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ABSTRACT: The Open Unified Technical Framework (OpenUTF) provides an External Modeling Framework 
(EMF) that offers support for all of its standard modeling constructs within an encapsulated object that can be created 
and used by non-OpenUTF applications. Acting like a proxy to simulations executing in the OpenUTF, the EMF 
coordinates robust and repeatable event processing and state management in logical time between external 
applications and the core parallel and distributed OpenUTF simulation. Like the High Level Architecture (HLA), 
applications can optionally use their own simulation engines to coordinate their internal event processing with 
OpenUTF simulations using the EMF. Applications can also integrate with standard OpenUTF-compliant models that 
execute directly within the EMF. Because the EMF and HLA provide similar functionality, it is straightforward to 
implement an HLA interface as a wrapper for the EMF to facilitate direct HLA interoperability between external 
systems and simulations executing within the OpenUTF.  

All events within the EMF are processed conservatively in logical time. Yet, the EMF supports rollbackable and 
rollforwardable state management as events are internally processed, not for the purpose of handling straggler 
messages to maintain causality, but for performing state reconstruction at any logical time in the past, present, or 
future. The EMF provides publish and subscribe services along with standard methods to access remote objects and 
their attributes. One very common use of the EMF is to support live or offline visualization and analysis capabilities for 
OpenUTF simulations. With a VCR-like set of controls, graphics-based applications can freely move forward and 
backward to any simulated time in the past or present to visualize the state of the simulation while it is executing. All 
received messages are time tagged and can optionally be logged for playback when running live. This facilitates 
powerful after-action-review visualization and analysis with complete state reconstruction at any point in time. The 
EMF provides the foundation for supporting analysis, command and control, integration with real systems, warfighter 
training, test & evaluation, and formal verification validation & accreditation use cases. 

This paper first provides historical background on previous EMF implementations that were developed for the 
Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES), leading to its current 
implementation within the WarpIV Kernel. The paper then describes the current set of EMF services that are provided 
for the OpenUTF, its high-level design, and its recent implementation. This topic is important to the Simulation 
Interoperability Standards Organization (SISO) because the EMF is a core architectural component of the OpenUTF 
that is being investigated by the Parallel and Distributed Modeling & Simulation Standing Study Group (PDMS-SSG) 
for future standardization. 

 

                                                
1 Approved for public release, 12-MDA-6532 (24 January 12). 
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1.0 Introduction 

The External Modeling Framework (EMF) has undergone 
several generations of innovation, design, and 
development, leading to the current capability that resides 
within the WarpIV Kernel implementation of the Open 
Unified Technical Framework (OpenUTF). The EMF 
provides a technical foundation for interfacing remote 
systems that are potentially distributed across wide area 
networks with an optimistic simulation executing on 
parallel and distributed computers. Examples of such 
remote systems might include (a) visualization and 
analysis tools, (b) hardware-in-the-loop, (c) simulations 
executing on remote machines, (d) real-world software 
systems and applications, (e) training systems, and/or (f) 
distributed test articles being verified and validated within 
a robust and scalable OpenUTF-based testbed for correct 
operation. 

 

Figure 1: EMF in the OpenUTF. In this example a 16-node 
OpenUTF simulation executes in parallel. Each node has a 
Simulation Client that connects through a TCP/IP Socket to the 
Network Server. In addition, each External Application has an 
EMF and an External Client that also connects to the Network 
Server. All connections to the Network Server are two-way, 
which coordinates message traffic between External 
Applications and the OpenUTF Parallel Simulation. Note that 
External Applications never communicate directly with one 
another. Message traffic includes initialization data, time 
requests and advances, two-way event scheduling, Federation 
Object discovery/removal and attribute updates. 

Figure 1 depicts the conceptual operation of the EMF 
operating as the remote interface for external applications 
as they interact with an OpenUTF parallel simulation. 
Note that any number of external applications can be 
supported with dynamic connectivity. External 

applications can reside wherever network connectivity is 
provided.2 

This rest of this section describes the evolution of each 
EMF implementation within its historical context. 

1990-1993: Jet Propulsion Laboratory and CalTech 

The first implementation of the EMF3 was developed at 
the Jet Propulsion Laboratory (JPL) between 1990 and 
1993. This early implementation was groundbreaking in 
several ways. It introduced all of the core technologies for 
synchronizing external systems such as graphical 
visualization tools and hardware-in-the-loop test articles 
with optimistic simulations executing on parallel 
computers. While primitive in several ways,4 this first 
implementation pioneered the robust technical foundation 
for supporting remote visualization of parallel and 
distributed Missile and Air Defense simulation 
applications executing within the Synchronous Parallel 
Environment for Emulation and Discrete Event 
Simulation (SPEEDES) on supercomputers.5 

This early EMF abstracted (a) all of the communications 
between external visualization tools and other remote 
applications with the simulation, (b) coordinated two-way 
event processing in logical time between remote 
applications and the parallel simulation, (c) managed the 
equations of motion of all entities in the simulation for 
remote applications, (d) provided rollforward and rollback 
state management, (e) supported data logging for later 
playback, visualization, and analysis, and (f) provided 
fault tolerant mechanisms to handle external systems 
unexpectedly disconnecting from the simulation. 

1996-2000: Missile Defense and Wargame 2000 

As publish and subscribe simulation technologies, such as 
those articulated by the High Level Architecture (HLA), 
matured in the late 1990’s, a next generation EMF was 

                                                
2 The EMF does not currently address multi-level security. This 

could be a very interesting topic for future research. 
3 The actual implementation was never given a formal name. 
4 An extremely simple event-processing engine was developed 

to manage rollbackable/rollforwardable internal event 
processing. Equations of motion and a few other attributes 
were specifically managed in a formal way. 

5 A nation-wide distributed missile defense simulation was 
demonstrated in 1993. The core optimistic simulation 
executed on several locally interconnected super computers at 
the Joint National Test Facility in Colorado Springs. A battle 
planner executed remotely on large supercomputer at the Los 
Alamos National Laboratory (LANL) in New Mexico. A 
flight simulator with real-time 3D terrain rendering executed 
at the Jet Propulsion Laboratory in California to find and 
destroy Transporter Erector Launchers (TEL) based on 
simulated tracks. Full visualization was performed at the 
Naval Research Laboratory (NRL) in Washington DC. 
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developed for SPEEDES that was based on Object 
Proxies.6 This new EMF, known as the Object Proxy 
State Manager (OPSM), provided a much better 
foundation for supporting logical-time synchronization 
and external state management with an executing 
SPEEDES simulation. Object Proxies encapsulated state 
attributes into an object that could be published and then 
discovered by subscribing entities. Attribute update and 
reflection techniques were automated through cleverly 
devised operator overloading techniques. The Object 
Proxy subscription capabilities were extended into the 
OPSM, along with rollback and rollforward support. This 
provided a generic mechanism for external applications to 
obtain the state of the simulation at any point in time.7 

2000-2004: Joint Simulation System (JSIMS) 

SPEEDES became the Common Component Simulation 
Engine (CCSE) for the Joint Simulation System (JSIMS) 
in 2000. With hundreds of new model developers 
spanning multiple agencies, industrial organizations, the 
joint armed forces, and intelligence communities, it 
became clear that a more capable publish and subscribe 
framework was needed to meet JSIMS requirements. A 
more flexible and scalable framework based on 
Federation Objects, Hierarchical Grids, and internal 
Object Persistence was developed to meet the new 
demanding requirements posed by JSIMS.8 A new EMF 
system was developed to support external tools such as 
the Model Diagnostic Driver Interface (MDDI) that was 
heavily used for two-way monitoring and controlling 
battlefield entities. 

2001-Present: Open Unified Technical Framework 

Development of the WarpIV Kernel9 began in early 2001 
as the next-generation replacement for SPEEDES. Based 

                                                
6 A simple HLA interface was developed to the 1996-2000 

EMF to demonstrate how external HLA simulations could 
directly interface with SPEEDES. The first HLA High 
Performance Computing Run Time Infrastructure (HPC-RTI) 
prototype was based on this EMF. Later versions of the HPC-
RTI built for SPEEDES and the WarpIV Kernel provided 
native interfaces where federates executed as nodes within the 
parallel simulation execution. 

7 Like its predecessor implementation, the 1996-2000 EMF 
offered a very simple event-processing engine. However, now 
state management was more formalized with object proxies. 

