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LARGE DEVIATIONS OF VECTOR-VALUED
MARTINGALES IN 2-SMOOTH NORMED SPACES

By Anatoli B. Juditsky and Arkadi S.Nemirovski∗

Université Grenoble I and Georgia Institute of Technology

In this paper, we derive exponential bounds on probabilities of
large deviations for “light tail” martingales taking values in finite-
dimensional normed spaces. Our primary emphasis is on the case
where the bounds are dimension-independent or nearly so. We demon-
strate that this is the case when the norm on the space can be ap-
proximated, within an absolute constant factor, by a norm which is
differentiable on the unit sphere with a Lipschitz continuous gradi-
ent. We also present various examples of spaces possessing the latter
property.

1. Introduction. It is well-known that for a sequence of independent
zero mean random reals {ξi}∞i=1 with light tail distributions (e.g., such that

E
{
exp{|ξi|ασ−α

i }
}
≤ exp{1} for certain α ∈ [1, 2] and deterministic σt > 0),

a “typical magnitude” of the sum St =
∑t

i=1 ξi is “at most of order of√∑t
i=1 σ

2
i ”, meaning that

Prob




|St| > [1 + γ]

√√√√
t∑

i=1

σ2
i




 ≤ O(1) exp{−O(1)γα}

for all γ ≥ 0; here in what follows, all O(1) are positive absolute constants.
The question we focus on in this paper is to which extent the above large
deviation bound is preserved when passing from scalar random variables to
independent zero mean random variables taking values in a normed space
(E, ‖·‖) of (possibly, large) dimension n <∞. Now our “light tail” condition
reads

(1) E
{
exp{‖ξi‖ασ−α

i }
}
≤ exp{1}
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2 A. JUDITSKY AND A. NEMIROVSKI

for some α ∈ [1, 2], and what we want to get is a bound of the form

∀γ ≥ 0 : Prob




‖
t∑

i=1

ξi‖ > [θ + γ]

√√√√
t∑

i=1

σ2
i




 ≤ O(1) exp{−O(1)γα} (∗)

with a “moderate” value of the constant θ. It is immediately seen that our
goal is not always attainable. For instance, let (E, ‖ · ‖) be ℓn1 (i.e., Rn

equipped with the norm ‖x‖1 =
∑n

i=1 |xi|), and let ξi take values ±ei with
probability 1/2, 1 ≤ i ≤ n, where ei are the standard basic orths in Rn.
Then (1) holds true with σi = 1, while ‖Sk‖1 ≡ k whenever k ≤ n. We
see that in order for (∗) to be true, θ should be as large as O(1)

√
n. On

the other hand, with θ = O(1)
√

dimE, (∗) indeed is true independently of
the norm ‖ · ‖ in question (see Example 3.1 in Section 3.1). Our major goal
in this paper is to show that a sufficient condition for (∗) to be valid with
certain θ is θ2-regularity of the space (E, ‖·‖). The latter means, essentially,
that ‖ ·‖ can be approximated within an absolute constant factor by a norm
p(·) which is continuously differentiable outside of the origin and possesses
Lipschitz continuous, with the Lipschitz constant θ2, derivative on its unit
sphere:

(2) p(x) = p(y) = 1 ⇒ p∗(p
′(x) − p′(y)) ≤ θ2p(x− y)

(here p∗ is the norm on the dual space E∗, which is dual to p). Examples of κ-
regular norms with “moderate” κ include the spaces (Rn, ‖·‖p) (Lp on an n-
point set with unit masses of points) and the spaces (Rm×n, |·|p), 2 ≤ p ≤ ∞,
of m×n matrices with the Shatten norms |X|p = ‖σ(X)‖p, σ(X) being the
vector of singular values of a matrix X; in both cases, p ∈ [2,∞]. The
spaces of the first series are κ-regular with κ = O(1)min[p, ln(n+ 1)], while
the spaces of the second series are κ-regular with κ = O(1)min[p, ln(m +
1), ln(n+ 1)].

Norms p(·) satisfying (2) play important role in the theory of Banach
spaces (where they are called norms with smoothness modulus of power 2).
In particular, a number of results on the properties of martingales taking
values in Banach spaces with smooth norms (see, e.g., [3, 4]) are available.
However, we were unable to locate in the literature a result equivalent to
Theorem 2.1 which establishes the validity of (somehow refined) bound (∗)
in the case of a θ2-regular space (E, ‖·‖). Thus, the main result of this paper,
to the best of our (perhaps incomplete) knowledge, is new. The preliminary
and slightly less accurate, version of Theorem 2.1 was announced in [10] and
proved in the preprint [11].
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 3

While the question we address seems to be important by its own right, our
interest in it stems mainly from various applications of (somehow rudimen-
tary) bounds of type (∗) we have encountered over the years. These appli-
cations include investigating performance of Euclidean and non-Euclidean
stochastic approximation [7, 5], nonparametric statistics [8, 5, 9], optimiza-
tion under uncertainty [10], investigating quality of semidefinite relaxations
of some difficult combinatorial problems [12], etc.

Our paper is organized as follows: the main result on large deviations
(Theorem 2.1) is formulated in Section 2. Section 3.1 contains instructive
examples and characterizations of κ-regular spaces, along with a kind of
“calculus” of these spaces. All proofs are placed in the appendix.

In what follows, if not explicitly stated otherwise, we suppose all the
relations between random variables to hold a.s..

2. Main result.

2.1. Regular spaces. We start with the following

Definition 2.1. Let (E, ‖ · ‖) be a finite-dimensional normed space and
let κ ≥ 1.
(i) The function p(x) = ‖x‖2 called κ-smooth if it is continuously differen-
tiable and

(3) ∀x, y ∈ E : p(x+ y) ≤ p(x) +Dp(x)[y] + κp(y).

(ii) Space (E, ‖ · ‖) (and the norm ‖ · ‖ on E) is called κ-regular, if there
exists κ+ ∈ [1, κ] and a norm ‖ · ‖+ on E such that (E, ‖ · ‖+) is κ+-smooth
and ‖ · ‖+ is κ/κ+-compatible with ‖ · ‖, that is,

(4) ∀x ∈ E : ‖x‖2 ≤ ‖x‖2
+ ≤ κ

κ+
‖x‖2.

(iii) The constant κ(E, ‖ · ‖) of regularity of E, ‖ · ‖ is the infinum (clearly
achievable) of those κ ≥ 1 for which (E, ‖ · ‖) is κ-regular.

As an immediate example, an Euclidean space (Rn, ‖ · ‖2) is 1-smooth
and thus 1-regular.

2.2. Main result. Assume that we are given

• a finite-dimensional space (E, ‖ · ‖),
• a Polish space Ω with Borel probability measure µ, and
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4 A. JUDITSKY AND A. NEMIROVSKI

• a sequence F0 = {∅,Ω} ⊂ F1 ⊂ F2 ⊂ ... of σ-sub-algebras of the Borel
σ-algebra of Ω.

We denote by Ei, i = 1, 2, ... the conditional expectation w.r.t. Fi, and by
E ≡ E0 the expectation w.r.t. µ.

We further assume that we are given an E-valued martingale-difference
sequence ξ∞ = {ξi}∞i=1 of Borel E-valued functions on Ω such that ξi is
Fi-measurable and

Ei−1 {ξi} ≡ 0, i = 1, 2, ...

An immediate consequence of Definition 2.1 of the regular norm is as fol-
lows: assume that an E-valued martingale-difference ξ = {ξt}∞t=1 is square-
integrable: E

{‖ξt‖2
} ≤ σ2

t <∞. Then

E
{
‖Sn‖2

}
≤ κ

n∑

t=1

σ2
t .

Indeed, ‖ · ‖+ is κ+-smooth, we have

p(St+1) ≤ p(St) +Dp(St)[ξt+1] + κ+p(ξt+1)

whence, taking expectations and making use of the fact that ξ is a martingale-
difference,

E {p(St+1)} ≤ E {p(St)} + κ+E {p(ξt+1)} ≤ E {p(St)} + κE
{
‖ξt+1‖2

}

by the right inequality of (4). Then, by the left inequality of (4),

E
{
‖Sn‖2

}
≤ E

{
‖Sn‖2

+

}
≤ κ

n∑

t=1

E
{
‖ξt‖2

}
≤ κ

n∑

t=1

σ2
t .

Our primary objective is to establish exponential bounds on the probabilities
of large deviations for an E-valued martingale difference {ξi}. To this end,
we impose on {ξi} a “light tail” assumption as follows. Let α ∈ [1, 2] and
a sequence σ∞ = {σi > 0}∞i=1 of (deterministic) positive reals be given. We
introduce the following condition on the sequence ξ∞:

∀i ≥ 1 : Ei−1

{
exp{‖ξi‖ασ−α

i }
}
≤ exp{1} almost surely (Cα[σ∞])

Our main result is the large deviation bound for SN =
∑N

i=1 ξi as follows:

Theorem 2.1. Let (E, ‖·‖) be κ-regular, let E-valued martingale-difference
ξ∞ satisfy (Cα[σ∞]), and let SN =

∑N
i=1 ξi, σ

N = [σ1; ...;σN ]. Then
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 5

(i) for 1 ≤ α ≤ 2, one has for all N ≥ 1 and γ ≥ 0:
(5)

Prob




‖SN‖ ≥
[√

2eκ+
√

2γ
]
√√√√

N∑

i=1

σ2
i




 ≤ 2 exp

{
− 1

64
min

[
γ2; γ2−α

∗ γα
]}
,

where
(6)

γ∗ ≡ γ∗(α, ν
N ) =






32
[

8α∗

2α∗

]α−1

2−α
[

‖νN‖2

‖νN‖α∗

] α
2−α ≥ 16

[
‖νN‖2

‖νN‖α∗

] α
2−α ≥ 16,[

α∗ = α
α−1 , ν

N = [ν1; ...; νN ]
]
,

1 < α < 2,

limα→1+0 γ∗(α, ν
N ) = 16 ‖νN‖2

‖νN‖∞
, α = 1,

limα→2−0 γ∗(α, ν
N ) = +∞, α = 2.

