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Abstract we present a new method for automatically detecting transient deformation signals from
geodetic time series. We cast the detection problem as a least squares procedure where the design matrix
corresponds to a highly overcomplete, nonorthogonal dictionary of displacement functions in time that
resemble transient signals of various timescales. The addition of a sparsity-inducing regularization term
to the cost function limits the total number of dictionary elements needed to reconstruct the signal.
Sparsity-inducing regularization enhances interpretability of the resultant time-dependent model by
localizing the dominant timescales and onset times of the transient signals. Transient detection can then be
performed using convex optimization software where detection sensitivity is dependent on the strength
of the applied sparsity-inducing regularization. To assess uncertainties associated with estimation of the
dictionary coefficients, we compare solutions with those found through a Bayesian inference approach

to sample the full model space for each dictionary element. In addition to providing uncertainty bounds
on the coefficients and confirming the optimization results, Bayesian sampling reveals trade-offs between
dictionary elements that have nearly equal probability in modeling a transient signal. Thus, we can
rigorously assess the probabilities of the occurrence of transient signals and their characteristic temporal
evolution. The detection algorithm is applied on several synthetic time series and real observed GPS time
series for the Cascadia region. For the latter data set, we incorporate a spatial weighting scheme that
self-adjusts to the local network density and filters for spatially coherent signals. The weighting allows for
the automatic detection of repeating slow slip events.

1. Introduction

We define transient deformation signals as nonperiodic, nonsecular accumulation of strain in the crust. Over
seismically active regions, transients are often the surface manifestations of slow slip events that are diffi-
cult to measure directly with traditional seismological instruments [e.g., Rogers and Dragert, 2003; McGuire
and Segall, 2003; Gomberg et al., 2010; Kato et al., 2012; Szeliga et al., 2008]. In volcanically active regions,
transients frequently correspond to periods of ground deformation caused by underlying magmatic activity
[e.g., Ji and Herring, 2011; Langbein, 2003; Masterlark and Lu, 2004; Pritchard and Simons, 2004]. Previously
studied transient events vary widely in magnitude, ranging from spatially coherent surface motions of
several centimeters to more subtle motions of only a few millimeters. These signals have also varied widely
in duration from year-long signals in subduction zone areas [e.g., Miyazaki et al., 2003] to very short episodes
lasting only a few days [e.g., Rogers and Dragert, 2003]. Despite the highly nonuniform properties associated
with transients, their detection has relied on their combined temporal and spatial coherency, i.e., they are
defined by a measurable temporal evolution and systematic spatial structures [e.g., Ji and Herring, 2013].

Detection of transient events with unknown magnitudes and durations requires precise measurements of
surface displacements over sufficiently large regions. Over the past two decades, the availability of such
measurements for monitoring crustal deformation has rapidly increased. Large-scale continuously operating
GPS networks, such as the Plate Boundary Observatory (PBO) network in the western United States
(http://pboweb.unavco.org), are used to derive station positions with typical daily repeatabilities of 2-3
mm for horizontal positions and 7-8 mm for vertical positions [Williams et al., 2004]. In addition to regional
coverage, many GPS networks are also very dense, with 1100 permanent GPS stations for PBO, 1200 for
Japan's GEONET network [Sagiya, 2004], over 200 for Taiwan [Hsu et al., 2009; Hung and Rau, 2013], over 200
for New Zealand [Wallace and Beavan, 2010], etc. Geodesy based on repeat imagery (e.g., interferometric

RIEL ET AL.

©2014. American Geophysical Union. All Rights Reserved. 5140


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9356
http://dx.doi.org/10.1002/2014JB011077
http://pboweb.unavco.org

@AG U Journal of Geophysical Research: Solid Earth 10.1002/2014JB011077

synthetic aperture radar (InSAR)) naturally provides spatially dense observations of surface motion but
typically suffers from poor temporal sampling. However, the advent of long time span InSAR time series,
new methods for analyzing the temporal evolution of signals contained in interferograms, and future InSAR
missions with approximately weekly repeat times will enable large-scale, high-resolution studies of crustal
deformation with sufficiently high temporal resolution to capture many transient processes [Covello et al.,
2010; Hetland et al., 2012; Agram et al., 2013].

Each geodetic data type has its own unique set of error characteristics which complicate transient detection.
GPS time series typically contain Gaussian white noise plus time-correlated random walk components which
can resemble transient signals [Zhang et al., 1997; Langbein, 2004]. GPS networks exhibit spatially correlated
common mode errors which must be estimated and removed as part of any analysis [Dong et al., 2006].
Many of these errors can be mitigated by analyzing an ensemble of data sets. For a given GPS network den-
sity, time-correlated signals in GPS data that are evident only at individual stations can be classified as either
colored noise or more local processes. Similarly, for INSAR time series, phase delays induced by heteroge-
neous propagation velocities in the atmosphere can be modeled out or mitigated by ensemble averaging of
line-of-sight velocities or other time series techniques [e.g., Williams et al., 1998; Berardino et al., 2002; Jolivet
et al, 2011; Hetland et al., 2012]. In addition to noise characteristics, the presence of other confounding sig-
nals, such as secular and seasonal effects, can complicate detection of transients. When data volume is large,
properly handling sources of errors and nontransient signals makes manual inspection of the data infeasible
and requires a sufficiently automated detection algorithm.

We propose a new method for estimating the time and duration of anomalous transient signals in geodetic
time series by employing sparse estimation techniques. This method makes use of a dictionary of
nonorthogonal time evolution functions that resemble temporally correlated transient events. Estimating
the coefficients of the dictionary allows for the reconstruction of transient signals of varying durations and
start times. The flexibility of the dictionary also allows for inclusion of known signals, such as seasonal,
secular, coseismic/instruments offsets, and postseismic deformation. The nonorthogonality of the dictio-
nary requires regularization during least squares estimation of the dictionary coefficients. We employ a
sparsity-promoting regularization approach to compactly reconstruct the underlying transient signal. Addi-
tionally, we introduce a Bayesian sampling scheme for the estimation problem to rigorously assess the
uncertainties associated with coupling a nonorthogonal, overcomplete dictionary with sparsity-promoting
techniques. The final reconstruction inherently includes information about the dominant timescales and
likely start times of any transient signals. When time series are available from multiple locations within a cer-
tain region, we can exploit the expected spatial coherency of transient signals with a straightforward spatial
weighting scheme that encourages selection of dictionary elements that are common to stations within a
given length scale. Application of this method to both synthetic and real GPS time series from the Cascadia
region demonstrates the successful recovery of signals of different timescales and magnitudes while
providing a direct estimate of the long-term tectonic signal.

2. Transient Detection

Here we assume no a priori information about the underlying physical mechanisms responsible for a given
transient signal. This assumption prevents us from imposing time functions corresponding to a specific
physical description. Instead, we use a flexible approach that parameterizes time-dependent deforma-

tion with an overcomplete set, or dictionary, of functions that describe the full suite of behaviors we would
expect to be present in a given time series. This dictionary can in principle include sinusoidal functions to
model seasonal signals, linear terms for secular velocities, heaviside functions for coseismic offsets, etc. For
transient signals of unknown initiation times and durations, we populate the dictionary with third-order
time-integrated B-splines, hereafter referred to as Bi-splines, which exhibit one-sided behavior of a particu-
lar timescale (Figure 1) [Hetland et al., 2012]. By dividing the time span of a time series into uniformly spaced
intervals, we can generate a series of B'-splines centered at the endpoints of the intervals with durations pro-
portional to the interval durations. In this work, a dyadic spacing scheme (i.e., B-splines of duration T /4, T /8,
T/16, etc., for a given time span T) is used to populate the dictionary. A similar approach is used in wavelet
analysis to efficiently cover the frequency spectrum of a signal [e.g., Mallat, 1989]. At this stage, modeling
time-dependent deformation for time series data, d, is reduced to estimating the coefficients, m, of the dic-
tionary elements in G, while imposing a linear relation between the model parameters and data, Gm = d
(here boldface indicates matrix or vector quantities).
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Figure 1. Uniform integrated B-splines (B/-splines) of various timescales used as candidate temporal displacement func-

tions. The characteristic timescales for the B/-splines are determined by dividing the time span into uniformly spaced
intervals. The filled circles denote the interval spacings for each B'-spline and differ by factors of 2.

