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Abstract—The vision of the RoboEarth project is to design
a knowledge-based system to provide web and cloud services
that can transform a simple robot into an intelligent one. In
this work we describe the RoboEarth semantic mapping system.
The semantic map is composed of (1) an ontology to code the
concepts and relations in maps and objects, and (2) a SLAM
map providing the scene geometry and the object locations with
respect to the robot. We propose to ground the terminological
knowledge in the robot perceptions by means of the SLAM
map of objects. RoboEarth boosts mapping by providing: (1)
a subdatabase of object models relevant for the task at hand,
obtained by semantic reasoning, which improves recognition
by reducing computation and the false positive rate; (2) the
sharing of semantic maps between robots, and (3) software
as a service to externalize in the cloud the more intensive
mapping computations, while meeting the mandatory hard real
time constraints of the robot.

To demonstrate the RoboEarth cloud mapping system, we
investigate two action recipes that embody semantic map building
in a simple mobile robot. The first recipe enables semantic map
building for a novel environment while exploiting available prior
information about the environment. The second recipe searches
for a novel object, with the efficiency boosted thanks to the
reasoning on a semantically annotated map. Our experimental
results demonstrate that by using RoboEarth cloud services, a
simple robot can reliably and efficiently build the semantic maps
needed to perform its quotidian tasks. In addition, we show the
synergetic relation of the SLAM map of objects that grounds the
terminological knowledge coded in the ontology.

Note to Practitioners— RoboEarth is a cloud-based knowledge
base for robots that transforms a simple robot into an intelligent
one thanks to the web services provided. As mapping is a
mandatory element on most of the robot systems, we focus on
the RoboEarth semantic mapping for robot systems, showing the
benefits of the combination of SLAM (Simultaneous Localization
And Map building), and knowledge-based reasoning. We show the
qualities of our system by means of two experiments: (1) building
a map of a novel environment boosted by prior information and
(2) efficient searching for a novel object thanks to the knowledge-
based reasoning techniques. We can conclude that RoboEarth
enables the execution of the proposed methods as web and cloud
services that enable advanced perception in a simple robot.

Index Terms—Semantic mapping, cloud mapping, knowledge
representation, visual SLAM, object recognition.
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I. INTRODUCTION

HE ability to efficiently create semantic environment

models and to use them intelligently to locate objects
will become increasingly important as more and more robots
enter human living and working environments. To successfully
operate in such environments, robots will have to face the
open-world challenge, i.e. they will need to be able to handle
large numbers of (novel) objects located in various places on
top of or inside furniture, and they need to quickly become
acquainted with novel environments.

This poses several challenges for today’s robots, for ex-
ample: How can the visual perception system handle large
numbers of object models without slowing down recognition
or detecting more false positives? How can a robot efficiently
explore an environment to create a map of the objects therein?
Which are the most important objects to look out for? How
can the robot exploit common-sense knowledge to guide its
search for novel objects? How can it profit from information
collected by other robots? We believe that finding solutions to
these problems will be crucial to scale object search tasks from
restricted and well-known laboratory environments to more
open and diverse scenes.

We investigate a Web-enabled and knowledge-based ap-
proach to semantic mapping in order to build models of the
environment and explore the role that cloud services can play
in this mapping approach. The use of these cloud services
has recently opened a new line of research in robotics called
Cloud Robotics [1]. In [2] different architectures based on a
knowledge-based solution have been presented in industrial
robotized automation systems. [3] and [4] explore the use of
a Cloud Computing for offloading intensive computing tasks
like vision-based algorithms and grasp planning respectively.
In particular, we consider a simple robot that has access to
the cloud-based RoboEarth knowledge base [5], and evaluate
how access to such a cloud-based knowledge base can help
robots with their tasks. RoboEarth enables robots to upload
and download “action recipes”, models of objects they have
created and maps of environments. By intelligently selecting
only those pieces of information that are needed for the current
task, robots can keep their local knowledge bases and object
model database small and efficient, while having much larger
information resources in the background.

