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Exploiting Deep Neural Networks and Head
Movements for Robust Binaural Localization of
Multiple Sources in Reverberant Environments

1

2

3

Ning Ma, Tobias May, and Guy J. Brown4

Abstract—This paper presents a novel machine-hearing system5
that exploits deep neural networks (DNNs) and head movements6
for robust binaural localization of multiple sources in reverberant7
environments. DNNs are used to learn the relationship between8
the source azimuth and binaural cues, consisting of the complete9
cross-correlation function (CCF) and interaural level differences10
(ILDs). In contrast to many previous binaural hearing systems, the11
proposed approach is not restricted to localization of sound sources12
in the frontal hemifield. Due to the similarity of binaural cues in the13
frontal and rear hemifields, front–back confusions often occur. To14
address this, a head movement strategy is incorporated in the local-15
ization model to help reduce the front–back errors. The proposed16
DNN system is compared to a Gaussian-mixture-model-based sys-17
tem that employs interaural time differences (ITDs) and ILDs as18
localization features. Our experiments show that the DNN is able to19
exploit information in the CCF that is not available in the ITD cue,20
which together with head movements substantially improves local-21
ization accuracies under challenging acoustic scenarios, in which22
multiple talkers and room reverberation are present.23

Index Terms—Binaural sound source localisation, deep neural24
networks, head movements, machine hearing, multi-conditional25
training, reverberation.26

I. INTRODUCTION27

THIS paper aims to reduce the gap in performance be-28

tween human and machine sound localisation, in condi-29

tions where multiple sound sources and room reverberation30

are present. Human listeners have little difficulty in localis-31

ing sounds under such conditions; they are able to decode the32

complex acoustic mixture that arrives at each ear with appar-33

ent ease [1]. In contrast, sound localisation by machine systems34

is usually unreliable in the presence of interfering sources and35

reverberation. This is the case even when an array of multiple36

microphones is employed [2], as opposed to the two (binaural)37

sensors available to human listeners.38
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The human auditory system determines the azimuth of sounds 39

in the horizontal plane by using two principal cues: interaural 40

time differences (ITDs) and interaural level differences (ILDs). 41

A number of authors have proposed binaural sound localisation 42

systems that use the same approach, by extracting ITDs and 43

ILDs from acoustic recordings made at each ear of an artifi- 44

cial head [3]–[6]. Typically, these systems first use a bank of 45

cochlear filters to split the incoming sound into a number of 46

frequency bands. The ITD and ILD are then estimated in each 47

band, and statistical models such as Gaussian mixture model 48

(GMM) are used to determine the source azimuth from the 49

corresponding binaural cues [6]. Furthermore, the robustness of 50

this approach to varying acoustic conditions can be improved by 51

using multi-conditional training (MCT). This introduces uncer- 52

tainty into the statistical models of the binaural cues, enabling 53

them to handle the effects of reverberation and interfering sound 54

sources [4]–[7]. 55

In contrast to many previous machine systems, the approach 56

proposed here is not restricted to sound localisation in the frontal 57

hemifield; we consider source positions in the 360◦ azimuth 58

range around the head. In this unconstrained case, the loca- 59

tion of a sound cannot be uniquely determined by ITDs and 60

ILDs; due to the similarity of these cues in the frontal and rear 61

hemifields, front-back confusions occur [8]. Although machine 62

listening studies have noted this as a problem [6], [9], listeners 63

rarely make such confusions because head movements, as well 64

as spectral cues due to the pinnae, play an important role in 65

resolving front-back confusions [8], [10], [11]. 66

Relatively few machine localisation systems have attempted 67

to incorporate head movements. Braasch et al. [12] averaged 68

cross-correlation patterns across different head orientations in 69

order to resolve front-back confusions in anechoic conditions. 70

More recently, May et al. [6] combined head movements and 71

MCT in a system that achieved robust sound localisation perfor- 72

mance in reverberant conditions. In their approach, the localisa- 73

tion system included a hypothesis-driven feedback stage which 74

triggered a head movement when the azimuth could not be un- 75

ambiguously estimated. Subsequently, Ma et al. [9] evaluated 76

the effectiveness of different head movement strategies, using 77

a complex acoustic environment that included multiple sources 78

and room reverberation. In agreement with studies on human 79

sound localisation [13], they found that localisation errors were 80

minimised by a strategy that rotated the head towards the target 81

sound source. 82
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Fig. 1. Schematic diagram of the proposed system, showing steps during
training (top) and testing (bottom). During testing, sound mixtures consisting
of several talkers are rendered in a virtual acoustic environment, in which a
binaural receiver is moved in order to simulate the head rotation of a listener.