2.1. Regularized Least Squares

Due to the nonorthogonality of the Bi-splines in G, any estimate of m derived using ordinary least squares
methods will be particularly sensitive to the data noise and will exhibit large variances for the estimated
parameters. Regularization techniques aim to reduce this sensitivity by jointly minimizing a measure of the
residual ||Gm — d||2, where || - ||, denotes the Euclidean or £,-norm, and a regularizing function that incor-
porates a priori information about the solution. Typically, regularized least squares optimization minimizes
the unconstrained cost function, ¢ (m):

@ (m) = |Gm — d||3 + AF (m), M

where 4 > 0 controls the degree of regularization and F (m) is the regularizing function. The above for-
mulation can be modified to incorporate uncertainties on the observed data in d. Traditional zeroth-order
Tikhonov regularization, where F (m) = |jm||2, minimizes the size or energy of the solution m. For a mixed
dictionary of B'-splines and steady state functions, such as seasonal and secular terms, we generally only
penalize the B'-splines and allow the steady signals to compensate for the rest of the displacement provided

by the data. Thus, in equation (1), F(m) — F (mB' ) where m? C m denotes the B'-spline coefficients. For

brevity in the following discussion, we assume m = m?'. In a Bayesian framework, Tikhonov regularization
implies an uncorrelated zero-mean Gaussian prior for the coefficients of the B'-splines and uniform priors for
everything else.

However, transient events are not well described by Gaussian statistics; rather, transients are sparse and
irregular in nature. To promote sparsity, we would like to use F (m) = ||m||,, where || - ||, denotes the count-
ing pseudo-norm and measures the number of nonzero elements in m [Candés and Wakin, 2008; Donoho,
2006]. Since this formulation results in an intractable combinatorial problem, it is common to use an approx-
imation with F (m) = |lm||,, where || - || is the £;-norm or the sum of the absolute values of m, leading to a
convex cost function [Tibshirani, 1996; Chen et al., 1998; Donoho, 2006]:

@ m),, = |Gm —d||3 + Allml|;. &)

Using #,-norm regularization, the solution still maintains sparsity, i.e,, many components of m are very close
to zero and the remaining components can still effectively describe the data. Furthermore, a convex cost
function results in a solution that is guaranteed to be globally optimal [Boyd and Vandenberghe, 2004]. We
cast the sparse regularization problem as a quadratic program and solve for m using the CVXOPT software
(http://abel.ee.ucla.edu/cvxopt/index.html).

Sparsity-promoting regularization with the #,-norm has been effectively used for recovering isolated spikes
in seismic data [Taylor et al., 1979], detecting sharp discontinuities in tomography studies [Gholami and

Siahkoohi, 2010], and estimating compact distributions of fault slip for large earthquakes [Evans and Meade,
2012]. In the context of transient detection, this method automatically determines the B'-splines which best
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model the deformation while zeroing out the others. The advantage of enforcing a sparse set of B'-splines
is that we automatically place higher importance to B'-splines that have nearly the same timescales and
onset times as any transient signals present in the data and heavily penalize those that do not significantly
improve our data fit. Steady signals, such as those from seasonal and secular processes, are also required to
be consistent with a sparse set of B'-splines. This requirement is beneficial for ensuring that any estimated
steady signals do not overly accommodate the observed displacement which can lead to false positives in
transient signal detection (section 5).

The effectiveness of the £;-norm for recovering sparse solutions can be enhanced by adaptive reweighting
techniques. In Candés et al. [2008], an iterative reweighting algorithm was introduced where each coeffi-
cient, m;, is assigned a different penalty parameter, 4;, which is inversely proportional to [m;,| at the current
iteration. By initializing the algorithm with uniform values for 4,, each successive iteration causes larger coef-
ficients to be penalized less heavily than smaller coefficients, leading to a solution that enhances the most
dominant B'-splines. Candés et al. [2008] demonstrated that reweighting brings the #;-norm closer to the

¢ ,-pseudo-norm by increasing the strength of the regularizing function F (m) near the origin. Theoreti-
cally, one could choose from a multitude of functional forms relating 4; to |m;|, e.g., 4; o« |m;|7, 4; « ml.*z,
A; « log (|m,A|‘1 ) etc. Larger negative powers for m; will increase the strength of the sparsity constraint and
bring the £;-norm very close to the £Z,-norm. In practice, we have found that using the stronger reweight-
ing functions favors selection of short timescale B'-splines while the logarithmic functions favor longer
timescales. Thus, selecting the appropriate reweighting function can depend on the expected timescales
of the transient signals in a data set. Typically, for all reweighting functions, 5-10 reweighting iterations are
required for convergence.

2.2, Posterior Uncertainties

In ordinary least squares problems where all variables are assumed to be Gaussian (unregularized or
Tikhonov regularization), analytic relations exist to estimate model and predicted data uncertainties
[Tarantola, 2005]. While the #,-norm regularization prevents us from directly using those relations, we can
interpret the minimization of the cost function in equation (2) as choosing the optimum subset of the
elements of G that minimize the data misfit as well as the number of elements used for the solution and
determining the coefficients of those elements. Thus, for a given solution vector m, we can construct a com-
pact dictionary G populated with the elements corresponding to the largest coefficient absolute values
in m. We can construct a diagonal prior covariance matrix, C,,, where the values along the diagonal cor-
respond to the squared coefficients in m. Then, for a given data covariance matrix C,, we can apply the
standard least squares formulation to obtain a solution m:

= (G'C;'G+C) T GICy . 3)

Various stopping criteria can be applied for determining the number of elements to include in G. Here we
apply a variance reduction criterion where we first remove the estimated steady state signals from the data
and iteratively remove modeled transient displacements corresponding to the largest values of m from the
data until the variance reduction reaches a prescribed threshold. This approach is similar to matching pur-
suit methods that iteratively search through nonorthogonal bases and add those to the dictionary that are
most correlated with the data residual at each iteration [e.g., Mallat, 1989]. In our case, the “best basis” is
determined in one step through the convex optimization and is less susceptible to high data noise or initial
errors in basis selection [Chen et al., 1998].

Using knowledge about uncertainties for the observed data in C, the posterior model covariance matrix
can be computed as follows:

C,=(G'C;'G+C) . @)

Since the resultant compact dictionary G is in most cases composed of nonorthogonal elements and will be
ill posed, we can expect some large off-diagonal components in C,,. The probablllty density function of the
predicted data is then a multivariate Gaussian distribution with a mean of Gii and a covariance matrix, Cg,
given by the following:

C¢,=GC,G. (5)
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We note that while this approach is useful for assessing the uncertainties of the coefficients of G and the
predicted data, it does not address the uncertainties associated with the subsetting of G to form G. Further-
more, this approach relies on the assumption that the model parameters are normally distributed, which is
contrary to our assumption of transients as temporally sparse.

