DEMOB - An Object Oriented Application Generator for Image Processing

N. Bryson, D.H.Cooper, J.G.Graham, D.P.Pycock, C.J.Taylor, P.W.Woods

Wolfson Image Analysis Unit, Department of Medical Biophysics

The Victoria University of Manchester, Manchester M13 SPT

This paper describes an Object QOriented program
generator for image processing applications. Control
is represented by a dataflow graph and interaction by
“view” objects which update displays and modify
domain objects. Progress so far also indicates that
Object Oriented Programming for user-defined image
processing requires a rich programming support
environment.

Many groups have developed libraries of image
processing (IP) modules for applications in the
medical and industrial fields. The use of these
libraries requires considerable programming effort
and expert knowledge, which limits the economic
viability of the technology. To develop an application,
the user must not only have expert knowledge of
image processing algorithms, but must also contend
with the messy details of programming. Because of
the commercial pressure to quickly demonstrate the
feasibility of program designs, there is a need for an
application generator. This paper describes our
attempts to develop such a tool (DEMOB). The
primary aim of this tool is not to help with the "art” of
image processing, but to help make the construction
of an application as direct as possible.

Objectives of DEMOB

One of the objectives in designing DEMOB was to
investigate the problems involved in designing an
application generator. Prototyping tools implemented
using conventional structured programming suffer
from having the structure of domain objects,
interactions, and control programmed in. For
example the implicit control structure may be a
pipeline, along which a work image flows, with the
user being offered (via menus) a choice of the
operations to be performed on the image.
Interactions occur in a pre-programmed manner,

This work is supported by an SERC grant and is
part of ALVEY project MMI-093: ”Techniques for
User Programmable Image Processing (TUPIP)”

37

and tedious re-coding is required when new

operations are added.

Our design goals included the requirement that
control be separated out explicitly from the operation
of the tool and from the domain objects. Interactions
should also be factored out, so that interactive tools
for different domains could be rapidly built from a set
of building blocks. The program generator should be
open, so that further domain objects and interactions
could be added easily. The user should not be
constrained to follow a particular design cycle, but
instead should be able to interact with
subcomponents of the problem in a relatively
unstructured way. The Object Oriented Programming
(OOP) technique'!, with its desirable properties of
information hiding and run-time binding seemed to
offer a viable approach to implementing such a tool.
One of the aims of the project was to explore the
uses of OOP for IP. Because of the nature of IP, with
the need to display and interact with raw and
processed images, the tool should have a mouse -
driven, window based graphical interface. A brief
description of the OOP paradigm is given below. For
a fuller description, the reader is referred to
reference 2.

APPLICATION REPRESENTATION

Separation of Control

A prototype application is represented internally by a
dataflow graph3. This representation was chosen
because the explicit recording of dependencies
between data items provides the potential for
automated reasoning about applications. A simple
graph, representing "blob” extraction from an
image, is shown in figure 1. The dataflow graph
consists of: nodes, representing actions applied to
data objects; tokens, representing references to data
objects; and directed arcs, which transfer references
to tokens between nodes.

A node is ready to fire when it has received all its
tokens from its input arcs. New tokens are created by
the node, and are transferred to further nodes via the

AVC 1988 doi:10.5244/C.2.7

output arcs, making them ready to fire. After
execution only the “dangling” output arcs of the
graph contain references to tokens, all intermediate
data objects (and their tokens) having been
consumed. Each token contains a counter for
references to the data object. When references to
tokens are created or consumed, the counter is
incremented or decremented, respectively. When
the counter reaches zero, the data object, and
token, can be deleted.

Define datg“ Define data
Mask image 1

Pointset

Value_range 1

Binary Image 1

blobs
List of blobs

Extra

Figure 1. Graph representing blob extraction.

The User Model

DEMOB is designed to present the application and
data objects graphically to the user. The user may
select any action or data object in his application by
selecting the appropriate node or arc of the graph,
which will respond by offering an interacton with the
appropriate object. Each interaction takes place
within a window, which contains a menu, a display of
the object, and a prompt line. Selection within the
window leads to a more specialised interaction with
the object, or an interaction with a new object. Initially
the user is offered a general interaction with an
empty list object. Typically the user then chooses to
load a graph from a disc file, or to create a new
example. An interaction with the new graph is entered
and the user is presented with a diagram such as that
shown in figure 1, and a menu of available
interactions. For example, if the user selects a
dangling output arc he will enter an interaction with
the data object on the arc. The arc itself can be
selected, and modified so that, during execution, it
will display the data objects passing through it.

During execution the arcs and nodes are highlighted
as they become active, and windows open on the
screen to show data objects as they are created. The
user modifies his program by cutting arcs, creating

38

new nodes, and adding them to the graph. Graphs
and objects can also be saved and retrieved from
disc file.

IMPLEMENTATION

The Object Oriented Programming
Environment

The key features of OOP are data encapsulation and
inheritance. The OOP technique consists of
identifying objects which are to be manipulated in an
application, and in defining the data structures and
operations needed for each object. The private
data structure representing the object is protected
from direct manipulation by the user, and operations
on it may only be carried out by sending a message
to the object, which uses it to select an appropriate
operation. It is important to note that the message
only conveys "what"” the programmer wants done,
but the object itself decides "how"” it is done. For
example the message AREA sent to a shape object
may cause different operations to be carried out,
depending on whether the shape is a circle,
rectangle, etc. Because the internal representation is
hidden, it can be changed without affecting the user,
who need only know the messages to which the

object responds.
Heap Static data segment Text Segment
(Objects) (Classes) (Methods)
Superclass : Null
Name : Object
Class variables
Class method table
NEW : nowObJ,acto
e
Instance method table; \anOb]uct
PRINT : printOb]actQ
"\hprocsdurs
{ printObject
Superclass : Oblecta
MName : Mammal
Class variables /' P;m‘::mal
Class method tabl
NEW : newMammal
Instance method table printi\:ar:nmal
PRINT : printMammaclr}/ ool
Class : Cat Qf } f newCat
/ procedure
Instance Superclass:Mammal printCat
variables Name : Cat
Class variables
Class meathod table |
NEW : newCat |_ _1
Instance method table; L. _1
PRINT : printcmc/ I == |
| R———— |

Figure 2. Schematic memory map of OOP
system

An individual object is regarded as an instance of a
particular class e.g. Tom is an instance of the class

Cat. The class definition defines the data structure
("instance variables™) of its instances and the
messages (with corresponding operations or
"methods”) to which it will respond, in the form of a
lookup table, indexed by the message selectors.
Each object contains a pointer to its class, which is
itself an object, with corresponding class methods
and "class variables”. In particular, each class can
respond to the message NEW by returning a new
instance (by invoking the newCat method). Figure 2
shows a schematic memory map showing the
relationship between objects, classes and methods.

The use of encapsulation helps to protect code from
the effects of changes. The use of inheritance allows
code to be re-used. The classes are arranged in an
inheritance hierarchy, with more general operations
and instance variables being defined in classes high
in the hierarchy. For simplicity, each class can
inherit from one "superclass” only, although in other
implementations, multiple inheritance is a useful
feature. Each class contains a pointer to its
superclass (except for Object, the class at the root of
the hierarchy). Methods high in the hierarchy may
only manipulate instance variables defined at that
level or higher in the hierarchy.

We have developed an OOP environment in-house in
which to implement DEMOB. This consists of C with
some preprocessor tools. The programmer causes
messages to be sent to objects by inserting code of
the form:-

Tom = NEW$(Cat);

PRINT$(Tom);
where Tom is of type "ob_ptr” i.e. a pointer to an
object. A special global object pointer, "self”,
represents the receiver of the current message, and
is used within methods to access the instance
variables of the object. A preprocessor tool checks
that the message selector is represented in a file of
valid messages, and then converts this string into a
call to a message handling routine:

Tom = msg(NEW,Cat);

msg(PRINT, Tom) ;
The message handling routine expects the message
selector and the receiver of the message as the first
two parameters. Upon execution, the message
handling routine searches the method lookup table
of the class of the object for the corresponding
method (it recognises a class by the fact that its
class pointer instance variable is null). The stack is
adjusted to simulate a standard C procedure call, and
control is passed to the method.

The programmer may also specify that the search for
a method should begin in the superclass, rather than
in the class, by writing:-

PRINT$super(Tom);

39

This powerful facility allows the chaining together of
methods. For example, the PRINT message causes
the printing of the values of all instance variables of
the object, and is implemented at each level of the
class hierarchy by methods of the form:-

PRINT$super (self) ;

printf("Instance variables at this level”);
This causes the instance variables, starting at the
root of the hierarchy, to be printed.

The low level image processing routines of our
system are microcoded to make use of particular
data structures, optimised for IP operations and
executed on a slave co-processor. Since a large
effort had already been expended in developing
existing software and hardware,we were constrained
to include these existing data structures in DEMOB.
One of the objectives in developing DEMOB was to
investigate the effective use of mixed typed data
structures and objects.

Image Processing Objects

Object]

L\)

Transform

Anthmaﬁcl I Linear]

\
[siice |

I Mean I
[|
I Subtracﬂ
Figure 3. Image Processing Objects

Class Hierarchy

Since we wish to be able to add new classes and
modify existing classes without too much disturbance
to the rest of the system, DEMOB makes no
assumptions about the domain classes, other than
that they will respond to a limited set of messages,
which provide the interface between these classes
and DEMOB. These messages allow DEMOB to
ascertain the default method of interaction and the
operations available for the domain object. Besides
general purpose objects such as integers, reals,
booleans, lists, etc., a variety of data objects specific
to IP are also required. These include images,
cameras, pointsets, value ranges, and image
transform specifierst. A class hierarchy of these

objects is shown in figure 3.

Associated with each object is a set of messages
which are used to process the data e.g. a Camera
object responds to the PHOTO message by producing
an Image object. The processing steps in the
application are built up using these messages, which
are inserted into the graph as described below. Also
associated with each object is a set of interactions
e.g. the Real number object has a set of interactions
allowing the number to be modified in a variety of
ways. These interactions can be inserted into the
graph as described below.

Graph Nodes

The structure of the dataflow graph allows control
over the order in which operations are carried out.
Further control is provided by supplying specialised
nodes which implement further control structures.
The class hierarchy of the objects used in
constructing graphs is shown in figure 4. The Node
class provides the functionality common to all nodes
e.g. the abilty to receive and transmit tokens.
Further, more specialised functionality is provided by
the subclasses of Node.

Object

Wuclass

Copy Abstract Interaction

Personlised|

Data
Definition

Graph Iteration

/N

While—do Do-Until

Conditional

Figure 4 . Inheritance hierarchy of
graph objects

One such class is the "Data Definition” class, whose
instances act as sources of data for the dataflow
graph. When the node is created the user is asked to
define the data object, and on subsequent execution
a token representing the data object is output by the
source node. In the example graph shown in figure 1,
four data objects are needed : a camera, a mask
image, a pointset (defining the region over which the
operation is done) and a value range (which defines
the thresholds for the slice operation).

40

Multiple references to data objects are frequently
required, so a “copy” node class is provided. These
work by incrementing the reference counter of the
input token, and passing out multiple references to it
via the output arcs.

A “graph” node, like any other, can receive tokens
from its input arcs, and passes tokens to its output
arcs. Internally its execution is represented by a
collection of nodes and arcs i.e. a sub-graph. A
graph can thus have a layered structure, with a
“root” graph node controlling the execution of its
sub-graph, which itself can contain graph nodes.

lterative execution is implemented by providing a
variety of “iteration” node classes. For example, a
specialised type of graph node, the “while-do” node
controls the execution of a condition graph and an
action graph. During execution the set of input tokens
is passed to the condition graph, which executes and
returns a boolean object. If it is “true” the set of input
tokens is passed to the action graph, which returns a
new set of tokens, and the cycle is repeated. If the
boolean is “false”, the tokens are passed out as
output.

Conditional execution is implemented by providing an
“if-then-else” node class. This node controls a
condition graph, a “true” graph and a “false” graph.
The execution cycle is similar to that of the
“while-do" graph i.e. the input tokens are passed to
the condition graph, and a boolean object is
returned. Depending on its value, the input tokens
are passed to the “true” or “false” graph.