This paper describes a novel machine-hearing system that83

robustly localises multiple talkers in reverberant environments,84

by combining deep neural network (DNN) classifiers and head85

movements. Recently, DNNs have been shown to give state-86

of-the-art performance in a variety of speech recognition and87

acoustic signal processing tasks [14]. In this study, we use DNNs88

to map binaural features, obtained from an auditory model, to89

the corresponding source azimuth. Within each frequency band,90

a DNN takes as input features the cross-correlation function91

(CCF) (as opposed to a single estimate of ITD) and the ILD.92

Using the whole cross-correlation function provides the clas-93

sifier with rich information for classifying the azimuth of the94

sound source [15]. A similar approach was used by [16] and95

[17] in binaural speech segregation systems. However, neither96

study specifically addressed source localisation because it was97

assumed that the target source was fixed at zero degrees azimuth.98

The proposed binaural sound localisation system is described99

in detail in Section II. Section III describes the evaluation frame-100

work and presents a number of source localisation experiments,101

in which head movements are simulated by using binaural room102

impulse responses (BRIRs) to generate direction-dependent bin-103

aural sound mixtures. Localisation results are presented in Sec-104

tion IV, which compares our DNN-based approach to a baseline105

method that uses GMM, and assesses the contribution that var-106

ious components make to performance. The paper concludes107

with Section V, which proposes some avenues for future re-108

search.109

II. SYSTEM110

Figure 1 shows a schematic diagram of the proposed binau-111

ral sound localisation system in the full 360 ◦ azimuth range.112

During training, clean speech signals were spatialised using113

head related impulse responses (HRIRs), and diffuse noise114

was added before being processed by a binaural model for115

feature extraction. The noisy binaural features were used to116

train DNNs to learn the relationship between binaural cues117

and sound azimuths. During testing, sound mixtures con-118

sisting of several talkers are rendered in a virtual acoustic119

environment, in which a binaural receiver is moved in order120

to simulate the head rotation of a human listener. The output 121

from the DNN is combined with a head movement strategy to 122

robustly localise multiple talkers in reverberant environments. 123

A. Binaural Feature Extraction 124

An auditory front-end was employed to analyse binaural ear 125

signals with a bank of 32 overlapping Gammatone filters, with 126

centre frequencies uniformly spaced on the equivalent rectan- 127

gular bandwidth (ERB) scale between 80 Hz and 8 kHz [18]. 128

Inner-hair-cell processing was approximated by half-wave recti- 129

fication. No low-pass filtering was employed to simulate the loss 130

of phase-locking at high frequencies as previous studies have 131

shown that in general classifiers are able to exploit the high- 132

frequency structure [4]. Afterwards, the CCF between the right 133

and left ears was computed independently for each frequency 134

band using overlapping frames of 20 ms with a 10 ms shift. The 135

CCF was further normalised by the auto-correlation value at lag 136

zero [4] and evaluated for time lags in the range of ± 1.1 ms. 137

Two binaural features, ITDs and ILDs, are typically used in 138

binaural localisation systems [1]. The ITD is estimated as the 139

lag corresponding to the maximum in the CCF. The ILD corre- 140

sponds to the energy ratio between the left and right ears within 141

the analysis window, expressed in dB. In this study, instead of 142

estimating the ITD the entire CCF was used as localisation fea- 143

tures. This approach was motivated by two observations. First, 144

computation of ITDs involves a peak-picking operation which 145

may not be robust in the presence of noise and reverberation. 146

Second, there are systematic changes in the CCF with source 147

azimuth (in particular, changes in the main peak with respect 148

to its side peaks). Even in multi-source scenarios, these can be 149

exploited by a suitable classifier. For signals sampled at 16 kHz, 150

the CCF with a lag range of ± 1 ms produced a 33-dimensional 151

binaural feature space for each frequency band. This was sup- 152

plemented by the ILD, forming a final 34-dimensional (34D) 153

feature vector. 154

B. DNN Localization 155

DNNs were used to map the 34D binaural feature set to corre- 156

sponding azimuth angles. A separate DNN was trained for each 157

of the 32 frequency bands. Employing frequency-dependent 158

DNNs was found to be effective for localising simultaneous 159

sound sources. Although simultaneous sources overlap in time, 160

within a local time frame each frequency band is mostly dom- 161

inated by a single source (Bregman’s [19] notion of ‘exclusive 162

allocation’). Hence, this allows training using single-source data 163

and removes the need to include multi-source data for training. 164

The DNN consists of an input layer, two hidden layers, and 165

an output layer. The input layer contained 34 nodes and each 166

node was assumed to be a Gaussian random variable with zero 167

mean and unit variance. The 34D binaural feature inputs for 168

each frequency band were Gaussian normalised, and white 169

Gaussian noise (variance 0.4) was added to avoid overfitting, 170

before being used as input to the DNN. The hidden layers had 171

sigmoid activation functions, and each layer contained 128 172

hidden nodes. The number of hidden nodes was heuristically 173

selected – more hidden nodes increased the computation time 174

but did not improve localisation accuracy. The output layer 175
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contained 72 nodes corresponding to the 72 azimuth angles176

