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Any model-based image interpretation system must be
capable of describing objects, whose appearance in real
images can vary widely, in sufficient detail to ensure
that robust location of objects is possible. The system
must cope with circumstances where data is incom-
plete, for example when touching and occlusion occur.
We argue that to achieve this it is necessary to describe
grey-level properties as well as geometric ones, and
their expected variations. This paper proposes an ob-
ject description which combines an explicit shape model
with models of expected grey-level boundary appear-
ance together with a mechanism for evaluating image
data for correspondences to the model. The results of
applying the method to locating the boundaries of over-
lapping and touching objects in microscope images of
metaphase chromosomes and man-made mineral fibres
are presented.

This work forms part of a project which is directed to-
wards producing a computer vision system which may
be used by a person who is not familiar with image
processing techniques to define tasks and produce solu-
tions to 2-D image interpretation problems. The pro-
posed system models image data and allows a user to
describe an image processing task in an hierarchical
manner in what is collectively termed a world model 1.
The purpose of the hierarchy is to split the task and the
data modelling into manageable units, to assist in re-
ducing the combinatorial problems encountered in
model-based image interpretation 4 . Execution of the
task is synonymous with instantiation of the model from
image data.

An essential part of such a system is a mechanism to
match features in an image to elements of the model
starting from primitives or cues extracted directly from
the image data. The mechanism must cope with indis-
tinct or missing data caused by touching, occlusion and
noise. Encouraging results have been reported by
Bolles, Faugeras, Horaud and others 5 6. In this work
edge detection operators provide boundary evidence
which is matched directly to rigid (wire-frame or CAD)
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models. The applicability of these methods to domains
other than simple industrial part recognition is, how-
ever, limited because the models employed only cope
with rigid shapes and the edge detection operators are
often unable to cope with the enormous variation in
appearance which may be exhibited by objects in real
images.

We argue that there is a requirement to re-evaluate im-
age data whenever a particular hypothesis is being ex-
amined, to search for supporting evidence unique to
that hypothesis. This paper describes a mechanism to
provide such supporting evidence, applicable across a
variety of domains. It can be used independently or
within a knowledge-based image interpretation system
and overcomes some of the limitations discussed. It is
intended to cope with objects whose shape may vary
and whose boundary characteristics may vary from ob-
ject to object or within an object. The user requires
minimal knowledge of the internal representation of
shape or boundary models, but will create the models
during a training process in which examples are shown
to the system.

MODEL-DRIVEN SEARCH

The assumption made throughout this paper is that an
initial choice of object model (hypothesis) and of loca-
tion has been suggested by one or more cues or by
some higher-level process which is seeking to establish
or refine an interpretation. Possible mechanisms for
generating such cues are discussed elsewhere in these
proceedings 2.

We use an object description, which contains both
boundary and symmetry (axis) information, to direct a
search for further evidence to support the hypothesis
that such an object is present in the image at the sug-
gested place.

The search is effected by extracting grey-level profiles
along straight lines cast in positions determined by the
typical shape predicted by the shape description. Can-
didate boundary points are extracted from the profiles
using a technique which matches each profile to one or
more parameterised models of expected grey-level ap-
pearance across the boundary 3. A candidate boundary
is then computed from the set of points using a dynamic
programming technique which takes into account data
from the shape model and also from the boundary
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grey-level models. We expect this process to be one of
refinement and re-evaluation. The candidate boundary
could well be used to generate a new hypothesis to
which the same or some other object model could be
applied.

Planting Search Lines

In order to plant the search lines the model must pre-
dict where the expected boundary lies. The shape
model must therefore capture the distributions of posi-
tional variation along the boundary. We can choose to
place the expected boundary at the mean of the distri-
bution, or at a percentile if it is skewed and we want to
bias towards the majority. Lines are placed normal to
the expected boundary with their mid-points on the ex-
pected boundary. The sampling strategy used at the
moment is a simple one; a minimum frequency sample
suitable for location of straight boundary sections with
increased frequency proportional to local curvature.

The accuracy of the placement of the initial hypothesis
is unknown, and so the length of the search lines is
related to the size of the object. On subsequent refine-
ments however the length of each search line can be
related to the local variation in the boundary position;
shorter lines may be used where the variance is low.
This reduces the amount of computation in general and
the possibility of producing false positive evidence in
particular.