These nodes introduced so far provide the control
structures of conventional structured programming (a
subroutining facility could easily be added). A further
class of node, the "personalised” node, is included
to allow user selected actions on data objects.
Actions are carried out by sending a message to an
object e.g. to add two numbers together the
message is -

C = ADD$(A,B);

where A, B,C are references to the number objects,
ADD is the message, and A is the receiver of the
message. The personalised node has instance
variables allowing it to store this message. The
convention adopted is that the message is sent to the
data object input via the first input arc, with the data
objects from the other input arcs as parameters. The
returned object from the message is assumed to be
a list of output data objects, which are transferred to
the output arcs. In this case a single object, C, is
returned. During the creation of a personalised node,
the user is prompted to define a receiver, which then
offers for selection all the available messages for that
class of object.

Part of the user's application may involve run-time
interaction with the data objects, and a special
“interaction node” class is provided to allow this.
When creating this node, the user will be prompted to
define the class of input, and will be asked to select
from all available interactions with this class. An
instance of this interaction (see below) will be
created and placed in the interaction node. When the
data object arrives along the input arc, the interaction
will take place, and the modified data object will be
output along the output arc.

The Interaction Model

The programming of interaction required a large part
of the effort in developing DEMOB. A graphics
sub-system was developed, which implements a
GKS® model of graphics i.e. overlapping rectangular
regions of the display device, called “viewports”,
display “icons” in “worlds” through *“windows”
opening on the worlds. Viewports are grouped
together in frames. These components were
implemented by defining classes of objects, with all
device-dependent code being confined to the Screen
class.

< ;
> [Default 0 | [Interactioni |
| Class 1 |‘--—--——’! SkelV 1 |
/’,7 -
/ | Default 1 I Ilntaraction 2 |
| Class 2 l‘.———’! SkelV 2 I
/’, \ —
- // [DefaultZ I ||maraction3 l

Figure 5. The View Class Hierarchy

Rather than have each domain object controlling its
interactions, we decided that each interaction should
be defined by a separate class, to increase
modularity and to save memory space. When an
interaction with an object is required, an instance of
the relevant class, known as a “view”, is created and
is put in control of the object. The view object would

inherit the instance variables and most of the
methods needed to represent and manage the
display from its superclasses, and need only provide
locally the code needed to determine the course of
this particular interaction.

We thus define a class hierarchy of views to
accompany the hierarchy of domain objects, as
shown in figure 5 . This view hierarchy contains
“skeleton” classes which provide all the instance
variables and methods common to interactions, and
“view” classes which define particular interactions.
Each object has a default view class, which
implements the most general interaction possible i.e.
to display the object and to offer all interactions
available for it. It also allows the user to select
sub-components of the object for further interaction.
When a new domain class is added a corresponding
skeleton class with default view and any further view
classes are also added.

RESULTS

A basic version of DEMOB has been implemented on
a CVAS 3000 (Visual Machines Ltd.) system. Images
of the screen, showing a sample graph during and
after execution, are shown in figures 6 and 7. These
show a graph interaction window, with associated
menu, and displays of a source image and a sliced
image.

Figure 6. Sample graph during execution

Figure 7 — Sample graph after execution

DISCUSSION
Limitations of the OOP Environment

Designing with objects proceeds by identifying the
instance variables and methods of classes. As the
design proceeds, the programmer identifies ways in
which code can be reused, usually by spotting ways
of adding new classes and by splitting or moving
methods and instance variables around in the class
hierarchy. The final system contains a large number
of classes, each with a relatively small number of
methods, each containing a small number of lines of
code. It is easy for the programmer to lose track of
such a system, and it can be difficult for a new
programmer to add new functionality to the system,
since in order to do so, he must understand what he
is inheriting. We thus need tools to allow the
programmer to browse around the source code in a
structured manner such as are supplied in Smallitalks,

In our OOP environment, all class and method
definitions are compiled. While this increases
run-time efficiency, it also means that the definition
of an object is fixed. Further, although the code is
compiled, no static type-checking is done.