in the full 360◦ azimuth range, with a 5◦ step. A ‘softmax’177

activation function was applied at the output layer. The same178

DNN architecture was used for all frequency bands and we did179

not optimise it for individual frequencies.180

The neural network was initialised with a single hidden layer,181

and the number of hidden layers was gradually increased in later182

training phases. In each training phase, mini-batch gradient de-183

scent with a batch size of 128 was used, including a momentum184

term with the momentum rate set to 0.5. The initial learning rate185

was set to 1, which gradually decreased to 0.05 after 20 epochs.186

After the learning rate decreased to 0.05, it was held constant187

for a further 5 epochs. We also included a validation set and the188

training procedure was stopped earlier if no new lower error on189

the validation set could be achieved within the last 5 epochs. At190

the end of each training phase, an extra hidden layer was added191

between the last hidden layer and the output layer, and the train-192

ing phase was repeated until the desired number of hidden layers193

was reached (two hidden layers in this study).194

Given the observed feature set xt,f at time frame t and fre-195

quency band f , the 72 ‘softmax’ output values from the DNN196

for frequency band f were considered as posterior probabilities197

P(k|xt,f ), where k is the azimuth angle and
∑

k P(k|xt,f ) = 1.198

The posteriors were then integrated across frequency to yield the199

probability of azimuth k, given features of the entire frequency200

range at time t201

P(k|xt) =
P (k)

∏
f P(k|xt,f )

∑
k P (k)

∏
f P(k|xt,f )

, (1)

where P (k) is the prior probability of each azimuth k. Assuming202

no prior knowledge of source positions and equal probabilities203

for all source directions, Eq. (1) becomes204

P(k|xt) =

∏
f P(k|xt,f )

∑
k

∏
f P(k|xt,f )

. (2)

Sound localisation was performed for a signal block consisting205

of T time frames. Therefore the frame posteriors were further206

averaged across time to produce a posterior distribution P(k)207

of sound source activity208

P(k) =
1
T

t+T −1∑

t

P(k|xt). (3)

The target location was given by the azimuth k that maximised209

P(k)210

k̂ = argmax
k

P(k) (4)

C. Localisation With Head Movements211

In order to reduce the number of front-back confusions, the212

proposed localisation model employs a hypothesis-driven feed-213

back stage that triggers a head movement if the source location214

cannot be unambiguously estimated. A signal block is used to215

compute an initial posterior distribution of the source azimuth216

using the trained DNNs. In an ideal situation, the local peaks217

in the posterior distribution correspond to the azimuths of true218

sources. However, due to the similarity of binaural features in219

Fig. 2. Illustration of the head movement strategy. Top: posterior probabilities
where two candidate azimuths at 60◦ and 120◦ are identified. Bottom: after head
rotation by 30◦, only the azimuth candidate at 30◦ agrees with the azimuth-
shifted candidate from the first signal block (dotted line).

the front and rear hemifields, phantom sources may also become 220

apparent as peaks in the azimuth posterior distribution. Such an 221

ambiguous posterior distribution is shown in the top panel of 222

Fig. 2. In this case, a random head movement within the range 223

of [−30◦, 30◦] is triggered to solve the localisation confusion. 224

Other possible strategies for head movement are discussed in [9]. 225

A second posterior distribution is computed for the signal 226

block after the completion of the head movement. If a peak 227

in the first posterior distribution corresponds to a true source 228

position, then it will appear in the second posterior distribution 229

and will be shifted by an amount corresponding to the angle 230

of head rotation (assuming that sources are stationary before 231

and after the head movement). On the other hand, if a peak 232

is due to a phantom source, it will not occur in the second 233

posterior distribution, as shown in the bottom panel of Fig. 2. 234

By exploiting this relationship, potential phantom source peaks 235

are identified and eliminated from both posterior distributions. 236

After the phantom sources have been removed, the two posterior 237

distributions were averaged to further emphasise the local peaks 238

corresponding to true sources. The most prominent peaks in the 239

averaged posterior distribution were assumed to correspond to 240

active source positions. Here the number of active sources was 241

assumed to be known a priori. 242

The proposed approach to exploiting head movements is 243

based on late information fusion – the information from the 244

model predictions is integrated. This is in contrast to the ap- 245

proach in [12] which adopted early fusion at the feature level by 246

averaging cross-correlation patterns across different head ori- 247

entations. Late fusion is preferred here for a couple of reasons: 248

i) the use of head rotation is not needed during model training 249

and thus it is more straightforward to generate data for train- 250

ing robust localisation models (DNNs); ii) early feature fusion 251

tends to lose information which can otherwise be exploited by 252

the system. As a result, the proposed system is able to deal with 253

overlapping sound sources in reverberant conditions, while the 254

system reported in [12] was tested in anechoic conditions with 255

a single source. 256

III. EVALUATION 257

A. Binaural Simulation 258

Binaural audio signals were created by convolving monaural 259

sounds with HRIRs or BRIRs. For training, an anechoic HRIR 260
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TABLE I
ROOM CHARACTERISTICS OF THE SURREY BRIR DATABASE [21]

