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ABSTRACT

Transformers have drawn attention in the MIR field
for their remarkable performance shown in natural lan-
guage processing and computer vision. However, prior
works in the audio processing domain mostly use Trans-
former as a temporal feature aggregator that acts similar to
RNNs. In this paper, we propose SpecTNT, a Transformer-
based architecture to model both spectral and temporal se-
quences of an input time-frequency representation. Specif-
ically, we introduce a novel variant of the Transformer-in-
Transformer (TNT) architecture. In each SpecTNT block,
a spectral Transformer extracts frequency-related features
into the frequency class token (FCT) for each frame. Later,
the FCTs are linearly projected and added to the tempo-
ral embeddings (TEs), which aggregate useful information
from the FCTs. Then, a temporal Transformer processes
the TEs to exchange information across the time axis.
By stacking the SpecTNT blocks, we build the SpecTNT
model to learn the representation for music signals. In ex-
periments, SpecTNT demonstrates state-of-the-art perfor-
mance in music tagging and vocal melody extraction, and
shows competitive performance for chord recognition. The
effectiveness of SpecTNT and other design choices are fur-
ther examined through ablation studies.

1. INTRODUCTION

Deep learning models have been actively used in recent
music information retrieval (MIR) research. Although the
spirit of deep learning is end-to-end learning, however, var-
ious assumptions are made during making design choices
of deep learning models.

Regarding assumptions on spectrograms, the most pop-
ular form of music audio representation in deep learning,
the time-axis is often considered to be the axis of sequence
while the frequency-axis is the axis of feature. For ex-
ample, in [1, 2], recurrent layers were applied to model a
spectrogram as a sequence of spectra. In [3], convolutional
layers were used to aggregate features over time after the
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first convolutional layer models multiple frames of spec-
tra as feature. On the other hand, in [4], two-dimensional
convolutional layers were used, equating the frequency-
and time-axes. There are also hybrid approaches, such as
convolutional recurrent neural networks (CRNN) [5] and
convolutional Transformer [6], in which recurrent layers
or Transformer are applied along the time axis.

In spectrograms, it is well known that there are mean-
ingful spectral patterns. Different music components exist
in different frequency ranges, and there is a very strong
spectral correlation called harmonics. Since a normal
convolutional layer can model local patterns only, sev-
eral approaches have been proposed to model harmonics
along the frequency axis. Harmonic Constant-Q Transform
(HCQT) is a novel multi-channel time-frequency represen-
tation that was proposed to overcome the limitation by im-
proving the input representation of audio [7]. Harmonic
CNNs (convolutional neural networks) [8] are designed
to model the harmonic pattern by modifying the convolu-
tional filters. However, these solutions only model some of
the spectral patterns, reminding the need for a more gen-
eral solution with higher flexibility.

Transformers have successfully demonstrated their abil-
ity to model the sequential data with long-term (inter-) de-
pendency and invariance. This is achieved by multiple as-
pects of Transformers. First, the key-query mechanism
enables modeling the relationship of every combination
of the instances. Second, positional encoding helps the
model to take the order of instances into account. Through
stacked attention layers, the input sequence is transformed
into a sequence of representations that are based on the
inter-dependency of the input. The prior works in audio
analysis are mostly based on a similar, naive approach
where Transformer is used as a temporal feature aggrega-
tor that acts similar to RNNs (recurrent neural networks),
with few exceptions such as [9].

Recently, Transformer in Transformer (TNT), a variant
of Transformer that arranges two Transformers in a hi-
erarchical manner, was proposed [10] for image recogni-
tion. In TNT, an inner (lower-level) Transformer is applied
to extract the local pixel-level embeddings, and then the
pixel-level embeddings are projected to the patch-level em-
bedding space which is later handled by an outer (higher-
level) Transformer to summarize a global representation.
One can simply apply TNT for audio by treating a song
as an image, which is comprised of a sequence of frames
(patches) while the frequency bins within frames are con-
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sidered as pixels. However, from our pilot study, we find
this approach results in unstable training and only achieves
similar performance compared to using the original Trans-
former. This is possibly because the amount of training
data is insufficient or the interpretation of frequency se-
quences is different from that of pixel sequences. There-
fore, non-trivial modifications from the original idea of
TNT should be made.

