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Introduction

It has proved very difficult to recognise three-
dimensional objects in natural scenes, based only on
two-dimensional features extracted from an image using
bottom up methods. One of the major problems is that
of relating the two-dimensional information available in
the image to three-dimensional entities. This problem
can be tackled by attempting to reconstruct knowledge
about depth, and hence gain 2V2-D information to work
from, this method however is only applicable when
fairly precise data, i.e. low-noise images, or multiple
image views are available. Alternatively, viewpoint
independent features in the image can be identified and
used for matching to models. This is simpler but again
restricted. However in the approach described here,
using a model-based hypothesise-and-lcst strategy,
hypothesised two-dimensional instances of three-
dimensional models can be used to match against
directly observable, view-specific image features. This
obviates the necessity of obtaining three-dimensional
data from the image, and as Lowe points out, viewpoint
dependent matching is very much more powerful than
any viewpoint invariant method [Lowe 1987J.

This paper deals with the "test" part of the stra-
tegy. It assumes the image has already been sufficiently
processed to produce an hypothesised instance of a
known object [See Godden 1987, Morion 1987, Hutbcr
1987]. What is then required is a method for quantify-
ing the acceptability of this hypothesis.

although an acknowledged weak spot in present vision
systems, is the representation relied upon by many in
object verification [Lowe 1987, Brooks 1984].

Shirai provided an example of the idea of return-
ing to the original image and of using previously gained
knowledge to guide the recognition process [Shirai
1978]. He detected and grouped clusters of similar
intensity changes in an image, initially with a high
threshold criterion, resulting in a series of conspicuous
edge fragments. These he then classified as straight
lines or ellipses, and matched to the program's object
models. Partial matches resulting from this process
were used to predict "missing" features in the image.
These could be verified by then searching for specific
edge evidence using a much lower threshold. Taking
this idea further, given a spatial definition of the target
object predicted in the image, computational effort can
be concentrated onto examining the image for merely
the relevant features. These could be specified not only
by expected feature groupings, but also by other attri-
butes, for example texture and specularity. The less dis-
tinct the defining features of an object are, the more
difficult it becomes to detect them by indiscriminate,
data-driven methods, and the more benefit can be
obtained by having a hypothesis-driven feature
specification.

An Implementation

The Verification Process

Verification is a top-down process, which uses a
geometric description of the object of interest to predict
its two-dimensional appearance, and thereby compare it
with the image data. This allows very precise tests to
be carried out, as exact feature relationships arc known.
A novelty of this system is that the hypothesis is tested
directly on the image data, rather than working in a
symbolic domain. Constructing smoothed, segmented
image curves from the output of a data-driven operator

The model

The verification process starts with a detailed
line-based three-dimensional geometric model of the tar-
get object (Sec figure 1), which uses facets to imple-
ment hidden-line removal. This provides an effective
definition of the visual appearance of the object. Two-
dimensional instances of this model when projected on
to the image, give spatial information about the visible
features of the object. (See figure 2). This model
instance can then be matched against the data. In the
present car models all the features arc linear, thus sim-
plifying the matching process.
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A Three-Dimensional Model of a Chevclle
Figure 1

Two-Dimensional Instance of the Chevette Model
Figure 2

Evaluating features on the model

The projection of a 2-D instance invokes the
evaluation of the features on the template. This evalua-
tion is knowledge-based, i.e. the model provides details
of the type and position of each feature predicted, thus
only the relevant part of the image need be searched for
the appropriate characteristic pattern. The evaluation
takes place on data isomorphic to the image at the
specified spatial scale. This has the advantage of keep-
ing the model-matching time to a minimum, as multiple
scale, image-wide databases of feature constructs and
relationships do not have to be built and then searched
through to discover the relevant feature in each case.
The accuracy and robustness of the system is increased
by matching directly to the image dam. This makes
relying on the correctness of the data-driven feature
groupings unnecessary.

The actual method used for evaluation is based
loosely on Canny's edge detector [Canny 1983]. He
used maxima in the first derivative of a Gaussian of an
image as evidence for edges, and maxima in the second
derivative as evidence for bars. Both operators arc
directional; thus for smaller width detectors Canny took
the derivatives in the x and y directions of a Gaussian
blurred image and estimated the gradient direction from
these partial derivatives. Directional non-maximum
suppression was carried out along the gradient, to obtain
local peaks of the derivative. Finally the edge elements
were grouped by thresholding with hysteresis.

To implement a predictive operator a Gaussian
filtered image was again used. Since the orientation of
each feature is known, there is no need to estimate the
gradient direction, but merely to take the derivative
along the normals to the feature being tested. To evalu-
ate an edge these normals are then searched for maxima
and minima. For bars, instead of taking the second
derivative, the signed slopes of the zero-crossings in the
first derivative are used. (In the case of a symmmetrical
bar this is mathematically equivalent). At each normal
the absolute difference between the positive (maximum
or positively sloped zero-crossing), and negative
(minimum or negatively sloped zero-crossing) evidence
is uikcn, and the average result along the length of the
feature is taken to be the magnitude of the feature.
Averaging the positive and negative result at each nor-
mal in this way makes the test selective for the
predicted feature type; the bar test responds poorly to an
ideal edge, and vice versa.

The size of the normal searched across in each
feature lest is linked to the size of the Gaussian used,
and can also be varied to alter the specificity of the
detector and allow it the ability to "cover" a range of
misalignments in the line segment. (See Figures 3(a) &
(b)). Gaussian filters with a standard deviation (sigma)
of 1.5, 3 and 6 are used, together with normals of
widths 1, 2, and 4 multiples of sigma to either side of
the feature. This characteristic of the evaluator can also
be used within a search strategy, so that a feature
discovered by the operator with a range of several stan-
dard deviations of the Gaussian to either side of the line
segment could be re-tested with the span of the normal
reduced, in order to determine its position more accu-
rately.

0 - x - 15 0 - y - 20 edge
location

position of operator

A graph of the output of the feature evaluator
being applied at consecutive locations across

an edge. The width of the normal is the same as
the standard deviation of the filter being used

Figure 3(a)
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A better method of pin-pointing the position of
the feature is to do a line-fit to the feature evidence
discovered at each normal. By fitting a cubic to the
normal data, the position of the extremal point or zero-
crossing can be determined to subpixel accuracy and the
resulting series of points fed into a best-fit line algo-
rithm. This approach has the added advantage that the
deviation of the points from the best-fit line can be
measured, and used to weight the result of the evaluator,
to bias it against reporting a series of dispersed points
as a feature. However in the present use of the evalua-
tor, this has been omitted to improve speed.

1

0 - x - 0 - y - position of operatoredge
location

A graph of the output of the feature evaluator
applied to the same image data as in figure 3(a).

Here the width of the normal is twice the
standard deviation of the filter being used.

Figure 3(b)

of the weighted responses was taken to be the score of
the template.

The expected noise response of the evaluator to a
particular feature is a measure of the average response
to a randomly placed feature of the same type in that
image. Testing the different features at a high density
across an image would produce an estimate of this
measure. However the variation of the noise response
for each feature type with, the length, the Gaussian filter
size, the search width and the standard deviation of the
grey-level distribution in the filtered image, is fairly
easy to characterise. It was expected that the noise
response would be independent of length, since the
measure we are taking is the average of the responses at
each normal, but would be a function of the sigma of
the Gaussian filter and the mean contrast of the image.
In the case of edges the response should be independent
of the width parameter, but for bars increasing the width
allows broader bars to be recognised. Experiments were
conducted which validated these expectations and deter-
mined values of the free parameters. Thus a set of sim-
ple relationships were derived for the different fre-
quency gaussian filters used, relating the noise value for
features assessed in that frequency to the contrast of the
filtered image. The measure of contrast is the standard
deviation of the Difference of Gaussian blurred image.