Room A Room B Room C Room D

T60 (s) 0.32 0.47 0.68 0.89
DRR (dB) 6.09 5.31 8.82 6.12

catalog based on the Knowles Electronic Manikin for Acoustic261

Research (KEMAR) head and torso simulator with pinnae [20]262

was used for simulating the anechoic training signals. The HRIR263

catalog catalog included impulse responses for the full 360 ◦264

azimuth range, allowing us to train localisation models for 72265

azimuths between 0◦ and 355◦ with a 5◦ step. The models were266

trained using only the anechoic HRIRs and were not retrained267

for any room conditions. See Section III-C for more details268

about training.269

For evaluation, the Surrey BRIR database [21] and a BRIR270

set recorded at TU Berlin [9] were used to reflect different re-271

verberant room conditions. The Surrey database was recorded272

using a Cortex head and torso simulator (HATS) and includes273

four room conditions with various amounts of reverberation.274

The loudspeakers were placed around the HATS on an arc in the275

median plane, with a 1.5 m radius between ±90◦ and measured276

at 5◦ intervals. Table I lists the reverberation time (T60) and277

the direct-to-reverberant ratio (DRR) of each room. The ane-278

choic HRIRs used for training were also included to simulate279

an anechoic condition.280

A second set of BRIRs, recorded in the “Auditorium3” room281

at TU Berlin,1 was also included particularly for evaluating the282

benefit of head movements (Section IV-C). The Auditorium3283

room is a mid-size lecture room of dimensions 9.3 m × 9 m,284

with a trapezium shape and an estimated reverberation time T60285

of 0.7 s. The BRIR measurements were made for different head286

orientations ranging from−90◦ to 90◦ with an angular resolution287

of 1◦. BRIRs for six different source positions, including one in288

the rear hemifield, were recorded and five of them were selected289

for this study (two 0◦ positions are available and the one at290

1.5 m away from the head was excluded for simplicity). The291

five selected source positions with respect to the dummy head292

are illustrated in Fig. 4.293

Note that the anechoic HRIRs used for training and the Surrey294

BRIRs were recorded using two different dummy heads (KE-295

MAR and Cortex HATS). We use data from two dummy heads296

because this study is concerned with sound localisation in the297

360◦ azimuth range; the Surrey HATS HRIRs catalog is only298

available for the frontal azimuth angles and therefore cannot299

be used to train the full 360◦ localisation models. However, as300

the experiment results will show in Section IV, with MCT our301

proposed systems generalised well despite the HRIR mismatch302

between training and testing.303

Binaural mixtures of multiple competing sources were cre-304

ated by spatialising each source separately at the respective305

BRIR sampling rate, before adding them together in each of the306

two binaural channels. In the Auditorium3 BRIRs there is vary-307

ing distance between the listener position and different source308

1The BRIRs are freely available at http://tinyurl.com/lt76yqs

Fig. 3. Schematic diagram of the Surrey BRIR room configuration. Actual
source positions were always between ±90◦, but the system could report a
source azimuth at any of 72 possible azimuths around the head (open circles).
Black circles indicate actual source azimuths in a typical three-talker mixture
(in this example, at −50◦, −30◦, and 15◦). During testing, head movements
were limited to the range [−30◦, 30◦] as shown by the shaded area.

Fig. 4. Schematic diagram of the TUB Auditorium3 configuration. The source
distance, azimuth angle and respective T60 time are shown for each source.

positions. Furthermore there is a difference in impulse response 309

amplitude level even for sources of the equal distance to the 310

listener, likely due to the microphone response difference across 311

recording sessions. To compensate the level difference a scaling 312

factor was computed for each source position by averaging the 313

maximum levels in the impulse responses between left and right 314

ears. The scaling factors were used to adjust the level for each 315

source before spatialisation. As a result the direct sound level of 316

each source when mixed together was approximately the same. 317

For the Surrey BRIR set the level difference did not exist and 318

thus this preprocessing was not applied. The spatialised signals 319

were finally resampled to 16 kHz for training and testing. 320

B. Head Movement Simulation 321

For the Surrey BRIRs, head movements were simulated by 322

computing source azimuths relative to the head orientation, and 323
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loading corresponding BRIRs for the relative source azimuths.324