8 The 2000-2004 EMF coupled a very simple event processing 
engine with a much more elaborate Federation Object 
framework for managing state information. 

9 The WarpIV Kernel implementation of the OpenUTF core 
infrastructure contains more than 400,000 lines of C++, Java, 
and Python code. It executes on all mainstream platforms 
(Linux, Mac OS X, Windows, Solaris, HP-UX, etc.) and 
compilers. The WarpIV Kernel is provided freely with source 
code to U.S. organizations for non-commercial use. 

on three open system architectures,10 the WarpIV Kernel 
evolved over the next decade into what is now the core 
infrastructure of the Open Unified Technical Framework 
(OpenUTF). The core technology layers of the OpenUTF, 
including the new EMF, are shown in Figure 2. 

 

Figure 2: Technology layers of the OpenUTF. 

Leveraging lessons learned from JSIMS, a new, more 
capable, and easier-to-use publish and subscribe 
framework was developed. Built on the OpenUTF Object 
Request Broker (OpenUTF-ORB) client/server distributed 
communications framework, a new network-based EMF 
was developed to support optimized communications, 
robust time management, two-way event processing, and 
the extended Federation Object capabilities. 

Besides providing much-optimized internal state and 
rollback management techniques,11 the new EMF now 
offers support for the full OpenUTF modeling constructs 
within its internal event-processing infrastructure. This 
means that in addition to providing logical time and 
publish and subscribe state management, the EMF can 
also be used to host general-purpose sequential simulation 
applications that remotely connect and interact with an 

                                                
10 The OpenUTF is comprised of three architectures that are 

being investigated by the Simulation Interoperability 
Standards Organization (SISO) Parallel and Distributed 
Modeling & Simulation Standing Study Group (PDMS-SSG). 
These architectures are: (1) Open Modeling & Simulation 
Architecture (OpenMSA), which is a layered architecture that 
encapsulates each critical technology necessary for supporting 
parallel and distributed modeling and simulation applications, 
(2) Open System Architecture for Modeling & Simulation 
(OSAMS), which defines the set of programming interfaces 
for model developers, and (3) Open Cognitive Architecture 
Framework (OpenCAF), which provides a foundation for 
cognitive models representing intelligent human behaviors. 

11 Prior implementations of the EMF saved all event data such 
as messages and event structures when supporting rollback 
and rollforward capabilities. The OpenUTF EMF now cleans 
up all event data and only stores rollback items that are 
related to the event. This significantly reduces memory 
consumption within the EMF. 
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OpenUTF simulation executing optimistically on parallel 
and distributed computing resources. This is a significant 
improvement over prior EMF implementations.12 

2.0 EMF Services 

Code Segment 1 provides an example of a test program 
using the EMF. Normally, the EMF is constructed by the 
application in its main program. The EMF execution 
mode is then typically established.13 Then the application 
subscribes to external events and/or Federation Objects 
that are produced by the simulation. Once these 
initialization steps are completed, applications are free to 
advance time and obtain state information about the 
federation objects that are discovered.14 

Code Segment 1: Example application using the EMF. 

// Example application 
 
#include “WpEmf.H” 
#include “WpExecute.H” 
 
#define START_TIME 0.0 
#define END_TIME 3600.0 
#define LOOKAHEAD 10.0 
 
int main(int argc, char **argv) { 
 
// Construct the Emf 
 
  WpEmf *emf = WpCreateEmf(argc, argv); 
 
// Set the EMF to live mode and generate a 
// log file. The log file name is optional 
// and if left out, no log file is 
// generated. Note that the EMF is set to 
// playback mode by using the interface 
// emf->SetPlayback(“LogFile”); 
 
  emf->SetLive( 
    START_TIME, 
    LOOKAHEAD, 
    "LogFile" 
  ); 
 
// Subscribe to events and Federation 
// Objects. In this example, “Fo” is the 

                                                
12 The new EMF supports the full OpenUTF modeling 

framework, which provides a great way for legacy 
applications to migrate models into the OpenUTF. 