(ii) When α = 2, the bound (42) improves to
(7)

(∀N ≥ 1, γ ≥ 0) : Prob




‖SN‖ ≥
[√

2κ+
√

2γ
]
√√√√

N∑

i=1

σ2
i




 ≤ exp{−γ2/3}.

(iii) When the condition Ei−1

{
exp{‖ξi‖2σ−2

i }
}
≤ exp{1} in (C2[σ

∞]) is

strengthened to ‖ξi‖ ≤ σi almost surely, i = 1, 2, ..., the bound (42) improves
to
(8)

(∀N ≥ 1, γ ≥ 0) : Prob




‖SN‖ ≥
[√

2κ+
√

2γ
]
√√√√

N∑

i=1

σ2
i




 ≤ exp
{
−γ2/2

}
.

3. Regular spaces. To make Theorem 2.1 meaningful, we need to
point out a spectrum of interesting κ-smooth/regular spaces, and this is
the issue we consider in this Section.

3.1. Basic examples. Let E be an n-dimensional linear space, and let ‖·‖
be a norm on E. It is well known [2] that there exists an ellipsoid Q centered
at the origin such that Q ⊂ {x ∈ E : ‖x‖ ≤ 1} ⊂ √

nQ, or, equivalently,
there exists a Euclidean norm ‖ · ‖+ on E such that ‖x‖2 ≤ ‖x‖2

+ ≤ n‖x‖2.
Since the Euclidean space (E, ‖ · ‖+) is 1-smooth, we conclude that

Example 3.1. . Every finite-dimensional normed space (E, ‖·‖) is (dimE)-
regular.

We are about to present a number of less trivial examples, those where
the regularity parameter κ is dimension-independent (or nearly so).
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6 A. JUDITSKY AND A. NEMIROVSKI

Example 3.2. Let 2 ≤ p ≤ ∞. The space (Rn, ‖ · ‖p) with n ≥ 3 is
κp(n)-regular with

(9) κp(n) = min
2≤ρ≤p

ρ<∞

(ρ− 1)n
2

ρ
− 2

p ≤ min[p− 1, 2 ln(n)]

Example 3.3. Let 2 ≤ p ≤ ∞. The norm |X|p = ‖σ(X)‖p on the space
Rm×n of m × n real matrices, where σ(X) is the vector of singular values
of X, is κp(m,n)-regular, with

(10)
κp(m,n) = min

2≤ρ<∞

ρ≤p

max[2, ρ− 1](min(m,n))
2

ρ
− 2

p

≤ min [max[2, p − 1], (2 ln(min[m,n] + 2) − 1) exp{1}] .

The proof of the bound (10) is based upon the fact which is important
by its own right:

Proposition 3.1. Let ∆ be an open interval on the axis, and f be a C2

function on ∆ such that for certain θ±, µ± ∈ R one has
(11)

∀(a < b, a, b ∈ ∆) : θ−
f ′′(a) + f ′′(b)

2
+µ− ≤ f ′(b) − f ′(a)

b− a
≤ θ+

f ′′(a) + f ′′(b)

2
+µ+

Let, further, Xn(∆) be the set of all n × n symmetric matrices with eigen-
values belonging to ∆. Then Xn(∆) is an open convex set in the space Sn of
n× n symmetric matrices, the function

F (X) = Tr(f(X)) : Xn(∆) → R

is C2, and for every X ∈ Xn(∆) and every H ∈ Sn one has
(12)
θ− Tr(Hf ′′(X)H)+µ− Tr(H2) ≤ D2F (X)[H,H] ≤ θ+ Tr(Hf ′′(X)H)+µ+ Tr(H2).

3.2. Dual characterization of smoothness and regularity. The following
well-known fact can be seen as dual characterization of κ-smoothness:

Proposition 3.2. Let (E, ‖ · ‖) be a finite-dimensional normed space,
E∗ be the space dual to E, ‖ · ‖∗ be the norm on E∗ dual to ‖ · ‖; and let
〈ξ, x〉 stand for the value of a linear form ξ ∈ E∗ on a vector x ∈ E. Let
also f(x) = 1

2‖x‖2 : E → R and f∗(ξ) = 1
2‖ξ‖2

∗ : E∗ → R. The following
properties are equivalent to each other:

(i) (E, ‖ · ‖) is κ-smooth;
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 7

(ii) ∂f(x) = {f ′(x)} is a singleton for every x, and

(13) 〈f ′(x) − f ′(y), x− y〉 ≤ κ‖x− y‖2 ∀x, y ∈ E;

(iii) f is continuously differentiable, and f ′(·) is Lipschitz continuous with
constant κ:

(14) ‖f ′(x) − f ′(y)‖∗ ≤ κ‖x− y‖ ∀x, y ∈ E;

(iv) One has

∀(ξ, η ∈ E∗, x ∈ ∂f∗(ξ), y ∈ ∂f∗(η)) : 〈ξ − η, x− y〉 ≥ κ−1‖ξ − η‖2
∗;

(v) One has

∀(ξ, η ∈ E∗, x ∈ ∂f∗(ξ), y ∈ ∂f∗(η)) : ‖x− y‖ ≥ κ−1‖ξ − η‖∗;

(vi) One has

∀(ξ, η ∈ E∗, x ∈ ∂f∗(ξ)) : f∗(ξ + η) ≥ f∗(ξ) + 〈η, x〉 +
1

2κ
‖η‖2

∗.

Another characterization of regular spaces is as follows:

Proposition 3.3. Let (E, ‖ · ‖) be a finite-dimensional normed space,
E∗ be the space dual to E, ‖ · ‖∗ be the norm on E∗ dual to ‖ · ‖, and let
〈ξ, x〉 stand for the value of a linear form ξ ∈ E∗ on a vector x ∈ E. Let
also B∗ be the unit ‖ · ‖∗-ball of E∗.

(i) If (E, ‖·‖) is κ-regular, then the exists a continuous function V : B∗ →
R which is strongly convex, with coefficient 1 w.r.t. ‖ · ‖∗, on B∗, that is,
possesses the following equivalent to each other properties:
(15)
(a) ∀(ξ, η ∈ intB∗, x ∈ ∂v(ξ), y ∈ ∂v(η)) : 〈ξ − η, x− y〉 ≥ ‖ξ − η‖2

∗,
(b) ∀(ξ, η : ξ, ξ + η ∈ intB∗, x ∈ ∂v(ξ)) : v(ξ + η) ≥ v(ξ) + 〈η, x〉 + 1

2‖η‖2
∗;

and, in addition, is such that

(16) max
B∗

v − min
B∗

v ≤ κ

2

(ii) Assume that the unit ball B∗ of (E∗, ‖·‖∗) admits a function v satisfy-
ing (15), (16). Then (E, ‖ · ‖) is O(1)κ-regular with an appropriately chosen
absolute constant O(1).
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8 A. JUDITSKY AND A. NEMIROVSKI

3.3. “Calculus” of smooth and regular spaces.

Proposition 3.4. Let (E, ‖ · ‖E) be a finite-dimensional normed space,
L be a linear subspace of E, and F = E/L be the factor-space of E equipped
with the factor-norm ‖f̄‖F = minf∈f̄ ‖f‖E. If (E, ‖ · ‖E) is κ-smooth (κ-
regular), then (L, ‖ · ‖E) and (F, ‖ · ‖F ) also are κ-smooth, respectively, κ-
regular.

Proposition 3.5. (i) Let p ∈ [2,∞], and let (Ei, ‖·‖i) be finite-dimensional
κ-smooth spaces, i = 1, ...,m > 2. The space E = E1 × ... × Em equipped
with the norm

‖(x1, ..., xm)‖ =

(
m∑

i=1

‖xi‖p
i

)1/p

(the right hand side is max
i

‖xi‖i when p = ∞) is κ+-regular with

(17) κ+ = min
2≤ρ≤p

[κ+ ρ− 1]m
2

ρ
− 2

p ≤ min[κ+ p− 1, [κ+2 ln(m)− 1] exp{1}].

(ii) Let ‖ · ‖i be κ-smooth norms on E. Then the norm

‖x‖ =
m∑

i=1

‖x‖i

is mκ-regular on E.

Proposition 3.6. (i) Let p ∈ [2,∞], and let (Ei, ‖·‖i) be finite-dimensional
κ-regular spaces, i = 1, ...,m > 2. The space E = E1 × ... × Em equipped
with the norm

‖(x1, ..., xm)‖ =

(
m∑

i=1

‖xi‖p
i

)1/p

(the right hand side is max
i

‖xi‖i when p = ∞) is κ++-regular with

(18)

κ++ = 2 min
2≤ρ≤p

[κ+ ρ− 1]m
2

ρ
− 2

p ≤ 2min[κ+ p− 1, [κ+ 2 ln(m) − 1] exp{1}].