2.3. Bayesian Sampling

As was previously mentioned, the commonly implemented form of Tikhonov regularization is equivalent to
enforcing a Gaussian prior on the elements of m. Analogously, sparsity-promoting regularization in its most
basic form can be achieved by enforcing a Laplace prior for m, which has the form p(m;) « exp{—A|m;|} [Tib-
shirani, 1996]. We can see this result by considering Bayes’ theorem, P (m|d) « P (d|m) P (m), where P (m|d)
is the posterior distribution of our model coefficients (i.e., the distribution of values for m that explain the
data), P (d|m) is the data likelihood, and P (m) is the prior distribution of the coefficients. By maximizing
exp {—(p (m),, } it can be shown that the regularized least squares solution is equivalent to maximizing the
posterior distribution with a Gaussian misfit between the data and model prediction and a Laplace prior on
the model coefficients.

Laplace priors are characterized by high probabilities near the origin with long-tails to allow for an increased
likelihood of arbitrarily large values relative to a Gaussian prior. The penalty term A acts as a scale factor that
controls the width of the distribution and the probability that the elements of m will be sparse. Since there
is no convenient conjugate relation between a Gaussian likelihood and Laplace prior, we cannot derive
a closed-form solution for the posterior distribution p(m). Instead, we employ a Gibbs sampler to draw
samples from the posterior distribution [Gelman et al., 2004]. The Gibbs sampler explores the posterior dis-
tribution of each variable in the model using distributions conditional on the current values for all other
variables. Following the approach of Park and Casella [2008], we group the coefficient amplitudes, m;, as a
single variable and the coefficient precisions, t;, as another group of variables. The conditional distributions
relating the coefficient amplitudes and precisions are obtained by expressing the Laplace prior as a scale
mixture of normals with an exponential mixing density:
&e—imi - '/oo ;e—m,ﬂz/(fo)’l_ze—isz/ZdTi. (6)
2 0o 277, 2
The posterior distribution can now be expressed as a product of a Gaussian data likelihood, Gaussian priors
for the dictionary coefficients, and exponential hyperpriors for the coefficient precisions. This hierarchi-
cal representation where each 7; is treated as a hyperparameter is analogous to the reweighting scheme
described in section 2.1. The conditional distributions in this hierarchy are straightforward to sample from
with block updates of m and (z7, ..., 72).

There are several advantages that favor a Bayesian sampling method over regularized least squares. For one,
optimization-based approaches for non-Gaussian priors do not permit us to readily compute uncertainties
associated with our estimate for m. While we could apply least squares theory using a sparse subset of G
that best explain the data (see section 2.2), we would still require the assumption that the model parame-
ters are normally distributed. We also do not obtain much information about the full solution space, which
is necessary if different families of solutions exist with nearly the same predictive power as the optimal solu-
tion. For example, consider the inherent trade-off between a single B'-spline to model a transient signal and
two shorter timescale B'-splines located at the same time. While selecting the single B'-spline would be the
sparser solution, we can imagine a situation where the combination of the two shorter B'-splines provided
a better fit to the data. In this case, the single, longer timescale B'-spline would trade off with the shorter
ones where the strength of the trade-off would be dependent on the value of the penalty A. Bayesian sam-
pling allows for sampling from the full solution space where models are produced in numbers proportional
to their probability given the data [e.g., Gelman et al., 2004; Tarantola, 2005].

2.4, Selecting the Penalty Parameter

The parameter 4 in the Laplace prior controls the relative strengths of the steady state terms and the
B'-spline coefficients. Larger values of A will minimize the contributions of the B'-splines, leading to a
smoother solution. Smaller values of 1 will distribute more weight across the B'-splines, leading to a rougher
solution. Thus, the amplitude of the steady state signals is also sensitive to the value of A and may vary as 4
changes. For sparse regularization optimization problems, we use K-fold cross validation to select the opti-
mal values for 4, where K depends on the number of data points available for partitioning into training and
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Figure 2. Individual model components input into the synthetic GPS time series. The seasonal signals are constructed
using annual and semi-annual periods while the transients are formed using arctangent functions of various amplitudes
and durations. Additionally, white and colored noise are added to the model to simulate measurement noise typically
found in geodetic time series.

testing subsets. Due to the sparsity-enforcing regularization, we can directly quantify the effective data res-
olution of G (i.e., the shortest-duration resolvable signal) as the duration of the shortest timescale B'-spline
included in G. A single B'-spline is only able to predict four independent observations spaced T, /2 time
units apart, where T, is the effective timescale of the kth B-spline. For daily observations, we first partition
the data into S random subsets where S is the number of days spanned by the time series divided by the
number of observations predictable by G. Within each subset, we further divide the data into K random par-
titions where one of the partitions is used to compute the data misfit for the proposed model m trained by
the other K — 1 partitions. We then average over S - K cross-validation experiments to obtain the average
data misfit for the current value of the penalty parameter, 4.

Since cross validation would be computationally expensive for a high number of Gibbs sampling runs,
alternative methods are required. A variety of model class selection methods are available that allow for
estimation of the evidence of a model class, where a model class is defined by the value of A [Beck and Yuen,
2004; Ching et al., 2006]. The evidence measures the average data fit for a model class and the amount of
information the model class extracts from the data, i.e., some metric of distance between the posterior and
prior distributions [Beck and Yuen, 2004]. Unfortunately, model class selection is highly influenced by the
choice of the prior distribution, which could lead to significant biases for values of 4 that maximize the evi-
dence [Ching et al., 2006]. Here we sample for A by assigning it a diffuse hyperprior, allowing for a wide range
of possible widths for the corresponding Laplace priors [Park and Casella, 2008]. We consider a gamma
hyperprior on A2 such that the prior density is relatively flat up to 4 ~ 10% and then decreases steeply to
penalize very large values.

3. Synthetic Example

To test the temporal transient detection capabilities of the proposed method, we generated a 20 year syn-
thetic daily GPS time series consisting of seasonal, secular, and transient deformation. The seasonal signals
are a linear combination of annual and semi-annual sinusoids. A transient signal is constructed using arctan-
gent functions of three different amplitudes, timescales, and centroids to simulate slow deformation events
with various properties (Figure 2). We add white noise plus colored noise using a power law model to mimic
errors commonly found in geodetic data [Langbein, 2004]. Robust detection of transients is traditionally dif-
ficult when the amplitude of the temporally correlated colored noise is on the same order as the signal of
interest (as is the case for the weakest synthetic transient). In practice, this problem can be mitigated by
exploiting coherency within a geodetic network, but we will demonstrate that successful detection is still
possible with a single time series.

We construct G using a dictionary of reference functions that include simple sinusoidal and linear functions
to capture seasonal and secular terms, respectively. Additionally, the dictionary includes B'-splines with
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Figure 3. Convergence test of the Gibbs sampler for coefficients corresponding to several B'-splines. The mean of the
samples drawn from the posterior distribution for each B'-spline is monitored for increasing number of samples. The
means are normalized by the mean computed using 2e samples. After 9(7e*) samples, the means are within 0.2% of
their final values.

effective timescales of 0.3, 0.6, 1.3, 2.7, 5.7, and 13.3 years (chosen by dividing the 20 year time period into
128, 64, 32, 16, 8, and 4 uniformly spaced intervals, respectively). The coefficients of the dictionary terms
are estimated using two different methods: least squares optimization with sparsity-inducing regulariza-
tion on the B'-spline coefficients and Gibbs sampling of the posterior distribution. As described earlier, we
prescribe Gaussian priors on the seasonal and secular terms and Laplace priors on the B'-splines, although
the sampler is initialized with random variates from a wide Gaussian distribution for all coefficients. For this
example, we run the Gibbs sampler for 10> samples, which is far more than required for convergence but
allows the posterior means to evolve to within < 1% of their final values (Figure 3). After cross validation
of 14 independent data subsets, the average optimal penalty parameter was 4 = 0.66, which agreed fairly
well with the mean of the posterior distribution of A constructed with the Gibbs sampler (Figure 4). Prescrib-
ing A = 0.66 results in a reconstructed transient signal that is rougher than the input transient (Figure 5a).
This behavior is primarily due to the temporally correlated colored noise causing several false detections
throughout the time series. The random walk characteristics of the noise resemble small transient events
that are indistinguishable from true transients (for data from a single station). Colored noise also has the
effect of biasing the estimate of the long-term secular rate as demonstrated by the underestimation and
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Figure 4. K-fold cross-validation results for selection of the penalty parameter, 4, for the synthetic time series. Fourteen
separate cross-validation experiments were performed for 14 independent subsets of the time series. The solid blue line
shows the mean testing error for all experiments while the shaded region denotes the standard deviation. The vertical
black dashed line marks the mean A as determined by the Gibbs sampler which shows relatively good agreement with
the optimal A obtained from the cross validation (red circle).
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Figure 5. Reconstructed time series for the synthetic data with the simultaneously estimated seasonal and secular signal
removed. (a) Full transient signal for models corresponding to different values of the penalty parameter A. The black
circles show the input data after removing the true secular and seasonal signals. Lower values of 4 correspond to rougher
models. The model for 4 = 10 and the point estimate derived from the Gibbs samples for the same 4 are able to nearly
exactly reproduce the input signal. (b) The high-frequency component of the reconstructed transient signal compared
with the input colored noise. The 4 = 0.66 model (chosen through cross validation) is able to capture nearly all of the
temporally correlated noise structure while higher penalties result in smoothing over the higher-frequency variations.

overestimation of the secular rate for the models constructed with A = 0.01 and 4 = 0.66, respectively.
Low values of 1 allow selection of more B'-splines from the dictionary to fit the smaller signals. By plot-
ting the reconstructed high-frequency signal against the input colored noise (Figure 5b), we observe that
enforcing 4 = 0.66 allows us to reconstruct a majority of the structure of the input noise. The combined dic-
tionary plus sparsity-inducing regularization approach thus acts as a smoothing method where A controls
the degree of smoothness of the reconstructed signal. Selecting a much higher value of 4 = 10 still allows us
to reconstruct the largest signals of the input noise while smoothing over the higher-frequency variations.

Without spatial information, it is impossible to distinguish between colored noise and true transient sig-
nals for tuning A to recover the correct secular rate. Data from multiple stations must be used to determine
whether a temporally coherent signal persists over a finite region (section 4). In a separate cross-validation
experiment performed on synthetic data with white noise only resulted in optimal values of A ~ 10, which
successfully isolates the transient signals. Since the focus of this paper is on transient detection, we proceed
with the model resulting from 4 = 10 to smooth over the noise signals, but we emphasize that in general
applications, the issue of colored noise must not be neglected.

The reconstructed time series with A = 10 successfully models all three input transient signals (Figure 5a). A
nearly identical model is achieved by deriving a point estimate from the means of the posterior distribution
constructed from the Gibbs sampler with the same value for A. Even with this higher value of 4, both the
optimization and Bayesian solutions are corrupted by a relatively long-duration random walk process that
started around year 4.5. The duration of this colored noise was of sufficient length to be modeled by one
of the B'-splines in the dictionary. Increasing the penalty parameter further would smooth over this noise
signal at the cost of losing recovery of the smallest transient signal at year 10.

3.1. Coefficient Scalograms

The limited data resolution (as opposed to model resolution) of the dictionary G will limit the precision of
our estimates for transient durations. One can also expect significant covariances between dictionary ele-
ments that may have different timescales but share common centroid times. Viewing the estimated B'-spline
coefficients in a scalogram-type fashion reveals the effectiveness of the different estimators in limiting the
intradictionary covariances (Figure 6). For comparative purposes, we also show the scalogram for a model
using a traditional zeroth-order Tikhonov regularization scheme. The Tikhonov estimator locates the onset
times of the largest transient signal relatively well but tends to spread the energy across the timescales,
much the same way that a wavelet transform would spread the energy across wavelet scales. In fact, pre-
vious methods using wavelet transforms to pick onset times of transients in GPS data have presented
scalograms that suggest permanent deformation across all temporal scales [e.g., Szeliga et al., 2008]. The
advantage of the sparse estimation techniques is a much stronger localization of energy to very few scales
and times, as seen on the bottom two plots in Figure 6. The majority of each input transient signal can be

RIEL ET AL.

©2014. American Geophysical Union. All Rights Reserved. 5147



@AG U Journal of Geophysical Research: Solid Earth 10.1002/2014JB011077

Coefficient amplitude (mm)

-30 -15 0 15 30
13.33 ' E]
571
1.29) | INNENNNE HEEEEEEEN EEENEE
.63 || ul g ...... H ...................... H % .............
031 \ [TTTTIR AT I
2 0.8 2.7 46 6.5 8.3 102 121 140 159 17.8  19.7
©
EREEE | o D _ o]
ssSsnf T ._
5 2670 | L T T 1 1 1 1
3 1290 | T T T TT I D. ...........................
e osst[[TTTIIITITIT] | | NNNNNNNNRRRNRN NNNNNEENRRRRNRNNNNERRRRRRRRAE
2 031 |
® 0.8 2.7 4.6 6.5 83 102 121 140 159 17.8 19.7
o
13.33 A [ ‘ . _ . _
267 | I 1 1
v2of [ [ T [T T[T [l EEEEEEEEE EEEEEE
063t TITITITITITITI I | NRRNRNRNRNNNAN NRNRNRNRRRNRNRRRNRNNNRNRRRNNENE
0.31
0.8 2.7 4.6 6.5 83 102 121 140 159 178 19.7
Year

Figure 6. Synthetic scalograms showing the amplitudes of the B/-splines estimated using three different methods: (a)
Tikhonov (£,-norm) regularization, (b) Sparse (¢;-norm) regularization with A = 10, and (c) posterior distribution means
derived from the Gibbs samples. Each row of the scalograms corresponds to B-splines of a given timescale. Tikhonov
regularization results in nonzero amplitudes for nearly all B'-splines and tends to spread energy across timescales. The
sparsity-promoting regularization methods zero-out nearly all of the Bi-splines, leaving only those that describe tran-
sients in the data. The estimated secular rates for the Tikhonov, sparse regularization, and Gibbs solutions are 12.0, 9.7,
and 8.6 mm/yr, respectively (for an input secular rate of 10 mm/yr).

recovered by just two distinct B'-splines, allowing for more precise estimates of the transient start times
and durations. We reiterate that these estimates have been obtained almost completely automatically, with
some minor supervision for selection of the penalty parameter (i.e., choosing the correct data subset size
for cross validation such that the optimal estimate of 1 does not change significantly for slightly different
subset sizes).