Generation of Candidate Points.

Candidate boundary point generation and evaluation is
based on the parameterised grey-level model scheme
described by Woods et al3 . Any number of models may
be used, depending on the cases that are likely to be
encountered in the images. Four models are used in the
chromosome example, as shown in fig. 1. Each model
consists of a fixed number of segments and has the
boundary edge clearly identified. Grey-level model
matching employs dynamic programming and uses pa-
rameters in the cost function which are computed from
statistics derived during training.

Candidate boundary points are generated from each
profile using an edge detection operator. In the exam-
ples shown we have used maxima in the smoothed first
derivative; we intend to use an improved method de-
scribed in these proceedings by Graham et al 10 . Each
candidate point is labelled with a measure of how well
the profile matches the expected boundary characteris-
tics when the boundary is considered to be at the point
under consideration. The process is as follows: each
candidate point is considered in turn and associated
with the appropriate edge in in all of the grey-level
boundary models; the two partitions generated are
matched separately to their corresponding partitions in
each model to produce a fit measure corresponding to
that model. The smallest of these values, which corre-
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Figure 1: Boundary grey-level models used in
the chromosome example: (a) Distinct bound-
ary (P) faint boundary and (c) weak edge and a
nearby object. The vertical axis represents grey-
level. A strong edge/nearby object model is also
used but not shown here. Strong and weak edges
are generated by the presence or absence of
banding, the term given to the density changes
within the chromosome body. (See figure 4a.)

sponds to the best fit, is chosen as a label for the point.
The labels for all the candidate points on a profile are
normalised with respect to the smallest one.

A further set of phantom points are generated by
propagating lines parallel to the predicted boundary
from a subset of the previous search lines' candidate
point set (points corresponding to the best three paths
so far) and computing the intersection of these lines
with the current search line. These points are labelled
in the same way as genuine edge points. In the event
that portions of the boundary are obscured for what-
ever reason the phantom points enable the missing sec-
tions to be spanned as dictated by the shape informa-
tion. Experience has shown that, in such cases, edge
points are usually generated by noise and do not, of
course, correspond to object boundary points. For this
reason phantom points are always generated.

Generation of the Candidate Boundary.

Associated with each search line we now have a set of
labelled points. A dynamic programming technique is
used to select which combination of points best repre-
sents the object boundary. The notion of best fit is a
combination of grey-level profile correspondence to the
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expected edge data and overall correspondence to the
shape model. In the latter case candidate points nearest
to the predicted boundary might be favoured; however
this criterion alone can give rise to erratic boundaries
[fig. 2a] because the choice of point on each search
line is independent. If we favour paths which run paral-
lel to the predicted boundary the correspondence to the
model is greatly improved [fig. 2b]. Because the data
and model can differ in size and location this criterion
is applied most strongly on boundary sections of low
curvature.

expected
boundary

(a)

expected
boundary

(b)

Figure 2: boundary matching: (a) boundary fit
when points nearest to the predicted boundary
are favoured and (Jo) when paths parallel to the
predicted boundary are favoured.

We implement these ideas by forming a feature vector
for each point. The component features are:

1) The label associated with each point (grey-level pro-
file fit). This is the minimum cost associated with
fitting to each of the grey-level models; it is nor-
malised with respect to all of the costs of the points
on the current search line, so that the best point has
a cost of 1, all others having costs greater then 1.

2) Divergence of the path from parallel to the model
prediction, weighted inversely by local absolute cur-
vature. The curvature value is provided by the shape
model and included in the label associated with the
search line.

3) The distance between the candidate point and the
predicted point. Using this feature favours the upper
path depicted in figure 2b which is, overall, closer to
the expected boundary.

Our objective is to find the path through the set of can-
didate points which is most likely to be the correct path.
We have various forms of evidence and need to com-
bine them in a principled way.