In this paper, we propose SpecTNT, a time-frequency
transformer that models spectrograms as a sequence along
both time- and frequency-axes. Similar to TNT, SpecTNT
uses two Transformers hierarchically. However, the tem-
poral local embeddings extracted from the inner Trans-
former are not directly sent to the outer Transformer. In-
stead, a special token called frequency class token (FCT)
is appended to aggregate the important spectral features
of each frame. The FCT is then projected to the global
(temporal) embedding space to enable the information ex-
change across the time axis. This design allows the impor-
tant local information is passed to the outer Transformer
through FCT while reducing the dimensionality of the data
flow compared to the original TNT. As a result, it helps
SpecTNTs to perform well on audio-related tasks even
with smaller datasets.

Our contributions can be summarized as follows: (1)
to the best of our knowledge, our work is the first attempt
to leverage TNT-based architecture to learn the representa-
tions for audio; (2) we propose SpecTNT, a novel modifi-
cation of TNT to better fit the music data for MIR tasks; (3)
we conduct extensive experiments to demonstrate the ca-
pability of SpecTNT in various MIR tasks – vocal melody
extraction, music auto-tagging, and chord recognition.

2. RELATED WORK

In this section, we review the literature in music tagging,
vocal melody extraction, and chord recognition – three
well-defined MIR tasks adopted in the experiments to eval-
uate SpecTNT. Due to space limitation, we focus on the re-
cent trends since the adoption of deep learning approaches.

Music tagging is a multi-label classification task that
annotates a music audio clip with various types of la-
bels such as genres (rock, jazz), instruments (vocal, guitar,
drums), and mood (happy, sad) [11]. Since a CNN-based
approach has been first introduced [3], various advanced
architectures have been used including a two-dimensional
CNN [4], a sample-level CNN [12], and a two-dimensional
ResNet [13]. Due to the open nature of the tag set, among
MIR tasks, music tagging is relatively a vague task – The
exact mechanism of annotating tags is not fully known.
This aspect suits well for the fundamental motivation of
deep learning, which is, to reduce inductive bias and let
the data speak [14].

The goal of vocal melody extraction is to estimate the
F0 frequency of the (dominant) vocal track in given mix-
tures. Various deep learning methods have been adopted:
a fully-connected neural network with Hidden Markov
Model [15], a bidirectional long short-term memory net-
work [1], a CNN [7], encoder-decoder networks [16, 17]

Figure 1. The block diagram of the whole SpecTNT. The
details of positional encoding and SpecTNT module are
illustrated in Figure 2 and 3, respectively.

and a CRNN [18]. Recently, a frequency-temporal atten-
tion module was introduced in [19] to learn the relevant
regions for predictions. Some special representations are
proposed including HCQT [7], a combination of frequency
and periodicity [20], and source-separated tracks [21, 22].

Chord recognition is a MIR task to “produce a time-
varying symbolic representation of the signal in terms of
chord labels” [23]. Compared to music tagging, we clearly
understand how chords of music signals can be decided –
They are based on the combination of the present musical
notes. Therefore, models have been designed to take ad-
vantage of note representations such as constant-Q trans-
form (CQT) or chromagram. The early deep learning-
based chord recognition models are based on a RNN [24]
and a CNN [25]. Later, a CRNN has been used in [23] to
combine the merits of RNNs and CNNs. More recently,
(bi-directional) Transformer was used, achieving state-of-
the-art performance [26, 27].

3. METHODS

As illustrated in Figure 1, the proposed SpecTNT architec-
ture consists of a convolutional module, positional encod-
ing, SpecTNT module, and output module.

The input time-frequency representation is first pro-
cessed with a stack of convolutional layers for local feature
aggregation. Then, the positional information is added to
the data. In the SpecTNT module, the intermediate rep-
resentation is fed into a stack of SpecTNT blocks. Lastly,
the output module projects the final embedding into the de-
sired dimension for different tasks. We detail each module
in the following subsections.

