
“Multiplatform Support for the OpenMSA/OSAMS
Reference Implementation.” In proceedings of the Spring
2009 Simulation Interoperability Workshop (SIW).

4. Parallel and Distributed Modeling & Simulation Standing
Study Group (PDMS-SSG) Terms Of Reference (TOR).

5. Parallel and Distributed Modeling & Simulation Standing
Study Group (PDMS-SSG), 2009. “Parallel and Distributed
Modeling & Simulation Standing Study Group (PDMS-
SSG) DRAFT REPORT Volume 1: PDMS Technology.”
Submitted to the SISO Standards Activities Committee
(SAC), 14 April 2010.

6. Steinman Jeff, 1991. “SPEEDES: Synchronous Parallel
Environment for Emulation and Discrete Event
Simulation.” In proceedings of Advances in Parallel and
Distributed Simulation. Pages 95-103.

7. Steinman Jeff, 1991. “Interactive SPEEDES.” In
proceedings of the 24th Annual Simulation Symposium.
Pages 149-158.

8. Steinman Jeff, 1993. "Incremental State Saving in
SPEEDES Using C++." In proceedings of the 1993 Winter
Simulation Conference. Pages 687-696.

9. Steinman Jeff, 1993. "Synchronization of Parallel and
Distributed Interactive Military Simulations Using
SPEEDES." In proceedings of the 1993 Summer Computer
Simulation Conference. Pages 701-710.

10. Simulation Interoperability Standards Organization (SISO),
http://www.sisostds.org.

11. Steinman Jeff, 1998. “Time Managed Object Proxies in
SPEEDES.” In the proceedings of the Object-Oriented
Simulation Conference (OOS’98), pages 59-65.

12. Steinman Jeff, et. al., 1999. “Design of the HPC RTI for the
High-Level Architecture”, In proceedings of the 1999 Fall
Simulation Interoperability Workshop, Paper 99F-SIW-
071.

13. Steinman Jeff, et. al., 1999. “The SPEEDES-Based Run-
Time Infrastructure for the High-level Architecture on
High-Performance Computers.” In proceedings of the High
Performance Computing 1999 Conference, Grand
Challenges in Computer Simulation. Pages 255-266.

14. Steinman Jeff and Hardy Doug, 2004. “Evolution of the
Standard Simulation Architecture.” In proceedings of the
Command and Control Research Technology Symposium,
paper 067.

15. Steinman Jeff, 2005, “The WarpIV Simulation Kernel.” In
proceedings of the 2005 Principles of Advanced and
Distributed Simulation (PADS) conference.

16. Steinman Jeff, Park Jennifer, Walters Wally, and Delane
Nathan, 2007. “A Proposed Open System Architecture for
Modeling and Simulation.” In proceedings of the Fall 2007
Simulation Interoperability Workshop, 07F-SIW-044.

17. Steinman Jeff and Lammers Craig, 2007, “WarpIV Object
Request Broker User’s Guide: Version 1.5.” Copyright ©
2007, WarpIV Technologies, Inc.

18. Steinman Jeff, Lammers Craig, Valinski Maria, 2008. “A
Unified Technical Framework for Net-centric Systems of
Systems, Test and Evaluation, Training, Modeling and
Simulation, and Beyond…” In proceedings of the Fall 2008
Simulation Interoperability Workshop (SIW). Paper 08F-
SIW-041.

19. Steinman Jeff, Lammers Craig, Valinski Maria, and
Steinman Wendy, 2009. “Open Unified Technical
Framework Volume 1: OSAMS, User’s Guide for Model
Developers.” WarpIV Technologies, Inc.

20. Steinman Jeff, Lammers Craig, and Valinski Maria, 2009.
“A Proposed Open Cognitive Architecture Framework
(OpenCAF).” In the proceedings of the 2009 Winter
Simulation Conference.

21. Steinman Jeff, Lammers Craig, Valinski Maria, 2009.
“Composability Requirements for the Open Unified
Technical Framework.” In proceedings of the Fall 2009
Simulation Interoperability Workshop, paper 09F-SIW-
022.

