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A quantum mechanical model for parametric interactions is used to evaluate the effect of the measuring
(amplifying) process on the statistical properties of radiation. Parametric amplification is shown to be
ideal in the sense that it allows a simultaneous determination of the phase and number of quanta of an
electromagnetic wave with an accuracy which is limited only by the uncertainty principle. Frequency
conversion via parametric processes is shown to be free of zero-point fluctuations.

I. INTRODUCTION

ARAMETRIC interactions, which were first studied

by Faraday and Lord Rayleigh in the nineteenth

century, are now receiving renewed attention which is

probably due to their successful utilization as microwave
amplifiers.

The classical characterization of parametric processes
is that of singly or multiresonant systems in which an
energy storage parameter is harmonically modulated.
This modulation can cause a periodic energy exchange
between the resonant systems or a continuous transfer of
energy from the modulation source to the resonant
systems.

When the resonant systems are electromagnetic
modes the second of the two processes described above
can be used for coherent amplification of radiation, i.e.,
amplification in which both the phase and the amplitude
of the incoming electromagnetic wave are reproduced.
Any amplification process, of necessity, introduces a
certain amount of uncertainty into the determination
of the phase and amplitude thus degrading the amount
of information carried by the wave. In the case of
maser amplifiers, which have been investigated exten-
sively,~7 it was shown that the uncertainty Az in the
number of photons in the input wave and the uncer-
tainty Ae in its phase as deduced from an examination
of the amplified output satisfy

AnAo=3, ©)

which is the minimum amount allowed by the uncer-
tainty principle, provided the average number of quanta
is large compared with 1. This fact qualifies the maser
amplifier as an “ideal” phase sensitive amplifier.

We are able to show that the lossless parametric
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amplifier is also an ‘““ideal” phase sensitive amplifier.
This is done by the use of a quantum mechanical model
for parametric processes which in the classical limit
yields all the known classical features of parametric
amplifiers. This quantum mechanical model is in fact
so simple, especially when compared to that of the
negative-temperature (maser) type of amplification,
that it makes the parametric amplifier an attractive
model for the study of the statistical properties of
phase-coherent amplification and the limiting uncer-
tainties imposed on amplitude and phase measurements
by quantum mechanical fluctuations.

The formalism of field quantization is used to obtain
a solution for the time-dependent annihilation operators
a;(t) and ay() of the resonant modes at w; and wy,
respectively. This is also done for the creation operators
a,t(t) and a,'(£). The operators are then used to calcu-
late the expectation values for the number of photons
{a'(#)a(?)) and for the second moment {[a' ()a(s)?) for
different initial distributions. The first and second
moments are used to get the output variances which
are compared to those at the input in order to show the
effect of the amplifier on the statistical properties of
the radiation.

II. QUANTUM MECHANICAL MODEL OF
PARAMETRIC PROCESSES

We are interested in obtaining a very simple quantum
mechanical model for parametric interactions in order
to evaluate the effect of the measuring (amplifying)
process on the statistical properties of the radiation.
We shall pick a model which is approximately equiva-
lent to the simplest classical model for parametric
interactions, viz., two lossless resonant circuits® coupled
by a time-varying reactance.

Our model consists of a cavity with perfectly con-
ducting walls at 0°K which is designed to support an
infinite number of nondegenerate modes. Parametric
coupling among these modes is provided by modulating
the dielectric constant (or permeability). Since, in
general, an infinite number of modes will be coupled,
the cavity, for simplicity, should be designed and the

8 H. Suhl, Phys. Rev. 106, 384 (1957),
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QUANTUM FLUCTUATIONS

dielectric constant variation must be chosen so that
only two modes are coupled. Although this may present
difficult design problems, they can be solved.? Since all
the important classical results may be obtained when
only two modes are coupled,®? such a simplification
loses no generality for our present purposes.

In order to consider small signal effects, the cavity
modes are quantized by the familiar technique of field
quantization! and the fields are expressed in terms of
creation and annihilation operators. The pump (dielec-
tric constant) modulation is not quantized since it is
assumed, as in the classical case, that the pump power
is so large compared with the power in the cavity modes
which are coupled that pump quantum fluctuations
will be insignificant.

III. QUANTIZATION OF THE CAVITY MODES

Consider now a cavity with perfectly conducting
walls at 0°K. The field may be described classically in
terms of a vector potential A(r,f) where r is the position
vector. The electric and magnetic fields are given by

10A
E=—-—, H=curlA. @
c 0t

The vector potential may be expanded in a complete
set of cavity modes by

A(r)=221 qi()w (1), 3)
where the ¢;(¢) satisfy
&g/ dP+wpq,=0, (4)

and the normal modes, u,, satisfy
curl curlu;= (w;/c)u,, 5)

subject to the boundary conditions at the cavity walls
that the tangential components of u; vanish as well as
the normal components of curlu;. We also normalize
these modes so that

[ U W, dV =4rc%. 6)
cavity
The total energy of the field is

1
Hy=—

T J cavity

(E2+H2)qv.

Now substituting for E and H in terms of A, Eq. (3),
using Egs. (5), (6) as well as the vector identity

(curlu)?=div(aXcurlu)+u-curl curlu,

° K. M. Poole and P. K. Tien, Proc. Inst. Radio Engrs. 46,
1387 (1958).

10 P. K. Tien, J. Appl. Phys. 29, 1347 (1958).

L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), First ed., Chapter XIV.
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and the boundary conditions on the wu;s, the field
Hamiltonian reduces to

Ho=3% 31 [pr+wiq?], )

dql/dt=pl.

We now quantize by regarding the $; and ¢; as
Hermitian operators satisfying the commutation rela-

tions
[Pupn]=[g19n]=0; [q,pn]=ihdtn. (8)

The operators p; and ¢; may be expressed in terms
of non-Hermitian operators a;' and a; by means of

()= @/ 20 at O)+ai(2)],
21(8)=1(hen/2) i () — ai(2) ],

where a;' is the Hermitian conjugate of a;. The a’s obey
the commutation relations

Lai(8),am’ () J=81m;

where

©9)

(10)
La(®),an(®) 1=[ai" (1),ax! (©) 1=0.
In terms of the a’s, the Hamiltonian (7) becomes
Hy=3% ﬁwz[alfdﬁ-%]EZz H,; (11)

The operators a;' (£) and a;(f) are the time-dependent
Heisenberg creation and annihilation operators, respec-
tively, for photons at w;. An eigenstate of a;fa; at =0
may be specified by

dlonzo l ﬂzo) =M1 ! nzo),

where 7y is the number of quanta at w; in the field and
|710) is the wave function describing this state. This
representation makes H, diagonal. Also

@t I %zo) = (nw"i“ 1)%| N+ 1>,

12
dzolﬂw): (”lo)%l nw— 1); (12

which show that ¢' and a are creation and annihilation
operators.

The operators a;, a;f, and H, are in the Heisenberg
representation. The Heisenberg equations of motion are

ihddl/dt= I:dl,H()]: ﬁwlal,
ihdaff/dt= [le,H()]: —ﬁwza[’,

where the commutation relations (10) were used. The
solutions are easily seen to be a;(¢)=a; exp(—iw;t) and
ait (§)=auw’ exp(iwi). Thus, if initially the system is
characterized by a state in which there are #; quanta
at wy, the state will not change with time.

(13)

IV. INTERACTION

In order to provide coupling among the various
cavity modes, we assume that the dielectric constant
varies as

e(r,)=14¢€(r,f)=14Ae cos(wi+ ¢) f(x), (14)

where f(r) is a function to be specified later. The weak
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coupling approximation assumes that AeX1. ¢ is an
arbitrary pump phase.
The Hamiltonian for the system is now given by

1
H=— / [e(r,)B2+-H21dV
8w cavity

1 1
—— [ [E+Ev+— / ¢ (r) B2V
cavity

T J cavity s

The first term is the unperturbed Hamiltonian of the
previous section while the second term gives the
coupling. If we express E and H in terms of the unper-
turbed cavity modes of the previous section, we can
write the Hamiltonian as

H=H+H,
where H, is given by Eq. (11) and H' is
H' ()= —1% cos(wi+ ) X kim(art—ar) (@nt—an),

lm

(15)

where Eq. (14) was used and the coupling coefficients

are
Ae

f@uu,dV. (16)

(wiwm)?
TC cavity

Kim™=Kml=

The Heisenberg equations of motion for the creation
operators are given by Eq. (13) with H, replaced by
Hy+H' which, on using the commutation relations
(10), become =)

dd]j/dt: iwjaj1+i[ei(wt+¢)
+eirta 1 3 ky(af—ar), (17)

together with the Hermitian conjugate of these equa-
tions for ¢;. Now in order that any modes be coupled,
it is necessary to choose f(r) so that the x;0. In
general, a given choice of f(r) will leave an infinite
number of modes coupled. As already noted, classical
models for parametric interactions® consider only a
small number of interacting modes, usually only two,
so that at first sight it would seem that our quantum
model is not consistent with the classical one. By the
use of a perturbation theory argument we can show
that by the proper choice of the pump frequency w we
may limit the number of interacting modes to two.

In the absence of interaction (k;=0) the mode
amplitudes are given by

af=asfewst; a,=as e,
so that to first order in the coupling coefficients, the
contribution of H’(¢) to a; is given by

dd,'T
(-——) =i[ei(wt+so)+e-—i(wt+lp)]
dat /g ‘ '
XX kplawtet—apert].  (18)
[

Considering an arbitrary term /=% on the right side of
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(18), it is seen to contain frequency components at
+w=w;. For a continuous interaction between modes
7 and %, we must fulfill the conditions w;=-4w-tw;
when w>w;, or wj=witw when w;>w, so that the
interaction gives rise to components varying as exp (iw;t)
which are synchronous with a;7(£). A mode 7 for which
the frequency conditions are not satisfied will give rise
to components at frequencies |wzw,|#w;. The re-
sultant beating at all the difference frequencies involved
averages out to zero over time intervals long compared
to the longest beating period.

As is well known from time-dependent perturbation
theory,”? transitions which do not “conserve” energy
must occur rapidly so that the energy deficiency AE and
the transition period At obey the uncertainty relation
AEAt>#. Consistent with this point of view it is clear
that the neglect of the rapidly fluctuating nonsynchro-
nous terms is identical to stating that they arise from
the nonsecular terms of the Hamiltonian. This becomes
clear on examination of Eq. (15) and considering final
and initial states connected by the various terms and
their total energy.

Barring accidental degeneracies, we therefore assume
that only two nondegenerate modes are coupled by the
pump field at w and denotes them as the signal mode
(1) and the idler mode (2). For w=wi+ws, Eq. (15)
reduces to

Hamy' = — [ artaste o) 4 gyasei@+a)],  (19a)
and Eqs. (17) reduce to
dast/di=iwas’ — ket @t a,, (20)

ddlf/dtz iwlle— iKGi(wH"p)dz,

plus their Hermitian conjugates. These terms arise
from (19a) for which an equal number of signal and
idler photons are created (or annihilated) simultane-
ously at the expense of the annihilation (or creation)
of an equal number of pump photons. This situation
gives rise, as will be shown in the next section, to
amplification.

For a pump field satisfying w=wi—ws, Eq. (15)
reduces to

Heony'= +hK[ala2T3i(‘° t+e) +01T(126_i(”t+“’)], (19b)
and Egs. (17) reduce to
ddl/dt= —iwlal—ixe—i(“’”“’)az, (21)

day/dt= —iwsas—ike' @) gy

and their Hermitian conjugates. These terms arise from
(19b) which correspond to transfer of energy between
the signal and idler fields, i.e., frequency conversion,
as will be shown later. We may_.add here that in order
to show that the terms retained in (19a) and (19b) are
secular, we must consider initial and final states which
include the quantized pump field (excited to a high
level).

12 See reference 11, Chapter 8.
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V. AMPLIFIER EQUATIONS OF MOTION

The equations of motion for the creation and annihi-
lation operators at w; and w; are [from Eq. (20)]

day/dt= —iwiaytike i @Hte) gyt

C e . (22)
dast/dt=1waas" —ixe? @t e)qy,

together with the Hermitian conjugates of these
equations.

These equations will be immediately recognized as
identical with the classical parametric amplifier equa-
tions®® if the creation and annihilation operators are
identified with the classical mode amplitudes and their
complex conjugates, respectively. (% has disappeared
from the operator equations so this result is not too
surprising.)

The Manley-Rowe relations'® follow directly from
Egs. (22) just as in the classical case since

a
——a1'fa1=—-0/27112, (23)
dat dt
which is equivalent to the commutator relations
[aifar,H]="[astas,H]. (24)

Thus, if 72:(f) and 712(¢) are the expectation values of
aita; and asfa,, the number of photons at w; and w, at
time ¢, it follows from Eq. (23) that the Manley-Rowe
relations are equivalent to

11 (8) —11(0) =9 (£) — 12(0),

showing that each time the pump creates a photon at
w1 it must also create one at we which again is a necessary
consequence of energy conservation as already noted.!
Energy conservation therefore dictates the nature of
the coupling mechanism between the creation and
annihilation operators.

The solutions of the equations of motion (22) are

easily found to be
a1(t) =14 ay9 coshri+1ie~*¢as" sinhkt}, 25)
as' (£) = e™2*{ @z’ coshkt—ie?ayy sinhxt},

with their Hermitian conjugates. The subscript zero
refers to initial values. From these equations it follows
that

a11‘d1 = meau) COShZKt—i— (1+020T1120) sinh2x¢

+14 sinh2«t[ a0t @zote =9 — a10a20e**], (26)
Aot @y= asq’ aso cosh2t+4 (14 a1t a10) sinh2z
+14 sinh2«t[ @10’ as0’e 20— aroazoe’?].  (27)

1BW. H. Louisell, Coupled Mode and Paramelric Electronics
(John Wiley & Sons, Inc., New York, 1960), 100; 119; 104; 96.

14Tt has been pointed out by M. Weiss [Quantum Electronics—
A Symposium, edited by C. H. Townes (Columbia University
Press, New York, 1960), p. 2917, by J. R. Pierce [J. Appl. Phys.
30, 1341 (1959) ] and by others that the 8 conditions are equivalent
to the conservation of momentum in a dispersive medium while
thle conservation of quanta is equivalent to the Manley-Rowe
relations.
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One now sees from these equations how the operators
differ from the classical mode amplitudes. The non-
commutivity of @; and a:' as well as @, and a,' lead to
an extra 1 in the second term of Egs. (26) and (27).
If aso'@20=1m20 are the initial number of photons at the
idler and aiof@10=710 the initial number at the signal,
then even if #19=1#5=0, after a time ¢ there will be
photons at w; and ws which can be viewed as arising
from the zero-point fluctuations of the signal and idler
fields or equivalently as due to our inability to specify
the initial number of photons more accurately.

For future reference the displacement coordinates
and momenta [Eq. (9)] are given:

P1(8) =1 (hw1/2) coshkt(aiote™rt— ape—#1%)

—4 sinhxt (a2oei(w1t+¢)+am‘l'e—i(wlt—l—w))], (28)
q1(8) = (#/2w1) [ coshrt(a1ofe?1t4- 16~ 1t
—1 sinhxt(azoe““’1‘+<")—aone“"(”‘”"))], (29)

with similar expressions for p,(#) and ¢»(¢) which can
be obtained from the above expressions with subscripts
1 and 2 interchanged everywhere. We shall use these
expressions later to evaluate the uncertainty in the
number of quanta and the phase of the signal and idler
modes.

VI. EXPECTATION VALUES AND FLUCTUATIONS

We are now interested in considering the fluctuations
in the output of the parametric amplifier. These fluctu-
ations will determine the accuracy with which we can
measure the number of photons in the input wave by
an examination of the output wave. To study these
fluctuations under large amplification we must obtain
expectation values of the number of quanta at the
output.

We will first focus our attention on the average
number of w; photons, 77:(¢), and the w; photons, 72(Z),
both as a function of time. We assume that at (=0
there are exactly 710 of the w; photons and 7,y photons
at frequency ws. This is equivalent to taking as our
wave functional at =0

¢(0) = I ”10)”20>;
7i1(?) is given by

M1 (t)=(a:" (D a:(2))
= <ﬂ10,ﬂ20 } 010T1210 COStht'*‘ (1+020T020) Sil’lhzlct
+%1 sinh2«¢ (dlo'rdzofe—w"“(l1oagoe+i¢) I%lo,ng())
=M10 COSh2Kt+ (1—}-%20) sinh21<t, (30)

where we made use of Eq. (12). For large gain we have
711 (t) = K (n10+n20+1), (30a)

where K=exp(2«£)/4 is the gain. A similar procedure
leads to

Aia (£) ={ast (1) a2 (8)) = 20 cosh2t+ (14n,0) sinhz.  (31)

We may consider the variable ¢ as the time variable
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in a resonant (cavity) type of an amplifier or, equiva-
lently, as the distance along a distributed amplifier so
that cosh%#£3>1 corresponds to a high gain amplifier.
Equation (30) or (31) is identical, with one exception,
to the classical expression for the power along the
distributed parametric amplifier.® The classical expres-
sion has 74 in the second term on the right side of
Eq. (30) instead of (14-#7s) in our case. The added
term sinh2¢ corresponds to an output whose magnitude
is independent of the input and constitutes the non-
coherent zero-point fluctuation noise. The same remark
applies to Eq. (31). The Manley-Rowe relations are
fulfilled since

ﬁl(t)—'}'l«m: ﬁz(t)——%zo. (32)

Since the number of photons # is related to the power P
by #n=P/#w we can rewrite Eq. (32) as

Pl/w1=P2/w2, (33)

in which form it was originally given by Manley and
Rowe.!?

For a measure of the output fluctuations we compute
the output variance (Any)? given by

(Any)?= ((nl— ﬁ1)2>av= (”12} av— 1%, (34)
where
(2 ay=(M10,n20| (@17 01)?| 10,720)
=102 cosh*ki~-2m10(1-Fn90) cosh?ct sinh%
+ (1+-120)? sinh*kt
1 sinh?2«t[ 2m10m20+ 110+ m20+17. (35)

Using Eq. (30) for 7; the variance (Any)? takes the form
(An1)2=% SinhZKt(1+n1o+ﬂ20+2%101120) (36)
zK2(1+1’L10+1’L20+2%107L20), (36&)

where the approximate equality stands, as will be the
case in the remainder of this paper, for the high-gain
case: K>>1.

It should be noted that although the input variance
is zero, if we have to deduce the input variance from
an examination of the output we will get a finite result
in accordance with Eq. (36a). This represents the
uncertainty introduced by the amplifying mechanism
itself.

The fractional variance & is defined by

8= (An1)?/ (71)?,
and for K>>1 is given by
&=~ (1+n10+ng0+2n10020)/ (14110 120)%

For single frequency input we may set #30=0 and
& becomes

37

&=1/(1+mn10), (38)

which is identical with the result obtained by Shimoda
et al.! for the ideal maser amplifier.
The preceding treatment, which assumed an exact
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knowledge of the number of input photons 719 and #sq,
is not always satisfactory. It entails, in accordance with
the uncertainty principle, a complete abandonment of
any phase information about the incoming waves.
This model does not reflect the fact that the very
process which causes our signal to be weak introduces
a fluctuation in the number of photons. The most
common cause for the signal weakness is the distance
between the signal source and the amplifier (the
receiver) which, because of the small probability that
a given emitted photon will arrive at the receiver,
leads to a Poisson distribution at the input. If the
signal weakness is due to lossy attenuation the resulting
distribution at the input to the amplifier is again
Poisson® and is due to the random nature of the ab-
sorption.

Both the phase information and the Poisson nature
of the distribution are included if the wave functionals
|¢(0)) are taken as a Poisson distribution over the
states of the uncoupled system at ¢=0, before amplifi-
cation begins.!® (See Appendix I.)

W)= X [p(n10)p(na0) Jle~imoertnnea 5,4, m40). (39)

710,720

Here ¢1 and ¢ are the phases of the signal and idler
waves, and the p(mi) are the Poisson probability
distribution functions

€xXp (— %io) L50™50
(%,’0) !

where 7i; is the average number of photons at w; at
t=0. That Eq. (39) does actually correspond to a
definite phase can be illustrated by calculating the
expectation value for the electric or magnetic field.

A few expectation values which are needed in the
calculation of the first and second moments of the
output are

<l111.al> =17 (t) =Tl COSh2Kt+ (1+ ﬁgo) sinh?«?

P(”io) = ('Lz 17 2)7 (40)

—sinh2:<t((n10nzo>av)% Sin(<P1+ P2 ‘P); (41)
{astas)=1is(f) = figo cosh®kt+ (14-710) sinhi
—sinh2«t ((1720)av)? sin (1 @2— @), (42)

{(a1t@1)?)= (B2 (£))av=(H10%)av COSh’k!
+ (1427504 (1262 av) sinh’i
+ [ 143710+ 20+ 4R 10720) av
— 2(n10n20),w COSZ((p1+ w2 — qa)] sinh2«¢
X cosh?it—4 ({n10720)av)? sin (@1 02— @)
X[ (1+710) sinhkt cosh®t—+ (14-7is0)

X sinh3«t coshkt—12 sinh«t coshwt].  (43)

A typical calculation used to derive Eq. (43) will be
shown in Appendix II. For the large gain case, K>>1,

15T, R. Senitzky, Phys. Rev. 95, 904 (1954).
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we may use
7 (t) = [14 104720
—2({maom20)av)? sin(e1+ 2— ¢) IK,
(12 (8))av = {{B10®) avt B2 av+3 (10 fizo) +2
F4m10m20)av— 2{n10720) av €082 (@14 02— )
—4((m1on20)av)? sin( o1+ @2— @)

(44)

X[f0t7i0+2]} K2 (45)
The output variance is then given by
(Any)?= <ﬂ12>av'— y?
= K*{1+4-2(A10+7i90)
—4((n1om30)av)? sin (@1t e2—@)}.  (46)
For a single frequency input, 720=0, we get
(Any)?= K2(1+4214y), 47

which is to be compared to the value
(An1)2=K2(1+ﬁ10),

obtained for the case when the number of input photons
was perfectly well defined [Eq. (36a)] for #50=0. The
effect of the parametric amplification in both cases is
to increase the variance of the output (divided by K2)
over that of the input by (14#10).

VII. NOISE IN PARAMETRIC AMPLIFIERS

The output noise power at an amplifier is usually
defined as the average output noise power measured in
the absence of any input. Since the number of photons
71 and the average power P; are related by

P1= T—l1hV1dV, (48)

for an amplifier with an effective bandwidth dv, the
output power for the case of a Poisson distributed
input is

P,= [147ig0+7izo
-2 (<ﬂ10n20>av)% Sil'l (g01+ Y2 — (p):IKhllldV. (49)

The noise power is that part of P, which does not
contain either 739 or 7o and is given by

PN1=KkV1dV. (50)

An equal amount of output power results when the
input rate of photons is one photon per (dv)~! seconds.
So that the limiting detecting sensitivity of the para-
metric amplifier is one photon per resolution time of
the receiving system. The same results obtains for the
ideal maser amplifier when most of the “spins” are in
the excited level.

The “noisiness” of amplifiers is often described in
terms of an “effective source temperature’!® T',, which
is the temperature of a matched input termination
yielding an output noise power equal to that generated

16 J. P. Gordon and L. D. White, Proc. Inst. Radio Engrs. 46,
1588 (1958).
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by the amplifier. Since the available power from a
termination at temperature 7 between w and w-dw is
given by

fw

ehw/kT_l

dw, (51)

we get by equating Eq. (51) to Eq. (50)

fiow

T.=— / In2. 52
. (52)

It should be noted that Eq. (52) or (50) give the
contribution to the noise temperature which is basic
to the parametric process. This is a limit which can
only be approached by minimizing the noise contrib-

uting losses and by cooling temperatures comparable
to fw/k.

VIII. COMPLEMENTARY

It is next of interest to consider how well the number
of photons in an incoming wave as well as the phase
can be determined, simultaneously, by an examination
of the output.

Under the assumption that the signal satisfies a
Poisson distribution, we may calculate the expectation
values of the canonically conjugate coordinates and
momenta as given by Egs. (28) and (29). These are
found to be (for large gain)

Pr=— (2hw1)¥{ (7i10)? sin (wit+ o1)

— (7i20) cos (wit+ o— ¢2) } K3,
1= (271/w1)¥{ (10)* cos (wit+ 1)

F (710! sin (st o— en)} K3,
P2 and ¢. are found by replacing subscript 1 by 2

and 2 by 1 in the above.
Also the mean squares are

(P1Dav= (hiw1/2){[1+4710 sin?(wit+ o1) ]
+ 144750 cos?(wit+ o— @2) ]
—8((m1oma0)av)? sin(wit+ ¢1)
Xeos(witt o— ¢2) } K,
(gDav= %/ 2w){[14+4710 cos?(wit-+ 01)]
+[14-47i9 sin?(wit+ o— ¢2) ]
F8({m10m20)av)¥ cos(wit+ 1)
Xsin(wit+ ¢o— ¢2)} K.
while again (ps2)ay is obtained from (p:2., by inter-
changing 1 and 2 everywhere and {g:2)ay is obtained in

the same manner from (g:2)ay.
The second moments at the output are given by

(Ap)?={pPDav— Pl=hwiK,
(Ag1)*= (gD av— = (B/w1)K,
(Ap2)?=TwoK,

(Ago)*= (B/w2)K,

(53)

(54)

(55)
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and the phases of the signal, idler, and pump have
disappeared. Thus the initial uncertainties in measuring
the amplitudes of the fields are

Ap1oAgro=7, Ap2lgs=17,

where Api=KApi1o, Agi=KAqgu,, etc.

Note that the uncertainty product ApieAqie is twice
the minimum value. This can be traced to the two
“1’s” in Eq. (54), showing that the total fluctuation in
either channel is due to equal contributions from both
channels and that even when #n9=0, the zero-point
vibrations of the idler channel introduce noise (fluctu-
ations) into the signal channel.

Consider the case in which 7i29=0. Then by Eq. (53),

Pr1=— (2%w1710)¥[cos 1 sinwit+sin ey coswit K?

(56)

=[p10 coswit—wig1o Sinwit ]K?, (57)
G1= (2%im10/w1)} cos 1 coswit—sin gy sinwit |K?
= I:Qm Cosw1l+ (ﬁm/wl) sinwlt]K%. (58)
Thus it follows that the phase ¢ is
P10
p1=tan™! , (59)
wig1o0
or, by differentiation, the uncertainty in phase is
w1g10AP10— P10w14Aq10
A§01= ’ (60)

(pro®*+wi’q1e?)

if the uncertainties, Apip and Agio, are suitably small.
If the fluctuations in Apyo and Agyo are uncorrelated,

we have
wi2q10® (Ap10)*+wiPp1oPAgie?

(pr®+wiq1e?)?

We have therefore been able to relate the uncertainty
in the phase of the signal to uncertainties in the field

amplitudes.
We have shown in Eq. (55)

(61)

(Agr)*=

Ap10=wilAqio, (62)
so that 2 (Agu)? (A
wi?(Ago w1®(Aq1o
(Apr)?= = — (63)
pro*to’q®  2hwifii
Since by (57) and (58), p12+wi?q1e*=27wi7is0.
By Eq. (55)
(Aquo)*=7/w1. (64)
Equation (63) becomes
(Ap)==21/(27210)* (65)
By Eq. (47),
Any/K = Anye' = (1427110)},
so that
A§01A%10/= [(2ﬁ10+ 1)/27’?10]%. (66)

This result is identical with that found by Townes and
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Serber? for the maser case except for a factor of 2
discussed in connection with Eq. (56).

IX. FREQUENCY CONVERTER

The frequency converter can be treated by the same
methods using Eq. (19b) as the interaction Hamil-
tonian. From the nature of this coupling which is
determined from energy conservation between the
pump, signal, and idler, viz., fw=7w;—%w,, it follows
that only annihilation operators are coupled to annihi-
lation operators at the two frequencies. The equations
of motion are given by Eq. (21):

day/di= —iwa,—ike "t gy

(67)

ddz/dt—_— —iw2a2—ixei(“’ H'“’)dl,

with the Hermitian conjugate of these equations in

which only creation operators are coupled. These will

again be recognized as the classical frequency converter

equations®® where the a’s are the mode amplitudes.
These equations can be solved to yield

a1Ta1= a10" @10 cos2t+aso aso sinZ«t

+31i(az @106 — arot azoe™¢) sin2«t, (68)
and
asTas= ag0' @20 cosikt+ a1t aio sinZt
—%i(dondlgei‘p—010T0206~i¢) sin2«t. (69)

If at (=0, there are exactly #n;, photons at w; and
720 photons at ws the solutions for the expectation
values 71;(¢) and 7i2(f) are

M1 (8) =(a1" (£)a1(8)) = n10 cos*t+-nso sint,

Ao (8) ={as' () a2 (t)) = 19 coskt—+n10 sind.

(70)
(71)

In a typical frequency conversion we have #9=0,
for which case Eqgs. (70) and (71) become

(72)
(73)

so that at ¢=(7/2«)(2m-+1), the input which was
launched at frequency w; can be taken off at w,. An
interesting feature of the frequency converter is that,
unlike the amplifier, it has no zero-point fluctuations
in its output since, according to Egs. (70) and (71),
with #10=n9=0 there is no output.

The difference between the parametric amplifier and
the frequency converter as regards their zero-point
fluctuations can be traced to the basic quantum
mechanical model. In the parametric amplifier a
simultaneous generation of a signal (w;) photon and
an idler (ws) photon corresponds to a transition
| n1,m2) — | 1141, ne+1) whose strength is proportional
to (m1+1)(ne+1) and which can, therefore, take place
even when n;=7,=0. In the case at the frequency
converter the mechanism of transfer of energy from
wy to w; is described by a |mi,m9) — |ni+1, #a—1)

71 (£) =110 COSE,

N2 (t) =110 Sin’,
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process whose strength is proportional to (n:41)(#2)
so that it cannot take place when the input, #,, is zero.

X. SUMMARY

Four aspects of the parametric interactions have
been investigated. First we establish the correspondence
between the classical limit of our quantum mechanical
model and the familiar, wholly classical, model.
Secondly we showed the existence of zero-point fluctu-
ations in the output of the parametric amplifier. We
next showed that the phase and the number of quanta
of an incoming electromagnetic wave can be measured
with an accuracy limited only by the uncertainty
principle. A brief treatment of the frequency converter
shows the absence of zero-point fluctuations from its
output.
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APPENDIX I

It will be shown here that a Poisson distribution over
the energy eigenstates of the quantized field in a cavity
oscillating at frequency w lead to a minimum uncer-
tainty wave packet. The electric and magnetic fields
can then be specified to an ultimate precision limited
by the uncertainty relations and the expectation values
of the fields for the “Poisson-state’ lead to the classical
results. This is an example of Ehrenfest’s theorem.

For simplicity, the electric and magnetic fields of
the cavity are written as

E(r,0)=—4mcp(u(r),

H(r,t)=q(t) curlu(r), I1)

were, as usual, g and p satisfy the commutation relations

Lgp]=ik; [gq]=[p,p]1=0. (12)
The quantized field Hamiltonian is given by
H=(«*/8mc®) >+ 2wc2p?. (13)

In the momentum representation, ¢=4%9/9p and the
Schrédinger equation becomes

@it/ B+ [An—EJu=0, (14)
where
f=ap; od=4dwc®/tw; A=2FE,/fiw=2n+1, (I5)
and
wn(§)= (a/2"n!/m)* exp(—&/2)H,(§),  (I6)

where the H,(£¢) are Hermite polynomials.

%, is an energy eigenstate corresponding to # photons
in the radiation field at frequency w.

Now let us consider a linear combination of these
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eigenstates weighted with a Poisson distribution, viz.,

o(B )= 3 ot Dt (ap), )
n=0
where

Cn= (e \"/nl)te—ine, (18)

where A has the physical significance of the average
number of quanta in the field as will be shown below.
¢n¥cn is obviously the well-known Poisson probability
distribution function. Substitute (I6), (I8) into (I7),
use the Hermite polynomial generating function

ke Hn(é)ﬂ"
exp(2&n—’)= Zo T (19)
n= n.

separate exponent into its real and imaginary parts,
and (I7) reduces to

1

()= (\/i) expl - “Tp— O sttt @]2}

™ 2 o

Xexp[ zB sin2 (wi+ o)
wl
—ap(20)} sin(wit o) — EJ } (110)

This is in the form of a Gaussian distribution and our
next task is to show that this is a minimum uncertainty
wave function. That is, we must show that

(Ap)*(Ag)*=%/4, I11)
where
@PP=(G—== gy
(Agr=((g—(9))=("— (™
Now it is easy to show that
o 20)%
(n= / le(p,0) |*pdp= ( cos(wit¢), (I13)
* ]
<9>=f <p*ih—¢—dp=ﬁa(2>\)% sin(wi4¢), (114)
o 0P
(#)=(p)*+1/2%, (115)
(¢)y=(@*— 1t (p*)—(p)") +1°c?, (116)

from which (I11) follows directly showing (I110) to be
a minimum uncertainty wave packet.

To demonstrate Ehrenfest’s theorem, we see by
Egs. (I1), (I13), and (I14) that

(E(1,8))= — (8m\hw)? cos(wi+ o)u(r),
H(x,8))= (8mAhc2/w)? sin(wi+ @) curlu(r),

which shows that the expectation values of the fields
for the ‘“Poisson-state” yield the classical fields.
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Furtherrhore, if we denote the classical field amplitude
by E, we see that

k= E?/8,

which is the classical field energy density which justifies
the interpretation of A as the average number of
photons in the field.

It is not surprising that the Poisson distribution
which leads to the minimum uncertainty product leads
to the classical result since this corresponds to localizing
the photons as much as possible consistent with the
uncertainty relations as well as specifying their mo-
menta. This represents, therefore, the closest approach
to the classical situation in which both position and
momentum can be specified exactly and is a justification
for assuming that the amplifier input has a Poisson
distribution.

APPENDIX II

In order to simplify the evaluation of matrix ele-
ments, we begin by rewriting the Poisson distribution
as an operator on the vacuum state. For one amplifier
channel, the initial state may be written as

WO)=3 (e_wy ey, ()
. B n=0 n! ¢ '\/ﬂ! ’
since
|n)=(a"/n/n) O), (1m2)

where |0) is the vacuum state for this channel and we
have used Eq. (12) # times. Equation (II1) may be

rewritten as
= (\)iesral)"

()= ———[0)
n=0 n!
=¢ M2 exp(wal) |0), (113)
where we have summed the series and
w= (\)tete. (114)

Note that A=17, the average number of photons in the
channel.
We may generalize this result to two channels and
write the initial wave function as
[¢(0)) =10+ exp (wia1e") | 0) exp (weaze') [0, (II5)

where

W1,0= (}\1,2)%6_“’1-2. (116)

We now proceed to evaluate a typical matrix element,

YARIV, AND SIEGMAN

say (¢(0)]awofast|¥(0)). Usi_ng Eq. (II5) this becomes
(0) | axdaz’ | (0))
=g~ MP(0] exp (wi*a10)a1o’ exp (wiai’) | 0)
X{0| exp (wa*ase)ase’ exp(waaset)|0). (II7)
To evaluate we use the following theorem:

Theorem 1. If f(a') can be expanded in a Taylor series
and # is a parameter, then

e f(a")|0)= f(a'+u)|0). (I18)

To prove this theorem, we note that since [a,a' =1,
a can be replaced by
a=9/dd’,

since @ and d' are conjugate variables.
Now it is well known that a Taylor series expansion
of f(x) may be written as

(I19)

d
f(x)=exp[<x—xo>df<xo>
< (x—2x0)! 9 0
- £ e, (o)

and if #=x—x,, we have

flut20)= exp(u—a ) (o)
ox ’
so that

exp(%g%)f(a’f#f(afﬂ),

and the theorem is proved. Thus, the matrix element
becomes

<¢ 0) [ @10t @t I'P(O»
=g M0 (a10'+w1r*) exp[wi(awn’+w*)]|0)
X(OI (020T+w2*) eXp[w (azof'i‘wz*)] I O>

=wtwe*= (\ ) leiorted)

(I111)
since

(0] @10' exp(w1a101) |0)

0 (wlme)I

= <0| a2
=0 ]!

il (wlaw*) !

<O,exp(w1am'f)|0>=<0| EO T

and

[0>=0, (I112)

]0>= 1, (I113)

[w1|2=)\1,

where Ai=17i10 and Ao=17is9, giving the desired matrix
element.