Such simulation is only approximate for the reverberant room325

conditions because the Surrey BRIR database was measured326

by moving loudspeakers around a fixed dummy head. With327

the Auditorium3 BRIRs, more realistic head movements were328

simulated by loading the corresponding BRIR for a desired head329

orientation. For all experiments, head movements were limited330

to the range of ±30◦.331

C. Multi-conditional Training332

The proposed systems assumed no prior knowledge of room333

conditions. The localisation models were trained using only334

anechoic HRIRs with added diffuse noise, and no reverberant335

BRIRs were used during training.336

Previous studies [4]–[7] have shown that MCT features can337

increase the robustness of localisation systems in reverberant338

multi-source conditions. Binaural MCT features were created by339

mixing a target signal at a specified azimuth with diffuse noise340

at various signal-to-noise ratios (SNRs). The diffuse noise is the341

sum of 72 uncorrelated, white Gaussian noise sources, each of342

which was spatialised across the full 360◦ azimuth range in steps343

of 5◦. Both the directional target signals and the diffuse noise344

were created using the same anechoic HRIR recorded using a345

KEMAR dummy head [20]. This approach was used in pref-346

erence to adding reverberation during training, since previous347

studies (e.g., [5]) suggested that it was more likely to generalise348

well across a wide range of reverberant test conditions.349

The training material consisted of speech sentences from the350

TIMIT database [22]. A set of 30 sentences was randomly se-351

lected for each of the 72 azimuth locations. For each spatialised352

training sentence, the anechoic signal was corrupted with dif-353

fuse noise at three SNRs (20, 10 and 0 dB SNR). The corre-354

sponding binaural features (ITDs, CCFs, and ILDs) and ILDs)355

were then extracted. Only those features for which the a priori356

SNR between the target and the diffuse noise exceeded − 5 dB357

were used for training. This negative SNR criterion ensured that358

the multi-modal clusters in the binaural feature space at higher359

frequencies, which are caused by periodic ambiguities in the360

cross-correlation analysis, were properly captured.361

D. Experimental Setup362

The GRID corpus [23] was used to create three evaluation363

sets of 50 acoustic mixtures which consisted of one, two or364

three simultaneous talkers, respectively. Each GRID sentence365

is approximately 1.5 s long and was spoken by one of 34 na-366

tive British-English talkers. The sentences were normalised to367

the same root mean square (RMS) value prior to spatialisation.368

For the two-talker and three-talker mixtures, the additional az-369

imuth directions were randomly selected from the same azimuth370

range while ensuring an angular distance of at least 10◦ between371

all sources. Each evaluation set included 50 acoustic mixtures372

which were kept the same for all the evaluated azimuths and373

room conditions in order to ensure any performance difference374

was due to test conditions rather than signal variation. Since the375

duration of each GRID sentence was different, and there was376

silence of various lengths at the beginning of each sentence, the 377

central 1 s segment of each sentence was selected for evaluation. 378

Note that although the models were trained and evaluated 379

using speech signals, our systems are not intended to localise 380

only speech sources. Therefore a frequency range from 80 Hz 381

to 8 kHz was selected for the signals sampled at 16 kHz. Our 382

previous studies [6], [15] also show that 32 Gammatone filters 383

(see Section II-A) provide a good tradeoff between frequency 384

resolutions and computational cost. As the evaluation included 385

localisation of up to three overlapping talkers, using too few fil- 386

ters would result in insufficient frequency resolution to reliably 387

localise multiple talkers. 388

The baseline system was a state-of-the-art localisation sys- 389

tem [6] that modelled both ITDs and ILDs features within a 390

GMM framework. As in [6], the GMM modelled the binaural 391

features using 16 Gaussian components and diagonal covari- 392

ance matrices for each azimuth and each frequency band. The 393

GMM parameters were initialised by 15 iterations of the k- 394

means clustering algorithm and further refined using 5 iterations 395

of the expectation-maximization (EM) algorithm. The second 396

localisation model was the proposed DNN system using the 397

CCF and ILD features. Each DNN employed four layers includ- 398

ing two hidden layers each consisting of 128 hidden nodes (see 399

Section II-B). 400

Both localisation systems were evaluated using different 401

training strategies (clean training and MCT), various locali- 402

sation feature sets (ITD, ILD and CCF), and with or without 403

head movements. When no head movement was employed, the 404

source azimuths were estimated using the entire 1 s segment 405

from each acoustic mixture. If head movement was used, the 406

1 s segment was divided into two 0.5 s long blocks and the 407

second block was provided to the system after completion of a 408

head movement. Therefore in both conditions the same signal 409

duration was used for localisation. 410

The gross accuracy of localisation was measured by com- 411

paring true source azimuths with the estimated azimuths. The 412

number of active speech sources N was assumed to be known a 413

priori and the N azimuths for which the posterior probabilities 414

were the largest were selected as the estimated azimuths. Lo- 415

calisation of a source was considered accurate if the estimated 416

azimuth was less than or equal to 5◦ away from the true source 417

azimuth: 418

LocAcc =
Ndist(φ,φ̂)≤θ

N
(5)

where dist(.) is the angular distance between two azimuths, φ is 419

the true source azimuth, φ̂ is the estimated azimuth, and θ is the 420

threshold in degrees (5◦ in this study). This metric is preferred 421

to RMS error because our study is concerned with full 360◦ 422

localisation, and localisation errors in degrees are often large 423

due to front-back confusions. 424

IV. RESULTS AND DISCUSSION 425

A. Influence of MCT 426

The first experiment investigated the impact of MCT on the lo- 427

calisation accuracy of the proposed systems. Two scenarios were 428
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TABLE II
GROSS LOCALIZATION ACCURACY IN % FOR VARIOUS SETS OF BRIRS WHEN LOCALIZING ONE, TWO, AND THREE COMPETING TALKERS IN THE

FRONTAL HEMIFIELD ONLY AND IN THE FULL 360◦ RANGE

Anechoic Room A Room B Room C Room D

Hemifiled Model MCT 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

no 100 99.0 90.5 84.0 63.1 52.8 81.5 59.8 51.8 100 82.5 65.5 88.2 61.2 53.5 75.6
GMM yes 100 99.9 98.7 99.2 97.1 90.7 100 97.7 91.6 100 99.3 96.5 100 98.4 91.5 97.4

no 100 100 99.6 100 99.2 92.2 100 99.0 90.4 100 99.9 96.7 99.9 98.7 91.1 97.8
Frontal

DNN yes 100 100 99.7 100 99.5 96.3 100 99.7 96.2 100 99.9 98.2 100 99.6 95.3 99.0

no 100 97.1 82.6 82.6 48.9 30.7 65.6 38.3 25.3 98.4 70.3 50.2 77.2 46.3 30.0 62.9
GMM yes 100 100 97.8 99.0 94.2 80.7 97.0 89.0 77.6 100 97.6 88.7 97.3 90.6 79.0 92.6

no 100 100 97.4 100 87.0 68.4 94.5 79.0 63.9 97.7 92.5 78.9 94.4 83.4 67.9 87.0
360◦

DNN yes 100 100 98.6 99.7 97.3 87.9 97.2 93.7 86.7 100 97.3 90.2 97.3 94.0 85.0 95.0

The models were trained using either clean training or the MCT method.