(ii) Let ‖ · ‖i be κ-regular norms on a finite-dimensional space E. Then
the norm

‖x‖ =
m∑

i=1

‖x‖i

is 2mκ-regular on E.
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 9

4. Appendix: Proofs.

4.1. Proofs for Section 3.1.

4.1.1. Justifying the Examples.

Example 3.2:. Let 2 ≤ ρ <∞. We claim that in this case the space (Rn, ‖ ·
‖ρ) is (ρ−1)-smooth. Indeed, the function p(x) = ‖·‖2

ρ is convex, continuously
differentiable everywhere and twice continuously differentiable outside of the
origin; for such a function, (3) holds true if and only if

(19) D2p(x)[h, h] ≤ 2κ+p(h) ∀(x, h ∈ E, x 6= 0);

since p(·) is homogeneous of degree 2, the validity of (19) for all x, h is
equivalent to the validity of the relation for all h and all x normalized by
the requirement p(x) = 1. Given such an x and h and assuming ρ > 2, we
have

Dp(x)[h] = 2

(∑
i
|xi|ρ

) 2

ρ
−1∑

i
|xi|ρ−1sign(xi)hi

D2p(x)[h, h] = 2

(
2

ρ
− 1

)

︸ ︷︷ ︸
≤0

(∑
i
|xi|ρ

) 2

ρ
−2 (∑

i
|xi|ρ−1sign(xi)hi

)2

+2
(∑

i

|xi|ρ

︸ ︷︷ ︸
=1

) 2

ρ
−1∑

i
(ρ− 1)|xi|ρ−2h2

i ≤ 2(ρ− 1)
∑
i
|xi|ρ−2h2

i

≤ 2(ρ− 1)

(∑
i
(|xi|ρ−2)

ρ

ρ−2

) ρ−2

ρ
(∑

i
(|hi|2)

ρ

2

) 2

ρ

= 2(ρ− 1)‖h‖2
ρ = 2(ρ− 1)p(h)

as required in (19) when κ+ = ρ− 1. In the case of ρ = 2 relation (19) with
κ+ = ρ− 1 = 1 is evident.

Now, when ρ ∈ [2, p] and x ∈ Rn, one has ‖x‖2
ρ/‖x‖2

p ∈ [1, n
2

ρ
− 2

p ], so that

(Rn, ‖ · ‖p) is κ-regular with κ = (ρ− 1)n
2

ρ
− 2

p , and (9) follows.

Example 3.3:. 10. We start with the following

Lemma 1. Let ρ ≥ 2. Then the space Sn of symmetric n × n matrices
with the norm |X|ρ is κ-smooth with

(20) κ = max[2, ρ− 1].
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10 A. JUDITSKY AND A. NEMIROVSKI

Proof. The statement is evident when ρ = 2; thus, from now on we
assume that ρ > 2. Let us apply Proposition 3.1 to ∆ = R, f(t) = |t|ρ
with θ− = µ− = 0, µ+ = 0 and θ+ = max

[
2

ρ−1 , 1
]

(this choice, as it is

immediately seen, satisfies (11)). By Proposition, the function F (X) = |X|ρρ
on Sn is twice continuously differentiable, and
(21)

∀X,H : 0 ≤ D2F (X)[H,H] ≤ θ+ Tr(f ′′(x)H2), θ+ = max

[
2

ρ− 1
, 1

]
.

It follows that the function p(X) = |X|2ρ = (F (X))
2

ρ is continuously dif-
ferentiable everywhere and twice continuously differentiable outside of the

origin. For X 6= 0 we have Dp(X)[H] = 2
ρ(F (X))

2

ρ
−1DF (X)[H], whence

(22)

X 6= 0 ⇒ D2p(X)[H,H] = 2
ρ

[
2

ρ
− 1

]

︸ ︷︷ ︸
<0

(F (X))
2

ρ
−2(DF (X)[H])2 + 2

ρ(F (X))
2

ρ
−1D2F (X)[H,H]

≤ 2
ρ(F (X))

2

ρ
−1θ+ Tr(f ′′(x)H2).

Setting Z = 1
ρ(ρ−1)(F (X))

2

ρ
−1
f ′′(X), p = ρ

ρ−2 , it is immediately seen that

|Z|p = 1. From (22) we have
(23)
D2p(X)[H,H] ≤ 2Θ+(ρ− 1)Tr(ZH2) ≤ 2θ+(ρ− 1)|Z|p|H2| p

p−1
= 2θ+(ρ− 1)|H2| ρ

2

= 2θ+(ρ− 1)|H|2ρ.

Now, if X,Y ∈ Sn are such that the segment [X;X + Y ] does not contain
the origin, then

∃γ ∈ (0, 1) : p(X + Y ) ≤ p(X) +Dp(X)[Y ] +
1

2
D2p(X + γY )[Y, Y ],

and (23) implies that for the outlined X,Y one has

p(X + Y ) ≤ p(X) +Dp(X)[Y ] + θ+(ρ− 1)p(Y ).

Since p is C1, the resulting inequality, by continuity, is valid for all X,Y .
20. Now we can complete the justification of Example 3.3. W.l.o.g. we may

assume that m ≤ n. Given an m × n matrix X, let S(X) =

[
X

XT

]

∈

Sm+n. One clearly has

‖σ(X)‖ρ = |X|ρ = 2−1/ρ|S(X)|ρ,
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 11

whence, by Lemma 1 and due to the fact that the mapping X 7→ S(X) :
Rm×n → Sm+n is linear, the norm | · |ρ, treated as a norm on Rm×n, is
max[2, ρ− 1]-smooth whenever ρ ≥ 2. Since σ(X) ∈ Rm for X ∈ Rm×n, for
every ρ ∈ [2,∞) such that ρ ≤ p one has

|X|2p ≤ |X|2ρ ≤ m
2

ρ
− 2

p |X|2p.

Thus, the space (Rm×n, |·|p) is κ-regular with κ = min
2≤ρ<∞

ρ≤p

max[2, ρ−1]m
2

ρ
− 2

p ,

and we arrive at (10).

4.1.2. Proof of Proposition 3.1. Let {fk(t)} be a sequence of polynomials
converging to f , along with the first and the second derivatives, uniformly
on every compact subset of ∆. For a polynomial p(t) =

∑N
j=0 pjt

j the func-
tion P (X) = Tr(

∑
j pjX

j) is a polynomial on Sn. Let now X,H ∈ Sn, let

λs = λs(X) be the eigenvalues of X, X = U Diag{λ}UT be the eigenvalue
decomposition of X, and let Ĥ be such that H = UĤUT . We have
(24)

P (X) =
∑n

s=1 p(λs(X)) (a)

DP (X)[H] = Tr(
∑N

j=1

∑N−1
s=0 XsHXN−s−1 = Tr(p′(X)H) =

∑n
s=1 p

′(λs(X))Ĥss (b)

Further, let γ be a closed contour in the complex plane encircling all the
eigenvalues of X. Then

DP (X)[H] = Tr(p′(X)H) = 1
2πı

∮
γ
p′(z)Tr((zI −X)−1H)dz

⇒ D2P (X)[H,H] = 1
2πı

∮
γ
p′(z)Tr((zI −X)−1H(zI −X)−1H)dz = 1

2πı

∮
γ

∑n
s,t=1

Ĥ2
stp

′(z)
(z−λs)(z−λt)

dz.

Computing the residuals, we get

(25) D2P (X)[H,H] =
∑

s,t

Γs,t[p]Ĥ
2
st, Γs,t[p] =

{
p′(λs)−p′(λt)

λs−λt
, λs 6= λt

p′′(λs), λs = λt

Substituting p = fk into (24.a, b) and (25), we see that the sequence of
polynomials Fk(X) = Tr(fk(X)) converges, along with the first and the
second order derivatives, uniformly on compact subsets of Xn(∆); by (24.a),
the limiting function is exactly F (X). We conclude that F (X) is C2 on
Xn(∆) and that the first and the second derivatives of this function are
limits, as k → ∞, of the corresponding derivatives of Fk(X), so that for X =
U Diag{λ}UT ∈ Xn(∆) (where U is orthogonal) and every H = UĤUT ∈ Sn

we have

(26)
DF (X)[H] =

∑
s f

′(λs)Ĥss = Tr(f ′(X)H)

D2F (X)[H,H] =
∑

s,t Γs,t[f ]Ĥ2
st
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12 A. JUDITSKY AND A. NEMIROVSKI

So far, we did not use (11). Invoking the right inequality in (11), we get

D2F (X)[H,H] ≤∑
s,t

[
θ+

f ′′(λs)+f ′′(λt)
2 + µ+

]
Ĥ2

st = θ+
∑

s f
′′(λs)

∑
t Ĥ

2
st + µ+

∑
s,t Ĥ

2
st

= θ+ Tr(Diag{f ′′(λ1), ..., f
′′(λn)}Ĥ2) + µ+ Tr(Ĥ2) = θ+ Tr(f ′′(X)H2) + µ+ Tr(H2),

which is the right inequality in (12). The derivation of the left inequality in
(12) is similar.