3.1 Convolutional module

The purpose of this convolutional module is to employ
different strategies for generating intermediate representa-
tions with pooling or striding convolution techniques de-
pending on the nature of the task. Let the input time-
frequency representation be S ∈ RT×F×K where T is
the number of time-steps, F is the number of frequency
bins, and K is the number of channels. S is first passed
into a stack of convolutional layers. We utilize the residual
unit proposed in [28] to be the basic building block of the
convolutional module. The representation after the con-
volutional module is denoted as S′ = [S′1, S

′
2, ..., S

′
T̂
] ∈

RT̂×F̂×K̂ , where F̂ , T̂ , and K̂ are the numbers of fre-
quency bins, time-steps, and channels, respectively.
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Figure 2. An illustration of the application of Fre-
quency class token (FCT) and frequency positional encod-
ing (FPE). F refers to the number of frequency bins of the
input time-frequency representation.

3.2 Frequency Class Token

As depicted in Figure 2, Frequency class token (FCT) is an
embedding vector initialized with all zeros to serve as the
placeholder and defined as ct = 01×K̂ . Let S′t ∈ RF̂×K̂
denote the input data at each time-step t. The input data
and FCT are concatenated as following:

S′′t = Concat[ct, S
′
t]. (1)

Here, the role of FCT ct is similar to the classification to-
ken [29]. It is expected to extract spectral features from
each frequency bin of the t-th frame during the spectral
self-attention in the later stages.

3.3 Positional encoding

In the original Transformer paper, a sinusoidal positional
encoding was added to the input sequence to make the fol-
lowing layers aware of the order of input elements [30].
From a similar motivation, we adopt a learnable positional
embedding to encode the sequence order of frequency bins.

We encode the positional information of frequencies by
adding the frequency positional embedding (FPE) to the
data S′′. FPE is a learnable matrix Eφ ∈ R(F̂+1)×K̂ . The
addition process is done at each time-step t:

Ŝt = S′′t ⊕ Eφ, (2)

where ⊕ is the element-wise addition, and the resulting
FCTs are denoted by Ĉ = [ĉ1, ĉ2, ..., ĉT̂ ]. Then, the re-
sulting representation Ŝt is able to carry information about
pitch and timbre to the following attention layers. For ex-
ample, a pitch in the signal can lead to high energy at a spe-
cific frequency bin, and the positional embedding makes
FCT aware of the position of that frequency

3.4 Transformer in Transformer (TNT)

Inspired by the architecture in [10], we design a SpecTNT
block to handle audio data, as depicted in Figure 3. The
SpecTNT block holds two data flows: spectral embedding
(SE) and temporal embedding (TE). The two data flows
are respectively processed with two Transformer encoders,

Figure 3. The block diagram of a SpecTNT block. Tensors
and modules are illustrated with non-rounded and rounded
rectangles, respectively. We specify the non-batch shape
of tensors for clarity, and explain (a) – (d) in the main text.

namely temporal Transformer and spectral Transformer.
Because the SpecTNT block is repeated multiple times in
the SpecTNT module, we introduce a notation l to specify
the layer index for both SE and TE.

In the following sections, we explain each component
of a SpecTNT block (Section 3.4.1 through Section 3.4.3)
and the entire procedure (Section 3.4.4).

3.4.1 Temporal Embedding

In the proposed model, we introduce the temporal embed-
ding (TE) to distribute the information of FCTs across the
time axis. We can write the TE at layer l as:

El = [el1, e
l
2, ..., e

l
T̂
], (3)

where elt ∈ R1×D is a TE vector at time t and D is the
number of features. In practice, TE is a learnable matrix
and is initialized randomly as E0 ∈ RT̂×D prior to enter-
ing the first SpecTNT block.

There are two bridges between the spectral and tempo-
ral data flows. We use FCTs, the first frequency bin of
SEs, for this communication. First, TE sends information
to FCTs by passing elt to a linear projection layer. Then,
the projected D-dimensional vectors are added to FCTs
(Figure 3-(a)). Second, after spectral transformer encoder
(Figure 3-(c)), FCTs (purple arrays) are projected back to
K-dimension (Figure 3-(d)). Note that TE also has a skip-
connection (Figure 3-(b)).