Fig. 5. Localization error rates produced by various systems using either clean training or MCT. Localization was performed in the full 360◦ range, so that
front–back errors could occur, as shown by the white bars for each system. No head movement strategy was employed.

considered: i) sound localisation was restricted to the frontal429

hemifield so that the systems estimated source azimuths within430

the range [−90◦, 90◦]; ii) the systems were not informed that431

the sources lay only in the frontal hemifield and were free to432

report the azimuth in the full 360◦ azimuth range. In the second433

scenario front-back confusions could occur.434

Table II lists gross localisation accuracies of all the systems435

evaluated using various BRIR sets from the Surrey database.436

First consider the scenario of localisation in the frontal hemi-437

field. For the GMM baseline system, the MCT approach sub-438

stantially improved the robustness across all conditions, with439

an average localisation accuracy of 97.4% compared to only440

75.6% using clean training. The improvement with MCT was441

particularly large in multi-talker scenarios and in the presence442

of room reverberation. For the DNN system, the improvement443

with MCT over clean training was not as large as that for the444

GMM system and is only observed in the multi-talker scenarios.445

The limited improvement is partly because with clean training446

the performance of the DNN system is already very robust in447

most conditions, with an average accuracy of 97.8%, which is448

already better than the GMM system with MCT. This suggests449

that when localisation was restricted to the frontal hemifield,450

the DNN can effectively extract cues from the clean CCF-ILD451

features that are robust in the presence of reverberation.452

Considering the case of full 360◦ localisation, the scenario is453

more challenging and front-back errors could occur. The GMM454

system with clean training failed to localise the talkers accu-455

rately, with error rates greater than 50% when localising multi-456

ple simultaneous talkers. The DNN system with clean training457

was substantially more robust than the GMM system, but the 458

performance also decreased significantly when multiple talk- 459

ers were present. The benefit of the MCT method became more 460

apparent for both systems in this scenario – the average localisa- 461

tion accuracy was increased from 62.9% to 92.6% for the GMM 462

system and from 87% to 95% for the DNN system. Across all 463

the room conditions the largest benefits were observed in room 464

B where the direct-to-reverberant ratio was the lowest, and in 465

room D where the reverberation time T60 was the longest. 466

Errors made in 360◦ localisation could be due to front-back 467

confusion as well as interference caused by reverberation and 468

overlapping talkers. Figure 5 shows errors made by both the 469

GMM and the DNN systems using either clean training or MCT 470

in different room conditions. The errors due to front-back con- 471

fusions were indicated by white bars for each system. Here a 472

localisation error is considered to be a front-back confusion 473

when the estimated azimuth is within ±20 degrees of the az- 474

imuth that would produce the same ITDs in the rear hemifield. 475

It is clear that front-back confusions contributed a large portion 476

of localisation errors for both systems, in particular when clean 477

training was used. When the MCT method was used, not only 478

the errors due to interference of reverberation and overlapping 479

talkers (non-white bar portion in Fig. 5) were greatly reduced, 480

but also the systems produced substantially fewer front-back 481

errors (white bars in Fig. 5). As will be discussed in the next 482

section, without head movements the main cues distinguishing 483

between front-back azimuth pairs lie in the combination of in- 484

teaural level and time differences (or ITD-related features such 485

as the cross-correlation function). MCT provides the training 486
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TABLE III
GROSS LOCALIZATION ACCURACY IN % USING VARIOUS FEATURE SETS FOR LOCALIZING ONE, TWO, AND THREE COMPETING TALKERS IN THE FULL 360◦ RANGE

Anechoic Room A Room B Room C Room D

Model Feature 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

ITD 100 99.8 96.2 99.2 81.6 67.7 91.4 76.6 64.9 97.2 89.4 76.6 89.1 76.6 65.8 84.8
ITD-ILD 100 100 97.8 99.0 94.2 80.7 97.0 89.0 77.6 100 97.6 88.7 97.3 90.6 79.0 92.6GMM
CCF-ILD 100 100 98.4 100 87.2 73.9 92.1 81.7 71.5 99.9 93.8 81.6 92.6 83.2 72.3 88.5

CCF 100 100 99.0 99.8 95.8 86.7 91.8 89.5 83.7 98.3 95.8 89.0 91.6 87.8 80.8 92.7
DNN CCF-ILD 100 100 98.6 99.7 97.3 87.9 97.2 93.7 86.7 100 97.3 90.2 97.3 94.0 85.0 95.0

The models were trained using the MCT method. The best feature set for each system is marked in bold font.

