
Real-Time Schedule for Mobile Robotics and WSN
Aplications

Michal Chovanec *
University of Žilina

Faculty of Management Science and Informatics,
Univerzitná 8215/1 Žilina 010 26,

michal.chovanec@fri.uniza.sk

Peter Šarafín
University of Žilina

Faculty of Management Science and Informatics,
Univerzitná 8215/1 Žilina 010 26,

peter.sarafin@fri.uniza.sk

Abstract—This paper presents real-time scheduler in operating
system running on ARM Cortex (M0, M3, M4) usable in small
mobile robotics with kernel response around 1ms. Thanks to
the strong modularity, advanced sleep modes and event driven
programming ability, it can be used for WSN applications too.

Index Terms—operating system, ARM Cortex M, mobile
robotics, WSN node, low-power, real-time

I. INTRODUCTION

R
EAL-TIME scheduler provides added value for embed-
ded software development in the form of strong modular-

ity, reusable code and rapid development [1]. Many embedded
applications work without operating system - usually single
purpose tasks or interrupt driven tasks. For more complex
applications, operating system can provide better results when
some common problems occure [2] [3] :

• Multiple sensors (or any inputs) reading
• Multiple control loops with different sampling time
• Communication (routing, resending)
• Power management
• System modularity and extension posibilities
• GUI running on background of the main process

From these, we can consider following operating system
requirements:

• Multiple parallel threads (often with priority scheduling)
• Real-time processing ability
• Code size acceptable for microcontroller abilities
• Sleep modes support
• Multiplatform compilation ability
• Modular architecture

II. SYTEM ARCHITECTURE

The operating system runs on a single chip microcontroller.
Supported cores are ARM Cortex M0, M0+, M3, M4 and M4F.
For testing, TI TivaC TM4C123G [5] (Fig. 1) with cortex M4F
core has been used. This MCU is running on 80MHz and it
disposes 256K flash memory and 32K SRAM. Other devices,
such as STM32L053, STM32F103, STM32F407, LPC812,
MKL02Z32 and MKL25Z4 have also been tested.

All parts are compiled using GNU GCC (using C99 stan-
dard) into single binary file, which can be loaded into flash
memory [4]. Recent source files can be downloaded from [6].

Fig. 1. TI TivaC launchpad testing board

Presented operating system consists of these parts:

• User application
• User libraries
• Kernel
• OS libraries
• Device low level libraries

All parts can work independently on each other. Only
necessary part is device low level libraries, represented as
HAL (hardware abstraction layer). Operating system is written
with microkernel architecture, where kernel only creates and
schedules threads. Other functions are implemented as optional
libraries.

In the following text, we briefly describe OS structure. The
priority scheduling algorithm compared with common round
robin is described in more details.

A. Booting process

After microcontroller reset, HAL is initialized first, espe-
cially clock configuration, GPIO initialization, UART timers
and ADC setup. All parts are initialized only if they are linked
in the binary. In other case, initialization of missing parts is
skipped. Absolute minimum requirement for OS running is
main clock initialization. For common problems, UART and
timers are necessary.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 1199–1202

DOI: 10.15439/2015F146
ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1199

Operating system libraries such as STDIO, software timers,
messages subsystem and mutexes are initialized next. After
this, kernel is initialized and user main thread is started.

B. User application and libraries

Users main loop is discussed in this section. The main
function is called void main_thread(). This main thread can
create other threads, by calling create_thread function. Fol-
lowing code shows how another thread can be created. When
void main_thread() is running, user can initialize it’s own
libraries, usually sensors, displays or communication module.
Boot up and four running threads screenshot is displayed in
the Fig. 2.

Listing 1. Thread creating

t h r e a d _ s t a c k _ t t h r e a d _ 0 1 _ s t a c k
[THREAD_STACK_SIZE] ;

void t h r e a d _ 0 1 () {
}

void m a i n _ t h r e a d () {
c r e a t e _ t h r e a d (

t h r e a d _ 0 1 ,
t h r e a d _ 0 1 _ s t a c k ,
s i z e o f (t h r e a d _ 0 1 _ s t a c k) ,
PRIORITY_MAX) ;

whi le (1)
{
}

}

III. SCHEDULING ALGORITHM

Main part of OS is the microkernel core. Preemptive
multitasking with two options, round robin scheduling or
time decrease priority scheduling is implemented. To compare
different schedule algorithms (especially real-time processing),
we first need to define error function. Consider set of threads
as

ti ∈ T (p, k, s, d, c), (1)

where p represents thread priority (lower number - higher
priority), k is the counter of thread priority current value,
s stands for thread state (running, waiting, created), d states
thread deadline time (set by user, usually in ms), c is thread
running code (represented as Turing machine).

Let us define thread execution time function as g(ti) and
error function as

e =

Tc
∑

i=1

|di − g(ti)|, (2)

where Tc is threads count. This function represents the error,
which corresponds with the difference between required dead-
line time and measured time of running thread. Using priorities
we can define error as

Fig. 2. OS terminal screenshot

e =
Tc
∑

i=1

|di − g(ti)|
1

pi
, (3)

where lower pi means higher priority.
Consider that the faster execution of the thread is not

an issue. This fact means that CPU spends remaining time
waiting (executing other threads or sleeping). We can write
this as (4) and (5).

ei =

{

di − g(ti) if di < g(ti)

0 else
(4)

e =

Tc
∑

i=1

|e(ti)|
1

pi
(5)

Threads with higher priority (smaller pi) have
bigger influence on the total error. To implement
priorities, we define following structure for each thread:

Listing 2. thread structure

s t r u c t sThread {
u16 cn t , i c n t ;
u32 f l a g ;
u32 ∗ sp ;

} ;

where cnt and icnt are counters used for priority scheduling,

1200 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

corresponding with p and k respectively in (1). When
thread is created, p and k are set to priority value and
remain constant (variability during execution is also possible,
but not tested yet). Each nonzero k is decremented after
each timer interrupt. Thread with smaller k is chosen
for the next execution and its k is loaded back to p.
Realization in C code is presented on following code listings.