3.2. Covariances Between Dictionary Elements

Estimating the uncertainties of the B'-spline coefficients is straightforward since samples have been

drawn from the posterior distribution via the Gibbs sampler. Furthermore, we can directly investigate
trade-offs between different parameters and gain insight into the nature of sparse transient detection with
a nonorthogonal dictionary. For example, the longer duration transient centered around the 16 year mark
can be described well by both a 2.67 year and a 1.29 year B'-spline, leading to large standard deviations for
both coefficients accompanied by a strong trade-off (Figure 7a). The longer duration B'-spline more closely
matches the duration of the input transient but is slightly time shifted from the true centroid time, whereas
the 1.29 year B'-spline is more closely aligned with the centroid time but under-represents the signal dura-
tion. The negative slope in the covariance plot is a direct result of the Laplace prior placed on m;, which tries
to drive the coefficients closer to zero. In the case when two coefficients have nearly equal probability in
matching the data, many samples will be drawn from the model space where both coefficients are nonzero.
However, this behavior is entirely dependent on the value of the penalty parameter A. Higher values of A
would draw more samples for the more probable coefficient and less for the less probable coefficient (see
section 5.1).

We can observe a similar trade-off between a long-timescale B'-spline with a time centroid of t = 0 and the
secular rate, implying that long-timescale B'-splines are nearly as effective in modeling long-term, steady
displacement signals (Figure 7c). Trade-offs between B'-splines adjacent in time with identical durations also
show large standard deviations but with slightly weaker trade-offs (Figure 7b). In this case, we can infer that
the centroid of the true signal is most likely between the two and has a time duration of ~ (3/2)T,. At the
other extreme, when two B'-splines are centered in a period when no transient signal occurs, nearly all of
the samples lie very close to the origin (Figure 7d), replicating the expected probability distributions of two
sparse parameters [Tipping, 2004]. Another feature evident in many coefficient posterior distributions is the
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Figure 7. Two-dimensional histograms of samples drawn from posterior distributions for different pairs of B'-splines.
(a) When two B'-splines have nearly coincident time centroids and are both able to reconstruct a transient signal,
their joint posterior exhibits a strong negative covariance. (b) For adjacent B'-splines of the same timescale where

the centroid of the true signal lies between the centroids of the B'-splines, their amplitudes will covary in a positive
manner. (c) Long-timescale Bi-splines and the secular rate will exhibit covariances similar to Figure 7a. Note the sharp
corner in the joint distribution due to the #;-norm penalty. (d) Two Bi-splines located in a time window where no tran-
sient signals occur will have samples located very close to the origin with a structure resembling the prior (bivariate
Laplace distribution).

sharp corner seen in Figure 7c which is a consequence of the #;-norm strongly penalizing coefficients of the
wrong sign [Park and Casella, 2008]. Thus, a simple viewing of the posterior samples can provide a strong
indication of the most likely sign of displacement of a detected transient signal.

3.3. Data Subsampling

As discussed previously, when geodetic time series have very high temporal sampling rates, the limited data
resolution of G requires a certain level of data subsampling to obtain reliable estimates of the penalty A
during cross validation. On the other hand, for studies where time series are expected to have poorer tem-
poral sampling, we can estimate the minimum amount of data required to detect a transient signal of a
given duration since a B'-spline of duration T, is expected to predict four observations spaced Tk/2 time
units apart. While daily GPS solutions provide adequate sampling rates for capturing many transient pro-
cesses, other geodetic time series, such as InSAR, provide observations that are typically sparser in time. If
the duration of a transient process is appreciably shorter than the time interval between observations, there
is a risk of severely mis-estimating the timescale of the signal or not detecting the signal at all. To investi-
gate the effect of sampling rate on transient detection, we repeated the least squares optimization with
sparsity-promoting regularization on the synthetic time series with increasing data decimation factors. We
varied A for each decimation factor in order to keep the results consistent. Remarkably, the three input tran-
sient events were successfully recovered up to a decimation factor of 256 (Figure 8a). For this highly ill posed
case where the number of candidate features (252 B-splines) is significantly greater than the number of
data points (29 points), sparse regularization was able to recover a stable solution. Reconstruction of the
input transients becomes less accurate with increasing time intervals between observations, but even for
the smallest signal, only 2-3 data points are required to register a positive detection, in agreement with the
expected data resolution of the B'-splines (Figure 8b).
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Figure 8. (a) Transient signal recovery using subsampled data with increasing subsampling factors. The limited data
resolution of the smallest timescale Bi-splines requires three to four observations to resolve a transient signal. (b) In the
case of the smallest synthetic transient around year 10, the temporal spacing of At = 256 days is too large to resolve the
short timescale duration, and the reconstructed signal is smoothed. However, this result still demonstrates that a positive
detection is still possible with temporally coarse time series.

Decimation also reduces the influence of higher-frequency time-correlated noise by effectively low-pass
filtering the data before estimation of m. We can observe this effect from the increasing smoothness of
the reconstructed signal for larger decimation factors. This result suggests that a data cascading approach
could be beneficial in recovering the strongest signals. For cascading, we would estimate the B'-spline coef-
ficients using only a subset of the data and use those results as an a priori estimate of the coefficients for
use with a larger subset of data [Minson et al., 2013]. The a priori estimate could then be integrated with
the reweighting approach in section 2.1 to impose smaller penalties on Bi-splines that have larger values in
the initial estimate. Subsequent estimates of m using more data would enhance the stronger signals and
reduce the overall effect of high-frequency colored noise. This approach would be useful for combining
coincident geodetic time series with different temporal sampling rates and noise characteristics, e.g., INSAR
and GPS. Transient detection would first be performed with an InSAR time series. Feeding this initial result
into a detection procedure with the GPS data would then enhance the transient signals that are consistent
between the two data types.

4. Spatial Sparsity Weighting

Much of the ambiguity over the correct choice of A and the influence of local noise can be mitigated
by using data from multiple surrounding stations. By the adopted definition of what constitutes a tran-
sient signal, displacements should be coherent over a finite region and would lead to common nonzero
B'-splines over multiple stations. Thus, the reweighting scheme discussed in section 2.1 can be performed
in a spatial sense where the coefficient-dependent penalties are enforced to be consistent over stations
within a certain length scale. Using this approach, the spatial reweighting is initialized by performing a
single iteration of the minimization of equation (2) independently for each GPS station. After this iter-
ation, candidate coefficient-dependent penalty parameters 4; are computed for each station based

on that station’s current initial estimate for m. To enforce spatial consistency for n stations, we select
A= f(A,....Anw', ..., w"), where f() is a weighted median and w/ are the weights assigned to each
station. The weights are recomputed at every kth station using the spatial weighting function:

w = exp —d(j’, k) , @)
Ly

where d(j, k) is the distance between station j and k and L{; is a prescribed correlation length for the jth sta-
tion. To account for variable station densities within GPS networks, we choose L’0 to be the average distance
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Figure 9. Computed scale length (correlation length) of the GPS network used in the SCEC Phase Ill validation exercise.
Scale length is computed using the average distance from each station to the nearest three stations.

from station j to the nearest three or four stations, allowing us to detect spatially correlated transients with
length scales proportional to the resolving power of a given network.

Since the spatial sparsity weighting method relies on spatial consistencies of scalograms for neighboring
stations, we must ensure that the B'-spline decomposition of transient signals is translation invariant. Trans-
lation invariance states that a time shift of the input signal (the data) will only result in an equivalent time
shift of the selected B-splines without modification of the amplitudes [Mallat, 1989]. In wavelet analysis,
wavelet transforms that are not translation invariant can result in vastly different decompositions for small
time shifts in the data. For #,-regularized least squares problems, we can achieve translation invariance by
constructing a translation-invariant dictionary G. A given dictionary G is translation invariant if for any tem-
poral function g;(t) € Gand t, € At * [0,N — 1], where N is the number of data points and At is the time
duration between observations, then g;[t — t,] € G [Mallat, 1989]. In other words, we construct G such
that every observation epoch in the time series is associated with a B'-spline of all valid temporal scales,
which would result in a G matrix with N rows and Nlog, N columns if a dyadic scale approach is used for
the B-splines. Due to the large number of parameters associated with translation-invariant dictionaries, we
generally only enforce translation-invariance when applying the spatial sparsity weighting to time series
that potentially contain rapidly propagating transients, such as in Cascadia. In practice, we have found that
longer-duration transients can be effectively isolated using the spatial sparsity weighting with the standard
G construction, i.e,, four B'-splines of duration T /4, eight B'-splines of duration T/8, etc.

4.1. Example: Southern California Earthquake Center Validation Exercises

Since 2009, the Southern California Earthquake Center (SCEC) community has coordinated transient detec-
tion validation workshops where participants are able to test their detection methods on several synthetic
time series resembling data from southern California GPS stations [Lohman and Murray, 2013]. The data are
generated by the Fakenet package which simulates transient processes of varying complexity while includ-
ing additional signals from seasonal and secular processes, random and common mode noise, and data
gaps [Agnew, 2013]. Four phases of testing from 2009 to 2012 were performed with transient sources rang-
ing from slow slip events with strike slip and thrust motions to small- and large-scale aquifer inflations. We
apply the spatial sparsity weighting approach to a 10 year synthetic data set from Phase 3 (set D) which
contains signals from a simulated thrust event on the Santa Monica fault. As before, we populate a global
temporal dictionary with B'-splines of timescales of ~ 0.16, 0.32, 0.65, 1.33, 2.86, and 6.67 years, as well as
functions for seasonal and secular processes. The correlation lengths L{) are computed for each station using
the average distance to the nearest three stations, resulting in strong resolution power over the Los Angeles
basin and weaker resolution near the California-Mexico border and islands (Figure 9).

After about 20 iterations of the spatial sparsity weighting, the thrust event is strongly localized to the sta-
tions nearest to the Santa Monica fault with good agreement with the true signal (Figure 10). While there are
a few errant nonzero signals for stations outside of the deforming zone, their spatial characteristics suggest
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Figure 10. Reconstructed transient signal (red arrows) corresponding to simulated thrust event (blue arrows). Most of
the signal is isolated close to the fault patches, although a few stations outside of the basin region show extraneous
transients. The large east error at station DSHS is due to a large time-correlated noise signal.

these signals are primarily from local noise processes that are not removed in the weighting. Overall, the
weighting greatly improves the spatial consistency of the modeled transient signal. The reconstructed tran-
sient time series corresponding to timescales of approximately 4 months show that most time-correlated
signals that are not persistent over multiple stations are smoothed over in the spatially weighted solution,
thus isolating the signal due to the thrust event (Figure 11).

5. Slow Slip Events in Cascadia

Continuous GPS measurements above the Cascadia subduction zone have revealed episodic slow slip
events located deep on the plate interface that are accompanied by subduction-related tremor sig-

nals [Rogers and Dragert, 2003; Szeliga et al., 2008]. These slow slip events exhibit a fairly persistent
quasi-periodicity in this region (~ 14 months) and inform our understanding of the fault physics and fric-
tional properties through the slow slip location, amplitude, and timing. However, the periodicity and
amount of slip for each transient event are both spatially and temporally variable and a priori unknown.
Inference of these slow slip properties can be obtained with precise measurements of the surface deforma-
tion field over time.

To test the temporal transient detection capabilities of our proposed method, we use daily GPS solutions
for the east component of station ALBH located within the Pacific Northwest Geodetic Array (PANGA). The
data cover the time span from 2005 to mid-2012 and were processed by the Scripps Orbit and Permanent
Array Center (SOPAC) with regional filtering applied to remove common mode errors [Williams et al., 2004].
Known offsets due to hardware changes were removed before analysis. For this work, we examine the east
component of the data since the surface deformation in this area occurs primarily in an east-west fashion.
Manual inspection of the time series reveals at least six distinct slow slip events. As in the synthetic example,
the dictionary G consists of seasonal, secular, and transient displacement functions. We uniformly subdi-
vide the 7.5 year time series into 256, 128, 64, 32, 16, 8, and 4 intervals to construct B'-splines of timescales
of 3, 6,12, 25,52, 113, and 263 weeks, respectively. Slow slip events typically have recorded durations of
3 weeks [Rogers and Dragert, 2003]. Both the regularized least squares approach and the Gibbs sampler are
used to estimate the dictionary coefficients, where the latter is used to construct the full posterior distribu-
tion. Cross validation was performed to select the optimal penalty parameter A (Figure 12). The increased
number of transient events recorded in the ALBH time series favored a smaller penalty parameter than the
synthetic data.

As was seen with the synthetic time series case, a challenge for transient detection is correctly estimating
the contribution from seasonal and secular processes. Our estimates of these steady processes ultimately
govern the magnitude of the detected transient events and their overall interpretation in terms of onset
times and durations. Using our approach, removal of the estimated seasonal and secular displacements
results in a modeled transient evolution with distinct, step-like motions corresponding to the slow slip
events (Figure 13a). By comparing the structure of these transients with those presented in previous studies
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Figure 11. Reconstructed north component transient time series for SCEC Phase Il Set D stations near the Santa
Monica fault. The data (dots) have the estimated secular and seasonal signals removed to match the reconstructed signal
(bold line). Dashed black lines show the true ground signal for each station. (left) Without spatial weighting, the tran-
sient signal is corrupted by time-correlated colored noise. (right) With spatial weighting, the signal from the thrust event
is isolated.

[e.g., Szeliga et al., 2008], we can observe a distinctly different interpretation of the relative contributions
from the secular rate and transient events. Here removal of the estimated secular rate results in slow slip
events that are modeled as displacement phenomena that occur in an otherwise quiescent field. Other
studies have presented the transient time series in a more sawtooth-like fashion in which the station
moves slowly eastward in the interevent period (superposed on the long-term plate rate) before moving
rapidly westward. In our framework, such an interpretation would require a positive, longer duration
B'-spline before each event, followed by a short duration, negative B'-spline to model the actual event. This
model would be unfavorable due to the sparse regularization which penalizes the total number of nonzero
B'-splines. The optimal model is the one with the most compact representation, which we can confirm from
the scalogram of the B'-spline coefficients (Figure 13c). In other words, the sparsity-promoting regulariza-
tion allows us to automatically estimate the interevent secular rate rather than an average rate that mixes
the contributions from the secular rate and transient processes.

Here all of the slow slip events are modeled either by 3 or 7 week B'-splines, although increasing the penalty
A would start to oversmooth the data by selecting longer 14 week B'-splines. The posterior data covari-
ance, obtained using the procedure outlined in section 2.2, shows stronger covariances between modeled
displacements in the interevent period, which is a consequence of the finite support of the B'-splines
(Figure 13b). Similarly, the striping in the off-diagonal terms during the interevent period is also due to the
construction of the temporal dictionary since the modeled value at one observation epoch will covary with
the other observations depending on the B'-spline coefficients.

5.1. Dictionary Covariances
For all slow slip events, there are strong covariances between B-splines that have time-coincident centroids,
and the strongest covariances are between 3-week and 7-week B'-splines. As with the synthetic data, the
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Figure 12. K-fold cross-validation results for selection of the penalty parameter 4 for the east-component ALBH time
series. Cross validation was performed on three independent, equally sized subsets. The blue line shows the mean
testing error and the shaded region denotes the standard deviation.

strength of the covariance is primarily determined by the value of 2 which moves the areas of high pos-
terior probability along a fairly defined trajectory. The covariance behavior between 3 week and 7 week
B'-splines with time centroids corresponding to a slow slip event in January 2007 shows that for low values
of 4, the joint posterior distribution is fairly diffuse and exhibits large variances with the probability peaking
over the shorter timescale B'-spline (Figure 14). However, we can still observe a tail in the joint distribution
that points toward a nonzero value for the longer-timescale B'-spline. Increasing 4 is equivalent to shrink-
ing the prior densities for all B'-splines, causing the joint distribution to move along the vertical axis defined
by small values for the longer-timescale B'-spline and decreasing values for the shorter timescale B'-spline.
Once A exceeds a certain value, the high-probability areas of the joint distribution transition toward the
longer-timescale B'-spline via the dominant covariance direction. Eventually, for high enough 4, the poste-
rior distribution is forced to be identical to the prior distribution with a peak at the origin which indicates
that the signal has been completely smoothed over.

5.2. Spatial Sparsity Weighting

As with the SCEC synthetic data set, we apply the spatial sparsity weighting approach in section 4 to
station ALBH and 32 nearby GPS stations located within the Cascadia region (Figure 15). We use raw
daily positions from the PANGA network processed by the Central Washington University Geodesy Lab
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Figure 13. Transient detection results for the east-component ALBH time series. (a) GPS data with estimated seasonal
and secular signals removed (black circles) and estimated transient signal from a reduced dictionary corresponding to a
99% variance reduction (red line). Shaded area denotes 56 uncertainties on predicted displacement using the method
in section 2.2. (b) Posterior data covariance matrix of the time series fit scaled to unity. (c) Scalogram for all B/-spline
coefficients. Comparison with the time series shows the direct correspondence between the slow slip events and the
nonzero 3 and 7 week Bi-splines. No strong long-term transient signals are present.
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Figure 14. Evolution of the posterior covariance with penalty 4 between two centroid-coincident B'-splines correspond-
ing to the January 2007 slow slip event. Solid and dashed lines mark lines of constant posterior density in the following
manner: black dashed — 0.03, white dashed — 0.2, black solid — 0.2, and white solid — 0.95. For small 4, the joint distri-
bution is diffuse with larger amplitude samples drawn for the shorter timescale B'-spline. As A increases, the distribution
shrinks and moves along the vertical axis. Eventually, the distribution transitions to larger values for the longer timescale
B'-spline and small values for the shorter timescale Bi-spline. For the largest 4, the samples are tightly clustered around
the origin.

(http://www.geodesy.cwu.edu/). To remove common mode network errors, we use the spatiotemporal
filtering method of Dong et al. [2006]. We first apply the temporal transient detection method indepen-
dently for each station and displacement component and remove the total modeled displacements from
the data. From the detrended and demeaned residuals for all stations, principal component analysis is per-
formed to estimate the largest principal component corresponding to common mode error. The residuals
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Figure 15. Map of select GPS stations from the PANGA network used in the spatial sparsity weighting.
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Figure 16. Amplitudes corresponding to 3 month Bi-splines used to fit east-component time series data from Cascadia
GPS stations. Stations are arranged by increasing latitude, and spatial sparsity weighting was applied to isolate spatially
coherent B'-splines. The episodic slow slip events are easily visualized, and longer timescale propagation effects can be

seen in two of

the events (mid-2009 and late-2010).

with the common mode signal removed are then added back to the modeled displacements to obtain the

filtered data.

We divide the detection procedure into two stages: (1) an initial detection phase where the dictionary is
populated with longer timescale B'-splines (r, > 1 month) and seasonal and secular processes and (2) an
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Figure 17. Transient detection with spatial sparsity weighting for 33 GPS stations within the Cascadia region. Three separate slow slip events are shown: (left)

January 2007, (middle) mid-2008, and (right) mid-2009. (top) The normalized east-component displacements corresponding to the slow slip events. The displace-
ment time series are ordered in distance along the 40 km depth contour of the downgoing slab model from McCrory et al. [2004]. (bottom) The transient ground
motion during each slow slip event where the marker color indicates days from the start of the event.
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analysis phase where we select only a year of data encompassing the detected slow slip events and the
dictionary is populated exclusively with Bi-splines (z, > 5 days). Prior to the analysis phase, we remove
the estimated signals from seasonal and secular processes, as well as detected transients with timescales
longer than 1 year. While the ~ 1-3 month B-splines used in the detection phase will oversmooth many
slow slip events, we still gain information about the dominant event durations and onset times (Figure 16).
The detailed analysis phase can then reveal any subtle propagation behaviors of detected slow slip events
and constrain the spatial extent of the transient surface strain. In cases where the data size of the time series
are relatively small, the detection phase may be skipped. We utilize it for the Cascadia data because the
timescales of the slow slip events are considerably shorter than the time extent of the data.

For the analysis phase, we focus on three slow slip events: (1) January 2007, (2) mid-2008, and (3) mid-2009
(Figure 17). For all three events, we can observe several characteristics common to all events. First, slow slip
tends to nucleate on the eastern Olympic peninsula near the Seattle area. The slow slip front (determined by
the GPS stations’ peak ground velocities) propagates bilaterally with total ground motion larger at stations
higher than ~ 47.5°N. The southern stations tend to show transient motion near the cessations of the slow
slip events, which may suggest a change in frictional properties or fault geometry around 47°N. For the 2007
event, the GPS stations show distinctly different displacement azimuths with larger overall velocities (larger
displacements in a shorter time period), which may indicate a different slipping area in the underlying thrust
fault [Wech et al., 2009]. Additionally, the propagation speed is significantly faster than either the 2008 or
2009 events. Ground motions for the 2008 and 2009 events initiate at a higher latitude, and the northern
stations exhibit stronger southward motion in the first few days of each event. Similarly, station P418 in the
southern section shows strong southward motion in the first 10 days of each event. Comparison with pre-
vious studies estimating static slip for the 2007 and 2008 events [e.g., Aguiar et al., 2009; Wech et al., 2009]
reveals that the areas of peak static slip on the underlying fault are closely located to GPS stations with the
first ground motions for each event. This relationship suggests that the nucleation zones on the fault expe-
rience the highest cumulative slip. For all three events, we can also observe that many of the stations cease
their north-south motions in the second half of the event and move primarily in an east-west fashion.

6. Discussion

Generally, transient signal reconstructions are remarkably consistent between the least squares opti-
mization with sparsity-inducing regularization and the Bayesian sampling approach with a Laplace prior.
Moreover, the Bayesian approach does not explicitly implement reweighting for enhancing sparsity as
mentioned in section 2.1 and in Candés et al. [2008] and can be viewed as solving a single iteration of the
sparsity-regularized least squares problem. Even so, the scalogram comparison between the two different
approaches (Figure 6) confirms that Gibbs sampling can recover the same B'-splines corresponding to tran-
sient signals while zeroing out the contributions from other Bi-splines. The fact that we use the mean of the
posterior distribution rather than the mode as a point estimate is because we have assigned a squared-error
“loss-function” to the data misfit [Tarantola, 2005]. In a study by Hans [2009], it was shown that the poste-
rior mode for a Laplace prior can be interpreted as a limiting case corresponding to a zero-one loss function,
which resembles the #,-norm penalty. However, using the mode does not capture the best point estimate
when the marginal posteriors are skewed, as was observed in Figure 7. While the penalty 4 controls the
degree of skewness of the marginal posteriors, it is always optimal to use the mean as a point estimate when
a Gaussian data misfit is used.