3.4.2 Spectral Embedding

The output from the positional encoding, Ŝ, will serve as
an input SE for the first SpecTNT block and is denoted as
Ŝ0. As mentioned above, SE includes FCTs, which help
aggregate useful spectral information from the local. As a
general notation, we write the data flow of SE as:

Ŝl =
[
[ĉl1, Ŝ

l
1], [ĉ

l
2, Ŝ

l
2], ..., [ĉ

l
T̂
, Ŝl
T̂
]
]
, (4)

where l = 0, 1, ..., L, and clt and Ŝlt are respectively the
FCTs of l-th layer and spectral data at time-step t. Then,
SE can interact with the TE through FCTs, so the local
spectral features can be processed in a temporal and global
manner.
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3.4.3 Transformer Encoder

A Transformer encoder is composed of three components:
multi-head self-attention (MHSA), feed-forward network
(FFN), and layer normalization (LN).

Self-attention (SA) [30] plays the pivotal role in a
Transformer encoder. It takes three inputs: Q ∈ RT×dq ,
K ∈ RT×dk and V ∈ RT×dv which represent the queries,
keys, and values, respectively. T is the number of time-
steps, and dq , dk and dv indicate the dimension of features
for Q, K, and V , respectively. The output is the weighted
sum over the values based on the dot product similarity
between queries and keys at the corresponding time-step.

The MHSA module [30] is an extension of SA. It splits
the three inputs Q, K and V along their feature dimension
into h number of “heads” and performs multiple SA’s, each
on a head, in parallel. The outputs of heads are then con-
catenated and linearly projected into the final output. The
FFN module has two linear layers with a GELU activa-
tion function in the middle. We also adopt the pre-norm
residual units [31] to stabilize the training.

With the three components, the Transformer encoder
(either spectral or temporal) is built and denoted by

Xl = Enc(Xl−1), (5)

where the operations within it can be written as

X ′l−1 = Xl−1 +MHSA(LN(Xl−1)),

Xl = X ′l−1 + FFN(LN(X ′l−1)).
(6)

3.4.4 Stacking SpecTNT Blocks

We stack three SpecTNT blocks for the SpecTNT module.
The module starts with inputting the initial SE, Ŝ0, and the
initial TE, E0, to the first SpecTNT block.

For a SpecTNT block, there are four steps. First, each
FCT vector in Ŝl−1 is updated by adding the linear projec-
tion of the associated TE vector (Figure 3-(a)):

c̃l−1t = ĉl−1t ⊕ Linear(el−1t ), (7)

where Linear(·) is a shared linear layer. Second, the SE
S̃l−1 (with the updated FCTs [c̃l−1t ]T̂t=1 at the first row) is
passed through the spectral Transformer (Figure 3-(c)):

Ŝl = SpecEnc(S̃l−1). (8)

Third, each FCT vector in Ŝl is linearly projected and
added back to the corresponding TE vector (Figure 3-(d)):

ẽl−1t = el−1t ⊕ Linear(ĉlt). (9)

Finally, we propose to encode only the updated TE (i.e.,
Ẽl−1 = [ẽl−1t ]T̂t=1), instead of TE + SE, with the temporal
Transformer:

El = TempEnc(Ẽl−1). (10)

This operation builds up the relationship along the time
axis and is the key role that leads to better model and data
efficiency. We consider the temporal Transformer only
needs to see the information of the frequency bins which
are attended by the FCT and such design largely reduces
the size of the model and also improves the performance
on smaller datasets in preliminary experiments.

Task (pf , pt) (k, d) (hk, hd) od
Music tagging (1, 4) (96, 96) (4, 8) 50
Vocal melody extraction (4, 1) (128, 128) (8, 8) (T , 481)
Chord recognition (1, 1) (64, 256) (4, 8) (T , 25)

Table 1. Settings of SpecTNT for different tasks, where pf
and pt represent the pooling ratio we apply along the fre-
quency and time axis in the convolutional module, k and d
are the feature dimension, hk and hd denotes the number
of heads for the spectral and temporal transformer encoder
respectively, and finally, od represents the output dimen-
sion, T indicates frame-wise predictions.