4.1.3. Proof of Proposition 3.2.

(i)⇒(iii). : We are in the situation when f is continuously differentiable.
Convolving f(·) with smooth nonnegative kernels δk(·) with unit integral and
support shrinking to origin as k → ∞, we get a sequence fk(·) of smooth
functions converging to f(·), along with first order derivatives, uniformly on
compact sets. We have

fk(x+ y) =
∫
f(x− z + y)δ(z)dz ≤ ∫

[f(x− z) + 〈f ′(x− z), y〉 + κf(y)]δ(z)dz
= fk(x) + 〈f ′k(x), y〉 + κf(y)

From the resulting inequality combined with smoothness and convexity of
fk it follows that

0 ≤ D2fk(x)[h, h] ≤ κ‖h‖2 ∀x, h ∈ E.

Thus, if ‖h‖ = ‖d‖ = 1, then

4D2fk(x)[h, d] = D2fk(x)[h+d, h+d]−D2fk(x)[h−d, h−d] ≤ κ‖h+d‖2 ≤ 4κ

. Whence D2fk(x)[h, d] ≤ κ whenever ‖h‖ = ‖d‖ = 1, or, which is the same
by homogeneity,

|D2fk(x)[h, d]| ≤ κ‖h‖‖d‖ ∀x, h, d.

Consequently,

|〈f ′k(y)−f ′k(x), h〉| = |
1∫

0

D2fk(x+t(y−x))[y−x, h]dt| ≤
1∫

0

κ‖y−x‖‖h‖dt ≤ κ‖y−x‖‖h‖,

whence, taking maximum over h with ‖h‖ = 1,

‖f ′k(y) − f ′k(x)‖∗ ≤ κ‖y − x‖

. As k → ∞, f ′k(x) converge to f ′(x), and we conclude that f ′(·) possesses
the required Lipschitz continuity.
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 13

(iii)⇒(ii):. evident

(ii)⇒(i):. A convex function on Rn with a singleton differential at every
point clearly is continuously differentiable, so that in the case of (ii) f is
continuously differentiable. Besides this, in the case of (ii) we have

f(x+ y) = f(x) + 〈f ′(x), y〉 +
1∫

0
〈f ′(x+ ty) − f ′(x), y〉dt

≤ f(x) + 〈f ′(x), y〉 +
1∫

0
κt‖y‖2dt = f(x) + 〈f ′(x), y〉 + κf(y),

which immediately implies (3) (recall that ‖ · ‖2 = 2f(·)).

(iii)⇔(v):. The functions f(·), f∗(·) are the Legendre transforms of each
other, so that x ∈ ∂f∗(ξ) if and only if ξ ∈ ∂f(x). Now let (iii) be the case,
and let ξ, η ∈ E∗ and x ∈ ∂f∗(ξ), y ∈ ∂f∗(η). Then ξ = f ′(x), η = f ′(y) and
therefore, due to (iii),

‖ξ − η‖∗ ≤ κ‖x− y‖,
so that (v) takes place. Vice versa, let (v) take place, and let x, y ∈ E,
ξ ∈ ∂f(x), η ∈ ∂f(y). Then x ∈ ∂f∗(ξ), y ∈ ∂f∗(y), and therefore (v) says
that

‖ξ − η‖∗ ≤ κ‖x− y‖.
We conclude that if x = y, then ξ = η, that is, ∂f(x) always is a singleton,
meaning that f is continuously differentiable, and that the inequality in (iii)
takes place, that is, (iii) holds true.

(iv)⇔(iii):. Let (iv) take place. If there exists x ∈ E such that ∂f(x) is
not a singleton, then, choosing ξ, η ∈ ∂f(x) with ξ 6= η, we would have
x ∈ ∂f∗(ξ), x ∈ ∂f∗(η), whence by (iv) we should have

〈ξ − η, x− x〉 ≥ κ−1‖ξ − η‖2
∗,

which is impossible. Thus, ∂f(x) is a singleton for every x, so that f is
continuously differentiable. Besides this, with x, y ∈ E and ξ = f ′(x), η =
f ′(y) we have x ∈ ∂f∗(ξ), y ∈ ∂f∗(η), whence, by (iv),

〈ξ − η, x− y〉 ≥ κ−1‖ξ − η‖2
∗.

Since
〈ξ − η, x− y〉 ≤ ‖ξ − η‖∗‖x− y‖,
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14 A. JUDITSKY AND A. NEMIROVSKI

we get
‖ξ − η‖∗‖x− y‖ ≥ κ−1‖ξ − η‖2

∗,

whence
‖ξ − η‖∗ = ‖f ′(x) − f ′(y)‖∗ ≤ κ‖x− y‖,

and thus (iii) takes place.
Now let (iii) take place, and let us prove that (iv) takes place as well, or,

which is the same in the case of (iii), that 〈f ′(x)−f ′(y), x−y〉 ≥ κ−1‖f ′(x)−
f ′(y)‖2. Setting

g(u) = f(u) − 〈f ′(y), u− y〉,
we get a continuously differentiable convex function on E such that

‖g′(x) − g′(y)‖∗ ≤ κ‖x− y‖
and g′(y) = 0. Due to these relations,

g(y + h) ≤ g(y) +
κ

2
‖h‖2

for all h. Now let e ∈ E be such that 〈g′(x), e〉 = ‖g′(x)‖∗ and ‖e‖ = 1. Due
to

‖g′(u) − g′(v)‖∗ ≤ κ‖u− v‖,
we have

g(x− ‖g′(x)‖∗
κ

e) ≤ g(x) − 〈g′(x), ‖g
′(x)‖∗
κ

e〉 +
κ

2
‖‖g

′(x)‖
κ

e‖2

= g(x) − ‖g′(x)‖2
∗

κ
+

‖g′(x)‖2
∗

2κ
= g(x) − ‖g′(x)‖2

∗

2κ
.

On the other hand, g attains its global minimum at y, so that

g(x) − ‖g′(x)‖2
∗

2κ
≥ g(x− ‖g′(x)‖∗

κ
e) ≥ g(y).

We now have

g(y) +
κ

2
‖h‖2 ≥ g(y + h) ≥ g(x) + 〈g′(x), y + h− x〉

≥ g(y) +
‖g′(x)‖2

∗

2κ
+ 〈g′(x), y + h− x〉,

whence

〈g′(x), x − y〉 ≥ ‖g′(x)‖2
∗

2κ
+ 〈g′(x), h〉 − κ

2
‖h‖2.

This inequality is valid for all h; setting h = ‖g′(x)‖∗
κ e, the right hand side

becomes ‖g′(x)‖2
∗

κ . Thus,

〈f ′(x) − f ′(y), x− y〉 = 〈g′(x), x− y〉 ≥ ‖g′(x)‖2
∗

κ
=

‖f ′(x) − f ′(y)‖2
∗

κ
.
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(iv) ⇒(vi):. Let (iv) take place, let ξ, η ∈ E∗ and x ∈ ∂f∗(ξ). Setting
ξt = ξ + tη, φ(t) = f∗(ξt), 0 ≤ t ≤ 1, we get an absolutely continuous
function on [0, 1] with the derivative which is almost everywhere given by
φ′(t) = 〈η, xt〉, with xt ∈ ∂f∗(ξt). We have

f∗(ξ + η) = φ(1) = φ(0) +

∫ 1

0
φ′(t)dt

= φ(0) +

∫ 1

0
〈η, xt〉dt = φ(0) +

∫ 1

0
[〈η, x〉 + 〈η, xt − x〉]dt

= φ(0) + 〈η, x〉 +

∫ 1

0
t−1〈(ξ + tη) − ξ, xt − x〉dt

≥ φ(0) + 〈η, x〉 +

∫ 1

0
t−1κ−1‖[ξ + tη] − ξ‖2

∗dt

= φ(0) + 〈η, x〉 +
1

2κ
‖η‖2

∗ = f∗(ξ) + 〈η, x〉 +
1

2κ
‖η‖,

∗

where the inequality is given by (iv). We end up with the inequality required
in (vi).

(vi)⇒(i):. Let (vi) be the case, let x ∈ E and ξ ∈ ∂f(x), so that x ∈ ∂f∗(ξ).
We have

f(x+ y) = max
η∈E∗

[〈ξ + η, x+ y〉 − f∗(ξ + η)]

≤ max
η∈E∗

[
〈ξ + η, x+ y〉 − f∗(ξ) − 〈η, x〉 − 1

2κ
‖η‖2

∗

]

= max
η∈E∗

[
〈ξ, x+ y〉 + 〈η, y〉 − f∗(ξ) −

1

2κ
‖η‖2

∗

]

= 〈ξ, x〉 − f∗(ξ)︸ ︷︷ ︸
f(x)

+〈ξ, y〉 + max
η

[
〈η, y〉 − 1

2κ
‖η‖2

∗

]
= f(x) + 〈ξ, y〉 +

κ

2
‖y‖2.

This relation along with the relation f(x+y) ≥ f(x)+〈ξ, y〉 implies that ξ is
the Frechet derivative of f at x, whence f is convex and differentiable, and
thus – continuously differentiable function on E which satisfies the inequality

f(x+ y) ≤ f(x) + 〈f ′(x), y〉 +
κ

2
‖y‖2.

We have proved that (i)⇔(ii)⇔(iii)⇔(iv)⇔(v) and (iv)⇒(vi)⇒(i), mean-
ing that all 6 properties in question are equivalent to each other.