Listing 3. priority scheduler

u32 i , min_i = 0 ;

/∗ f i n d t h r e a d w i t h minimum c n t ∗ /

f o r (i = 0 ; i < THREADS_MAX_COUNT; i ++)
{

i f (_ _ t h r e a d _ _ [i] . c n t <
_ _ t h r e a d _ _ [min_i] . c n t)

min_i = i ;

/∗ decremen t c o u n t e r s ∗ /

i f (_ _ t h r e a d _ _ [i] . c n t != 0)
_ _ t h r e a d _ _ [i] . cn t −−;

}

_ _ t h r e a d _ _ [min_i] . c n t =
_ _ t h r e a d _ _ [min_i] . i c n t ;

_ _ c u r r e n t _ t h r e a d _ _ = min_i ;

For full function, other common functions like thread
creating, waiting or setting into waiting state are implemented.

Listing 4. kernel functions

void s c h e d _ o f f () ;
void sched_on () ;

void y i e l d () ;

u32 g e t _ t h r e a d _ i d () ;

void k e r n e l _ i n i t () ;
void k e r n e l _ s t a r t () ;

u32 c r e a t e _ t h r e a d (
void (∗ t h r e a d _ p t r) () ,
t h r e a d _ s t a c k _ t ∗ s _ p t r ,
u32 s t a c k _ s i z e ,
u16 p r i o r i t y) ;

void k e r n e l _ p a n i c () ;

void s e t _ w a i t _ s t a t e () ;
void w ak e _ u p _ th r e ad s () ;
void w a k e _ u p _ t h r e a d s _ i n t () ;

void j o i n (u32 t h r e a d _ i d) ;

Fig. 3. FPU and CPU calculation times

IV. EXPERIMENTAL RESULTS

For testing OS, few experiments were performed. First one
was aimed for the basic multitasking test and comparison of
performance using hardware and software emulated float per-
formance. There were four running threads in this experiment.
One thread was calculating Julia set fractal and results were
displayed on LCD. Total number of calculating points was set
to 96x96. Quantity of algorithm iterations was changing from
interval 〈4, 40〉. Performance result is represented in the Fig. 3.
In this test, basic functionality has been tested, especially
preemptive multitasking, timers and terminal interface.

Next testing was focused on the real-time processing ability.
There were two main and six child threads (only first three
are shown in figures). Each thread was waiting specified time
(required waiting time) and this time was measured. Difference
between required and measured time was used to compare
round robin and priority scheduler scheduling algorithms. We

Fig. 4. Round robin real-time test

MICHAL CHOVANEC, PETER ŠARAFÍN: REAL-TIME SCHEDULE FOR MOBILE ROBOTICS AND WSN APLICATIONS 1201

Fig. 5. Priority scheduler real-time test

can see round robin results in the Fig. 4 (all threads have same
results). It can be seen, that required value is bellow measured
lines and the time difference is around 1ms. Little peaks are
consequence of timer resolution, which is 1ms. Situation with
priority scheduler can be seen in the Fig. 5.

Threads with the maximum priority perfectly meet the
conditions. Threads with lower priorities were executing for
much longer time. Following priority values pi have been used:

• PRIORITY_MAX = 8
• PRIORITY_MID = 128
• PRIORITY_MIN = 255

Fig. 6. Schedulers error comparison

Fig. 7. Priority scheduler real-time test with similar priorities

We can use (5) to compute total error from meassured
times. Result is shown in the Fig. 6. From priority scheduling
algorithm, it can be seen that it converges into round robin
when priorities are equal. This experiment was accomplished
and results are presented in the Fig. 7.

V. CONCLUSION

In this paper, priority scheduler has been explained and OS
was briefly introduced. From experimental results, we can see
that priority scheduler has better results, when considering
error function definition (5). Of course, if we consider maximal
deadline time without looking for priorities, round robin
has better results. For applications, where same priority is
necessary, round robin (or priority scheduler with same pri-
orities represented in the Fig. 7) provides better solution. For
applications, where it is needed to prioritize some processes,
priority scheduler is of course better choice.

REFERENCES

[1] Whill Hentzen, The Software Developer’s Guide, 3rd Edition, ISBN:
1-930919-00-X, 2002

[2] John A. Stankovic, Anthony D. Wood, Tian He,
Realistic Applications for Wireless Sensor Networks,
http://www.ent.mrt.ac.lk/dialog/documents/ERU-2-wsn.ppt

[3] Nuwan Gajaweera, Wireless Sensor Networks,
http://www.ent.mrt.ac.lk/dialog/documents/ERU-2-wsn.ppt

[4] LM4 flahsing tool, https://github.com/utzig/lm4tools/tree/master/lm4flash
[5] Texas instruments TivaC Launchpad, http://www.ti.com/tool/ek-

tm4c123gxl
[6] Suzuha OS sources https://github.com/michalnand/suzuha_os
[7] Ishwari Singh Rajput and Deepa Gupta : A Priority based Round Robin

CPU Scheduling Algorithm for Real Time Systems, ISSN: 2319 1058,
2012

1202 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