This method of combining the features in the
image is an improvement over the system of setting
arbitrary thresholds, in that the criteria for what is, and
is not, significant is determined by the data in the
image. At present the whole image is used in the noise
analysis, but the system could be modified, so that the
cvaluator noise response is only determined for a por-
tion of the image, i.e. within an area suggested by the
low-level routines as being of interest.

Results

Combining the evaluations

The Chevette model used as an example here con-
tains about 40 - 50 line segments, depending somewhat
on the view. These line segments arc evaluated
separately and the individual scores arc combined to
produce an overall measure of the "goodness" of the
match. The "magnitude" value returned by the evalua-
tor is a relative measure of the strength of the feature
being tested. It will depend on the circumstances of the
evaluation: the standard deviation of the Gaussian filler
used, the span of the normal, the kind of feature being
evaluated, and of course the image being used, as well
as the contrast of the feature. Therefore in order to be
able to combine the separate scores meaningfully the
result obtained in each case is weighted by the expected
response of the evaluator to noise, in the same cir-
cumstances. This produces responses of greater than 1
for magnitudes better than that expected from merely
noise, and values less or equal to 1 for magnitudes
poorer or equal to the noise level. The geometric mean

Chevette image
Figure 4
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Extensive tests have been carried out on the
evaluation procedures on 512x512 pixel images of
natural, outdoor scenes containing vehicles, using a
three-dimensional model of a Chcvctte as the target
object. The system has shown a good discrimination
between the target object and the irrelevant detail in the
image. (See Figure 4 for an example image. Figure 2 is
the correctly positioned 2-D instance for the car in
figure 4. And figure 5 is a 3-D plot of the evaluation of
the template placed at a grid of x,y locations)

zmin = 0.029927
zrnax =14.2913

noisy images, particularly if the sophistication of line-
filling is added to the evaluator. (See figures 6, 7 and 8
for an example of an image evaluated without and with
line-fitting). Experiments are being conducted to test
the performance of the evaluator on images with added
white noise. (See figures 9 and 10 for an example of an
image with added noise, and the resulting evaluation
surface)

zmin = 0.061316
zmax - 2.69069

Example evaluation surface of a grid of y,z
displacements of the 2-D Chevetie template

Figure 5

Example evaluation surface of a grid of x,y
displacements of the 2-D Chevette template
for the "Chevette in front of house" image

Figure 7

zmin - 0.174456
zrnax - 12.5931

"Chevetie in front of house" image
Figure 6

This technique has proved itself reasonably sensitive to
errors in the positioning of the object for all six view
parameters, It is not greatly effected by cluttered and

Example evaluation surface, as above, but with
line-fitting added

Figure 8
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Chevette image in Figure 4 with reduced
contrast and added Gaussian noise

Figure 9

zmin = 0.067055
zmax = 2.9832

Example evaluation surface of a grid ofy.z
displacements of the 2-D Chevette template

for the noise-added image
Figure 10

Conclusions

There are a number of improvements that could be
added to the system. Firstly, not all the information
encoded in the model description is used by the evalua-
tor, for example the type of each feature, i.e. whether it
is an extrcmum, fold, highlight, etc. There are also
more constraints which could be included, for example
forcing consistency of strength between features. At
present support for the existence of a feature in the
image is directly related to the absolute strength of the
feature detected, rather than the correspondence of its
strength value with that of the predicted feature.
Another shortcoming is that at the moment only linear
segments can be evaluated. Manufactured items tend to
consist largely of straight-line segments, but the ability
to evaluate curves would be useful. Work is also
needed on the problems of occlusion and evaluating part
models.
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Knowledge-based feature evaluation is a very
effective means of object verification. The system used
here has reliably detected hatchback cars in a variety of
examples and has not been misled by non-cxamplcs.
This has held true even in particularly noisy images.
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