13 Examples of execution modes are Live (with or without 
generating a log file) and Playback. 

14 The EMF is currently single-threaded, which means that live 
interactive applications involving humans in the loop must be 
careful to advance time in a manner that doesn’t block inside 
the EMF. The advance time method is a non-blocking call 
that advances time as far as it can (or to the requested time if 
supplied as an argument) within a single iteration. Blocking 
during time requests is not an issue when operating the EMF 
in Playback mode. 

// base class of all federation objects 
// which means that the EMF will subscribe 
// to all objects. Multiple calls to 
// subscribe are permitted. The EMF can 
// subscribe to all events using the 
// call emf->SubscribeAllEvents(); 
 
  emf->SubscribeFo("Fo"); 
  emf->SubscribeEvent("AppleEvent"); 
  emf->SubscribeEvent("OrangeEvent"); 
 
// OpenUTF simulations can have initial 
// named pauses to allow one or more 
// external applications to launch before 
// advancing time. Pauses are removed by 
// making a call to resume from a pause. 
 
  emf->Resume(“StartUp”); 
 
// Now begin advancing time in a manner 
// that paces with the simulation. The 
// lookahead value passed in the SetLive 
// method ensures that the EMF never lags 
// behind the simulation by more than the 
// lookahead value. 
 
  double time = START_TIME; 
  while (time < END_TIME) { 
 
// Loop over all of the Federation Objects 
// and obtain relevant state information. 
 
    WpFo *fo = WP_EMF_FO_MGR. 
      GetFirstRemoteFo(“Aircraft”); 
 
    while (fo != NULL) { 
 
// do something with the Federation Object 
// such as obtain its position and 
// orientation to draw the screen. Then 
// get the next Federation Object. 
 
      fo = EMF_FO_MGR.GetNextRemoteFo(); 
    } 
 
// Advance time without blocking. Note that 
// applications can provide an optional 
// time argument to limit how far the Emf 
// advances time within one non-blocking 
// iteration. 
 
    time = emf->AdvanceTime(); 
  } 
 
// Now for fun, go backward and forward in 
// time. The internal state of the Emf 
// will reflect the state of the simulation 
// at the requested times. 
 
  emf ->RequestTime(100.0); 
  emf ->RequestTime(500.0); 
  emf ->RequestTime(1000.0); 
  emf ->RequestTime(200.0); 
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// Here is an example of the Emf looping 
// in 1 second simulated time steps from 
// the start time to the end time of the 
// simulation. 
 
  for (time = START_TIME; 
       time < END_TIME, 
       time++) { 
 
// Request the desired time. 
 
    emf->RequestTime(time); 
 
// Get state information about each 
// simulated entity and then update the 
// display. 
 
  } 
 
// Before exiting the application, destroy 
// the EMF. Then, return a clean error code 
// from the main program. 
 
  WpDestroyEmf(emf); 
  return 0; 
} 

Applications can directly schedule events for any of the 
objects that are modeled within the EMF using the full 
capabilities of the OpenUTF standard modeling 
framework. To maintain causality, applications must 
never schedule events with time tags that are in the past of 
their previous largest time request. 

In addition, the application can schedule simple events15 
for any object residing within the OpenUTF parallel 
simulation. The time value must never be less than the 
previous largest time request plus lookahead. The 
following EMF methods are supported. 

void WpEmf::ScheduleEvent( 
  double time, 
  const char *eventName 
); 
 
void WpEmf::ScheduleEventClass( 
  double time, 
  const char *eventName, 
  void *data, 
  int dataBytes 

                                                
15 Simple events use a string argument to define the name of the 

event and come in four flavors: (a) no arguments, (b) a flat 
fixed-size class argument, (c) a variable-length buffer, and (d) 
arbitrary user data stored in a run-time class that provides 
name-value pairs. Event-handling methods are provided by 
the application as arbitrary methods on arbitrary objects. They 
are dynamically registered and unregistered during the 
execution of the simulation. Similarly, subscribe and 
unsubscribe methods within the OpenUTF provide a scalable 
mechanism for simple events to automatically be routed to the 
right subscribing objects. 