3.5 Output Module

The output TE of the 3rd SpecTNT block, E3, can be used
towards the final output. For frame-wise prediction tasks
such as vocal melody extraction and chord recognition, we
feed each TE vector e3t into a shared fully-connected layer
with sigmoid or softmax function for final output. For
song-level prediction tasks such as music tagging, we ini-
tialize a temporal class token εl (l = 0) concatenated at the
front of El:

Êl = [εl, el1, e
l
2, ..., e

l
T̂
], (11)

Note that εl does not have an associated FCT in SE, but is
for aggregating TE vectors along the time axis. Finally, we
feed ε3 to a fully-connected layer, followed by a sigmoid
layer, to get the probability output.

4. EXPERIMENTS

In this section, we evaluate SpecTNT on various types of
MIR tasks to demonstrate its effectiveness and versatility.
We choose three MIR tasks – music tagging, vocal melody
extraction, and chord recognition.

4.1 Implementation

SpecTNT is implemented using Pytorch [32]. Due to the
difference in dataset sizes and the natures of tasks, we use
different hyper-parameters for the tasks as shown in Ta-
ble 1. All models include dropout with a rate of 0.15 in the
Transformers of the TNT modules. We use AdamW [33]
as the learning optimizer. The initial learning rates are set
to 10−3 for vocal melody extraction, 5 × 10−4 for mu-
sic tagging and chord recognition, and a weight decay of
5× 10−3 is set for all the tasks.

For the input representation of music tagging, we re-
sample the audio at the 22,050 Hz and use an input
length of 4.54 second. Log-magnitude mel-spectrograms
are computed with 128 mel filter banks, 1024 samples of
Hann window, and a hop size of 512 samples. For vocal
melody extraction, input waveforms are re-sampled at the
16,000 Hz sample rate. We take 3-second segments input
and their log-magnitude spectrograms are computed with
2048 samples of Hann window and a hop size of 320 sam-
ples. For chord recognition, we try two types of input rep-
resentation. The first input type is 24-dimensional chroma
features with a frame rate of 46 ms [34]. Out of the whole
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track, we use 400 frames as an input. The second input
type is CQT, which is computed from a 18.2 second audio
at the 22,050 Hz sample rate. The CQT includes six oc-
taves starting from C1 (32.70 Hz) with 24 bins per octave,
and is based on a hop size of 2048.

4.2 Ablations Study

To validate the design choices we make, we consider three
various models by progressively removing the components
of SpecTNT as follows.

A1: Remove the operation of (a) in Figure 1 (i.e., Eq.
7) and initialize the FCTs as learnable vectors.

A2: Neglect the FCTs but use the full spectral embed-
dings for operations (a) and (c) in Figure 1 (i.e., Eq. 7
and Eq. 9). The resulting model can be seen as using the
original TNT block [10].

A3: Remove the data flow of spectral embedding, so
the model is reduced to the original Transformer [30] for
aggregating the input sequence in a traditional way.

In the following evaluations of different tasks, we will
include the results of the three variants for comparison.

4.3 Music Auto-tagging

Datasets Million song dataset (MSD) [35] consists
of one million audio previews and a subset of it has
crowd-sourced music tags. Typically, a subset with
the 50 most frequent tags are used with randomly split
train/validation/test sets [4]. However, these tags are noisy
and the random split without considering artist overlaps
may cause unintended information leakage. Therefore, we
take advantage of manually cleaned 50 tags from a previ-
ous work [36] and split the dataset based on artist names
so that there is no overlapped artists among the train-
ing/validation/test sets. As a result, we use 233,147 tracks,
of which 70%, 15%, and 15% are allocated for training,
validation, and test sets, respectively. During training, we
apply random data augmentation to the input waveform
following the pipeline introduced in [37].

Baseline Models Two baselines methods are compared.
The first is CNNSA [6], which employs a convolutional
front-end and a transformer encoder to aggregate the tem-
poral feature. The second baseline [13] uses 7-layer short-
chunk CNN with residual connection, followed by a fully-
connect layer for final output. This model has shown state-
of-the-art performance in music auto-tagging. We utilize
the original implementation of [13] to train the baseline
under the same configuration as our proposed model.