If we assume that the evidence from each point is inde-
pendent, then P(m = m0) , the probability of a path m

being the correct path m0 , is just the probability that
all of the points / are on the path m0 and is given by

P(m = m0) = J |P(i E mo\xi)

where x,- is the evidence associated with the point i and
N is the number of points on the path. Using Bayes'
theorem we can write

P(xi\i E m0) P(i E m0)(i E mo\xi) =

If we assume that P(xi\i E mo) and P(xi) are nor-
mally distributed and that P(i E m0) is a constant i.e.
that all points are equally likely to lie on m0 we can
write

°oU)

for some K and where

j ranges over the elements of the feature vector
Ho is the mean of x/ , /' E m0

OQ is the standard deviation of x,- , i E m0

fi is the mean of x/ , for all i
a is the standard deviation of x,- , for all /'

and therefore,

xi<J)-HQ(Ji 2

Taking logarithms and eliminating the constant K we
seek the path for which

is a minimum. This form of cost function can be mini-
mised across all possible paths using dynamic program-
ming.

The matching process starts at an arbitrary choice of
search line/candidate point-set with initial costs of
zero. For each candidate point on a search line each
path from the previous line's candidate set into the cur-
rent candidate is considered and the minimum cost
path is recorded. After one circuit the start line/point
set is reached; the matching process continues, how-
ever, until the pattern of cost paths stabilizes, thus over-
coming the error introduced by not having correct cost
values initially. This typically happens within two or
three places after the start and improves performance
compared to terminating at the start point.
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Training

The parameters used in the grey-level and boundary
matching cost functions are estimated by training on ex-
amples. For each object model the grey-level model
parameters are trained first. Typically four or five
search lines are drawn (interactively) across boundary
sections which correspond to each of the grey-level
models deemed necessary by the user. This number of
samples is enough to give sensible initial values for these
models to be used for edge matching. In each case a
match is made and the position considered to be the
boundary is displayed. Errors are corrected interac-
tively and feature statistics are accumulated.

The boundary model parameters ft, fio> o, o0 are
trained by initiating a boundary search on example ob-
jects. An axis cue is drawn interactively to instantiate
an object model. A trial instantiation is generated using
default initial values for the parameters and any errors
in the generated boundary position are corrected by the
user. Feature values corresponding to the correct
boundary are used to update the statistics. At the time
of writing data generated by the boundary search is not
used to update the grey-level model statistics, and this
is reflected in the examples shown below. We intend
ultimately to use this data.

Generic models - Size and Shape.

In our chromosome example the world model defines a
generic chromosome to be a specialisation of a system-
defined prototype blob from which it inherits an appro-
priate shape model. Each specific chromosome is a fur-
ther specialisation. (See figure 3.) The shape model for
all chromosomes therefore uses the same representa-
tion; the generic version combines the distributions of
all of the sub-types, and is less constrained.

Several authors have stressed the need to distinguish
between size and shape ? a 9 , but for the purposes of
reconstructing boundaries this is not necessary. Indeed
it can be a hindrance in generic models where the indi-
viduals may vary in size and shape, even though there
are recognisable constraints in their spatial occupancy.
We therefore record the shape data in un-normalised
form for reconstruction purposes, but transform to a
size-plus-normalised form whenever necessary, for ex-
ample in providing goodness-of-fit measures independ-
ent of size for matching individuals or providing confi-
dence labels for candidate points.

Choice of shape representation

The cue generators that we have used in the work re-
ported here happen to generate symmetry and edge in-
formation. It is desirable to have similar entities ex-
pressed explicitly in our model representation in order
to simplify the process of generating an initial choice of
object model. The shape model that we use is a single
axis symmetric ribbon model which is appropriate for

Blob

| Symmetric ribbon-like blob |

^ _ _ n

. Generic chromosome .

I —' 1
I specific chromosome I
i _ i

other prototypes

- Figure 3: The world model inheritance hierar-
chy depicting the refinement of blob definitions.
User-defined entities (dashed boxes) inherit a
shape representation from the system prototypes
(solid boxes). See Woods et al 1 for a fuller de-
scription.

our exemplars and makes the mapping from the cues to
the model a simple one. This does not detract from the
principle of combining explicit shape models with grey-
level descriptions or compromise the generality of the
method.

Extending the capacity of the shape representation to
more complex shapes is a topic currently under consid-
eration. We require to infer shape and shape variability
from a set of examples and unfortunately many shape
representations described in the literature ( Symmetric
Axis Transform 11 12 15 16 17, Smoothed Local Symme-
tries 13 14, Local Rotational Symmetries 8 ) are either
degenerate on certain classes of shape, are unstable, or
currently require unacceptably large amounts of com-
putation to achieve stability.