All pieces of information in RoboEarth are semantically
annotated, i.e. they are described in a formal, logical lan-
guage [6] and are linked to an ontology. To achieve platform
independence, these annotations include a specification of
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Overview of the proposed system. In the beginning, the RoboEarth knowledge base (right) contains only the elements above the dotted line: An

action recipe describing the exploration task, a set of object models and the robot’s SRDL description. When a robot requests an action recipe, it is matched
against its capability model and, if all required capabilities are available, a plan is generated. During execution of this plan (left part), the robot first downloads
a set of object models that are to be expected in this environment and uses these models to build a semantic map. After execution, it uploads the generated
set of maps to RoboEarth (lower part of the right block) to make them available to other robots.

which capabilities a robot needs to have in order to execute
a task. When searching for suitable “action recipes”, a robot
can match this specification against a formal model of its own
components and capabilities described in the Semantic Robot
Description Language (SRDL, [7]). If necessary components
or capabilities are missing on the robot, the recipe cannot be
executed and is not considered for download. If all required
capabilities are available, the robot model is used to generate a
plan that is tailored to the hardware of the respective robot. The
semantic annotations further enable robots to perform logical
inference, for instance to decide which are the most likely
objects in a room (and only download their models to their
local database), or where novel objects are likely to be found
(and guide the search accordingly).

In order to apply abstract knowledge to operation in the
real world, it needs to be grounded [8] in the robot’s per-
ception system and its knowledge about the environment. In
this article, we propose to link the knowledge base with a
visual SLAM system that provides accurate and continuous
asynchronous perception. The system is integrated with an
object recognition module that identifies objects based on a
local database of object models. The main contributions of this
work are (1) a semantic mapping method resulting from the
synergistic integration of a visual SLAM map of objects with

the RoboEarth ontology; (2) knowledge-based methods for
using prior information, exemplified in the selection of object
models for exploration and in the guidance of a robot when
searching for a novel object; and (3) methods for embodying
the semantic map building and exploitation in a simple robot
using RoboEarth cloud services.

The remainder of the paper is organized as follows: We start
with an overview of related work on searching for objects,
explain the structure of our system as well as the two main
tasks it performs: The creation of an initial semantic map
building and knowledge-guided object search. We then present
the system’s components in more detail, describe the experi-
ments we have performed, and finish with our conclusions.

II. RELATED WORK

Several proposals have been made for building maps of
objects. Objects from a database are recognized and located
in [9] where polyhedral CAD object models are recognized
in single RGBD images. Similarly, using point clouds, in
[10] geometrical primitives are segmented assuming they
correspond to scene objects. Combining visual SLAM with
object recognition to produce maps of objects has recently
gained more attention for pure visual RGB sensors in [11],
[12], and for RGBD in [13]. Several approaches have been



made to endow maps with reasoning capabilities. A Bayesian
network classifier is proposed in [14] to encode the relations
between objects in a scene and the objects typically present
in a type of room. An ontology-based approach is proposed
in [15], [16] to represent knowledge about the elements in a
map. The knowledge-based maps by Zender et al. [17] provide
grounding by combining place recognition from 2D laser maps
and object recognition. An exploration method similar to ours
has been proposed in [18]. Our contribution is to combine a
knowledge-base with a visual SLAM map of objects to ground
the robot perceptions to implement the RoboEarth Web and
cloud mapping services. For the estimation of this semantic
map, we propose the use of action recipes that describe how
to explore the free space while searching for objects in a local
database using an object recognition algorithm.

Structured object search and reasoning about likely object
locations have been an active research topic over the past
years. Much of the work has explored vision-based methods
to search for objects in a top-down manner based on saliency
and visual attention mechanisms [19], [20], [21]. Having a
(partial) semantic map allows a robot to apply background
knowledge for directing the search. One possibility is to learn
co-occurrence statistics of object types and object—room rela-
tions, for example from online image databases [22] or from
search engine results [23]. Joho et al. [24] use co-occurrence
information and other heuristics for efficiently searching for
objects in structured environments, in particular supermarkets.
Schuster et al. exploit similarity scores computed based on
an ontology of object types for directing the search towards
locations where semantically similar objects are known to
be [25]. Kunze et al. propose a utility-based approach for
object search that particularly focuses on the decision of which
location to search first [26]. This work was extended in [27] to
use geometric models of directional qualitative spatial relations
with respect to landmark objects and to use 2D cones for
approximating the sensor field of view. Wong et al. include
manipulation actions into the object search, which allows
the robot to reason about which objects have to be removed
before being able to see the target object [28]. The approach
by Aydemir et al. [29] is similar to ours in that they also
use landmark objects to guide the search for smaller objects
inside or on top of the landmarks. While they focus on the
probabilistic formulation of the search procedure as a Markov
Decision Process, we explore a knowledge-based strategy that
exploits formal knowledge about object types, their (likely)
spatial relations, and their shape and appearance.

III. SYSTEM OVERVIEW

Figure 1 shows the typical workflow of a robot using
the system. We assume that the RoboEarth knowledge base
(right block) contains the required task descriptions (called
“action recipes”) and object models. In this paper, we focus on
two action recipes for (a) semantic mapping of an unknown
environment and (b) active search for an object based on a
partial semantic map. The locations of objects already detected
in the room thereby serve as landmark objects.

Each piece of information is annotated with a description
of the capabilities required for making use of it (depicted as

colored puzzle pieces), that is matched against a formal model
of the robot’s capabilities described in the Semantic Robot
Description Language. Based on the background knowledge
about which objects are likely to be encountered in which
kinds of rooms, RoboEarth infers a set of object models that
can be recognized during the exploration.

After download, a robot plan is generated from the action
recipe (Section IV) and the task is executed accordingly.
The robot explores the environment using a frontier-based
algorithm (re_explore component), recognizes objects using
the re_vision module and inserts them into a map build by
the re_vslam module. After the exploration has finished, the
robot exports the map in the formal RoboEarth language and
uploads it to the RoboEarth knowledge base.

IV. ACTION RECIPES FOR ACTIVE PERCEPTION TASKS

Plan Step Generator

Recipe
Database

"Room-Exploration" Execution Plan

def-cram-function exploratior
(prog (

Fig. 2.  Generation of the execution plan. The recipe (left) is an OWL
document composed of parametrized subactions, described in terms of OWL
classes. To generate the plan, the system looks in the database for code
generating functions that are applicable on the specific instance and robots
(bottom), and inserts the resulting function into the final execution plan (right).

Action recipes abstractly specify which actions need to
be performed to accomplish a task in a (largely) robot-
and environment-independent manner. RoboEarth aims at the
exchange of recipes between heterogeneous robots in differ-
ent environments, which therefore need to be reduced to a
description of the task itself, eliminating all hardware- and
environment-specific parts. While the resulting descriptions
can easily be transferred to another robot, they are too abstract
to be directly executable. The robot thus needs to interpret
the instructions, fill in missing information, and select and
parameterize suitable “skills” that provide the implementation
for the respective action steps. The capability matching proce-
dure described in Section V verifies that all skills needed for
executing a recipe are available on a robot.

Action recipes are formulated in the RoboEarth language [6]
that is based on the W3C-standardized Web Ontology Lan-
guage OWL [30]. Actions in a recipe are described as classes
whose properties described action parameters such as the
objectActedOn. They can inherit properties from more generic
classes in the knowledge base, which we often use for inher-
iting information about required capabilities. This way, the
recipes can be kept short and concise, since ’common-sense’
knowledge does not have to be communicated. Examples of
action recipes for exploring an environment and searching for
objects can be found in Figures 1 and 3, respectively. These
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recipes can easily be created using a graphical editor without
knowledge of the OWL language!.

As mentioned earlier, action recipes are not executable
by themselves, but aggregate “skills” (that implement single
action steps) into more complex task structures. Our system
uses the CRAM executive [31] for controlling the robot, so
the “skills” correspond to fragments of the robot plans. These
fragments are not static, but are generated by Lisp macros that
are parameterized with the OWL description of an action step
(Figure 2). This allows to consider the action context as well as
the robot model to generate tailored plans. For example, when
generating the code for computing object visibility (Sec. VI),
the pose of the camera relative to the robot base is read from
the robot’s SRDL description.

The code generation macros are also stored in the
RoboEarth database and can therefore be shared among robots.
For each action described in the recipe, the system searches
for suitable macros considering the robot’s capabilities. In case
multiple results are found, the one with the minimal semantic
distance (estimated via the Rada distance [32]) to the action
at hand is selected. If the result is still ambiguous, a human
operator is asked. The code generation macros then extract
the required action parameters from the robot model and the
semantic environment map.

As part of this work, we have created two action recipes
to enable a simple robot to perform semantic mapping in the
cloud using RoboEarth. The first action recipe (Fig. 1 left),
sketched in Algorithm 1, enables a robot to build a semantic
map for a novel environment, exploiting prior information
about the room type. The second one (Fig. 3) illustrates how
information from the semantic map can be exploited when
searching for an specific object. Algorithm 2 sketches the
steps of this recipe. The described recipes build upon a set
of perception and navigation capabilities that are detailed in
Section V.

ISee http://knowrob.org/doc/action_recipe_editor.

A. SemanticMapping Action Recipe

The execution of the SemanticMapping action recipe results
in an exploratory behavior of the robot. Before starting the
exploration, the knowledge base infers a set of landmark
objects that are typically found in the type of room to be
explored. These models are loaded into a local subdatabase
on the robot that allows real-time object recognition for map
building. It further increases the recognition precision and
recall because only objects that are likely to be in the room
are searched for. After completing the room exploration, it
produces a semantic map that is stored in the RoboEarth
knowledge base.

The recipe commands the robot to explore the room while
avoiding obstacles. Simultaneous to room exploration, the
visual SLAM builds a map providing locations for selected
geometrical features and landmark objects recognized in the
scene. Once the exploration is finished, the object instances
are linked with the RoboEarth ontology in order to upgrade
the map of objects into a semantic one. The semantic map
along with the occupancy grid and features map are uploaded
as a RoboEarth environment.

B. ObjectSearch Action Recipe

The ObjectSearch recipe assumes that a (partial) semantic
map valid for the room is already stored on a RoboEarth
environment. Based on the locations of landmark objects in
this map, the knowledge base infers potential locations from
where the object might be detected. From the occupancy map,
the free space for robot navigation is computed, and according
to the robot’s SRDL model, the sensors’ ranges and locations
within the robot are inferred. The features map stored on the
RoboEarth environment allows the visual SLAM to provide a
continuous robot localization when the map is reused. Using
all this information, a list of robot locations is computed from
where the object is likely to be detected.

Upon execution of the generated CRAM plan, the robot
sequentially navigates towards the computed locations from
where it searches for the object until it is found. The detected
object is added to the initial semantic map, which is then
finally uploaded back to the RoboEarth database.

V. ROBOT CAPABILITIES FOR ACTIVE PERCEPTION

Since RoboEarth aims at knowledge exchange among het-
erogeneous robots, we cannot assume that every robot pos-

Algorithm 1 SemanticMapping(in: environType, environld)
subDataBase = load-typical-object-models(environType)
slamVisualMap = void
start-exploration-modules()
start-vision-modules(slamVisualMap, subDataBase)
repeat

explore-environment(freeFrontiers)
until check-finished(freeFrontiers)
return-to-initial-pose()
environment = upgrade-to-semantic(slamVisualMap)
upload-environment-map(environment, environld)




Algorithm 2 ObjectSearch(in: environld, object)
environment = download-environment(environld)
semanticMap,slamVisualMap = extract(environment)
start-navigation()
start-vision-modules(slamVisualMap)
nextPoses = infer-likely-locations(semanticMap, object)
repeat

go-to-next-best-pose(nextPoses)

slamVisualMap = search(slamVisualMap,object)
until check-if-object-found(object) or last-location-reached
stop-vision-modules()
environment = upgrade-to-semantic(slamVisualMap)
upload-environment-map(environment,environld)
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Fig. 4. A sub-branch of the SRDL ontology stating some of the robot
capabilities. All the mandatory compatibilities for active perception are
highlighted in blue.

sesses all required capabilities for executing a recipe. There-
fore, both those capabilities that are available on a robot and
those that are needed for a task are modeled and can auto-
matically be matched using the Semantic Robot Description
Language (SRDL). This procedure is described in detail in [6].
Capabilities are usually provided by software components (e.g.
ROS nodes) on the robot, are interfaced from CRAM plan
fragments, and are described in SRDL to allow reasoning
about which tasks are feasible. Capabilities are often not
binary, but may be available to a certain degree. It is however
hard to measure this, since the criteria will be different for
many different abilities. We therefore do not store a quanti-
tative degree to which an ability is available, but distinguish
different cases as specialized subclasses as can be seen e.g. for
the different kinds of navigational abilities. In general, SRDL
does support numerical attributes such as the range of a laser
scanner or the resolution of a camera. Dependencies of actions
on capabilities are usually not described in the recipe itself, but
inherited from more generic action classes in the RoboEarth
ontology (e.g. that all kinds of reaching motions need an
arm component). Capabilities are also described as OWL
classes and are declared in another branch in the RoboEarth
ontology. The capabilities needed for the two recipes described

Fig. 5.  Visualization of the frontier-based exploration algorithm. Black
contours represent known obstacles and the green grid cells encode the
inflation for safe navigation. The dark blue arrows represent unexplored
frontiers. The next frontier to be explored is coded as a light blue arrow.

in this work that focus on active perception are highlighted in
Figure 4 and will be presented in the remainder of this section.