4.1.4. Proof of Proposition 3.3.
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16 A. JUDITSKY AND A. NEMIROVSKI

(i):. Let (E, ‖ · ‖) be κ-regular, and let κ+ ∈ [1, κ] and ‖ · ‖+ be such that
(E, ‖ · ‖+) is κ-smooth and (4) holds true, and let ‖ · ‖+,∗ be the norm on
E∗ dual to ‖ · ‖+; note that

(27)
κ+

κ
‖ · ‖2

∗ ≤ ‖ · ‖2
+,∗ ≤ ‖ · ‖2

∗

due to (4). Invoking Proposition 3.2, the function v(ξ) = κ
2‖ξ‖2

∗,+ : B∗ → R
satisfies

∀(ξ, η ∈ intB∗, x ∈ ∂v(ξ), y ∈ ∂v(η)) : 〈ξ − η, x− y〉 ≥ κ

κ+
‖ξ − η‖2

+,∗,

and thus satisfies (15.a) due to (27). At the same time,

max
B∗

v − min
B∗

v =
κ

2
max
‖ξ‖∗≤1

‖ξ‖2
+,∗ ≤

κ

2
,

where the concluding inequality is due to (27). (i) is proved.

(ii):. Let v(·) satisfy (15) and (16); clearly, the function 1
2 [v(ξ) + v(−ξ)]−

v(0) also satisfy these relations; thus, we can assume w.l.o.g. that v(ξ) =

v(−ξ) and v(0) = 0. Let V be the Legendre transform of v(·)
∣∣∣∣
B∗

, that is,

V (x) = max
‖ξ‖∗≤1

[〈ξ, x〉 − v(x)] .

By the standard properties of the Legendre transform, (15) implies that V
is a continuously differentiable convex function on E such that

V ′(x) = argmin
ξ∈B∗

[〈ξ, x〉 − v(ξ)] ∈ B∗ and ‖V ′(x) − V ′(y)‖∗ ≤ ‖x− y‖ ∀x, y.

In addition, we clearly have V (x) = V (−x) and ‖x‖ − κ
2 ≤ V (x) ≤ ‖x‖

for all x by (16). Convolving V with a smooth symmetric w.r.t. the origin
nonnegative kernel with unit integral and small support and subtracting a
constant to make function vanish at the origin, we see that for every ǫ > 0
there exists a C∞ convex function W = Wǫ on E such that for all x ∈ E
one has

(28)

(a) Wǫ(x) = Wǫ(−x), Wǫ(0) = 0;
(b) ‖x‖ − κ

2 − ǫ ≤Wǫ(x) ≤ ‖x‖ + ǫ
(c) ‖W ′(x)‖∗ ≤ 1
(d) 0 ≤ 〈W ′′(x)dx, dx〉 ≤ ‖dx‖2 ∀dx ∈ E.
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LARGE DEVIATIONS OF VECTOR-VALUED MARTINGALES 17

Assuming ǫ ≤ κ/10, let us set B = {x : W (x) ≤ κ}. Then B is a closed
convex set symmetric w.r.t. the origin and such that

(29) {x : ‖x‖ ≤ 9

10
κ} ⊂ B ⊂ {x : ‖x‖ ≤ 5

2
κ}

due to (28.b). B is the unit ball of certain norm r(x) on E; by (29) we have

(30)
2

5
‖x‖ ≤ κr(x) ≤ 10

9
‖x‖.

Setting L(x) = p2(x), observe that the function L is given by the equation

V (x/
√
L(x)) = κ.

It follows immediately from the Implicit Function Theorem that L is C∞

outside of the origin, and since this function is the square of a norm, it is
therefore C1 on the entire space. Let us compute the second order differential
of L at a point x 6= 0. Differentiating twice the equation specifying L, we
get

DL(x)[dx] = 2L
〈W ′, dx〉
〈W ′, x〉 ,

D2L(x)[dx, dx] = 2L

[ 〈W ′, dx〉
〈W ′, x〉

]2
+

2L1/2

〈W ′, x〉 〈W
′′
[
dx− 〈W ′, dx〉

〈W ′, x〉 x
]
,

[
dx− 〈W ′, dx〉

〈W ′, x〉 x
]
〉,

where L = L(x),W ′ = W ′(L−1/2x),W ′′ = W ′′(L−1/2x).

We claim that

(31) x 6= 0 ⇒ 0 ≤ D2L(x)[dx, dx] ≤ 27

κ
‖dx‖2.

Indeed, D2L(x)[dx, dx] is homogeneous of degree 0 in x, so that it suffices
to verify the required relation when L(x) = 1, i.e., when W (x) = κ. In this
case, the required bound is readily given by the expression forD2L combined
with (28.c, d) and the following observations: (1) for x in question, we have
〈W ′, x〉 ≥W (x) −W (0) = κ, and (2) ‖x‖ ≤ 5

2κ by (29).
Setting ‖x‖+ = 5

2κr(x) and invoking (29), we have

(32) ‖ · ‖2 ≤ ‖ · ‖2
+ ≤ O(1)‖ · ‖2,

while from (31) it follows that the function f(x) = ‖x‖2
+ satisfies

‖f ′(x) − f ′(y)‖∗ ≤ O(1)κ‖x − y‖,
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18 A. JUDITSKY AND A. NEMIROVSKI

which combines with (32) to imply that

‖f ′(x) − f ′(y)‖+,∗ ≤ O(1)κ‖x − y‖∗.

Thus, (E, ‖ ·‖) is O(1)κ-smooth, whence, by (32), (E, ‖ ·‖) is O(1)κ-regular.

4.1.5. Proof of Proposition 3.4. The fact that a subspace of a κ-smooth/regular
space equipped with the induced norm is κ-smooth/regular is evident. As
about the factor-space F = E/L, note that the space dual to (F, ‖ · ‖F ) is
nothing but the subspace L⊥ = {ξ : 〈ξ, x〉 = 0∀x ∈ L} in E∗ equipped
by the norm induced by ‖ · ‖∗. Now assume that (E, ‖ · ‖E) is κ-smooth.
By Proposition 3.2, it follows that ‖ · ‖∗ possesses property (iv) and there-
fore its restriction on L⊥ possesses the same property. Applying Proposition
3.2 again, we conclude that (F, ‖ · ‖F ) is κ-smooth. We see that passing to a
factor-space preserves κ-smoothness, and since this transformation preserves
also relations like (4), it preserves κ-regularity as well.

4.1.6. Proof of Proposition 3.5.

(i):. To prove (i), let pi(x
i) = ‖xi‖2

i .
A.. Let ρ ∈ [2,∞) be such that ρ ≤ p, and let r = ρ/2. Our local goal is
to prove

Lemma 2. The norm ‖ · ‖ on E = E1 × ...× Em defined as

‖(x1, ..., xm)‖ = ‖(‖x1‖1, ..., ‖xm‖m)‖ρ

is κ+-smooth, with

(33) κ+ = κ+ ρ− 2

Proof. We have

p(x1, ..., xm) ≡ ‖(‖x1‖1, ..., ‖xm‖m)‖2
ρ = ‖(p1(x

1), ..., pm(xm))‖r.

From this observation it immediately follows that p(·) is continuously differ-
entiable. Indeed, ρ ≥ 2, whence r ≥ 1, so that the function ‖y‖r is contin-
uously differentiable everywhere on Rm

+ except for the origin; the functions
pi(x

i) are continuously differentiable by assumption. Consequently, p(x) is
continuously differentiable everywhere on E = E1×...×Em, except, perhaps,
the origin; the fact that p′ is continuous at the origin is evident.
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Invoking Proposition 3.2, in order to prove Lemma 2 it suffices to verify
that

(34) ‖p′(x) − p′(y)‖∗ ≤ 2κ+‖x− y‖
for all x, y. Since p′ is continuous, it suffices to prove this relation for a dense
in E ×E set of pairs x, y, for example, those for which all blocks xi ∈ Ei in
x are nonzero. With such x, the segment [x, y] contains finitely many points
u such that at least one of the blocks ui is zero; these points split [x, y] into
finitely many consecutive segments, and it suffices to prove that

‖p′(x′) − p′(y′)‖∗ ≤ 2κ+‖x′ − y′‖
when x′, y′ are endpoints of such a segment. Since p′ is continuous, to prove
the latter statement is the same as to prove similar statement for the case
when x′, y′ are interior points of the segment. The bottom line is as follows:
in order to prove (34) for all pairs x, y, it suffices to prove the same statement
for those pairs x, y for which every segment [xi, yi] does not pass through
the origin of the corresponding Ei.

Let x, y be such that [xi, yi] does not pass through the origin of Ei, i =
1, ...,m. Same as in the item “(i)⇒(iii)” of the proof of Proposition 3.2, for
every i there exists a sequence of C∞ convex functions {pt

i(·) > 0}∞t=1 on Ei

converging to pi(·) along with first order derivatives uniformly on compact
sets and such that

(35) |D2pt
i(u

i)[hi, hi]| ≤ 2κ‖hi‖2
i ∀(ui, hi ∈ Ei).

Functions pt(u) = ‖(pt
1(u

1), ..., pt
m(um))‖r clearly are convex, C∞ (recall

that pt
i(·) > 0) and converge to p(·), along with their first order derivatives,

uniformly on compact sets. It follows that

(36) 〈p′(y) − p′(x), h〉 = lim
t→∞

1∫

0

D2pt(x+ t(y − x))[y − x, h]dt.