); 
 
void WpEmf::ScheduleEventData( 
  double time, 
  const char *eventName, 
  void *data, 
  int dataBytes 
); 
 
void WpEmf::ScheduleEventRtc( 
  double time, 
  const char *eventName, 
  WpRunTimeClass *rtc 
); 
 
void WpEmf::ScheduleEventRtc( 
  double time, 
  const char *eventName, 
  WpRunTimeClass &rtc 
); 

Similar interfaces are provided for EMF applications to 
schedule events for the simulation as tightly in time as 
possible. These interfaces simply leave out the time 
parameter in the event-scheduling interfaces. The EMF 
automatically schedules the event with a time value set to 
the previous largest time request. 

void WpEmf::ScheduleEvent( 
  const char *eventName 
); 
 
void WpEmf::ScheduleEventClass( 
  const char *eventName, 
  void *data, 
  int dataBytes 
); 
 
void WpEmf::ScheduleEventData( 
  const char *eventName, 
  void *data, 
  int dataBytes 
); 
 
void WpEmf::ScheduleEventRtc( 
  const char *eventName, 
  WpRunTimeClass *rtc 
); 
 
void WpEmf::ScheduleEventRtc( 
  const char *eventName, 
  WpRunTimeClass &rtc 
); 

The default configuration of the EMF is to save rollback 
information for each event that is internally processed to 
support forward and backward time requests. For external 
EMF applications that do not require this capability (i.e., 
external systems that need to connect to the simulation 
and interact during execution), a method is provided to 
disable rollbacks. This method slightly reduces processing 
overheads, but can significantly reduce memory 
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consumption for large simulations with frequent attribute 
updates. 

void WpEmf::DisableRollback(); 

Three additional methods are provided to pause, resume, 
and kill the simulation. Pauses are named by remote 
applications to support pause and resume requests from 
multiple sources. The EMF automatically appends socket 
file descriptors to the pause names to ensure uniqueness 
between distributed systems. 

3.0 Technology of the EMF 

The EMF provides robust and scalable technical solutions 
to several challenging distributed synchronization issues. 
Some of the more interesting technical issues and their 
solutions are discussed in this section. 

– Synchronizing Messages with Time Updates – 

The first issue involves how to coordinate time updates 
with time-tagged messages16 that are flowing from a 
parallel optimistic simulation executing within the 
OpenUTF to one or more connected EMFs. 

The solution is straightforward. First, a message is only 
released when the event that generated the message is 
committed. The simulation client that resides within each 
node of the OpenUTF automates this. Only valid 
messages are released to external systems. Messages are 
routed through the Network Server to EMFs based on 
subscriptions. Messages potentially flow from each node 
through the Network Server to the external systems where 
they are internally scheduled as EMF events as they are 
received. The EMF can only safely process events up to 
the time granted by the OpenUTF simulation. The EMF 
must never process events out of order. So events 
scheduled by various OpenUTF simulation nodes are 
received in arbitrary order by the EMF. Received 
messages must be coordinated with time update messages 
in a manner that guarantees no further messages will be 
received with time tags less than the time update. The 
solution is shown in Code Segment 2. 

Code Segment 2: Actual code within the OpenUTF to 
synchronize time-tagged messages that were generated during 
event processing for external systems with time updates. Note 
that these steps are only performed if the simulation is 
configured at run time to support interactions with external 
systems. 

// If the simulation client on this node 

                                                
16 Time tagged messages represent all events coming from the 

simulation to external systems using the EMF. Event types 
can be simple events, Federation Object discovery or removal, 
and attribute updates. 

// has sent any messages during the current 
// GVT cycle, reset the number and then 
// perform a flush operation with the 
// Network Server. 
 
if (0 < SIM_CLIENT.GetNumMessagesSent()) { 
  SIM_CLIENT.ResetNumMessagesSent(); 
  SIM_CLIENT.Flush(); 
} 
 
// Synchronize with all nodes to guarantee 
// that external time is not updated until 
// all messages from each node have been 
// received by the Network Server. 
 
WpBarrierSync(); 
SIM_CLIENT.UpdateExtTime(); 

During each Global Virtual Time (GVT) event-processing 
cycle, each node keeps track of how many external 
messages are sent. Before sending the time update 
message to the Network Server, each node that sent at 
least one messages makes a two-way17 flush call to the 
Network Server. This ensures that all messages sent by 
the node have been received and processed by the 
Network Server. Then, each node performs a high-speed 
barrier sync to ensure that all messages have been 
received and processed by the Network Server, where 
they are forwarded to external systems as appropriate. 
Then, the simulation client sends the time update message 
to the Network Server if it is node zero, which is then 
forwarded to the external systems. This ensures correct 
behavior because all messages were sent, received, and 
processed prior to the time update message, and because 
the Network Server processes and forwards messages in 
the order that they were received. 