22. Steinman Jeff, Lammers Craig, Valinski Maria, Steinman
Wendy, 2009. “Migrating Software to the Open Unified
Technical Framework.” In proceedings of the Spring 2010
Simulation Interoperability Workshop, paper 10S-SIW-
052.

23. Steinman Jeff, Lammers Craig, Valinski Maria, and
Steinman Wendy, 2010. “Scalable Publish and Subscribe
Data Distribution.” In proceedings of the Fall 2010
Simulation Interoperability Workshop, 10F-SIW-027.

24. Tung Yu-Wen and Steinman Jeff, 1993. “Interactive
Graphics for the Parallel and Distributed Computing
Simulation.” In proceedings of the 1993 Summer Computer
Simulation Conference. Pages 695-700.

25. WarpIV Technologies, Inc. 2009. “Open Unified Technical
Framework (OpenUTF) Volume 1: OSAMS User’s Guide
for Model Developers.”

9.0 Author Biographies

JEFFREY S. STEINMAN, President and CEO of
WarpIV Technologies, Inc. received his Ph.D. in High
Energy Physics from UCLA in 1988 where he studied the
quark structure function of high-energy virtual photons at
the Stanford Linear Accelerator Center. Dr. Steinman was
the creator of the Synchronous Parallel Environment for

12S-SIW-034 WarpIV Technologies, Inc. 3/26/12

 10

Emulation and Discrete Event Simulation (SPEEDES),
has published more than 70 papers and articles in the field
of high performance computing, has five U.S. patents in
high performance M&S technology, is a frequent invited
speaker at conferences, seminars, and forums, and is the
principle designer/developer of the WarpIV Kernel
Reference Implementation of the OpenMSA, OSAMS,
and OpenCAF architectures that make up the Open
Unified Technical Framework (OpenUTF). Dr. Steinman
is currently the Chair of the Parallel and Distributed
Modeling & Simulation Standing Study Group (PDMS-
SSG) that is governed by the Simulation Interoperability
Standards Organization (SISO).

CRAIG N. LAMMERS, Vice President of Applied
Research and Development at WarpIV Technologies, Inc.
is the program manager for an effort with AFRL, Rome
Labs conducting new research and development in
parallel and distributed simulation to support formal
estimation and prediction of complex systems using the
OpenUTF Kernel. He is also the lead engineer for a new
research effort with the Missile Defense Agency applying
five-dimensional simulation to support the analysis of
interceptor engagement strategies. His professional
interests are in the areas of M&S, artificial intelligence,
signal processing, user interface design, and music. Mr.
Lammers received his B.S. degree in Industrial and
Systems Engineering from the University of Michigan,
Dearborn in 2001, where he graduated with high honors.

MARIA E. VALINSKI, Vice President of Software
Engineering at WarpIV Technologies, Inc., has provided
modeling, simulation, and integration technical support
for numerous programs and organizations. Maria Valinski
is the lead software engineer for the Joint Virtual Network
Centric Warfare (JVNCW) program that models wireless
communications on supercomputers using the OpenUTF
reference implementation. Maria Valinski is currently
providing Subject Matter Expert (SME) support for
OpenUTF users at the Space and Naval Warfare
(SPAWAR) Systems Center Pacific (SSC-PAC). Ms.
Valinski received her B.S. degree in Computer Science
from East Stroudsburg University in 1997.

WENDY L. STEINMAN, Software Engineer at WarpIV
Technologies, Inc. received her B.S. degree in Cognitive
Science specializing in Neuroscience with a minor in
Biology from UCSD in 2009. She is currently supporting
several initiatives involving the OpenUTF. This includes
developing data registry services, implementing two and
three dimensional grid decomposition strategies for
simulation objects, exploring hybrid computation
techniques, conducting performance benchmarks,
comparing the internal OpenUTF High Speed
Communications (HSC) library with the standard
Message Passing Interface (MPI), analyzing M&S data

provided by the Chemical, Biological Radiological and
Nuclear Defense (CBRND) Data Backbone, assisting in
writing the OpenUTF User’s Guide, and editing the
Parallel and Distributed Force Modeling & Simulation
Technical Report for the PDMS-SSG.