Setting F (y1, ..., ym) = yr
1+...+y

r
m, y ≥ 0, we have pt(u) = F

1

r (pt
1(u

1), ..., pt
m(um)).

Now let u ∈ [x, y], and let v ∈ E. We have

Dpt(u)[v] = r−1F
1

r
−1(pt

1(u
1), ..., pt

m(um))

(∑
i
r(pt

i(u
i))r−1Dpt

i(u
i)[vi]

)

⇒ D2pt(u)[v, v] = 1
r

(
1

r
− 1

)

︸ ︷︷ ︸
≤0

F
1

r
−2(pt

1(u
1), ..., pt

m(um))

(∑
i
r(pt

i(u
i))r−1Dpt

i(u
i)[vi]

)2

+F
1

r
−1(pt

1(u
1), ..., pt

m(um))
∑
i

[
(r − 1)(pt

i(u
i))r−2(Dpt

i(u
i)[vi])

2 + (pt
i(u

i))r−1D2pt
i(u

i)[vi, vi]
]

≤ F
1

r
−1(pt

1(u
1), ..., pt

m(um))
∑
i

[
(r − 1)(pt

i(u
i))r−2(Dpt

i(u
i)[vi])

2 + 2κ(pt
i(u

i))r−1pi(v
i)
]
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whence
(37)
0 ≤ D2pt(u)[v, v]

≤ F
1

r
−1(pt

1(u
1), ..., pt

m(um))
∑
i

[
(r − 1)(pt

i(u
i))r−2(Dpt

i(u
i)[vi])

2 + 2κ(pt
i(u

i))r−1pi(v
i)
]
.

Taking into account that pi(·) are bounded away from zero on [x, y] and
that pt

i(·) converge, along with first order derivatives, to pi(·) uniformly on
compact sets as t → ∞, the right hand side in bound (37) converges, as
t→ ∞, uniformly in u ∈ [x, y] and v, ‖v‖ ≤ 1, to

Ψ(u, v) =

(
∑

i

‖ui‖ρ
i

) 2

ρ
−1∑

i

[
(r − 1)‖ui‖ρ−4

i (Dpi(u
i)[vi])

2 + 2κ‖ui‖ρ−2
i ‖vi‖2

i

]
.

By evident reasons, |Dpi(u
i)[vi]| ≤ 2‖ui‖‖vi‖, whence

(38)

Ψ(u, v) ≤
(∑

i
‖ui‖ρ

i

) 2

ρ
−1∑

i

[
4(r − 1)‖ui‖ρ−2

i ‖vi‖2
i + 2κ‖ui‖ρ−2

i ‖vi‖2
i

]

= [2ρ+ 2κ− 4]
︸ ︷︷ ︸

2κ+

(∑
i
‖ui‖ρ

i

) 2

ρ
−1∑

i
‖ui‖ρ−2

i ‖vi‖2
i

When ρ > 2, we have

∑
i
‖ui‖ρ−2

i ‖vi‖2
i ≤

(∑
i
(‖ui‖ρ−2

i )
ρ

ρ−2

) ρ−2

ρ
(∑

i
(‖vi‖2

i )
ρ

2

) 2

ρ

=

(∑
i
‖ui‖ρ

i

) ρ−2

ρ
(∑

i
‖vi‖ρ

i

) 2

ρ

,

and (38) implies that Ψ(u, v) ≤ 2κ+‖v‖2. This inequality clearly is valid for
ρ = 2 as well. Recalling the origin of Ψ(·, ·), we conclude that for every ǫ > 0
there exists tǫ such that

t ≥ tǫ, u ∈ [x, y], ‖v‖ ≤ 1 ⇒ 0 ≤ D2pt(u)[v, v] ≤ 2κ+‖v‖2 + ǫ.

The resulting inequality via the same reasoning as in the proof of item
“(i)⇒(iii)” of Proposition 3.2 implies that

t ≥ tǫ, u ∈ [x, y] ⇒ |D2pt(u)[v,w]| ≤ (2κ+ + ǫ)‖v‖‖w‖ ∀v,w.
In view of this bound and (36), we conclude that

〈p′(y) − p′(x), h〉 ≤ (2κ+ + ǫ)‖y − x‖‖h‖
for all h, whence ‖p′(y)−p′(x)‖∗ ≤ (2κ+ +ǫ)‖y−x‖. Since ǫ > 0 is arbitrary,
we arrive at (34).
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B.. When ρ ≤ p, we have

‖(‖x1‖1, ..., ‖xm‖m)‖2
p ≤ ‖(‖x1‖1, ..., ‖xm‖m)‖2

ρ ≤ m
2

ρ
− 2

p ‖(‖x1‖1, ..., ‖xm‖m)‖2
p,

which combines with Lemma 2 to imply that the norm in (i) is κ-regular

with κ = [ρ+ κ− 2]m
2

ρ
− 2

p , for every ρ ∈ [2, p], and (i) follows.

(ii):. To prove (ii), consider the norm |(x1, ..., xm)| = m1/2
√
‖x1‖2

1 + ...+ ‖xm‖2
m

on E × E × ... × E. As it is immediately seen, this norm is κ-smooth. If,
further, ‖(x1, ..., xm)‖† =

∑
i
‖xi‖i, then

‖x‖2
† ≤ |x|2 ≤ m‖x‖2

† ∀x ∈ E × ...× E,

whence ‖ · ‖† is mκ-regular. The norm in (ii) is nothing but the restriction
of ‖ · ‖† on the image of E under the embedding x 7→ (x, ..., x) of E into
E × ...× E, and it remains to use Proposition 3.4.

4.1.7. Proof of Proposition 3.6.

A useful lemma.. We start with the following fact:

Lemma 3. Let (E, ‖ · ‖) be a finite-dimensional κ-regular space. Then
there exists κ-smooth norm ‖ · ‖+ on E such that

(39) ∀(x ∈ E) : ‖x‖2 ≤ ‖x‖2
+ ≤ 2‖x‖2.

Proof. By definition, there exists κ+ ∈ [1, κ] and a norm π(·) on E which
is κ+-smooth and such that

∀(x ∈ E) : ‖x‖2 ≤ π2(x) ≤ µ‖x‖2, µ = κ/κ+,

or, which is the same,

(40) ∀ξ ∈ E∗ : π2
∗(ξ) ≥ ‖ξ‖2

∗ ≥ 1

µ
π2
∗(ξ),

where E∗ is the space dual to E and π∗, ‖·‖∗ are the norms on E∗ conjugate
to π, ‖ · ‖, respectively.

In the case of µ ≤ 2, let us take ‖ · ‖+ ≡ π(·), thus getting a κ+-smooth
(and thus – κ-smooth as well) norm on E satisfying (39). Now let µ > 2, so
that γ = 1/(µ − 1) ∈ (0, 1). Let us set q∗(ξ) =

√
γπ2

∗(ξ) + (1 − γ)‖ξ‖2
∗, so

that q∗(·) is a norm on E∗. We have

(41) ∀ξ ∈ E∗ : q2∗(ξ) ≥ ‖ξ‖2
∗ ≥

1

γµ+ 1 − γ
q2∗(ξ) =

1

2
q2∗(ξ).
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Further, by Proposition 3.2 we have

∀(ξ, η ∈ E∗, x ∈ ∂π2
∗(ξ)) : π2

∗(ξ + η) ≥ π2
∗(ξ) + 〈η, x〉 +

1

κ+
π2
∗(η),

whence, due to ‖ξ + η‖2
∗ ≥ ‖ξ‖2

∗ + 〈η, y〉 for all ξ, η and every y from the
subdifferential D(ξ) of ‖ · ‖2

∗ at the point ξ,

q2∗(ξ + η) ≥ q2∗(ξ) + 〈η, x+ y〉 +
γ

κ+
π2
∗(η) ≥ q2∗(ξ) + 〈η, x + y〉 +

γ

κ+
q2∗(η)

(note that π∗(·) ≥ q∗(·) by (40)). Since ∂π2
∗(ξ) + D(ξ) = ∂q2∗(ξ) and γ

κ+
=

1
(µ−1)κ+

≥ 1
κ , we get

∀(ξ, η ∈ E∗, z ∈ ∂q2∗(ξ)) : q2∗(ξ + η) ≥ q2∗(ξ) + 〈η, z〉 +
1

κ
q2∗(η).

By the same Proposition 3.2, it follows that the norm ‖ · ‖+ ≡ q(·) on E
such that q∗(·) is the conjugate of q(·) is κ-smooth. At the same time, (41)
implies (39).

Proof of Proposition 3.6. is readily given by Lemma 3 combined with
the corresponding items of Proposition 3.5. E.g., to prove (i), note that
by Lemma 3 we can find κ-smooth norms qi(·) on Ei such that q2i (x

i) ≤
‖xi‖2

i ≤ 2q2i (x
i) for every i and all xi ∈ Ei. Applying Proposition 3.5.(i) to

the spaces (Ei, qi(·)), we get that the norm q(x1, ..., xm) =

(
m∑

i=1
qp
i (x

i)

)1/p

on E1 × ... × Em is κ+-regular with κ+ given by (17). Taking into account
the evident relation

q2(x1, ..., xm) ≤ ‖(x1, ..., xm)‖2 ≤ 2q2(x1, ..., xm)

and recalling the definition of regularity, we conclude that ‖·‖ is κ++-regular,
as required.