In section 3.3, we demonstrated the successful detection of multiple transient signals with a relatively sparse
data set. In practical applications, these results suggest that a minimum of =~ 3-4 data points spanning

the transient process would be required to recover its signal. For daily GPS solutions, we could therefore
potentially recover very rapid processes, provided that the signal-to-noise ratio was high enough and the
dictionary contained B-splines with equally short timescales. On the opposite end of the spectrum, time
series with much coarser temporal resolution, such as an InSAR time series, could still detect transient sig-
nals of durations comparable to the time spacing between data acquisitions. For both of these cases, the
penalty parameter could be chosen using K-fold cross validation, which was demonstrated to favor lower
penalties to allow for robust reconstruction of very small signals.

When two B'-splines are centered over the same time epoch and can both fit the data reasonably well (as
in section 5.1), lower values of the penalty parameter 4 will tend to allow larger amplitudes for the shorter
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timescale B'-spline, allowing the reconstructed transient signal to contain higher-frequency components.
Increasing A is equivalent to shrinking the prior probabilities of the B'-splines, forcing the solution to favor
the longer-timescale B'-spline and smoothing the reconstructed signal. For real geodetic time series, this
behavior implies that successful detection of very short duration transient signals would most likely require
a fairly low value for A which could be chosen through K-fold cross validation. The side effect of using a small
A is that the reconstructed signal would have a higher probability of being corrupted by colored noise pro-
cesses in the data. If the signal of interest is known to have a longer duration than typical colored noise, then
one could safely choose a higher value of A to favor longer-timescale B'-splines. An alternative approach
would be to construct the dictionary such that it included only longer-timescale B'-splines, limiting the
effective data resolution of the model.

The spatial sparsity weighting discussed in section 4 was effective for minimizing the effects of local ground
motion and colored noise. However, the performance of the spatial weighting is inherently dependent on
the density of the network and the value of the correlation length used in the distance weighting scheme.
Larger correlation lengths will tend to reconstruct long-wavelength deformation fields while smaller corre-
lation lengths will reconstruct more local ground motions. The variable correlation length approach used
in this work has the advantage of only reconstructing signals that are resolvable by the geodetic network
and minimizing false detections of spurious transients due to data noise. Our approach of prescribing the
correlation length, L{), to be the average distance from station j to the nearest three or four stations will be
affected by the addition of a new station in the vicinity of station j. However, the addition of stations can
only decrease the correlation length. From equation (7), the weighting function would decrease in strength
at a given distance, corresponding to an increase in the effective spatial resolution at the current location.
Likewise, station removals would increase the correlation length and decrease the effective spatial resolu-
tion. For both cases, changes in the station distribution would only affect the spatial reconstructions in the
vicinity of the station addition/removal, and the solutions for the remaining stations in the network will be
unaffected. In terms of solution stability, the weighting scheme is thus stable and adaptive to changes in
network geometry.

The spatial weighting can also be formulated in a Bayesian sense by using the cascading approach discussed
earlier and in Minson et al. [2013]. We can write the posterior distribution of the B'-spline coefficients for the
kth GPS station as p (my|d,) « p (d,|m,) p (m,). By assuming that the terms in m, are correlated with the

same terms in N surrounding stations, we can setup a joint estimation problem, where M = [m1, ,mN]
andD = [d,,....dy]. Then, for the kth station, where k < N, the joint posterior distribution would be
as follows:
N
p(mD) o [ J] p(djlmj)p(mj)] p (dIM) p (M)
j=1j#k
N
& |: H p (mjldj):| p (dklM)P(M)- (8)
J=14#k

The prior distribution p (M) would account for spatial coherency between B-spline amplitudes by incorpo-
rating a prior covariance matrix with nonzero off-diagonal components for the elements in M. As before, the
structure of the prior covariance matrix would depend on some form of distance weighting between sta-
tions and would be recomputed for each kth station. Then, independent Bayesian sampling runs performed
for each station would be combined to form the product in brackets in equation (8), and the final posterior
distribution p (m,|D) would be sampled by constructing an appropriate likelihood function p (d,[M).

The reconstructed transient motions and propagation characteristics of the Cascadia slow slip events agree
well with independent studies of tremor space-time propagation [e.g., Houston et al., 2011]. The geodetic
propagation speeds estimated here fall within the range of the tremor propagation speeds, and the nucle-
ation zones for tremor activity correspond well to the first ground motions for each event. Inspection of the
reconstructed transient time series for each station (Figures 13 and 17) indicate that the reconstructions do
not suffer from significant oversmoothing. The inclusion of short timescale B'-splines in the temporal dictio-
nary G permit us to detect and model very subtle ground motions due to slow slip while the spatial sparsity
weighting prevents us from overfitting local ground motions.

Finally, the construction of the transient detection method as a linear model results in very efficient time
series processing which can be easily scaled for large geodetic networks. As with any linear model, the effi-
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ciency of the linear algebra routines used for performing matrix-vector operations will greatly impact the
detection speed and can be enhanced with straightforward parallelization. An alternative to batch esti-
mation of the coefficients is a recursive approach where estimation is performed for each data point in

a sequential fashion. The #,-norm penalty would be enforced as a pseudo-measurement with an associ-
ated Kalman gain that tracks the #,-norm of the current state of coefficients [Carmi et al., 2010]. A recursive
approach would require storing only a single row of the dictionary G into computer memory, limiting the
computational cost of the estimation and allowing an arbitrarily large number of dictionary elements. Fur-
thermore, the update would be very fast for a single observation and would provide a real-time transient
detection capability.

7. Conclusions

We demonstrated successful transient detection for a single geodetic time series by estimating the coeffi-
cients corresponding to a highly overcomplete dictionary (design matrix) of integral B-splines that resemble
transient events of various timescales and start times. Regularizing the estimation procedure with an
¢,-norm on the coefficients favors sparse solutions, limiting the number of B'-splines needed to describe
transient events while still providing a good fit to the data. For GPS networks with sufficient station den-
sity, we can perform the regularization simultaneously across the whole network with a distance weighting
procedure to enhance signals that are spatially coherent over a given length scale. The reconstructed time
series essentially resemble smoothed versions of the input data but with additional critical information
regarding transient event start times and durations. The temporal resolution of the detection method is only
limited by the signal-to-noise ratio of the data and the smallest timescale B'-splines included in the dictio-
nary. The spatial resolution is then limited by the density of the geodetic network. Detection sensitivity is
controlled by the penalty parameter on the £,-norm, which can be robustly and automatically chosen with
cross validation. We also presented a Gibbs sampling approach to construct the full posterior distribution of
each element in the dictionary which, in addition to stand-alone point estimates of the coefficients via the
posterior means, provides quantifiable uncertainties on the coefficients and valuable insight into trade-offs
between dictionary elements. In the absence of a priori knowledge about transient event start times, dura-
tions, and physical sources, this method automatically and efficiently determines the most dominant signals
in a time series in a compact and interpretable manner.
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