@inproceedings{lange-aznar-2022-refco,
title = "{R}ef{C}o and its Checker: Improving Language Documentation Corpora`s Reusability Through a Semi-Automatic Review Process",
author = "Lange, Herbert and
Aznar, Jocelyn",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.291/",
pages = "2721--2729",
abstract = "The QUEST (QUality ESTablished) project aims at ensuring the reusability of audio-visual datasets (Wamprechtshammer et al., 2022) by devising quality criteria and curating processes. RefCo (Reference Corpora) is an initiative within QUEST in collaboration with DoReCo (Documentation Reference Corpus, Paschen et al. (2020)) focusing on language documentation projects. Previously, Aznar and Seifart (2020) introduced a set of quality criteria dedicated to documenting fieldwork corpora. Based on these criteria, we establish a semi-automatic review process for existing and work-in-progress corpora, in particular for language documentation. The goal is to improve the quality of a corpus by increasing its reusability. A central part of this process is a template for machine-readable corpus documentation and automatic data verification based on this documentation. In addition to the documentation and automatic verification, the process involves a human review and potentially results in a RefCo certification of the corpus. For each of these steps, we provide guidelines and manuals. We describe the evaluation process in detail, highlight the current limits for automatic evaluation and how the manual review is organized accordingly."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lange-aznar-2022-refco">
<titleInfo>
<title>RefCo and its Checker: Improving Language Documentation Corpora‘s Reusability Through a Semi-Automatic Review Process</title>
</titleInfo>
<name type="personal">
<namePart type="given">Herbert</namePart>
<namePart type="family">Lange</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jocelyn</namePart>
<namePart type="family">Aznar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The QUEST (QUality ESTablished) project aims at ensuring the reusability of audio-visual datasets (Wamprechtshammer et al., 2022) by devising quality criteria and curating processes. RefCo (Reference Corpora) is an initiative within QUEST in collaboration with DoReCo (Documentation Reference Corpus, Paschen et al. (2020)) focusing on language documentation projects. Previously, Aznar and Seifart (2020) introduced a set of quality criteria dedicated to documenting fieldwork corpora. Based on these criteria, we establish a semi-automatic review process for existing and work-in-progress corpora, in particular for language documentation. The goal is to improve the quality of a corpus by increasing its reusability. A central part of this process is a template for machine-readable corpus documentation and automatic data verification based on this documentation. In addition to the documentation and automatic verification, the process involves a human review and potentially results in a RefCo certification of the corpus. For each of these steps, we provide guidelines and manuals. We describe the evaluation process in detail, highlight the current limits for automatic evaluation and how the manual review is organized accordingly.</abstract>
<identifier type="citekey">lange-aznar-2022-refco</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.291/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>2721</start>
<end>2729</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RefCo and its Checker: Improving Language Documentation Corpora‘s Reusability Through a Semi-Automatic Review Process
%A Lange, Herbert
%A Aznar, Jocelyn
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F lange-aznar-2022-refco
%X The QUEST (QUality ESTablished) project aims at ensuring the reusability of audio-visual datasets (Wamprechtshammer et al., 2022) by devising quality criteria and curating processes. RefCo (Reference Corpora) is an initiative within QUEST in collaboration with DoReCo (Documentation Reference Corpus, Paschen et al. (2020)) focusing on language documentation projects. Previously, Aznar and Seifart (2020) introduced a set of quality criteria dedicated to documenting fieldwork corpora. Based on these criteria, we establish a semi-automatic review process for existing and work-in-progress corpora, in particular for language documentation. The goal is to improve the quality of a corpus by increasing its reusability. A central part of this process is a template for machine-readable corpus documentation and automatic data verification based on this documentation. In addition to the documentation and automatic verification, the process involves a human review and potentially results in a RefCo certification of the corpus. For each of these steps, we provide guidelines and manuals. We describe the evaluation process in detail, highlight the current limits for automatic evaluation and how the manual review is organized accordingly.
%U https://aclanthology.org/2022.lrec-1.291/
%P 2721-2729
Markdown (Informal)
[RefCo and its Checker: Improving Language Documentation Corpora’s Reusability Through a Semi-Automatic Review Process](https://aclanthology.org/2022.lrec-1.291/) (Lange & Aznar, LREC 2022)
ACL