4.2. Proof of Theorem 2.1.

4.2.1. Reduction to the case of a smooth norm. We intend to reduce
the situation to the one where (E, ‖ · ‖) is κ-smooth rather than κ-regular.
Specifically, we are about to prove the following fact:

Theorem 4.1. Let (E, ‖·‖) be κ-smooth, let E-valued martingale-difference
ξ∞ satisfy (Cα[σ∞]), and let SN =

∑N
i=1 ξi, σ

N = [σ1; ...;σN ]. Then
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(i) When 1 ≤ α ≤ 2, one has for all N ≥ 1 and γ ≥ 0:
(42)

Prob




‖SN‖ ≥
[√

exp{1}κ+ γ

]
√√√√

N∑

i=1

σ2
i




 ≤ 2 exp

{
− 1

64
min

[
γ2; γ2−α

∗ γα
]}
,

where
(43)

γ∗ ≡ γ∗(α, σ
N ) =






32
[

8α∗

2α∗

]α−1

2−α
[

‖σN ‖2

‖σN‖α∗

] α
2−α ≥ 16

[
‖σN‖2

‖σN ‖α∗

] α
2−α ≥ 16,

α∗ = α
α−1 ,

1 < α < 2,

limα→1+0 γ∗(α, σ
N ) = 16 ‖σN ‖2

‖σN‖∞
, α = 1,

limα→2−0 γ∗(α, σ
N ) = +∞, α = 2.

(ii) When α = 2, the bound (42) improves to

(44) (∀N ≥ 1, γ ≥ 0) : Prob




‖SN‖ ≥ [√
κ+ γ

]
√√√√

N∑

i=1

σ2
i




 ≤ exp{−γ2/3}.

(iii) When the condition Ei−1

{
exp{‖ξi‖2σ−2

i }
}
≤ exp{1} in (C2[σ

∞]) is

strengthened to ‖ξi‖ ≤ σi almost surely, i = 1, 2, ..., the bound (42) improves
to

(45) (∀N ≥ 1, γ ≥ 0) : Prob




‖SN‖ ≥ [√
κ+ γ

]
√√√√

N∑

i=1

σ2
i




 ≤ exp{−γ2/2}.

It is immediately seen that Theorem 4.1 implies Theorem 2.1. Indeed, if
(E, ‖ · ‖) is κ-regular, by Lemma 3 there exists a norm ‖ · ‖+ on E such
that (E, ‖ · ‖+) is κ-smooth and (39) holds true. Setting σ̂i =

√
2σi, observe

that (39) combines with (Cα[σ∞]) to imply that Ei−1

{
exp{‖ξi‖2

+σ̂
−2
i }

}
≤

exp{1}. Applying Theorem 4.1.(i) to the κ-smooth space (E, ‖ · ‖+) and σ̂i

in the role of σi and taking into account that ‖SN‖ ≤ ‖SN‖+, we see that
Theorem 2.1.(i) is an immediate corollary of Theorem 4.1.(i), and similarly
for Theorem 2.1.(ii-iii).

4.2.2. Proof of Theorem 4.1: preliminaries. In the sequel, we need the
following (essentially, well-known) fact.

Proposition 4.1. Let ψi, i = 1, ..., N , be Borel functions on Ω such
that ψi is Fi-measurable, let α ∈ [1, 2], and let µi, νi > 0 be deterministic
reals. Assume that almost surely one has

(46) Ei−1{ψi} ≤ µi,Ei−1 {exp{|ψi|α/να
i }} ≤ exp{1}, 1 ≤ i ≤ N.
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Then for every γ ≥ 0 one has

(47) Prob






N∑

i=1

ψi >
N∑

i=1

µi + γ

√√√√
N∑

i=1

ν2
i




 ≤ 2 exp{− 1

64
min

[
γ2, γ2−α

∗ γα
]
},

where
(48)

γ∗ ≡ γ∗(α, ν
N ) =






32
[

8α∗

2α∗

]α−1

2−α
[

‖νN‖2

‖νN‖α∗

] α
2−α ≥ 16

[
‖νN‖2

‖νN‖α∗

] α
2−α ≥ 16,[

α∗ = α
α−1 , ν

N = [ν1; ...; νN ]
]
,

1 < α < 2,

limα→1+0 γ∗(α, ν
N ) = 16 ‖νN‖2

‖νN‖∞
, α = 1,

limα→2−0 γ∗(α, ν
N ) = +∞, α = 2.

To make the text self-contained, here is the proof.

00.. Till item 40 of the proof, we restrict ourselves with the case when
1 < α < 2. Besides this, by evident homogeneity reasons we may assume
w.l.o.g. that ν ≡∑N

i=1 ν
2
i = 1.

10.. We start with the following

Lemma 4. Let α ∈ (1, 2), ν > 0 and ψ be a real-valued random variable
such that

(49) E{exp{|ψ/ν|α}} ≤ exp{1}.

Then
(50)

t ≥ 0 ⇒ ln (E{exp{tψ}}) ≤ tE{ψ} + 8(tν)2 + 2α∗α−1
∗ |tν|α∗ , α∗ =

α

α− 1
.

Proof. 1) Let t ≥ 0 be fixed. W.l.o.g. we can assume that ν = 1. By
Young inequality, we have

tψ = (2t)(ψ/2) ≤ |ψ/2|α
α

+
(2t)α∗

α∗
;

since α−1(1/2)α < 1 and ν = 1, we have E{exp{α−1|ψ/2|α}} ≤ exp{α−1(1/2)α},
whence

E{exp{tψ}} ≤ E{exp{α−1|ψ/2|α + α−1
∗ (2t)α∗}} ≤ exp{α−1(1/2)α + α−1

∗ (2t)α∗}.

2) Let f(t) = E{exp{tψ}}. Since α > 1, f is a C∞ function on the axis such
that f(0) = 1, f ′(0) = E{ψ} and

f ′′(t) = E
{
exp{tψ}ψ2

}
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It is easily seen that

0 ≤ t ≤ 1/4 ⇒ exp{t|s|}s2 ≤ exp{|s|α} ∀s,

whence under the premise of Lemma 4 one has

0 ≤ t ≤ 1/4 ⇒ f ′′(t) ≤ exp{1}

(recall that ν = 1). It follows that

0 ≤ t ≤ 1/4 ⇒ f(t) ≤ 1 + tE{ψ} +
exp{1}

2
t2 ≤ exp{tE{ψ} +

exp{1}
2

t2}.

Thus, one has

(51)
(a) 0 ≤ t ≤ 1/4 ⇒ ln f(t) ≤ tE{ψ} + exp{1}

2 t2,
(b) t ≥ 0 ⇒ ln f(t) ≤ α−1(1/2)α + α−1

∗ (2t)α∗ .

Since 8t2 ≥ exp{1}
2 t2 and 8t2 ≥ α−1(1/2)α when t ≥ 1/4, (51) implies (50).

20.. Since α > 1, we have for all t ≥ 0

E {exp{t∑n
i=1 ψj}} = E

{
exp{t∑n−1

i=1 ψj}En−1{exp{tψn}}
}

≤ E
{
exp{exp{t∑n−1

i=1 ψj}
}

exp{µnt+ 8(tνn)2 + α−1
∗ 2α∗(tνn)α∗},

whence

ln
(
E{t∑N

i=1 ψi}
}
≤ AN t+BN t

2 + CN t
α

α−1 ,

AN =
∑N

i=1 µi, BN = 8
∑N

i=1 ν
2
i , CN = α−1

∗ 2α∗
∑N

i=1 ν
α∗

i .

30.. Recall that we are in the situation
∑N

i=1 ν
2
i = 1. We have for all t > 0:

Prob {ΨN > AN + γν} = Prob {exp{tΨN} > exp{tAN + tγ}}
≤ E {exp{tΨN}} exp{−tAN − tγ} ≤ exp{BN t

2 +CN t
α

α−1 − tγ},

whence

Prob{ΨN > AN + γ} ≤ inf
t>0

exp{BN t
2 + CN t

α
α−1 − tγ}.

whence also

ln (Prob{ΨN > AN + γ}) ≤ ln(2) + inf
t>0

[
max[2BN t

2, 2CN t
α

α−1 ]
︸ ︷︷ ︸

φ(t)

−γt] ≡ ln(2) − φ∗(γ),
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where φ∗ is the Legendre transform of φ, Domφ = [0,∞). Let t∗ = t∗(α) be
the unique positive root of the equation BN t

2 = CN t
α∗ , that is,

t∗ = (BN/CN )
α−1

2−α .

The function φ(t) is strongly convex on [0,∞), equals 2BN t
2 to the left of

t∗ and equals 2CN t
α∗ to the right of t∗. Let γ− = γ−(α) be the left, and

γ+ = γ+(α) be the right derivative of φ at t∗, so that

4BN t∗ = γ− ≤ γ+ = 2CNα∗t
1

α−1

∗ .