a) CollisionFreeNavigationCapability: — represents the
ability to safely navigate to a goal. The initial global navigation
plan to achieve the goal is locally modified by a reactive navi-
gation module which is responsible for computing the motions
finally commanded to the robot. The planning technique is
based on a A*-type algorithm [33]. For reactive navigation,
we have applied ORM [34] adapted for differential drive
robots due to its performance in dense, complex and cluttered
environments. A Rao-Blackwellized particle filter [35] is used
to estimate the robot location and the 2D navigation map from
2D laser rangefinder readings.

b) EnvironmentExplorationCapability: declares the abil-
ity to actively build a 2D navigation map of an unknown
environment. Based on the 2D laser readings and the odometry,
the component guides the robot in building a 2D map of its
environment. The main issue is to compute at run-time the next
robot locations from where to perceive unexplored regions.
The next point of view is computed according to the frontier-
based approach [36], where the robot moves while avoiding
obstacles and integrating the 2D laser readings into the map
(NavigationComponent). The exploration ends when the map
contains no more accessible frontiers. Figure 5 visualizes the
method.

c) ObjectRecognitionCapability: declares the ability to
recognize objects in single images and to provide an initial
estimate of their 3D location with respect to the camera. The
corresponding component implements an object recognition
algorithm [12] in which each object is modeled as a collection
of faces. Each face comprises an image that represents a
point of view of the object, a set of SURF features [37]
and their associated 3D coordinates in the local object frame,
obtained by multi-view geometry [38]. These models are
initially stored in the RoboEarth database. When a subset of
them is required to fulfill a task, they are downloaded, creating
a local subdatabase used by the recognition algorithm.

d) VisualSLAMCapability: declares the capability to esti-
mate a visual SLAM map composed of point features and rec-
ognized objects, and a 3D occupancy grid map. This capability



is implemented by a distributed framework, C2TAM [39],
based on PTAM [40]. A lightweight process handles the
camera tracking on the onboard robot computer, while the
expensive map optimization is externalized as a service in
the cloud (Amazon EC2 service [41]) using the RoboEarth
Cloud Engine [42]. Thanks to this division, the hard real-
time constraints mandatory in a robotic embedded system
are met by the visual SLAM, despite the typical network
delays in the link with the cloud server. The SLAM map not
only includes visual point features but also objects that are
recognized in the images by the ObjectRecognitionComponent.
The recognition models come from the local subdatabase
provided by RoboEarth. Once the map is computed, the result
is incorporated into the RoboEarth environment data structure,
providing the data for the following classes:

o SemanticEnvironmentMaps are described in OWL and
consist of objects detected in the environment, described
as instances of the respective object classes in the on-
tology. This allows the application of logical inference
methods to the spatial configuration of objects. The
object instances may further contain information about
their extensions, 6D poses and possibly CAD models
describing their geometry and appearance.

e OctoMap: a 3D occupancy grid map, coded as proposed
in [43]. It is computed from RGB-D sensor readings in
the visual SLAM keyframes. This map can be reused to
generate 2D maps for navigation.

e ReVslamMap: the raw storage of visual maps for visual
localization. They are built from the sole input of an
RGB-D camera. Provides a continuous localization of the
robot while the map is building. Furthermore, thanks to
the capability of Roboearth system for sharing environ-
ments, this map can be downloaded and reused by other
robots in order to localize, while navigate, in the same
environment.

VI. REASONING ABOUT OBJECT LOCATIONS

In order to successfully find an object in the environment,
a robot must answer the questions “Where is the object likely
to be?” and “Where do I need to go in order to see it?”.

1) Inferring likely object positions: We employ knowledge
that has been extracted from the OMICS common-sense
database [44] and converted into the representation used in
the robot’s knowledge base [45] to compute likely object
positions. The OMICS database holds tuples of objects and
their locations in the form (object,location). The number
of times a relation is contained in OMICS can be used to
approximate the likelihood that an object O can be found at a
location LOC"

P(O|LOC) = count(O, LOC) /count(LOC') (D)

where count is the number of database entries. The value of
P(LOC|O) is calculated from the above model using Bayes’
rule. To retrieve the location with the highest probability we
simply apply the argmax operator

P(LOC|O) )

argmax
LOCE Locations

Fig. 6. Visibility costmap computed from the semantic environment map,
the semantic robot model and geometric object models downloaded from
RoboEarth. The colors indicate the amount of the object that is visible from
a given camera of the robot considering its pose.

The resulting models allow queries for the locations of objects
given by corresponding landmark objects. These object classes
can be grounded in the robot’s semantic environment map to
determine their positions.

2) Computing robot poses using visibility reasoning: Based
on the semantic map (that contains known object instances in
the environment) and CAD models of these objects previously
downloaded from RoboEarth, the system computes a visibility
costmap describing from which robot poses the object is likely
to be visible [46]. Especially for objects that are inside a
cabinet or shelf, occlusions by the surrounding objects need
to be taken into account when planning a pose for the robot.
To compute the costmap, the system renders the scene from
the viewpoint of the inferred object location and computes the
amount of the object that is visible from each grid cell in the
costmap (Fig. 6).

VII. EXPERIMENTS

This section is devoted to showing how diverse robots
benefit from the cloud-based RoboEarth semantic mapping
system. The experiments include those carried out with a real
Pioneer P3-DX robot and simulations. We demonstrate how a
simple robot can reliably and efficiently build and exploit the
semantic maps needed to perform quotidian tasks using the
Roboearth cloud services 2. The experiments are based on the
two action recipes described in Section IV.

Assuming that RoboEarth contains a huge database of object
models, one key advantage is the ability to serve a reduced
subdatabase that only contains the relevant models for the
current tasks. This reduces the local computation overhead and
improves recognition precision and recall. In the case of the
semantic map building for a novel environment, given the type
of the environment, in this case a hospital room, RoboEarth
is able to elaborate and serve to the robot a subdatabase
containing only object models expected to be relevant and
salient in this environment. In this case, the selected object
categories are a bed and cabinet. For each object category
all the relevant individual object models are included in the

2 A video of the experiments can be found at http:/robots.unizar.es/data/videos/
roboearth/roboearthSemanticMapping.mp4



Fig. 7. Initial (left) and final (right) steps of the exploration algorithm. The
dark blue arrows represent the currently unexplored frontiers.

Fig. 8.

Object recognition events: bed (left) and cabinet (right).

subdatabase. In contrast in the active search recipe, the served
subdabase would contain only the recognition model of the
object searched for.

Given the SRDL model of a robot, RoboEarth can produce
and serve a customized CRAM plan for this robot. In the
simulation we consider two different robots operating in two
different environments. It is shown how, from a single recipe,
four different execution CRAM plans are generated, one per
robot-environment combination.

To illustrate the benefits that a simple robot can gain from
using RoboEarth, we focus on the increase in efficiency de-
rived from the exploitation of the knowledge-based reasoning
available in the semantic maps in the case of a search for a
novel object. In contrast to an exhaustive search, RoboEarth
exploits a map the environment acquired previously and per-
forms a knowledge-based search strategy of small objects by
landmark objects.

A. Real-world experiments

The following scenario has been investigated. A robot in a
hospital room has to find a bottle to be served to a patient.
Initially, the robot does not know the location of the bottle. The
naive and expensive solution would have been to exhaustively
search the whole room. In contrast, to improve efficiency,
we use both the semantic mapping and object search recipes
(Alg.1, Alg.2) to embody a knowledge-based search strategy
in the robot.

We used a Pioneer P3-DX in which the navigation is based
on a Sick 2D laser scanner and odometry sensors. It has
been implemented by means of the ROS stacks GMapping,
and move_base that has been extended to include the ORM
obstacle avoidance. The robot also incorporates a Kinect RGB-
D that provides the raw data for visual mapping. The visual
SLAM is implemented by means of the C2TAM algorithm
that externalizes heavy computations using a Platform as a
Service, in our case the RoboEarth Cloud Engine. It is worth

noting that during the experiments, C2TAM has been able to
fulfill all the mandatory real-time constraints of our robot-
embedded computer, despite the delays and low bandwidth
typical of any computer network. Regarding the inference
methods, the ROS RoboEarth stack [47] and the KnowRob
knowledge base [48] are used. The capability matching and
the CRAM plan generation have been executed locally on our
robot computer, but these can also be externalized to the cloud.

1) Semantic Mapping: Before performing the task, the
knowledge base infers that the bed and the cabinet are likely
landmark objects, and the corresponding object models are
inserted in the model subdatabase that is served to the robot.
A customized CRAM plan is generated for the robot based on
the recipe. The robot executes the CRAM plan and starts to
explore the unknown environment until it obtains a complete
map of the room. Figure 7 shows the beginning and end of
the exploration. At the beginning the map is incomplete, with
several open frontiers that have yet to be explored. At the end
the complete map is estimated.

While the robot is exploring the environment, the perception
component builds the visual SLAM map and inserts the
detected objects according to the models in the subdatabase.
Figure 8 shows two examples of object recognition events.
Once the exploration is finished the robot uploads the created
semantic map to RoboEarth (as we can see in Fig. 1). This
comprises the detected objects (Fig. 9), the map of visual
features,and a 3D occupancy grid map, coded as an OctoMap
(Fig. 10).

#SemanticMapPerception2
‘objectActedOn: #Cabinet.unizar

eventOccursAL: #rotmatrix3d_2
StartTime: #imepoint_1271150865

#Cabinet.unizar

#rotationmatrix3d_2

type:
ObjModeCabinetPieceOfF umiture:
% i | depthOrObject:0.35

1 | widthorobject: 0.30

%} | heigntorobject: 0.69

Containers

#ObjModelCabinetPieceOfFurniture

type: RoboEarthObjRecPerception

Semantic enviroment map

Fig. 9. Detailed storage format for a semantic map composed by two objects,
a bed and a cabinet. Each object instance contains information about the type
of object, dimensions, recognition model used, time detection and its location
into the map.

2) Object Search: The second recipe execution presents the
guided object search. This is based on the semantic map of
the environment built and uploaded in the previous exploration
(Sect. VII-A1). The object location inference determines the
cabinet as the landmark object to guide the search for the
bottle. Taking the scene layout and occupancy map into
account, several reachable robot locations from where the
bottle is likely be detected are computed (see Figure 11).



Fig. 10.
(right).

Map of visual features (left), and 3D occupancy grid OctoMap

N

Fig. 11.  Visibility costmap (left). Occupancy map and, in blue, the selected
search robot locations (right)

Fig. 12.  Computed robot locations for detecting the object, in blue, and
planned trajectory, in green (Left). Final semantic map including the bottle
detected on top of the cabinet (Right).

Considering the SRDL description of the Pioneer P3-DX,
the stored semantic map and the action recipe, RoboEarth
provides: 1) a custom 2D map for navigation estimated from
the OctoMap, 2) a customized CRAM plan, and 3) the set of
recognition models for the bottle.

The provided CRAM plan iteratively drives the robot to a
list of selected positions until the object is eventually found.
Once it is located, its position is added to the map and the
map is uploaded to RoboEarth. Figure 12 shows the robot
trajectory and the semantic map including the objects known
a priori (bed and cabinet) and the new one (the bottle).

B. Simulation Experiments

The goal of the simulation experiments is to demonstrate
the interoperability of the system. For these experiments, we
have used the open source robotics simulator Gazebo [49]. The
same object search action recipe has been executed on two
different robots in two different environments. The selected
robots have been the holonomic service robot Amigo [50], and
the previously described non-holonomic Pioneer P3-DX. Per
each selected robot, the SRDL model describes its capabilities

Fig. 13. Travelled path (blue) in simulated object search. Top row displays
Amigo, and bottom row displays Pioneer. Left column for the room, right
column for the suite.

and kinematics, enabling RoboEarth to produce a specific
CRAM plan for a definite robot in a particular environment.

The searched object has been considered to be probably
found on top of beds, cabinets or shelves. The first envi-
ronment emulates the hospital room, assuming a semantic
map where a bed, and a cabinet have been located. The
second environment mimics a suite, composed of two rooms
communicated through an open door. It is assumed to have a
semantic map where a bed, a cabinet and two shelves have
been detected. Figure 13 shows the paths resulting from the
four different CRAM plans, one per each robot in each room.
The paths mirror the difference in locomotion, the Amigo
robot is able to maneuver more efficiently in the tight spaces
than the non-holonomic Pioneer P3-DX. The two robots also
have their camera in different locations; consequently the
reasoning for the path generation has been influenced by the
differences in visibility.

C. Performance Improvements

The purpose of this experiments is to highlight the benefits
of using the proposed system. We focus the quantitative results
on three aspects: (1) the externalization in the cloud of the
most intensive computations; (2) the use of a subdatabase of
objects which improves recognition; (3) the efficiency of the
knowledge-based search strategy based on landmark objects
implemented by the object search action recipe.

1) Computational Efficiency: The use of the cloud for
externalizing the expensive computation processes provides an
improvement in the response time, as we can see on figure 14.
This figure presents two graphs that show the response time
per frame of the tracking process of the visual SLAM system
with respect to the size of the map during the execution of
exploration action recipe. On the top graph, we can see the
performance of the system when the expensive computation
process of the visual SLAM system used is running on the
cloud. The tracking response time remains constant (around
10 ms) independently of the map size. The bottom graph
shows the tracking time when the complete C2TAM system
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is running onboard the robot. We can see how the tracking
response time increase when the size of the map grows and
even it overtakes the video frame rate threshold (33 ms). We
can conclude that the externalization of the expensive map
optimization process of C2TAM as a service in the cloud
provides an improvement in the response time of the real-time
critical processes because they can benefit of all the onboard
resources once the mapping process is outsourced to the cloud.