Evaluation Metrics Area Under Precision Recall Curve
(PR-AUC) and Area Under Receiver Operating Character-
istic curve (ROC-AUC) are used.

Results The results of music auto-tagging are summa-
rized in Table 2. SpecTNT outperforms prior state-of-
the-art models in both metrics. In the ablation study, A1
performs the worst, while A2 and A3 show similar re-
sults to SpecTNT. This can be explained from the perspec-
tive of data distribution: the top 50 tags of MSD dataset

Method ROC-AUC PR-AUC
Short-chunk CNN + Res 91.55 37.08
CNNSA 91.57 37.09
SpecTNT 92.08 38.62
A1 91.92 37.85
A2 92.07 38.59
A3 92.06 38.46

Table 2. Results (in %) for automatic music tagging.

are mostly related to genre and style, both of which need
enough temporal information to characterize. In A1, the
process of updating FCTs with TEs is removed and this
may interfere the temporal information flow being shared
with the spectral data and cause the performance drop.
By looking into the precision scores of individual tags
where SpecTNT outperforms A3, we observe that instru-
mental tags such as “piano” and “guitar” can benefit from
SpecTNT, because they may require more spectral infor-
mation to model well. This shows the benefit of adding
the spectral transformer. Also, the smaller performance
difference among SpecTNT, A2, and A3 indicates that the
size of MSD dataset might be enough to support architec-
tures with less prior knowledge. That is, A2 and A3 are
able to sufficiently learn from MSD the useful information
without further utilizing FCTs to interact with the temporal
embeddings.

4.4 Vocal Melody Extraction

Datasets We use two datasets to train the models: MIR1K
[38], which includes 1000 Chinese karaoke clips, and
a 48-song subset of MedleyDB [39] that includes vocal
tracks. Since the training sets are relative small, we adopt a
pipeline with four steps of augmentation techniques. There
is a chance for each step to be applied to a training sam-
ple: i) pitch-shifting by up to ±2 semitones (with 100%
chance), ii) replacing the original background track with a
randomly selected, different background track (with 50%
chance), iii) changing the gain of the vocal within [−4, 2]
dB (with 100 % chance), and iv) completely removing the
background track (with 10% chance).

We choose three test sets for evaluation: ADC2004,
MIREX05, and MedleyDB. For ADC2004 and MIREX05,
we only use the samples that have melody sung by hu-
man voice. This results in 12 samples from ADC2004
and 9 samples from MIREX05. For MedleyDB, we only
use the songs that have singing voice included in their
“MELODY2” annotations, yielding 12 songs. The ground-
truth pitches are obtained from the MELODY2 annotations
within the intervals marked as “female singer” or “male
singer.” These 12 songs are not included in training.

Baseline Models We compare our model with two base-
line models. The first baseline is the joint detection and
classification model (JDC) [18] based on CRNN. We use
the most representative architecture, called “Main” in [18].
The second baseline is the frequency-temporal attention
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Dataset ADC2004 MIREX05 MedelyDB
Method OA RPA VR OA RPA VR OA RPA VR
JDC 71.2 68.1 73.1 86.0 80.7 85.8 77.0 64.8 73.9
FTANet 71.2 69.3 72.9 89.9 86.5 91.2 79.4 66.0 72.0
SpecTNT 85.3 85.0 88.3 91.7 90.4 95.2 78.4 77.9 87.4
A1 84.8 84.2 89.1 90.2 88.3 94.1 77.9 75.0 85.4
A2 84.9 84.5 88.3 89.7 87.7 93.1 79.3 75.6 84.0
A3 84.5 83.7 87.2 88.9 87.2 92.0 74.5 72.7 83.1

Table 3. Results (in %) for vocal melody extraction.

network (FTANet) [19], which is a CNN-based model
that employs attention mechanism along the frequency and
time axis. We re-implemented JDC and FTANet using Py-
torch and used the suggested hyper-parameters in [18, 19].
Both models are trained under the same configuration (e.g.,
data split and augmentation process) as our model.