The function φ∗(γ) is as follows: since φ is strongly convex on [0,∞), φ′(0) =
0 and φ(t)/t → ∞ as t → ∞, φ∗ is continuously differentiable and convex
on [0,∞); when 0 ≤ γ ≤ γ−, φ∗ coincides with the Legendre transform
φ∗,−(γ) = 1

8BN
γ2 of the function 2BN t

2 on the axis; when γ ≥ γ+, φ∗

coincides with the Legendre transform φ∗,+(γ) = (2CN )1−α

α γα of the function
2CN |t|α∗ on the axis. In the segment [γ−, γ+] φ∗ is linear with the slope
φ′∗,−(γ−) = φ′∗,+(γ+) = t∗. Now let θ = φ∗,−(γ−)/φ∗,+(γ−), and let ω(γ) =
θφ∗,+(γ). Observe that ω(γ) ≤ φ∗(γ) when γ ≥ γ−.

Indeed, at the point γ+ the functions φ∗,+ and φ∗ have equal values and equal
derivatives, and since φ∗ is linear in ∆ = [γ−, γ+], we conclude from convexity
of φ∗,+(·) that φ∗,+(γ) ≥ φ∗(γ) on ∆, while 0 ≤ φ′

∗,+(γ) ≤ φ′
∗(γ) ≡ φ′

∗,+(γ+)
on ∆. Therefore θ ≤ 1, and since φ′

∗ is nondecreasing, we have ω′(γ) ≤ φ′
∗(γ)

on ∆. Since ω(γ−) = φ∗(γ−), we conclude that ω ≤ φ∗ everywhere on ∆. Since
θ < 1 and φ∗,+ is positive, when γ ≥ γ+ we have ω(γ) ≤ φ∗,+(γ) = φ∗(γ).

The bottom line is that

φ∗(γ) ≥
{

1
8BN

γ2 , 0 ≤ γ ≤ γ−
DNγ

α , γ ≥ γ−
, DN =

φ∗,−(γ−)

γα
−

Recalling the definition of AN , BN . CN , we arrive at (47) – (48).

40.. We have proved the assertion of Proposition in the case of 1 < α <
2. This combines with the standard approximation arguments to yield the
assertion in the cases of α = 1 and α = 2.

4.2.3. Completing the proof of Theorem 4.1.

10: Preparations.. Given κ-smooth space (E, ‖ · ‖), let us set

V (ξ) =

{
1
2‖ξ‖2 , ‖ξ‖ ≤ 1
‖ξ‖ − 1

2 , ‖ξ‖ ≥ 1
, Vβ(ξ) = βV (ξ/β) [β > 0], v(x) =

1

2
‖x‖2

∗.

Observe that
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1. Vβ(·) is the Legendre transform of the restriction of βv(·) on the ‖ · ‖∗-
unit ball, whence ‖V ′

β(ξ)‖∗ ≤ 1 for all β > 0 and all ξ, and

(52) ‖x‖∗ ≤ 1 ⇒ 〈x, ξ〉 ≤ βv(x) + Vβ(ξ) ≤ β

2
+ Vβ(ξ)∀ξ.

2. V (·) is continuously differentiable with ‖V ′(ξ) − V ′(η)‖∗ ≤ κ‖ξ − η‖
and is Lipschitz continuous, with constant 1, w.r.t. ‖ · ‖;

The second claim is evident. To prove the first, note that the
function v(·) on the entire Rn is strongly convex w.r.t. ‖ · ‖∗ with
parameter κ−1, whence, of course, so is the function v̂ which is
equal to v in the unit ball and is +∞ outside of this ball. Given ξ, η
and setting x = V ′(ξ), y = V ′(η), we have ξ ∈ ∂v̂(ξ), η ∈ ∂v̂(y),
whence

‖ξ − η‖‖x− y‖∗ ≥ 〈x− y, ξ − η〉 ≥ κ−1‖x− y‖2

∗
,

so that
‖V ′(ξ) − V ′(y)‖∗ = ‖x− y‖∗ ≤ κ‖ξ − η‖.

3. One has

(53)
(a) |Vβ(ξ + η) − Vβ(ξ)| ≤ ‖η‖
(b) Vβ(ξ + η) − Vβ(ξ) ≤ 〈V ′

β(ξ), η〉 + κ
2β‖η‖2.

It clearly suffices to consider the case of β = 1, that is, Vβ ≡ V .
By the second claim in item 2, V is Lipschitz continuous with
constant 1 w.r.t. the norm ‖ · ‖, which implies (53.a). Relation
(53.b) is readily given by the Lipschitz continuity of V ′, see the
first claim in item 2.

20: Proof of Theorem 4.1.(i).. Let us fix β > 0 and set

Sn =
n∑

i=1

ξi, an = V ′
β(Sn−1), ψn = Vβ(Sn) − Vβ(Sn−1),

so that an is Fn−1-measurable, and ψn is Fn-measurable. By (53.a) we have
|ψn| ≤ ‖ξn‖, whence

(54) En−1 {exp{|ψn|α/σα
n}} ≤ exp{1},

while by (53.b) we have

En−1 {ψn} ≤ En−1

{
〈an, ξn〉 + κ

2β‖ξn‖2
}

= En−1

{
〈an, ξn〉 + κ

2β ‖ξn‖2
}

= En−1

{
κ
2β‖ξn‖2

}
[since an is Fn−1-measurable and En−1 {ξn} = 0]

≤ κ
2βσ

2
n exp{1}.
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The concluding inequality above can be justified as follows: setting ζn =
‖ξn‖/σn, we have En−1 {exp{ζα

n}} ≤ exp{1}. At the same time, it is imme-
diately seen that

s2 ≤ (α exp{1}/2)−2/α exp{|s|α}
for all s, and since (α exp{1}/2)−2/α ≤ 1 when 1 ≤ α ≤ 2, we get En−1{ζ2

n} ≤
En−1 {exp{|ζn|α}}. Thus, we arrive at

(55) En−1 {ψn} ≤ µn := exp{1}σ2
n.

Invoking (52), we get

‖SN‖ ≤ β

2
+ Vβ(SN ) =

β

2
+

N∑

i=1

ψi.

Taking into account (54), (55) and applying Proposition 4.1, we arrive at

∀γ ≥ 0 : Prob

{
‖SN‖ ≥

[
β
2 +

κ exp{1}
∑N

i=1
σ2

i

2β

]
+ γ

√∑N
i=1 σ

2
i

}
≤ 2 exp{− 1

64 min[γ2, γ2−α
∗ γα]},

with γ∗ = γ∗(α, σ
N ) given by (48). Optimizing this bound in β > 0, we

arrive at (42). Theorem 4.1.(i) is proved.

30: Proof of Theorem 4.1.(ii-iii).. These results are given by exactly the
same reasoning as above, with the role of Proposition 4.1 played by the
following statement:

Proposition 4.2. Let ψi, i = 1, ..., N , be Borel functions on Ω such that
ψi is Fi-measurable, and let µi ≥ 0, νi > 0 be deterministic reals. Assume
that almost surely one has

∀i : Ei−1{ψi} ≤ µi,

and either

(56) ∀i : Ei−1

{
exp{ψ2

i /ν
2
i }
}
≤ exp{1},

or

(57) ∀i : |ψi| ≤ νi.

Then for every γ ≥ 0 one has
(58)

Prob






N∑

i=1

ψi >
N∑

i=1

µi + γ

√√√√
N∑

i=1

ν2
i




 ≤
{

exp{−γ2/3}, case of (56)
exp{−γ2/2}, case of (57)

.
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Proof. Let (56) be the case. It is immediately seen that exp{s} ≤ s +
exp{9s2/16} for all s. We conclude that if 0 ≤ t ≤ 4

3νi
, then

Ei−1 {exp{tψi}} ≤ tµi + Ei−1

{
exp{9t2ψ2

i /16}
}

≤ tµi + exp{9t2ν2
i /16} ≤ exp{tµi + 9t2ν2

i /16}.(59)

Besides this, we have tx ≤ 3t2ν2
i

8 + 2x2

3ν2
i

, so that

Ei−1 {exp{tψi}} ≤ exp

{
3t2ν2

i

8
+

2

3

}

,

and the latter quantity is ≤ exp(
3t2ν2

i

4 ) when t ≥ 4
3νi

. Invoking (59), we
arrive at

(60) t ≥ 0 ⇒ En−1 {exp{tφn}} ≤ exp{tµi + 3t2ν2
n/4}.

It follows that

E exp {t∑n
i=1 ψi} = E {En−1 {exp {t∑n

i=1 ψi}}} ≤ E
{
exp

{
t
∑n−1

i=1 ψi

}}
exp(tµn + 3t2ν2

n/4),

whence

t ≥ 0 ⇒ E
{
exp{t∑N

i=1 ψi}
}
≤ exp

{
t
∑N

i=1 µi + 3t2

4

∑N
i=1 ν

2
i

}
.

Therefore for γ ≥ 0 we get

Prob

{∑N
i=1 ψi >

∑N
i=1 µi + γ

√∑N
i=1 ν

2
i

}

≤ mint>0

[
E
{
exp{t∑N

i=1 ψi}
}

exp{−t∑N
i=1 µi − tγ

√∑N
i=1 ν

2
i }
]

≤ mint>0 exp{t∑N
i=1 µi + 3t2

4

∑N
i=1 ν

2
i − t

∑N
i=1 µi − tγ

√∑N
i=1 ν

2
i } = exp{−γ2/3}

,

as required in the first bound in (58). In the case of (57), by Azuma-
Hoeffding’s inequality [1], we have

∀t ≥ 0 : En−1 {exp{tφi}} ≤ exp{tµi + σ2
i /2};

with this relation in the role of (60), the above reasoning results in the
second bound in (58).
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