Fig. 6. Comparison of localization error rates produced by various systems using different spatial features. Localization was not restricted in the frontal hemifield
so that front–back errors can occur, as indicated by the white bars for each system. No head movement strategy was employed.

stage with better regularisation of the features, which is able487

to improve the generalisation of the learned models and better488

discriminate the front-back confusing azimuths.489

It is also worth noting that the training and testing stages used490

HRTFs collected with different dummy heads (the KEMAR was491

used for training and the HATS was used for testing). However,492

with MCT the localisation accuracy in the anechoic condition493

for localising one or two sources was 100%, which suggests that494

MCT also reduced the sensitivity to mismatches of the receiver.495

B. Contribution of the ILD Cue496

The second experiment investigated the influence of differ-497

ent localisation features, in particular the contribution of the498

ILD cue. Table III lists the gross localisation accuracies us-499

ing various feature sets. Here all models were trained using500

the MCT method and the active head movement strategy was501

not applied. When ILDs were not used, the GMM performance502

using just ITDs suffered greatly in reverberant rooms and when503

localising overlapping talkers; the average localisation accuracy504

decreased from 92.6% to 84.8%. The performance drop was505

particularly pronounced in rooms B and D, where the reverber-506

ation was strong. For the DNN system, excluding the ILDs also507

decreased the localisation performance but the performance508

drop was more moderate, with the average accuracy reduced509

from 95% to 92.7%. The DNN system using the CCF feature510

exhibited more robustness in the reverberant multi-talker condi-511

tions than the GMM system using the ITD feature. As previously512

discussed, computation of the ITD involved a peak-picking op-513

eration that could be less reliable in challenging conditions,514

and the systematic changes in the CCF with the source az-515

imuth provided richer information that could be exploited by516

the DNN.517

When ILDs were not used, the localisation errors were largely 518

due to an increased number of front-back errors as suggested by 519

Fig. 6. For single-talker localisation in rooms B and D, without 520

using ILDs almost all the errors made by the systems were 521

front-back errors. When ILDs were used, the number of front- 522

back errors were greatly reduced in all conditions. This suggests 523

that the ILD cue plays a major role in solving the front-back 524

confusions. ITDs or ILDs alone may appear more symmetric 525

between the front and back hemifields, but together with ILDs 526

they create the necessary asymmetries (due to the KEMAR head 527

with pinnae) for the models to learn the differences between 528

front and back azimuths. 529

Table III also lists localisation results of the GMM system 530

when using the same CCF-ILD feature set as used by the DNN 531

system. The GMM failed to extract the systematic structure in 532

the CCF spanning multiple feature dimensions, most likely due 533

to its inferior ability to model correlated features. The average 534

localisation accuracy is only 88.5% compared to 95% for the 535

DNN system, and again it suffered the most in more reverberant 536

conditions such as rooms B and D. 537

C. Benefit of the Head Movement Strategy 538

Table IV lists the gross localisation accuracies with or with- 539

out head movement. All systems were trained using the MCT 540

method and employed the respective best performing features 541

(GMM ITD-ILD and DNN CCF-ILD). 542

Both the GMM and DNN systems benefitted from the use 543

of head movements. It is clear from Fig. 7 that the localisa- 544

tion errors were almost entirely due to front-back confusions in 545

one-talker localisation. By exploiting the head movement, the 546

systems managed to reduce most of the front-back errors and 547

achieved near 100% localisation accuracies. In two- or three- 548

talker localisation, the number of front-back errors was also 549
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TABLE IV
GROSS LOCALIZATION ACCURACIES IN % WITH OR WITHOUT THE HEAD MOVEMENT WHEN LOCALIZING ONE, TWO, AND THREE COMPETING TALKERS IN THE

FULL 360◦ AZIMUTH RANGE

Head
Anechoic Room A Room B Room C Room D

Model move 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

no 100 100 97.8 99.0 94.2 80.7 97.0 89.0 77.6 100 97.6 88.7 97.3 90.6 79.0 92.6
GMM yes 100 100 97.5 100 97.3 83.4 99.8 93.1 79.9 99.9 99.3 90.8 99.9 93.0 79.5 94.2

no 100 100 98.6 99.7 97.3 87.9 97.2 93.7 86.7 100 97.3 90.2 97.3 94.0 85.0 95.0
DNN yes 100 100 98.4 100 99.2 90.0 99.8 96.1 86.9 100 99.0 91.6 99.5 94.7 84.7 96.0

All systems were trained using the MCT method.

Fig. 7. Localization error rates produced by various systems with or without head movement when localizing one, two, or three overlapping talkers. Localization
was performed in the 360◦ azimuth range so that front–back errors can occur, as indicated by the white bars for each system.

