結合代數

此為底本,未經審校
註︰蓋當今數學之事,誠難僅以文述,而無符號,故凡數學之文,咸有漢字、拉丁字相易之事,以合文言、數學,則無論文理之人,皆可明之也。

結合代數者,有矢量乘法之也,然其乘法合結合律也。

定義

結合代數者,模也,其標量環為交換環,並有模乘法,合:

  • 模合加法,乘法,也。
  • 凡標量甲(a)與模之物丙(x)丁(y),有甲丙積乘丁,同乎甲乘丙丁積也(「(ax)(y)=a(xy)。」)

若標量環為,即模為矢量空間者,曰域代數也。

若模乘法有單位元「一」者,曰環代數也。


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy