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Material and Methods 
 
S1.1 Survey design  
 The next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) 
measures ground-reflected solar radiation from the visible to infrared spectral regions (380 to 
2,510 nm) with 5 nm sampling.  This push broom instrument has a 34° field of view and operates 
on high performance aircraft, allowing for efficient mapping of large regions (5).  Increasing 
flight altitude affects the ground resolution, i.e., the size of each image pixel increases while the 
image swath increases.  For most of this survey, AVIRIS-NG flew at 3 km above ground level, 
resulting in 3 m image pixels.  The airborne survey program with AVIRIS-NG (Fig. 1) was 
conducted with intensive field campaigns in 2016, 2017 and 2018 – with the longest single 
campaign lasting over 2 months.  Each flight day was typically 4-5 hours in duration including 
cruise flight to the mapping area.  Mapping was typically conducted between the hours of 1000 
and 1500 local time for peak illumination but some flights occurred as early as 0900 and as late 
as 1700.  

 Figure S.1 illustrates an example of AVIRIS-NG flight lines in the Southern San Joaquin 
Valley including the diversity of emission sectors and their spatial distributions.  The flight 
planning was governed by two primary objectives: 1) spatial coverage sufficient to map the 
infrastructure in the State most likely responsible for >60% of methane point source emissions 
(with >80% coverage for key sectors) and 2) sufficient number of revisits to have a reasonable 
probability of detecting intermittent emission sources (e.g., for a source that is active 25% of the 
time, 6 visits should provide a detection probability of 0.82).  In addition to the broader goal to 
map and revisit large areas we also conducted several intensive studies focused on gaining 
insight into key emission processes.  One intensive focused on an area near Visalia that was 
mapped repeatedly over a 5 hour period to investigate the temporal variability of manure 
emissions from over 100 dairies with 60 minute revisit intervals.  Others focused on natural gas 
infrastructure across southern California, gas-fired power plants during heat wave conditions and 
refineries in the LA basin and San Francisco Bay Area.  In several cases coordinated, 
contemporaneous measurements were conducted with mobile onroad laboratories, fixed surface 
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observations and other airborne systems to help validate source locations and emission estimates 
(Section S3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S1.2 Infrastructure Data  

A Geographic Information System (GIS) data set known as Vista-CA that maps potential 
methane emitting infrastructure across the State of California was developed to assist with flight 
planning and for source attribution following detection of methane plumes.  The Vista-CA data 
set applies similar methods previously used to develop a Vista-LA methane GIS data set for the 
greater Los Angeles area (32).  Vista-CA mapped the locations of infrastructure associated with 
three primary sectors (energy, agriculture, and waste) following the frameworks used by the 
State of California’s Greenhouse Gas Inventory and the IPCC Guidelines for GHG Reporting.  
Vista-CA contains 450,572 distinct pieces of potential methane emitting infrastructure and was 
used to guide selection of flight boxes (Table S.1).  

Many of the Vista-CA elements were readily derived from public data records but others 
were more challenging and required some new development.  For example, the natural gas 
pipeline numbers in Vista-CA include transmission, distribution, gathering and “other” 
categories (Table S.2).  The 4,599 km of gas transmission lines in California was derived from a 
combination of NMPS, CEC and EIA data but there is no publicly available map of distribution 
lines in urban areas.  To the distribution line issue we constructed a residential distribution line 
mask using parts of the California road network overlaid on raster cells classified as being 20-
100% impervious in urban areas from the National Land Cover Dataset (NLCD; ref 33) and 
connected it to the existing NG Pipeline infrastructure using a 10km distance tolerance.  Survey 
coverage was computed by using the AVIRIS-NG 2016-2017 flight path (1800m width) 

Southern	San	Joaquin	
Valley

Figure S.1. Example of flight planning for the southern San Joaquin Valley in Fall 2016 
using the Vista-CA GIS data system and the resulting AVIRIS-NG flight lines. Surface map 
data: Google Earth. 
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rectangular polygons as clip features to pull out overlapping pipelines and recalculate segment 
length within each AVIRIS survey polygon.  
 
 
 
 
 

 

IPCC Source 
Category

Vista-CA 
Infrastructure 
Elements Data 
Sources

Number of 
Features 

Surveyed by 
AVIRIS (2016-

2017)

Total Number 
of Vista-CA

Infrastructure 
Elements

Percentage of 
Vista-CA 

Infrastructure 
Elements 
Surveyed

Percentage of 
IPCC 

Emission 
Sector 

Surveyed
CARB Inventory 
(2014)
EIA (2016)
EPA FLIGHT 
(2016)

238 435 54.7%

CARB Inventory 
(2014)
EIA (2016)
EPA FLIGHT 
(2016)

26 26 100.0%

264 461
AFDC (2017) 107 162 66.0%
AFDC (2017) 25 46 54.3%
CEC (2017)
EPA FLIGHT 
(2016)

538 1,131 47.6%

CEC (2012)
EIA (2017)
NLCD (2011)
NPMS (2013)
U.S. Census Bureau 
(2017)

68,548 216,774 31.6%

EIA (2014) 23 26 88.5%
DOGGR (2016)
EIA (2016)

12 12 100.0%

DOGGR (2018) 2,872 3,356 85.6%

DOGGR (2018) 198,231 225,766 87.8%
270,356 447,273

All dairies 890 1,544 57.6%

CAFOs with >1000 
head

443 620 71.5%

Composting Sites

CalRecycle (2015)
CARB (2015)
EPA FLIGHT 
(2016)

166 430 38.6%

Solid Waste Disposal 
Sites (landfills)

CalRecycle (2015)
CARB (2015)
EPA FLIGHT 
(2016)

270 716 37.7%

Domestic & Industrial 
Wastewater treatment 

CARB (2016)
EPA FLIGHT 
(2016)

57 148 38.5%

Industrial Wastewater 
treatment: beef 
processing

other (satellite 
imagery)

1 n/a n/a

272,447 451,192 60.4%

4D1 & 4D2  
Wastewater 
Treatment 

Wastewater 
Treatment 
Plants

38.5%

38.2%

TOTALS

4A1 Solid Waste 
Disposal Sites Landfills 

3A2 Manure 
Management

Vista-CA Infrastructure Elements

1A1 Energy Sectors

Gas-fired Power Plants

Refineries

sub-totals

1B2 Oil and Natural 
Gas

CNG Fueling Stations
LNG Fueling Stations
Natural Gas Stations (non-storage 
compressor, dehydration, metering, 
odor, etc)

Natural Gas Pipelines (length in km)

Natural Gas Processing Plants

Natural Gas Storage Fields

CIWQS (2018)
CARB (2015)
RWSCB - Region 5 
(2017)
SJVAPCD (2017)

57.3%

60.4%

Oil and Gas: Other production 
equipment

64.5%

Oil and Gas: Wells
sub-totals

Dairies

Table S.1. Summary of Vista-CA infrastructure elements, data sources and % surveyed by this study for 
key equipment/facility types and IPCC emission sectors.  
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 “Natural Gas Stations” in Table S.1 include 158 non-storage compressor stations as well 
as dehydration stations, metering stations, odor stations, pressure limiting stations, regulation 
stations, storage stations, taps, and valves. The “Oil and Gas: Wells” category includes active 
well heads, pumpjacks, and other equipment immediately associated with extraction and also 
inactive wells.  “Oil and Gas: Other Production Equipment” is derived the “California Statewide 
Oil and Gas Production or Injection Facility Boundary” data set from DOGGR 
https://maps.conservation.ca.gov/doggr/metadata/FacilityBoundaries.html. To our knowledge 
that is the best publicly available database on locations of oil and gas production infrastructure in 
California that may emit methane including permanent tanks, flowlines, headers, gathering lines, 
wellheads, heater treaters, pumps, valves, compressors, injection equipment, production safety 
systems, separators, manifolds, and pipelines.  However, that database does not likely cover all 
such equipment statewide, and also excludes production equipment known to emit methane, such 
as separators, water tanks, acid gas removal units, and dehydrators. We have very limited 
information about the spatial distribution of some components such as gathering lines.  For these 
reasons (and the fact that we surveyed over 80% of production fields in the State) we do not 
attempt to upscale our emissions results from Other Production Equipment (Section S2.11). 
 
 
 

 
 

Dairies are a special case given the number and magnitude of methane sources and 
complexity in identifying which facilities are more likely to be point source emitters.  We 
determined the locations of dairy farms in California primarily from satellite imagery viewed in 
Google Earth.  Dairy farms have a distinctive appearance in aerial imagery, typically identifiable 
by the presence of metal-topped shelters, manure lagoons, and corral areas located together in 
close proximity.  This method identified 1,709 individual dairy facilities.  855 of these farms 
were overflown during AVIRIS-NG flight campaigns, yielding 58% coverage of dairies 
statewide. 

California has experienced a contraction in the number of dairies over time, namely a 
reduction by 30% from 2002 to 2012 (34).  Hence it is possible that some of the infrastructure 
from now-closed facilities may still be standing and would be included in the aerial imagery 
identification.  To validate the number of dairies that are still in operation, we used a list of 
permitted facilities from the California Integrated Water Quality System (CIQWS) Project (e.g., 
National Pollutant Discharge Elimination System surface water discharge permits required under 
the Clean Water Act).  CIQWS provides the facility name and location for all active, permitted 
dairies in the state (35).  Out of the 1,709 dairies identified from aerial imagery, 1,172 were 
linked to CIQWS permitted facilities.  296 additional facilities were identified by other permit 

Data Source/Designation Network Type Total length (km) Surveyed by AVIRIS (km)

CA Roads/NLCD Impervious 
Surface generated Network

Distribution 196,670 62,184

Distribution 1,311 565
Transmission 4,599 1,842
Gathering 0 0
Other 14,193 3,958

TOTALS 216,774 68,548

NPMS/CEC/EIA 
Network

Table S.2. Details on key elements within the Vista-CA natural gas pipeline layers. 
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data (36,37), for a total of 1,468 permitted dairies, which are assumed to be currently operational.  
Among the active facilities, 855 were overflown by AVIRIS-NG (58% coverage). 

Not all dairies are created equal with respect to methane emissions; there is large 
variability in the size and manure management practices across California (37).  To isolate the 
dairies most likely to emit measurable amounts of methane from manure management, we chose 
to focus on dairies with >1,000 milk cows, which are expected to emit ~26 kg CH4 per hour, 
roughly 3 times the detection limit for AVIRIS-NG.  This criteria is similar to the Environmental 
Protection Agency (EPA)’s definition of a large concentrated animal feeding operation (CAFO), 
which is ≥1,000 cattle.  The 2012 USDA Census reported 642 dairy CAFOs (facilities with 
>1,000 milk cows) operating in California (38). 

To determine which dairies were CAFOs, we used records obtained from the California 
Regional Water Quality Control Board (RWQCB) Central Valley (Region 5) and Santa Ana 
(Region 8) offices for 2015 (36).  These annual reports contain the name, address, and herd size 
for all dairy farms located within these two regions.  These regions account for more than 95% of 
milk production in the state (39), and include the counties of Butte, Fresno, Glenn, Kern, Kings, 
Madera, Merced, Riverside, Sacramento, San Bernardino, San Joaquin, Siskiyou, Solano, 
Stanislaus, Tehama, Tulare, Yolo, Yuba, and others containing no dairies (37).  The counties 
encompass 846 of the 855 active dairies flown by AVIRIS-NG, leaving 9 dairy overflights from 
the counties of Imperial (8 facilities) and Monterey (1 facility), where herd size reporting is not 
currently required.  

In total, we had 825 records for dairies in the Central Valley, and 78 for dairies in the 
Santa Ana region reporting more than 1 milk cow for 2015.  Of these 903 dairy reports, 383 were 
large CAFOs, with > 1,000 milk cows (355 in the Central Valley, and 28 in the Santa Ana 
Region).  Among these large CAFOs, 282 were overflown by AVIRIS-NG (270 in the Central 
Valley, and 12 in the Santa Ana Region), yielding 74% coverage.  

There is uncertainty associated with the estimate of CAFOs, specifically from (a) dairies 
in counties that are not required to report herd numbers to the RWQCBs (9 flown dairies), (b) 
dairies from the original dataset that did not have RWQCB reports despite being in the reporting 
regions (179 flown dairies), and (c) possible mis-reporting of herd sizes in RWQCB reported 
data.  

For (a), we attempted to quantify the number of CAFOs for counties not included in 
RWQCB reporting using a combination of USDA data and CIQWS number of farms at the count 
level. According to the USDA 2015 survey of agriculture counts of dairy cows, the counties that 
had >1,000 cows were Del Norte, Humboldt, Imperial, Marin, Mendocino, Monterey, San Diego, 
San Luis Obispo, Santa Barbara, and Sonoma (38).  We estimated the maximum number of 
CAFOs in each county by using the minimum of either (1) the 2015 USDA county cow count 
divided by 1,000 (Del Norte: 2, Marin: 3, San Luis Obispo: 0, San Mateo: 0); (2) the 2012 
USDA census of agriculture number of cows on dairies with >500 head divided by the number of 
farms in the CIQWS dataset (Humboldt: 4, Sonoma: 16, San Diego: 2); or (3) when data was 
withheld from USDA surveys to avoid disclosing data for individual operations, we assumed that 
the maximum number of CAFOs was equal to the number of CIQWS farms (Mendocino: 2, 
Monterey: 1, Santa Barbara: 1) or was equal to 3, following the threshold rule (Imperial: 3; ref 
51). That yielded a maximum of 34 CAFOs outside the RWQCB regions described above. This 
increases the total number of CAFOs in the state by 34, and the total number of CAFOs flown by 
4, as only dairies in Imperial and Monterey counties are included. 
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For (b) we estimated the number of CAFOs missing from the RWQCB dataset by 
assuming the proportion of CAFOs among the missing farms was the same as that in the dataset 
by county (e.g., in Madera county, CAFOs were 50% of the dataset, so for the 18 farms were 
excluded from the dataset, 9 were considered to be CAFOs, and of the 2 flown dairies missing 
herd data, 1 was considered to be a CAFO). This increased the total number of CAFOs by 194 
farms, and the number flown by 153 farms. 

Finally, for (c) there is likely error associated with reported herd numbers in the RWQCB 
permit data. According to RWQCB there may be 15% more cows than permitted on farm at any 
given time1.  To account for this, we estimated how much our CAFO estimate would change 
given milk cow populations at each farm that were 15% greater (or less) than reported.  With 
15% greater (lesser) herds, the number of CAFOs would increase by 65 (decrease by 63), and the 
number of flown CAFOs would increase by 48 (decrease by 46). 

Adding in the uncertainty from (a) and (b) as corrections to our dataset, together with 
uncertainty from (c), we estimate a total of 620 CAFOs in the state (with a possible range of 557-
685), and 443 were flown (397-491).  This yields 71% coverage, or a scalar of 1.40 (1.13-1.73) 
that is used for the sectoral upscaling described in section S2.11.  

 
S2.1 Analysis workflow 
 

The analysis for this study (Fig S.2) consists of a) standard processing including calibration 
and orthorectification of the AVIRIS-NG image cube data, b) retrieval of methane column mixing 
ratio-lengths and generation of methane plume maps, c) quality control and filtering of plumes, d)  
geolocation and attribution of methane plumes to Vista-CA spatial layers, e) calculation of 
integrated methane enhancement (IME) and length for each plume, f) acquisition and processing 
of High Resolution Rapid Refresh (HRRR) reanalysis wind fields, g) emission flux estimation and 
uncertainty quantification for individual methane plumes, h) filtering and removal of plumes that 
exhibit sub-optimal shapes, are redundant/overlapping with others plumes or have excessive errors 
in IME and/or wind speed estimates, i) validating emission estimates with independent methods, 
j) averaging and scaling plume emission estimates with observed persistence to derive an annual 
net emission for each source, k) applying Vista-CA spatial layers to calculate net emission 
estimates for facilities and key sectors statewide, l) apply bootstrap analysis to determine 
confidence intervals for each sector and total population.  Each of these steps is described below. 
 

                                                             
1https://www.waterboards.ca.gov/centralvalley/board_decisions/adopted_orders/general_orders/r
5-2007-0035.pdf 
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Fig S.2 Analysis workflow for this study. 
 
 
S2.2 Standard image processing and methane retrievals 

The AVIRIS-NG standard data pipeline acquires “level 0” (L0) raw image data cubes 
from the instrument and delivers calibrated and orthorectified radiances to be analyzed for 
atmospheric methane.  The methane retrieval is based on absorption spectroscopy between 2,100 
and 2,500 nm and uses a linearized matched filter to estimate a, a mixing ratio length that 
represents a methane enhancement in parts per million meter (ppm-m). The retrieval algorithms 
have been previously described (7,26)  and demonstrated in multiple previous field campaigns 
including oil fields in California (7), a campaign to the Four Corners region in Colorado and 
New Mexico (9), the Aliso Canyon gas leak (26), and a study of California landfills (24).  
Controlled release experiments with natural gas demonstrated reliable detection of methane 
plumes for emission rates as low as 2-10 kgCH4/hr depending on AVIRIS-NG flight altitudes, 
surface brightness and wind speeds (41).  The retrieved quantity is equivalent to an excess 
methane concentration (or mixing ratio) in ppm if the layer is one meter thick (i.e. directly 
equivalent to ppb km). At a scale height of about 8 km, the total column averaged excess mixing 
ratio would be about 0.000125 times the excess in ppm-m. For example, 1000 ppm-m is 
equivalent to a column enhancement of 125 ppb.  
 
 
S2.3 Source detection, location and attribution  

The AVIRIS-NG “level 3” (L3) data products include the as-flown nadir flight-line tracks 
as well as the native Red, Green, Blue (RGB) images of surface features and grayscale images of 
retrieved methane along each flight line.  Human analysts analyze the grayscale methane images 
to detect and geolocate plumes.  An experimental machine learning system – a convolutional 
neural network- was also trained on a subset of plumes from this and other field studies and then 
used to assess potential false positives and false negatives in the manual plume list.  The origin 

CH4 retrievals
Plume analysis
1. Detect and verify valid plume
2. Assign source #
3. Geolocate plume/source origin
4. Record line #/date/time and source coordinates
5. Identify nearest Vista-CA element ID, facility name, 

source type and IPCC emission sector
6. Plume filtering: eliminate excessively cluttered 

plumes and redundant/overlapping detections
7. Calculate and apply plume aspect ratio & thresholds
8. Calculate IME, plume length, uncertainties
9. Calculate plume flux and uncertainty
10. Remove estimates with > 100% uncertainty
11. Remove estimates with > 100% disagreement w/IME

proxy method

L1 calibrated 
radiance

L0 raw data

HRRR 10m, 80 m wind 
fields; 10 nearest 3km 

grid cells over -1 to + 1hr

NWS wind observations

Wind data 
ingest & 

validation

Source analysis
1. Calculate average flux for 

each source
2. Calculate source persistence 

from Nobs and Mflights
3. Apply persistence scalar to 

calculate net source fluxPlume 
list

Source list

Colorized plume images

L2/L3 
orthorectified 
data  products:
RGB images, 
grayscale CH4 
images, flight 
line maps

Vista-CA
spatial layers

Calculate avg 10m 
wind speeds and 
uncertainties at 
plume locations, 

times

AVIRIS-NG pipeline

Facility & Sector analysis
1. Calculate aggregate flux 

for facilities
2. Apply Vista-CA population 

scalars to calculate 
sectoral & State totals

3. Bootstrap analysis to 
derive confidence 
intervals for key sectors

Facility List
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of each plume – i.e., the emission source - is estimated based on plume shape and enhancement 
values.  Quality control analysis is performed on every observed plume, including visual 
inspection to evaluate plume shape, presence of noisy retrieval results, instrument artifacts, 
correlation of plume direction with surface wind direction (for single and multiple detections), 
and plume proximity to known surface infrastructure (attribution).  For the latter step, we apply 
the instrument RGB imagery and higher resolution satellite imagery as well as our Vista-CA GIS 
system. Confidence in the source location and attribution to infrastructure increases in cases 
where plumes are repeatedly detected over multiple flights.  
 
S2.4 Plume Filtering 

At this stage all plumes are counted as valid sources in terms of threshold detection 
however noisier plumes are excluded from the emission estimation steps.  We start by 
establishing a mixing ratio threshold of 1,000 ppm-m.   We also define a plume aspect ratio 
metric A as the measured plume length in number of pixels divided by the plume area in number 
of pixels.  For plumes with A in the closed interval [0.02,1.0] we use the threshold of 1,000 ppm-
m and for all others we apply a 1,500 ppm-m threshold.  Based on empirical evaluation this 
scheme rejects plumes that are difficult to interpret – particularly those with high methane 
background levels or excessively non-gaussian in shape - without eliminating smaller plumes.   
 
S2.5 IME and Plume length calculation and uncertainties 

We isolate each observed plume by applying the mixing ratio threshold and two 
parameters: maximum fetch (radius in meters from the plume origin) and merge distance which 
allows for definition of contiguous plumes in the presence of gaps (e.g., pixels with low methane 
values).  For this analysis maximum fetch was set to 150 meters and merge distance was set to 20 
meters based on iterative assessment of optimal plume size and shape for emission estimation (see 
Figure S.3 A).  

Centered on the plume origin an initial circle of radius (r1) is defined based on the pixel size 
(Figure S.3 B). For the portion of the plume covered by this circle, the total excess mass of 
methane in the plume that we refer to as Integrated Methane Enhancement (IME) is calculated as 
the summation of the methane mixing ratio length a for all pixels above the detection threshold 
multiplied by the pixel area S and converted to CH4 mass units with the constant k (7,26). As 
shown in Figure S.3 B, the radius is sequentially expanded (rc, where c denotes the total number 
of circles) and new IME for the given radius (𝐼𝑀𝐸$%) is calculated as follows:   

 

𝐼𝑀𝐸$% 	= 	𝑘)𝛼(𝑖)𝑆(𝑖)
/

012

 

 
Next, the IME for the given radius is divided by the radius of the circle (rc; i.e., the plume length) 
which results in a ratio of 𝐼𝑀𝐸$% /𝑟4. To minimize variability in these calculations associated with 
plume shape this ratio is calculated for the entire range of radii (rc) and an average and standard 
deviation is calculated, representing the uncertainty in the IME/r estimates, 𝜎678 $9 . The mean 

fractional error 
:;<= >9

678 $9
 was 29% for the population of plumes used in the analysis.   
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Figure S.3 A: Example methane plume with maximum fetch radius (blue circle) with respect to the plume 
origin (green circle). B: Key parameters for calculating 𝐼𝑀𝐸$%/𝑟4  for the entire range of radii (rc). Surface 
map data: AVIRIS-NG. 
 
 
S2.6 Wind speed, turbulence and uncertainties 

Estimating emission rates requires information about the near-surface wind speed.  Surface 
weather observations are sparse over the large area covered by this study so our analysis uses 
spatially continuous wind fields from NOAA’s High-Resolution Rapid Refresh (HRRR) product 
for the coterminous United States (42).  We use HRRRv3 10m wind fields in forecast mode, 
available as an hourly, 3km grid product from the HRRR archives at U. Utah (43) and NOAA (44).  

To account for spatial and temporal variability in HRRR wind fields for each of the 
methane plumes used in this analysis we compute an average wind speed at 10 meters above 
ground level (𝑈@2) from a total of 27 HRRR grid cells:  the 9 nearest to the plume origin (e.g., a 
3x3 box centered on the source) each repeated for 3 time-steps (plume detection time  ± 1 hour). 
For the entire population of methane plumes detected in this study, U10 ranges from 0.4 to 9.2 m 
s-1 (mean 3.0m s-1).  For wind speed uncertainty we compute su as the standard deviation of the 
27 HRRR grid cells for each plume detection, ranging from 0.04 to 1.92 m s-1 (mean 0.44 m s-1). 
In terms of relative wind speed error :A

BCD
 these translate to 1% to 69% (mean 22%).  

 
To account for the possibility of wind shear resulting in significantly lower wind speeds 

at the surface we used the following standard logarithmic relationship to derive atmospheric 
stability (45):   
  

𝑈(𝑧) = 𝑈$FG H
𝑍
𝑍$FG

J
K

 

 
where U(z) is the wind speed at the target height z above ground level, Uref  is the wind speed at 
the reference height Zref above ground level and e is the shear (atmospheric stability) exponent.  
HRRR provides wind speeds at 10m and 80m so we solved for e  at every detected plume 
location and time.  For our entire population of methane plumes the atmospheric stability e 
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ranges from to 0.45 (strongly stable) to -0.18 (strongly unstable) with a mean 0.04 (moderately 
unstable).  Nearly 90% of the methane plumes in this study occur in unstable conditions which 
translates to minimal wind shear.  This is expected given that AVIRIS-NG flights are typically 
conducted between the hours of 1000 and 1500 during which insolation and turbulence are at a 
peak.   This – and the fact that many methane plumes originate from elevated infrastructure and 
that large eddy simulations indicate significant lofting except under high wind conditions - 
provides confidence that additional vertical correction is not required.    

To evaluate our wind speed data, we compared hourly averaged National Weather 
Service (NWS) surface wind observations (46) at 130 airports distributed across California with 
overlapping HRRR 10 m wind fields for 70 mid-day periods distributed across Fall 2016 and 
Fall 2017.  Comparison showed no evidence of overall bias; the mean wind speed of NWS 
observations was 0.1 m s-1 higher than HRRR, lower than the mean HRRR uncertainty of 0.44 m 
s-1 and consisted with a similar analysis by Varon et al 2018 (47).  The correlation between 
HRRR and surface observations varies from an R2 of 0.20 to 0.93 (mean 0.70) for each 4 hour 
mid-day window during the 70 day study.  The RMS error of the NWS surface observations vs 
the HRRR 10 m wind speeds for the entire data set ranges from 0.79 to 3.42 m s-1 (mean 1.9 m s-

1), consistent with a 1.6 m s-1 RMS error reported by Varon et al comparing GEOS-FP reanalysis 
(10m) wind fields and Mesonet weather stations across the US (47).  

Most of the methane plumes detected in this survey have ventilation times < 500 seconds 
and can thus be influenced by variability in wind speeds that occur on time-scale shorter than our 
hourly averaged HRRR-derived estimates.  To evaluate this possibility we also acquired 5-
minute observations from the same NWS stations for an entire year (October 2017 – September 
2018).  We found that our HRRR wind estimates report wind speeds that are 50% lower on 
average than the NWS 5-minute observations.  This indicates that some of our methane emission 
estimates in this study are potentially conservative under-estimates.  Additionally, we acquired 
surface wind observations from a meteorological tower at 2m and 10m above ground level with 
5 minute averaging and NCEP Real Time Mesoscale Analysis (RTMA) wind fields at 10m, 15 
minute averaging over a 5 hour period (48).  For the same location and times we also derived a 3 
hour, nearest 10 grid cell average from the latter to simulate our standard method that uses 
HRRR hourly average wind speeds.  The 2m and 10m wind speeds derived from the 
observations and RTMA generally agreed to within 10-20% on 5 to 15 minute time-scales, 
within the mean uncertainty bounds for the HRRR based wind speeds for our population of 
methane plumes.   

Turbulence and large eddies are not significant sources of uncertainty in our study 
because a) we’re using the Integrated Methane Enhancement (IME) method to estimate 
emissions which is intrinsically less sensitive to turbulent diffusion at the finest scales and b) our 
high spatial resolution (3 meters for this study) resolves the near-field plume response including 
turbulence and eddies within the 150 meter maximum fetch.  Plume variability due to turbulence 
and large eddies at scales larger than 150m does not affect our emission estimates.  Varon et al. 
(47) refer to the inadequacy of gaussian plume modeling for addressing spatially small methane 
plumes because they depart from gaussian behavior due to turbulence.  Varon et al. also 
highlights the strong variability due to turbulent diffusion when using the source pixel estimation 
method.  It is for these reasons that we use the Integrated Methane Enhancement (IME) 
estimation method.  Varon et al. explicitly highlight the advantages of the IME method: “We 
show that standard methods to infer source rates by Gaussian plume inversion or source pixel 
mass balance are prone to large errors because the turbulence cannot be properly parameterized 



 11 

on the small scale of instantaneous methane plumes. The integrated mass enhancement (IME) 
method, which relates total plume mass to source rate, and the cross- sectional flux method, 
which infers source rate from fluxes across plume transects, are better adapted to the problem”.  
The IME approach has been previously demonstrated to be robust with independent in-situ 
measurements and the cross-sectional flux method (9).   
 
 
 
S2.7 Source emission estimation and uncertainties 
 

We calculate the emissions for each plume (Q, in kgCH4 hr-1) using the excess mass of 
methane in the plume (the average 𝐼𝑀𝐸LLLLLL in kg), the average plume length r in m and near surface 
wind speed (U10):   
  

𝑄 = N𝐼𝑀𝐸LLLLLL
𝑟9 O𝑈@2	 

 
The IME method is inherently less sensitive to errors in wind speed than Gaussian plume 

inversion or single pixel mass balance and cross-sectional estimation methods given the extended 
nature of the plumes and the information content from hundreds to thousands of pixels (47).  We 
confirmed that the uncertainties associated with 𝐼𝑀𝐸LLLLLL

𝑟9  and U10 are uncorrelated for the set of 
~1000 methane plumes used in the analysis and hence the relative errors 𝜎678  and 𝜎B	combine in 
quadrature to provide the total uncertainty 𝜎P	for each emission estimate: 
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We obtain individual source uncertainties ranging from ±4 to ±95% (mean 30%); see Fig 

S.5 for distribution of source emission estimates and uncertainties.  We eliminate from 
calculation of source emissions the small fraction of plume estimates that exhibit >100% 
uncertainty (approximately 20 plumes).  Performance with our framework is consistent with the 
theoretical best-case performance of 15-50% uncertainty for an equivalent precision instrument 
and ideal plumes predicted by large eddy simulations (47).  We consider these levels of 
uncertainty to be acceptable for this analysis given the very sparse data regarding point sources 
in California many of which have never been identified, much less precisely geolocated or 
quantified with uncertainties.  For example for the Aliso Canyon gas blowout study, in situ 
methane sampling with aircraft using Gauss’s theorem resulted in 1s uncertainties ranging from 
±9 to ±22%  (23).  With appropriate meteorological conditions, uncertainties below ±10% are 
possible with that method down to detection threshold of about 5 kg hr-1 (49,54).  That technique 
is limited to estimating the net emissions from a facility (not spatially explicit) and typically 
requires prior knowledge of source location.  Another studying applying a mass balance 
approach with SWIR retrievals of column averaged methane from the Methane Airborne Mapper 
(MAMAP) instrument for California landfills resulted in uncertainties in the ±14 to 45% range 
(24).  Limitations with that technique include the time required to perform many flight-line 
transects over a source and the lack of imagery to help pinpoint source locations.  
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S2.8 Source filtering and accounting 

Due to the close proximity of some sources, multiple plumes can fall within the same 
search radius used to determine plume length (see Figure S.4).  If this occurs, multiple emissions 
estimates are generated for the same or similar spatial extents leading to plume overlap and an 
overestimate of emissions.  To prevent this, plumes with high amounts of overlap were removed 
from the emissions analysis.  The potential area within which a plume can be detected is 
represented as a circle with a 150m radius from the source origin which is the same as the 
maximum fetch value used in IME calculations.  For each flight line, the percent overlap 
between potential plume area circles is calculated.  If there is  ³ 30% overlap then the plume 
with the highest percent overlap is removed and percent overlap is recalculated.  This process is 
repeated until the maximum percent overlap is below 30%.  See figure S.4 for a visual of this 
process.  
 
 

For most sectors, the extent of the observed methane plume was small compared to the full 
spatial extent of the associated facility and generally appeared in a repeatable fashion from the 
source to which it was attributed.  Hence for most sectors we report emissions for individual 
sources, with larger facilities often including multiple sources.  However, we apply a different 
accounting scheme for landfills given the complexity of emission processes.  For landfills were 
plumes were detected we observed large plumes that spanned the spatial extent of the facility. 
Additionally, in most cases the location of each landfill plume evolved significantly over time in 
response to daily changes in waste deposition and surface cover.  We therefore defined each 
landfill with observed methane plumes as a composite source.   All plume observations at a 
given landfill, within a single flight line, were summed to get the total facility emissions per 
flight line for that sample interval. In cases where multiple flight lines were required to cover the 
whole facility, these flight lines were combined into a composite flight line. Flight lines were 

 
Figure S.4. (a) Example image showing two overlapping plume detection areas. The red and blue 
points indicate the location of plumes and the red and blue circles indicate the extent in which a 
plume can be detected. The plume search radius used for Source 1 and Source 2 overlap 
resulting in overlapping plumes. (b) Potential area a plume can be detected in represented as 
circles. Circles are iteratively removed until percent overlap between circles is less than 30%. 
Surface map data: Google Earth. 

a

1st Iteration Final Iteration

b

2nd Iteration
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only combined into a composite flight line if those flight lines were from the same day, were less 
than 16 minutes apart (typical time for a complete landfill survey), and had less than or equal to 
50% overlap. Plumes identified within composite flight lines were then summed, with duplicate 
plumes removed by excluding the plume with the lower emissions estimate. There were some 
instances where an emission estimate was not generated for a plume (see previous description of 
filtering and quality. control). If an individual or composite flight line had more than one plume 
without an emission estimate or spatially covered less than 85% of a facility, then the flight line 
was removed from the analysis. The remaining individual and composite flight lines were 
averaged by facility to obtain source estimates for each landfill. 
 

Since the focus of this study is characterizing a broad population of emitters rather than 
individual sources, as a further check on the robustness of plume emission estimates derived with 
our standard method we apply the IME proxy method described below in Section S.3 to generate 
a second set of emission estimates that does not rely on wind information.  Plume emissions that 
exhibit > 100% difference between our standard estimation method and IME scaling method are 
flagged as outliers and removed from further analysis. This step removed an additional 170 
plumes from the analysis but did not eliminate sources.  
 

The net result of all of the above filtering steps resulted in 1050 plumes with emission 
estimates that were attributed to 564 sources (Fig S.5).  Compared to no filtering, these steps 
conservatively reduce the number of sources with emission estimates by 20% and the net 
emissions by 7%. 
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Fig. S.5: Distribution of persistence-adjusted average methane emissions and 1s uncertainties (1 s.d.) for 
564 point sources. The heavy-tail indicates that 10% of detected point sources contribute 60% of the 
total population emissions.  
 
 
S2.9 Persistence calculation and adjusted emissions 

Nearly every methane source in this study was overflown by AVIRIS-NG multiple times.  
For each source we calculate an average emission rate 𝑄	from all plume emission estimates that 
pass our filtering criteria.  We also calculate the persistence or frequency of emissions f of a 
given source in order to account for intermittency (where a source may not emit above detection 
threshold during other overflights).   f is the ratio of the number of observed plumes M to the 
total number of overflights N for a given source. 
 

𝑓 =
𝑀
𝑁  

 
We define N as the number of flight lines where a source intersects the area covered by 

an overflight. AVIRIS-NG flight outline files from https://avirisng.jpl.nasa.gov/alt_locator/ are 
used to represent the area covered by flight lines.  Due to orthocorrection errors some flight 
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outlines were not generated.  For those flight lines where a flight outline is not generated a 
theoretical flight outline calculated as the product of the theoretical swath width and the flight 
line length.  The flight line length is the distance between the start and stop coordinates of a 
flight line and theoretical swath width was calculated as:  
 

2H tan V
𝐹𝑂𝑉
2
W	 

𝑤ℎ𝑒𝑟𝑒	𝐻 = 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒	𝑎𝑛𝑑	𝐹𝑂𝑉 = 𝑓𝑖𝑒𝑙𝑑	𝑜𝑓	𝑣𝑖𝑒𝑤 
 
 

We then calculate the total emission rate 𝑄o for each source using the average emission 
𝑄	 (from good plume emissions estimates) scaled by the source persistence f: 
 

𝑄o = 𝑓𝑄	 
 
The persistence metric provides important information about source activity independent 

of quantitative emissions.  Determining the persistence for a source population also provides an 
opportunity to assess the detection confidence for a given observing system.  The probability P 
of detecting a source with persistence ³ f after N overflights (for emissions ³ the detection 
threshold) is   
 

𝑃 = 1 − (1 − 𝑓)s 
 

For example, for a source with a 33% persistence (the mean for our source population) 
there is a 96% probability of detection with 8 overflights.  We calculate P for every persistence 
estimate in our source list (Section S4), resulting in a median of 92% (mean 82%) over the total 
population.  
 
S2.10 Potential for diurnal bias 

Diurnal variability of selected methane emission processes can in some cases introduce 
temporal sampling bias.  This possibility exists for nearly every top-down (atmospheric) 
emission estimation method, including most aircraft measurement techniques (in-situ and 
remote-sensing) as well as regional scale flux inversions using measurements from satellites and 
regional in-situ monitoring networks.  With the exception of portable flux chamber 
measurements (limited to a very small number of sites), most top-down methods rely on an 
understanding of mixing and ventilation processes that are often poorly represented in 
atmospheric transport models – particularly at night.  Hence most top-down studies typically 
focus on sampling during midday when the planetary boundary layer is well mixed.  For our 
study, sampling of solar reflectance was conducted between the hours of 0900 and 1700 local 
time with most samples occurring between 1000 and 1500, including weekdays and weekends.  

Alvarez et al (16) also addressed this topic and pointed out that there could actually be 
higher emission rates for some processes (e.g., abnormal activity not detected and remedied by 
operators) during off-shift hours.  Eliminating the possibility of diurnal sampling bias for a 
source population as large as this study would require an unprecedented investment in near-
continuous daytime and nocturnal sampling over large areas over several months.  Nocturnal 
remote sensing of methane emissions is possible with imaging spectrometers operating at 
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thermal wavelengths and/or active systems (lidar) both of which introduce additional challenges 
that would likely preclude the kind of spatial coverage achieved in this study.    

We discuss here the potential magnitude of any such bias for key sectors.  Regarding the 
potential for diurnal bias from mid-afternoon (1300-1600)  aircraft in-situ mass-balance surveys 
of oil and gas production, Vaughn et al (50) conducted a study of the Fayetteville oil and gas 
basin for a two month period in Fall 2015, including two days of activity data provided by 
operators.  They reported a ~ 37% increase in basin scale methane emissions attributed to manual 
liquid unloadings with peaks near the time of the afternoon overflights.  In that case half of the 
basin scale emissions were attributed to time-varying activity with other contributors in 
production, gathering and transmission activity reported to be non time-varying.  However, 
unloading operations are generally limited to unassociated gas wells which in California are 
concentrated primarily in the Sacramento Valley which was only responsible for 1% of our 
observed methane oil and gas emissions.   Additionally, Alvarez et al (16) also did a probabilistic 
analysis that concluded that large (>10,000 kgCH4 h-1) maintenance related blowdowns of high 
pressure gas systems is only likely to occur during 1-10% of daytime hours. Hence, episodic 
events such as manual unloadings and blowdowns are unlikely to contribute a significant 
daytime bias for sampling oil and gas emissions in California.  

With regards to potential diurnal variability from dairy methane point sources, Wood et 
al  (51) studied 6 manure lagoons over a 6 month period and reported median increases of 5-20% 
for discrete sampling between 1000-1600 local time compared to continuous sampling.  Taylor et 
al  (52) reported a roughly +/- 25% deviation in landfill methane emissions from the daily mean 
for mid-day measurements. The actual variability in methane point-sources at dairies and 
landfills was not determined by Wood et al and Taylor et al because those studies address the net 
facility emissions including point- and area-sources.   

Based on the aforementioned studies of diurnal variability our assessment is that the 
potential impact of temporal sampling bias could be as large as +/-25% for some facilities 
(roughly equivalent to the +/-30% mean uncertainty we report for individual emission estimates) 
but is likely somewhat smaller.  The true impact of diurnal variability is difficult to determine 
because these studies of diurnal bias themselves carry significant uncertainty in terms of their 
spatial completeness (a much sparse set of facility scale assessments than this study) and they do 
not attempt to disentangle the relative contributions of area-source and point-source mechanisms 
to net diurnal variability.  We underscore the need for additional, continuous observational 
studies of methane sources globally to characterize the true diurnal variability of emissions and 
potential magnitude of any temporal sample bias.  

 
 
 
S2.11 Aggregating emissions and uncertainties to facilities, key sectors and statewide 

To estimate total emissions for facilities we use the Vista-CA spatial layers to determine 
the locations and boundaries of facilities and infrastructure elements (Section S.1).  We then sum 
the persistence adjusted average emissions from all detected point sources that fall within those 
boundaries. As described in section S2.8 for landfills this aggregation to facility scale occurs at 
the source accounting level given the complexities with landfill emissions.  

Additionally, since we surveyed between 32% and 100% of every point source emission 
type in California we can also upscale our measured emissions to estimate the complete 
distribution of all point source emissions in the State for the key sectors and infrastructure types 
covered by this study.  To do this we derive scalars for each sector or infrastructure type from the 
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total number of Vista-CA elements and the number of those elements observed at least once by 
this study (Table 1 and Table S1).  For example, Vista-CA contains 435 gas-fired power plants 
and we surveyed 238 of them so that sectoral scalar (435/238=1.83) is used to convert our 
measured emissions from that sector from 0.07 to a state point source total for that sector of  
0.013 TgCH4 y-1.  This approach was used for all entries in Table 1 with three exceptions – all of 
which result in smaller scaled emissions.  First, Vista-CA’s representation of infrastructure 
elements in the oil and gas production sector is incomplete.  While we include all known 225,766 
oil and gas production sites (wells and collocated equipment) in California the remainder of 
production equipment elements in Vista-CA is not well quantified because of gaps in public data 
regarding other, non-extraction equipment in each facility.  Vista-CA includes the outlines of 
3,356 non-extraction site production equipment in California such as condensate tanks and we 
can calculate how many of those elements were surveyed (2,872).  However we have very 
limited information about the number and locations of gathering lines in oil and gas fields.  
Deriving a scalar for the Other Production Equipment sector would require making assumptions 
about the prevalence of those equipment types and so we conservatively do not attempt to 
upscale that sector in this analysis (scalar in Table 1 is set to 1.0).  We do however provide a 
scalar for the Production Sites (well pads, pump-jacks, and co-located equipment).  Second, 
while we surveyed 430 out of 1,127 landfills and composting facilities statewide the methane 
emissions our experience is that point source only appear at a small fraction of these facilities 
and so applying a simple scalar could over-estimate the emissions from this sector.  Instead, we 
used findings from a process model based analysis of California landfill emissions (53) to 
prioritize our survey of this sector.  We prioritized 430 landfills in this study based on 
predictions that those facilities should be responsible for ~90% of the managed waste disposal 
total point source methane emissions.  Hence, our scalar for this sector is only 1/0.9 = 1.11.  
Third, while we did not explicitly include industrial wastewater treatment and discharge in the 
Vista-CA data set or our flight planning we detected a single large beef processing facility with 
methane plumes emanating from slurry pits. After confirming the latter were not associated with 
dairies or other nearby infrastructure (using satellite imagery) we allocated this single facility to 
emission sector 4D2 “Industrial Wastewater: beef processing”. 

As described in Section S1 we estimate a total of 620 Confined Animal Feeding 
Operations (CAFOs) in the state, each with at least 1,000 head of cattle (with a possible range of 
557-685).  Since 443 (397-491) were surveyed in this study this yields 71% coverage, or a scalar 
of 1.40 (1.13-1.73).  This scalar is somewhat smaller than if we had used all dairies covered by 
our survey.  Our imaging data indicates that methane point sources associated with manure 
management is primarily limited to wet management (e.g., anaerobic lagoons) at CAFOs and not 
dry management at smaller dairies and beef cattle feedlots.   

Finally, given that the observed source emissions are not normally distributed (based on 
the Anderson Darling test for normality) and given the significant variability between sectors we 
applied a non-parametric bootstrap analysis to estimate confidence intervals for the emission 
estimates for six cases: the 5 IPCC sectors covered by this study as well as the total source 
population.  For each case we resampled the observed distribution of emissions with replacement 
and collected 10,000 bootstrap replications of the sum of emissions.  The resulting envelope of 
emissions was used to compute 95% confidence intervals (Table S.3.).  Those confidence 
intervals along with the central value of emission totals for each case where then multiplied by 
the Vista-CA scalars (Table 1) to estimate statewide total emissions and confidence intervals.  
We make two assumptions in this upscaling.  One, for the cases of the Energy Industries and Oil 
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and Gas sectors we assume that the confidence interval is consistent across each sector and so 
apply them equally to every sub-sector when applying the Vista-CA scalars (e.g., for the Energy 
Industries sector we assume that the 95% confidence interval of -45/+57% of sector total 
emissions applies equally to emissions from gas fired power plants and refineries, respectively). 
The risk of this assumption is mitigated by the fact that the sub-sectors dominating each sector’s 
emissions also represent the largest number of sources in the sector so outliers should have a 
small impact on the total.  Two, when upscaling to address unobserved infrastructure we assume 
that there is no spatial bias in the Vista-CA scalars.  Our assessment is this is a low risk 
assumption given that each of our measured sectoral populations are well distributed across the 
key infrastructure centers and climate zones in the state – including Northern California, the 
Central Valley and Southern California – and hence already accounted for by our empirical 
bootstrap analysis. 
 
Table S.3 Sum of measured source emissions and 95% confidence interval (2.5 and 97.5% limits) for each 
sector and the total population derived by bootstrap analysis.  

 
 
S2.12. Distribution of sectoral emissions and comparison with CARB inventory 
We find a similar distribution of emissions in the manure management, waste water treatment 
and oil and gas sectors (Fig. S.6).  However, for the managed waste disposal sector we only 
detected methane plumes at 32 out of 436 surveyed facilities. Landfill methane emissions 
observed in this study are qualitatively different in terms of their 100% persistence compared to 
the 20-35% (mean) persistence for point sources in the other sectors. The observed landfill 
emitters include some of the largest outliers in our overall source population and collectively are 
the highest emitting point source sector in California (Fig. S.6).    
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Fig. S.6 Histograms indicating the density of measured methane point source emissions (adjusted for 
persistence) for each of the key sectors in California (kgCH4 h-1). Managed waste disposal exhibits 
qualitatively different behavior than the other sectors, with point sources only appearing at 32 
persistent, high emitting landfills – likely constituting a distinct sub-population within that sector.     
 

Our study provides insights into the relative contributions of methane point sources to the 
relevant emission sectors in CARB’s methane inventory (Fig. S.7), the latter representing 67% of 
the State total.  The point source emissions in our study are most likely limited to these sectors 
rather than others that are most likely dominated by area sources (e.g., rice cultivation and 
enteric fermentation).  Given that our net emissions are equivalent to 34-46% of the State total 
inventory this suggests that point sources may constitute an even greater percentage of these 
sectors (e.g., 1/0.67 or 51-69%) or that those sector totals are significantly under-estimated in the 
CARB inventory (e.g., the contribution from area sources could be larger than understood).  As a 
minimum, Figure S.7 indicates significant inventory under-estimates for the managed waste 
disposal and energy industries.  
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Figure S.7 Comparing statewide methane point source emission estimates from this study and the 
relevant sectors in the CARB inventory that are likely to include point sources (8).  The whiskers indicate 
the 95% confidence intervals from this study.  
 
S2.13  Emissions from the waste management sector 

As discussed in the main text, methane point sources were only detected at 32 landfills  
(including 2 identified as composting facilities) which collectively represent a distinct sub-
population from the rest of managed waste disposal sector.  We attribute some these persistent 
outliers to anomalous behavior with landfill cover and gas capture systems based on high spatial 
resolution imaging of plumes at the outlier facilities.  Figure S.8 illustrates the ability of this 
method to detect methane plumes from landfills at high resolution.  The AVIRIS-NG overflight 
for Figure S.8 occurred following installation of new landfill gas transport features at a large 
landfill prior to completion of new gas capture systems.  The three circles indicate the locations 
of those features, confirmed by the operator. We shared our data collected over this facility from 
2016-2017 with the landfill operator who used it to help guide efforts to reduce emissions.      
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Figure S.8 Example of landfill methane emissions due to installation of structures for transporting landfill 
gas to the surface, ultimately for gas capture. Capture systems were not yet in place at the time of this 
overflight. Surface map data: AVIRIS-NG image. 
 
 
S2.14 Emissions from refineries and power plants 
 

 
Figure S.9 Persistence-adjusted average emissions estimated by this study compared with 2017 GHGRP 
reported emissions (28) for refineries and power plants. With two exceptions the GHGRP emissions are 
significantly lower than observed by AVIRIS-NG. The errors bars indicate 1 s.d. 
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S3. Validating emission estimates 
S3.1. Comparison with independent observations 

Methane retrievals and IME estimation methods were validated in previous studies 
(7,26).  Detection limits and emission estimation methods were previously demonstrated in field 
studies (7,9, 26,41) and with large eddy simulations (47).  However, since our study is the first to 
attempt to estimate emissions for individual methane sources from a large population distributed 
across a wide region over multiple years we also undertook additional validation steps.  We 
conducted simultaneous observations of several facilities in Fall 2017 as well as additional non-
simultaneous follow-up flights of those and other facilities that spanned the dynamic range of 
emission rates with an independent airborne measurement system (Fig S.10; 31).  Scientific 
Aviation has a well-established method of collecting in-situ measurements of methane and other 
trace gas mixing ratios and wind speeds aloft with a Mooney aircraft (23).  The system applies 
Gauss’s theorem to derive robust mass-balance emission estimates with a detection threshold 
comparable to AVIRIS-NG (~ 5kg h-1) and typically source uncertainties <20% (49). 

 
 
Figure S.10 Example of a coordinated survey with two aircraft for a natural gas storage facility (“gas 
storage facility 1” in other figures). The ~1.5 km diameter spiral pattern indicates the integrative in-situ 
sampling by Scientific Aviation’s Mooney aircraft - typically a 30-60 minute operation for each source 
(methane mixing ratio measurement legend on the right). The central image of an individual gas plume 
from a compressor station blowdown stack is from the AVIRIS-NG imaging spectrometer. During such 
intensive surveys AVIRIS-NG typically conducts 3-4 over-flights at 3 km altitude, 1.8 km wide swath, 3 
meter pixels with 10-20 minute revisit intervals (methane enhancement legend on the left). The AVIRIS-
NG plume aligns with the higher mixing ratios in the Scientific Aviation data. Winds were out of the 
north west. Surface map data: Google Earth and AVIRIS-NG image. 
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The remote-sensing methods used in this study were previously validated against 
Scientific Aviation’s independent in-situ mass-balance method in the Four Corners region (9).  
We are using the same general approach here.  However, unlike the Four Corners study which 
focused on isolated point sources such as oil and gas production sites and coal mine vents, in this 
study we have observed a more diverse set of facilities including landfills and dairies. The latter 
are known to include both point- and area-source contributions to the total emissions for each 
facility (e.g., large dairies generate both point source plumes from manure management and 
diffuse area source emissions from enteric fermentation). This must be considered when 
attempting to compare results from the two methods: AVIRIS-NG can only measure the point 
source emissions while Scientific Aviation measures the net (combined area and point source) 
emissions from a given facility. The AVIRIS-NG estimate should be lower for a facility with 
area source emissions. We address intercomparison in two steps. First, we compare AVIRIS-NG 
measurements with a known emission rate from a controlled release experiment and with 
simultaneous Scientific Aviation observations of isolated point sources. Next, we compare 
AVIRIS-NG and Scientific Aviation emission estimates for 14 diverse facilities including 
simultaneous, single flights and averaging over multiple flights spanning several months.  

Figure S.11 provides a comparison of instantaneous snapshots of sources that are as close 
as possible to pure point sources, albeit for emission rates below 300 kgCH4/hr due to constraints 
on allowable venting rates and availability of reliable energy sector point sources.  A controlled 
release test was conducted in Fall 2017 with the assistance of a natural gas operator who vented 
small, precisely metered quantities of gas from a pipeline in a remote location in the desert. We 
instrumented the site with sonic anemometers to provide high frequency near-surface wind speed 
and direction observations as a check on HRRR wind fields. AVIRIS-NG conducted multiple 
overflights of the release site at our typical survey altitude of ~ 3km while the operator changed 
the release rates in 3 steps from 16 to 89 kgCH4 h-1(each with <5% uncertainty).  Given that the 
controlled release test was limited to fairly small emission rates we also conducted simultaneous 
overflights of several energy facilities with Scientific Aviation that provided 4 isolated point 
sources with higher emission rates up to ~300 kgCH4 h-1.  In addition to confirming the degree of 
correlation between the known emissions and AVIRIS-NG estimates (Figure S.11a) we also used 
these results to derive a simple empirical scaling between the AVIRIS-NG derived IME and the 
known emissions rates (Figure S.11b).  
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Figure S.11 A) Results of a controlled release test from a natural gas pipeline for known rates up to ~ 90 
kg/hr (green box) combined with estimates for four higher rate, isolated point sources with single 
plumes jointly observed by AVIRIS-NG and Scientific Aviation during coordinated overflights. The 
controlled release test rate and Scientific Aviation estimates were collectively treated as known 
emissions within the indicated uncertainties.  B) Corresponding correlation between observed IME/r 
values from AVIRIS-NG for each of the independently known emission rates. The resulting linear fit 
provides a method for scaling the observed IME values from other sources as a simple check on our 
emission estimates. The error bars represent 1 s.d. 
 
  

Figure 3 and Figure S.12 provide an assessment over the broader range of emission types 
and time-scales. We show results from coordinated AVIRIS-NG and Scientific Aviation surveys 
of representative facilities spanning the range of emission rates and sectors. Figure 3a compares 
estimates for simultaneous, single flight observations. Figure 3b compares average emission 
estimates derived from multiple, non-coordinated flights of the two aircraft over several months.  
These estimates correlate with an R2=0.86 for all 14 facilities and 0.99 for the 8 facilities with 
simultaneous surveys.  The Scientific Aviation mass balance method is able to measure the net 
emissions from each sampled area including the combined contributions of area sources and 
point sources whereas the AVIRIS-NG method is only sensitive to point sources.   
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Fig. S12 Correlation plot indicating the degree of agreement between AVIRIS-NG and Scientific Aviation 
estimates shown in Figure 3 for A) all 14 facilities and B) for the 8 facilities with simultaneous flight lines. 
The error bars represent 1 s.d. 

 
We also applied the relationship between IME and emissions from our test case derived 

in Fig. S11b to derive a coarse emission estimate for our entire population without using wind 
information. We then compared those results with our standard method that uses HRRR wind 
data (Figure S.13).  In cases where the disagreement between our standard method and the IME 
proxy was > 100% we flagged the plume estimate as an outlier and it from further analysis.  
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Figure S.13   Comparison of estimates for 1050 plumes using a) the standard emission analysis method 
used in this study (Section S2.7) and b) the IME proxy (scaling) method to derive coarse estimates.  (Fig. 
S.11b).  
 
S.3.2 Comparison with bottom-up data  
There are currently few opportunities to compare our top-down (atmospheric measurement) 
estimates with bottom-up estimates of facility scale methane point source emissions because of 
gaps in the latter category of data sets.  Greenhouse gas inventories are aggregated at coarse 
spatial scales and on an annual basis using standard emission factors and thus offer limited 
insight into the distribution of individual point source emitters.  However, it is possible to do a 
limited comparison using self-reported emissions for selected sectors. We identified 351 
individual facilities in California that participated in the EPA’s GHG Reporting Program 
(GHGRP) in 2017 (28) - excluding a single number from SoCalGas representing fugitives across 
their entire service network and 36 facilities reporting zero emissions. Figure S.14 plots the 
distribution of those GHGRP emissions along with our emission estimates for 250 facilities. The 
plot indicates that 99% of the emissions from the two distributions originate from facilities each 
with >= 10 kgCH4 h-1 for the GHGRP in California and >= 25 kgCH4 h-1 for our study (the latter 
matches the 99% level for GHGRP emissions for the entire US).  We also note that over half 
(0.281 TgCH4) of our estimate for statewide point source emissions is allocated to dairies and oil 
and gas production, neither of which are included in the GHGRP.  Given this and the 
discrepancies between reported emissions and top-down emission estimates using two 
independent methods (Figure 3) this further underscores the utility of remote sensing in 
addressing a gap in understanding facility level methane emissions.   
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Figure S.14 Comparing 250 AVIRIS-NG facility scale emission with those with the EPA’s 2017 GHGRP 
program for California (264 facilities) and the entire US (5800 facilities).  The GHGRP curve for California 
indicates that 99% of the total originates from facilities emitting at least 10 kg h-1 whereas both the 
GHGRP curve for the total US and AVIRIS-NG curve indicate an equivalent completeness for facilities 
emitting at least 25 kg h-1. This is significant considering that the AVIRIS-NG curve includes all point 
source sectors whereas key sectors such as manure management and oil and gas production typically do 
not participate in the GHGRP. 
 
 
S4.  Description of Supplementary Table files 
PDF files containing:  

• Supplementary Table S.4: Methane plume list. Source ID, latitude, longitude, detection 
date, detection time (UTC), source type, IPCC sector, IME/r (kg m-1), sIME/r (kg m-1), 
U10 (m s-1), sU10(m s-1), Qplume (kg h-1), sQ (kg h-1)  [last two fields intentionally blank for 
those plumes lacking emission estimates due to quality control and filtering] 

• Supplementary Table S.5: Methane source list. Source ID, latitude, longitude, source 
type, IPCC sector, number of overflights, persistence, confidence in persistence estimate, 
persistence adjusted average source emissions Qsource (kg h-1), sQ (kg h-1)   
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