Evaluation Metrics Overall Accuracy (OA), Raw Pitch
Accuracy (RPA), and Voice Recall (VR) are adopted for
evaluation. We use mir_eval library [40] to compute the
performance values with a tolerance range of 50 cents.

Results Table 3 shows the results for vocal melody extrac-
tion. SpecTNT outperforms the baselines by a large mar-
gin in terms of RPA and VR. To the best of our knowledge,
this is the first attempt to apply Transformers to this task
and the results demonstrate its superiority over the CNN
and CRNN counterparts. It is worth noting that FTANet is
trained with an input representation specifically designed
for pitch detection [20], but our model works well with
spectrogram input. In addition, A3 shows the largest per-
formance drop, and this demonstrates the usefulness of
spectral Transformer when training on smaller data.

4.5 Chord Recognition

Datasets We use the Billboard dataset to evaluate
SpecTNT for the chord recognition task. The dataset con-
tains 890 pieces selected from the Billboard chart slots
[34]. Following [27], duplicates pieces are first removed
to leave 739 unique pieces in total. The official release of
the dataset only comes with 24-D chroma vectors, which
might be insufficient to fully demonstrate the effectiveness
of SpecTNT. Therefore, we manually collected the audio
files based on the provided meta-data. Due to the poten-
tial version mismatch between our audio files and that for
official chord annotations, we applied dynamic time warp-
ing (DTW) [41] to validate each song. Specifically, we
first replicated the chroma features of the official release
using Sonic Annotator [42] on our audio files, and then
calculated the alignment cost between the two versions of
chromagrams for each song using DTW. We selected 462
songs with the lowest alignment costs. The songs with
ID’s smaller than 1000 are used for training and the re-
maining for testing. To augment the training data (chroma
and audio), we shifted the pitches by up to ±6 semitones.
For evaluation, we adopt the “maj/min” label set with 25
classes, where 24 are major and minor triads across the 12

Method Chroma CQT
CR2 78.92 73.38
BTC 77.98 73.92
HT 82.68 -
SpecTNT 80.47 75.62
A1 80.10 74.83
A2 78.76 74.44
A3 77.69 74.99

Table 4. Results (in %) for chord recognition task

semitones plus an additional “no chord” class.

Baseline Models We compare to three baseline models:
i) CR2 model from [23], which is a CRNN-based model,
ii) a bi-directional Transformer (BTC) [26], and iii) Har-
mony Transformer (HT) [27]. BTC and HT are known to
be the current state-of-the-art models for chord recogni-
tion. For CR2 and BTC, we use the official implementa-
tions with the suggested default settings for both chroma-
gram and CQT inputs. For HT, we report the chromagram-
based results in [27], since the train/test data split and data
augmentation are very similar to us. We did not conduct
experiments using HT with CQT input because non-trivial
modifications are required for the model.

Evaluation Metrics The Weighted Chord Symbol Recall
(WCSR) score is reported as evaluation metric. WCSR is
the percentage of correctly identified frames and can be
computed by tc

ta
× 100(%), where tc is the duration of the

correctly predicted segments, and ta is the total duration of
the test segments.

Results Table 4 shows the results for chord recognition.
For “Chroma” case, the full Billboard dataset is used. For
“CQT” case, the 462 songs with audio are used. From the
results, SpecTNT can outperform all the baselines except
HT (with chromagram input). However, HT may benefit
from joint training with an additional segmentation loss,
so the comparison could be unfair. Compared to BTC and
CR2, SpecTNT achieves better performance for both types
of input. For the ablation study, since we used less data
for CQT input, A2, which is the largest model, may suffer
from over-fitting and thus performs the worst.

5. CONCLUSION

We proposed SpecTNT, a novel Transformer architecture
that models spectrograms along both the time and fre-
quency axes. The introduction of FCT enables effective
communication between the spectral embeddings and tem-
poral embeddings, maximizing the benefit of Transformer
encoder for flexible, local, and global modeling. In ex-
periments, SpecTNT has demonstrated state-of-the-art per-
formance in music tagging and vocal melody extraction
and shown competitive performance in chord recognition.
For future work, we plan to apply SpecTNT to other MIR
tasks, such as beat tracking and structure segmentation.
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