– Use of Lookahead – 

Lookahead is required for maintaining worst-case lag 
between external applications and the OpenUTF 
simulation. Lookahead applies only to events being 
scheduled from the EMF to the OpenUTF simulation. No 
lookahead is required for events that are scheduled from 
the OpenUTF to the EMF. Each external application can 
have its own lookahead value. In addition, EMFs can 
change their lookahead value during execution if 
necessary. However, external applications must never 
schedule events tighter in time than any previously 
established time barrier18 for the OpenUTF. If this ever 

                                                
17 Two-way message services within the OpenUTF-ORB blocks 

the application until the return message, potentially containing 
the results of the service, is received. In the case of the Flush 
service, no data is returned. Flush simply ensures that all 
messages sent by the client have been received and processed 
by the server. 

18 Time barriers limit GVT from advancing beyond the time 
value specified in the barrier. Time barriers are used for 
supporting pause and resume capabilities, throttling GVT to 
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occurs, the scheduled event time is automatically adjusted 
to be the barrier time plus lookahead. 

Large values of lookahead promote more concurrent and 
scalable operation, but at the expense of limiting how 
tightly in simulated time external systems can interact 
with the OpenUTF. The current approach suffers from 
time creeping when lookahead values become very small. 
This issue was successfully addressed in earlier EMF 
implementations and will eventually be remedied in the 
OpenUTF implementation. The solution to the problem is 
to allow time to jump when there are no events scheduled 
between external systems and the OpenUTF. This 
technique can only be used for logical execution modes. 
Real time interactive simulations must always support 
spontaneous events that can be generated without 
warning. 

– Fault Tolerance and Time Barriers – 

Time barriers provide a formal way for external 
applications to limit Global Virtual Time (GVT) in the 
OpenUTF. Time barrier messages are sent to node zero of 
the OpenUTF from each EMF as they internally advance 
their logical time. Time barriers limit GVT from 
advancing beyond the granted time plus lookahead. 

An important issue is how to handle situations when the 
external system unexpectedly disconnects19 from the 
OpenUTF without cleanly removing any of its time 
barriers. If not handled correctly, the simulation would 
hopelessly be stuck from advancing beyond the time of 
the barrier. Fortunately, the Network Server is notified 
when an external system unexpectedly disconnects its 
socket connection. The Network Server keeps track of all 
time barriers and smartly removes them from node zero of 
the OpenUTF when external systems disconnect. 

– Internal Management of Logical Time – 

The EMF supports the ability to process internal events, 
roll them back in time when earlier times are requested, 
and then roll those events forward as necessary when 
forward time advances are requested. Supporting all of 
this produces some interesting challenges in managing the 
set of unprocessed pending events with those events that 
have been processed, but potentially rolled back. 

                                                                            
the wall clock in support of scaled time operation, and for 
supporting robust time management between external systems 
and the OpenUTF. The EMF establishes time barriers for the 
OpenUTF based on its granted time plus the lookahead value. 

19 External systems can unexpectedly disconnect due to software 
crashes, hardware failures, network problems, power outages, 
or improper shutdown of an external system as it completes 
its task. 

 

Figure 3: Event management within the EMF. This figure 
shows messages generated by the OpenUTF that are sent 
through the simulation client that resides on each node. 
Messages flow through the Network Server to the External 
Client that resides within the EMF. These messages are queued 
up as unprocessed events. As events are processed, their 
rollback information is saved in a queue for rollback and 
rollforward support. Moving forward and backward in time 
requires the EMF to manage all of this in a robust manner. 

For example, suppose the application first requests to 
advance to time 1000 and subsequently requests going 
back to time 500. All events processed between time 500 
and 1000 must be rolled back in the reverse order that 
they were processed. Then, suppose the external 
application requests to advance time to 1200. The EMF 
must roll forward those events that were previously rolled 
back from time 500 to time 1000 in forward order and 
then process any unprocessed events up to time 1200. Of 
course, all new event processing must be performed using 
lookahead and time barriers that coordinate with the 
OpenUTF simulation because there may be new events 
received by the EMF from the simulation during event 
processing between time 1000 and 1200. 