Fig. 8. Localization error rates produced by various systems with or without head movement, as a function of the azimuth. The histogram bin width is 20◦. Here
the error rates were averaged across the 1-, 2- and 3-talker localization tasks. Localization was performed in the full 360◦ azimuth range so that front–back errors
can occur, as indicated by the white bars for each system.

reduced with the use of head movements. When overlapping550

talkers were present, the systems produced many localisation551

errors other than front-back errors, due to the partial evidence552

available to localise each talker. By removing most front-back553

errors, the systems were able to further improve the accuracy of554

localising overlapping sound sources.555

Fig. 8 shows the localisation error rates as a function of the 556

azimuth. The error rates here were averaged across the 1-, 2- 557

and 3-talker localisation tasks. Across most room conditions, 558

sound localisation was generally more reliable at more central 559

locations than at lateral source locations. This is particularly 560

the case for the GMM system, as shown in Fig. 8, where the 561
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Fig. 9. Localization error rates produced by various systems as a function of the azimuth for the Auditorium3 task. Localization was performed in the full 360◦
azimuth range so that front–back errors can occur, as indicated by the white bars for each system.

localisation error rates for sources at the sides were above 20%562

even in the least reverberant Room A. It is also clear from563

Fig. 8 (white bars) that localisation errors were mostly not564

due to front-back confusions at lateral azimuths, and in this565

case the proposed DNN system outperformed the GMM system566

significantly.567

At the central azimuths, on the other hand, almost all the local-568

isation errors were due to front-back confusions. It is noticeable569

that in more reverberant conditions (such as Rooms B and D), the570

error rates at the central azimuths [−10◦, 10◦] were particularly571

high due to front-back errors for both the GMM and the DNN572

systems when head movement was not used. The front-back573

errors were concentrated at central azimuths, probably because574

binaural features (interaural time and level differences) were575

less discriminative between 0◦ and 180◦ than between the more576

lateral azimuth pairs.577

Finally, Fig. 9 shows the localisation error rates using the578

Auditorium3 BRIRs in which head movements were more ac-579

curately simulated by loading the corresponding BRIR for a580

given head orientation. Overall the DNN systems significantly581

outperformed the GMM systems. For single-source localisation582

the DNN system achieved near 100% localisation accuracy for583

all source locations including the one at 131◦ in the rear hemi-584

field. The GMM system produced about 5% error rate for rear585

source but performed well for the other locations. For two- and586

three-source localisation, both GMM and DNN systems ben-587

efitted from head movements across most azimuth locations.588

For the GMM system the benefit is particularly pronounced for589

the source at 51◦, with localisation reduced from 14% to 4%590

in two-source localisation and from 36% to 14% in two-source591

localisation. The rear source at 131◦ appeared to be difficult to592

localise for the GMM system even with head movement, with593

20% error rate in two-source localisation. The DNN system with594

head movements was able to reduce the error rate for the rear595

source at 131◦ to 8%.596

In general the performance of the models for the 51◦ and597

131◦ locations is worse than the other source locations when598

there are multiple sources present at the same time. This is more599

likely due to the nature of the room acoustics at these locations,600

e.g., they are further away from the listener and closer to walls.601

When the sources are overlapping with each other, there are less602

glimpses left for localisation of each source and with stronger 603

reverberation the sources at 51◦ and 131◦ became more difficult 604

to localise. 605

V. CONCLUSION 606

This paper presented a machine-hearing framework that com- 607

bines DNNs and head movements for robust localisation of 608

multiple sources in reverberant conditions. Since simultaneous 609

talkers were located in a full 360◦ azimuth range, front-back 610

confusions occurred. Compared to a GMM-based system, the 611

proposed DNN system was able to exploit the rich information 612

provided by the entire CCF, and thus substantially reduced lo- 613

calisation errors. The MCT method was effective in combatting 614

reverberation, and allowed anechoic signals to be used for train- 615

ing a robust localisation model that generalised well to unseen 616

reverberant conditions and to mismatched artificial heads used 617

in training and testing conditions. It was also found that the 618

inclusion of ILDs was necessary for reducing front-back confu- 619

sions in reverberant rooms. The use of head rotation further in- 620

creased the robustness of the proposed system, with an average 621

localisation accuracy of 96% under acoustic scenarios where 622

up to three competing talkers and room reverberation were 623

present. 624

In the current study, the use of DNNs allowed higher- 625

dimensional feature vectors to be exploited for localisation, in 626

comparison with previous studies [4]–[6]. This could be carried 627

further, by exploiting additional context within the DNN either 628

in the time or the frequency dimension. Moreover, it is possi- 629

ble to complement the features used here with other binaural 630

features, e.g., a measure of interaural coherence [24], as well as 631

monaural localisation cues, which are known to be important for 632

judgment of elevation angles [25], [26]. Visual features might 633

also be combined with acoustic features in order to achieve 634

audio-visual source localisation. 635

The proposed system has been realised in a real world human- 636

robot interaction scenario. The azimuth posterior distributions 637

from the DNN for each processing block were temporally 638

smoothed using a leaky integrator and head rotation was trig- 639

gered if a front-back confusion was detected in the integrated 640

posterior distribution. Audio signals acquired during head rota- 641

tion were not processed. Such a scheme can be more practical 642
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for a robotic platform as head rotation often produces self-noise643

which makes the audio unusable.644

One limitation of the current systems is that the number of645

active sources is assumed to be known a priori. This can be646

improved by including a source number estimator that is either647

learned from the azimuth posterior distribution output by the648

DNN, or provided directly as an output node in the DNN. The649

current study only deals with the situation where sound sources650

are static. Future studies will relax this constraint and address651

the localisation and tracking of moving sound sources within652

the DNN framework.653
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