2) Recognition using a Subdatabse: Two search strategies
has been tested for a range of subdatabase sizes. The first
strategy is a naive detection that checks all the models in
the subdatabase. The second is an advanced one that only
checks the 10 most promising object models according to
an appearance score obtained when their local features are
converted into bags of words (BoW) [51]. In this experiment
we focus on the semantic mapping of a hospital room. The
subdatabase contains the RoboEarth provided relevant models
in all the experiments. Additional object models, up to 500, are
added to the subdatabase to analyze the effect of a big database
containing objects not appearing in the actual scene. Figure 15
shows a quantitative performance analysis. The top graph

Fig. 16.  Art Gallery exhaustive search. Blue squares code the search
locations, and red sectors represent the camera field of view. Room: 40
locations (Left). Suite: 100 locations (Right)

shows the naive detector, bottom graph shows the advance
BoW recognition. As expected mean time of detection after
the BoWs preselection scales better with the subdatabase size.
Both of the methods produces more detections with reduced
subdatabase, i.e. low false negative rate after processing the
whole experiment sequence. Additionally in our experiments
we did not detect any false positive, what is a good indicator
of a remarkable recognition precision. In any case, in both
algorithms, we can see how the increase number of objects in
the subdatabase degrades the performance. We can conclude
that a subdatabase which only contains the most relevant
models for a specific task provides a better performance on the
object detection in terms of number of detections and speed.
RoboEarth is able to provide this subdabase of only relevant
objects.

3) Knowledge-based Search Strategy: Finally, in terms of
the proposed knowledge-based search strategy, we show how
the priors provided by the semantic map are able to reduce the
number of potential search locations, and hence significantly
reduce the search time. We compare the guided exploration
trajectories with those of an exhaustive search. The comparison
is made in terms of the number of locations from where the
object search is performed in the worst case. The selected
scenarios are the room and the suite described in the previous
section. For the search locations in the exhaustive case, we
have selected the Art Gallery algorithm [52] because, for
a given sensor visibility range, it provides the minimum
number of positions which can cover a particular environment.
Figure 16 shows the locations which achieve full coverage of
the considered environments. The number of locations depends
on the size of the environment — the bigger the environment,
the higher the number. In our case, 40 locations were computed
for the room and 100 for the suite. The benefit is evident if
we compare this with the knowledge-based search (Fig. 13
bottom row), where the room needs only 9 locations and 15
were needed by the suite, leading to a corresponding reduction
in the search time.

VIII. CONCLUSIONS

A robot operating in an environment for the first time can
benefit from information previously stored by other robots
operating in the same environment, thanks to the RoboEarth
semantic mapping system. The proposed semantic mapping
system combines a visual SLAM map of objects with an
ontology representing the knowledge. Thanks to this combina-



tion, knowledge-based reasoning about map entities becomes
possible.

We have demonstrated that the building and exploitation
of this mapping system can be implemented as web and
cloud services. The robot has to provide its SRDL description,
and hence RoboEarth provides all the information needed to
execute the task. The result of the execution is also stored
in the database for reuse by the same or other robots. We
have provided a pioneering experimental validation of a web-
enabled cloud semantic mapping system exemplified in the
case of map building and guided search for a novel object.
We conclude that our system can (a) enable robots to perform
novel tasks, (b) generate semantically meaningful environment
maps, and (c) reason about these maps in conjunction with
formally described background knowledge. Indeed, the strat-
egy cannot address all cases in an open world at once (i.e.
recognize all objects at all times), but this is in general not
feasible at the moment. With limited on-board resources, the
options are either to manually select a number of objects that
can be recognized (as it is commonly done today), or to give
the robot the ability to autonomously select a range of object
models that are to be expected in the environment. This is
obviously limited by the quality of the predictions, but still
more flexible than a rigid selection of objects.

Evidence has also been provided about the possibility of ex-
ternalizing in the cloud those processes which are demanding
in terms of memory or CPU while at the same time meeting
the hard real time robot constraints. We can hence conclude
that the operation of simple robots with typical computing and
networking facilities can be boosted by RoboEarth.
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