The EMF provides four private methods that are not 
visible to applications to handle this. 

void WpEmf::GoToTime(double time); 
void WpEmf::ProcessUpToTime(double time); 
void WpEmf::RollforwardToTime(double time); 
void WpEmf:: RollbackToTime (double time); 

The GoToTime method compares the requested time 
argument to the CurrentTime value that is maintained by 
the EMF as time requests are made. If the requested time 
is less than the current time, then the RollbackToTime 
method is called. If the requested time is greater than the 
current time, the RollforwdToTime method is called, 
followed by a call to the ProcessUpToTime method. 

Two easy-to-use time-related EMF services are provided 
to external applications. 

double WpEmf::AdvanceTime( 
  double time=WP_INFINITY 
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); 
 
double WpEmf::RequestTime( 
  double time, 
  int maxIterations=1000000000 
); 

The RequestTime service attempts to move to the 
requested time argument. It always succeeds when rolling 
back to earlier time values or when rolling forward to 
already-processed event times. When requesting time 
beyond prior grants, the AdvanceTime method tries to 
process events in coordination with the OpenUTF in time 
barrier cycles. If the maximum specified number of 
iterations is exceeded, the returned time is simply a best 
effort attempt. So, the granted time might not always be 
the same as the requested time. 

The AdvanceTime method simply calls the RequestTime 
method using a maximum number of iterations of one. 
The AdvanceTime method should be used as opposed to 
RequestTime for interactive simulations that cannot 
afford to block while waiting for time to advance. 

4.0 EMF and Next-generation Standards 

The Parallel and Distributed Modeling & Simulation 
Standing Study Group (PDMS-SSG) operates within the 
Simulation Interoperability Standards Organization 
(SISO) and provides a forum for investigating open 
architecture standards, such as OpenMSA, OSAMS, and 
OpenCAF. The EMF techniques described in this paper 
heavily rely on the layered OpenMSA technologies. The 
EMF is a necessary part of the set of OpenUTF 
architecture standards that are coordinated by the 
OpenUTF Users Group and broader participating 
communities within SISO. 

5.0 Summary and Conclusions 

This paper first provided an introduction to the EMF by 
describing its high-level capabilities and then discussing 
historical implementations that date back to 1990. Each 
EMF implementation provided significant enhancements 
over previous efforts. The current EMF in the OpenUTF 
is a fourth generation system that benefitted from lessons 
learned over the past twenty years. 

This paper then provided a high-level overview of the 
services provided by the EMF with an example to 
demonstrate its programming interfaces. 

Finally, this paper discussed some of the key technical 
solutions used by the EMF to support (a) robust time 
management with optimistic simulations, (b) the role of 
lookahead to provide concurrency between external 
systems and the OpenUTF, (c) internal time management 

techniques for integrating rollback, rollforward, and event 
processing with time in the OpenUTF, and (d) fault 
tolerance to ensure proper time management if external 
systems using the EMF fail. 

The EMF provides an extremely powerful, yet simple, 
interface to integrate remote systems across arbitrary 
networks with OpenUTF applications executing in 
parallel. The EMF supports numerous types of external 
applications including: (a) graphical visualization, (b) 
distributed analysis, (c) hardware-in-the-loop, (d) training 
systems, (e) support for legacy systems, (f) integration 
with real-world applications, and (g) integration with test 
articles using the OpenUTF as a robust testbed to support 
verification, validation, and accreditation efforts. 

Finally, the SISO PDMS-SSG will likely investigate the 
EMF for future standardization within the OpenUTF. 

6.0 Future Development 

The EMF does not currently support publishing of its own 
Federation Objects that are discovered by the OpenUTF 
simulation, nor does it support the ability to modify the 
attributes of remote Federation Objects that were 
published by entities within the OpenUTF simulation. 
These capabilities are straightforward to implement and 
will be developed at a future date when user requirements 
demand this feature. 

An HLA interface may eventually be developed for the 
EMF to support direct integration of OpenUTF 
applications with legacy HLA federates. 
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