APPLICATION

We have applied the method described above to micro-
scope images of of chromosomes (Figures 4 and 5) and
man-made mineral fibres (Figure 6). All the images
used were 512 * 512 pixels with 6-bit grey-level resolu-
tion. The process of object instantiation was initiated
using grey-level symmetry axis cues, generated auto-
matically by the method described elsewhere in these
proceedings by Thornham et al. 2 with the exception
that interactive editing was used to link across short
(and topologically meaningful ) gaps. We intend ulti-
mately to apply an improved version of the good con-
tinuation strategy described by Dixon et al 20 for asbes-
tos fibre counting, to create these links.

Figure 4a shows a subset of the chromosomes of a hu-
man cell in metaphase. The grey-level variation within
each chromosome (the banding pattern) is clearly vis-
ible. The lines overlaid in white mark positions of grey-
level symmetry at a scale commensurate with the typical
width of the chromosomes. External symmetries are
shown as well as internal ones.
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Figure 4a: Chromosomes showing characteristic
banding patterns and with positions of grey-level
symmetries overlaid.

\S \L

Figure 4b: Best boundaries after the training session.

Figure 4b shows the instantiated boundaries at the end
of a training session. These boundaries represent the
best that the system can achieve given the limitations of
the edge detector and choice of models currently em-
ployed. Figure 4c shows the result of automatic bound-
ary instantiation. The nearby object grey-level model is
particularly useful in ensuring that the correct edge is
chosen when objects are adjacent.

Figure 5 shows a series of images (taken at twice the
magnification of those in figure 4) of crossing chromo-
somes. Figure 5a shows the output of the symmetry cue
generator, and Figure 5b the best possible boundaries

Figure 4c: Result of the search on isolated chromo-
somes.

after training. Figures 5c and 5d show the result of
automatic boundary instantiation and demonstrate the
effectiveness of the method in bridging gaps at the in-
tersection.

Errors occur mainly at points of high curvature on the
boundary where the parallel-to-model criterion is
least effective. Further work is required to establish the
precise effect of each feature in the cost function on the
resultant boundary. The current implementation does
not generate phantom points on the first search line,
which happens to correspond to one end of the shape
model; lack of candidate points may be the cause of
failure on poorly defined ends.

Finally Figure 6 shows the technique applied to man-
made mineral fibres. The complex boundary structure
where two fibres are touching has been correctly inter-
preted, despite the crude edge detection methods cur-
rently employed. The same object model was used for
all the fibres in this image. This sometimes gives rise to
width errors which can be seen on the vertical fibre
boundary. We expect that this will not occur when the
scale information from the cue generator is applied to
the production of the initial hypothesis generation.

DISCUSSION

The work described is a generalisation of the method
reported by Azzopardi et al18 for detecting the bounda-
ries of muscle fibres. In that work an implicit circular
shape model was used, candidate points were not as-
sessed with respect to any global boundary description
and ad-hoc rather than trained values were used in the
cost function. Similar comments apply to work de-
scribed by Pope et al 19 in which circular models and
dynamic programming are used in the context of ven-
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Figure 5a: Crossing chromosomes and corresponding Figure 5c: Result of search, showing one of the
symmetry cues. crossing chromosome boundaries.

Figure 5b: Best boundaries after training.

tricular border recognition. In that paper only edge like-
lihood is used as a matching feature.

The work described here offers significant improve-
ments which are reflected in the success of its applica-
tion, especially in cases where data is missing. In par-
ticular, the technique employed is principled and ex-
tendible. We believe that improvements in the genera-
tion of candidate points referred to in the text will result
in the applicability of the method to images with a wider
range of edge characteristics and also give increased ro-
bustness.

The key aspect of this work is the combination of ex-
plicit shape and grey-level information in an attempt to

Figure 5d: Result of the search, showing the second
crossing chromosome boundary.

model the appearance of objects and apply these mod-
els to locating instances in scenes. If we can succeed in
developing this approach we will be able to predict the
effect of cue generators and thus be able to generate
hypotheses in a systematic way.
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