Design Issues Raised in OOP

Initially, design concentrated on using the
"information hiding” aspect of OOP, but as we
gained experience, inheritance gained in importance.
The derivation of a class hierarchy can be difficult, in
part because the only relationships provided are the

42

“is-a” and “is-an-instance-of" relations. These do
not, however, describe the relationship between say,
views and their objects. For these objects the
"information hiding” aspect of OOP is a
disadvantage, since the views need to have access
to the instance variables of their objects. This
problem arises because it is difficult to decompose IP
applications into independent static classes of
objects i.e. where information can be encapsulated
permanently into objects. In practice we wish to be
able to merge the information from several classes of
object e.g. in applying an operation over a pointset in
an image. Where a static encapsulation of
information suffices(e.g. the dataflow graph) the
model works well. The frame paradigm 7 presents a
richer environment for the representation of domain
knowledge,allowing object decomposition as well as
more complex relationships between objects.

Our experience has shown that the use of mixed
typed and object variables reduces the advantages of
using OOP, since much code had to be handcrafted
to deal with the typed variables. Of course, these are
needed to map onto the IP software and hardware.
The correct way to deal with them is to implement a
basic set as objects, with methods handcoded to
implement the functionality provided automatically for
other objects. It is instructive to compare our
approach with the Eiffel OOP language & This
language has a compiler which recognises the use of
a limited set of simple types, but any complex data
structure must be represented as an object.

Design Issues in the User Interface

The user interface is crucial to the success of a tool
such as DEMOB. Users are sensitive to features
which appear relatively trivial, such as the particular
style of interactions, or the wording of prompts.
There are a variety of ways in which an interaction,
such as modifying an integer, can be implemented.
One solution is to recognise that these interactions
have much in common, and thus could be
represented by an appropriate view class hierarchy.

Instead of being presented with the dataflow graph,
some users felt that it would be better for this to be
hidden, and instead to present only the data objects.
Design would proceed by creating and selecting
objects for processing. The user would then selects
an appropriate operation which could take these
objects as inputs. The selected action would be
invoked, causing new objects to be created.

CONCLUSIONS

The dataflow graph is adequate for representing an
application. However the need to fully specify the
dataflow is tedious for programmers, since the

normal constructs of conventional programming
languages correspond to a lot of dataflow, which the
programmer does not normally need to specify
explicitly.

While OOP greatly increases the robustness and
reuseability of code, and provides a useful paradigm
for the development of complex software systems,
the behaviour and relationships between the complex
data structures used in IP are not adequately
modelled by message passing objects arranged in a
single inheritance class hierarchy. To use OOP the
development environment should be fully integrated
with the language to allow rapid modification of an
evolving system. A clean interface between typeless
data structures (objects) and typed data structures
should be maintained. The dataflow graph provides a
viable means of representing procedural knowledge,
but needs careful design of the user interface in
order to gain user acceptability.

REFERENCES

1. ACM SIGPLAN Notices, Vol. 21, No. 10, Oct.
1986

2. Brad C. Cox, "Object Oriented Programming -
An Evolutionary Approach”, Addison - Wesley,
1986

3. IEEE Computer, Special Issue on Dataflow
Systems, Vol. 15, No. 2, Feb. 1982

4. Graham J., Taylor C.J., Dixon R.N., "A
compact set of image processing primitives
and their role in a successful application
program”, Patt. Recog. Lett., 4, 325 - 333,
1987

5. Hopgood F.R.A., Duce D.A., Gallop
J.R., Sutcliffe D.C.,” Introduction to the
Graphics Kernel System (GKS)" A.P.l.C.
Studies in Data Processing No. 19,
Academic Press, 1983

6. Goldberg A., Robson D., " Smalltalk - 80 The
Language and its Implementation”, Addison -
Wesley Series in Computer Science, 1983

7. Wood P.W., Pycock D.P., Taylor C.J, "A
Frame-based System for Modelling and
Executing Visual Tasks”, Alvey Conference
1988.

8. Meyer B., "Eiffel: Programming for Reusability
and Extendability”, SIGPLAN Notices
Vol. 22., No. 2, Feb. 1987

43

44

