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Abstract

The viewpoint consistency constraint (VCC) provides a powerful
way to discover extended feature groups and to test hypotheses in object
recognition. Lowe’s incremental method fails in complex scenes, and an
exhaustive tree search (eg Grimson &Lozano-Perez) is too expensive. We
present a state space approach in which transitions are made which
monotonically ascend a measure of viewpoint consistency

1 Introduction

Model based vision usually relies on a hypothesis-test-refine cycle to recover an accurate
estimate of an object’s pose [1, 2, 3, 10]. An initial pose estimate, typically based on the
detection of an object-specific cue feature, allows a search to be made for additional
evidence which supports the cue, This in turn provides a better estimate of the pose, based
on the extended set of feature correspondences. We call this process 3D grouping using
the viewpoint consistency constraint (VCC).

Lowe [10] has reported an incremental approach to the search for extended feature
sets, successively aggregating features which meet simple acceptance criteria. We have
found that this algorithm frequently fails in images containing clutter.

An alternative approach is to use the initial pose to identify all plausible extended
features, and to search among the combinations for sets of mutually consistent features.
This problem can be represented as an Interpretation Tree, as used by Grimson &
Lozano-Perez, but in matching 3D objects to 2D data the evaluation of a node of the tree
requires a (multi-feature) viewpoint inversion, which cannot be effectively pre-complied
into (pairwise) look-up tables.

We present a state space representation of the problem and a search algorithm which
we call Viewpoint Consistency Ascent (VCA). Each state has a value (defined by a
measure of the viewpoint consistency), and transitions take place in a two stage process
between states which differs by a single feature match, according to the steepest ascent
of the value.

2 VCC concepts

A set of 2D features, each matched to specific object features of a 3D model, is called a
3D cligue. The process of deriving a 3D clique is called 3D grouping and the number of
matches in a clique is its cardinality.

2.1 Measurement of viewpoint consistency

A 3D clique of cardinality at least 3 usually enables the use of perspective inversion to
determine the pose. In turn this allows the generation of an instance of thesmodel g5hieh 10.5044/C.5.7
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can be projected onto the image as a 2D template. The viewpoint consistency of a 3D
cligue is a measure of the accuracy with which features in this template coincide with the
data features in the clique.

The agreement between a model feature and an image feature can be measured in
the image domain by three discrepancies: difference of orientation mg, (in degrees),

perpendicular distance m, (in pixels) and the length of any unmatched segment of image
feature m, (in pixels), as illustrated in Figure 1. [NB our definition of the unmatched

segment of the image feature tolerates truncated image features but disfavours extended
edges likely to rise from coincidental alignment.]
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| Figure 1. Measuring spatial discrepancy between feature pair

It is important to note that we use the viewpoint consistency constraint to the full
and that a clique is always taken as a whole. We use two measures for VCC.

(1) As a graded measure, we define the inconsistency of a 3D clique as:

V=MAX {(wgmgq; + wym +w,m,)| ¥ matches (i) in the clique}

The terms wq, w, and w, are weights for the different discrepancy measures,

empirically chosen so that the three terms have roughly equal impact on the graded
measure when they are maximal, given the size of the area of interest in the image.

(2) To define a binary acceptance criterion we use a threshold (1), A clique is
acceptable if

(mg; < 1gwg) and (my, <t w,) and (m,; <t ,w,) (Vi).
2.2 3D grouping

The starting point for 3D grouping is a set of candidate features which are established on
the basis of the initial pose estimate. This initial pose may have been derived from an
initial hypothesis in a single frame [13], or from extrapolation of the previous frame in a
tracking problem [14]. To account for possible inaccuracy with the initial pose, we
accept all features meeting the acceptance criterion with a lax value of T.

We thereby have a set of n, data features D = {d;‘|f =1,...,n,},and a set of
n,, model features M = {mi = 1,...,n, }. Note that n, is the number of model
features having at least one candidate d; and is usually considerably lower than the total
number of features on the model. Each model feature (m;) is associated with a subset of
D,D; = {dUJ:j = 1,...,n; } (see Figure 2(c)).

An exhaustive exploration of all possible sets of pairings {m, d;} (meM,

d;; € D;)involves [T (n;+1) cases (1 is added to each n, to account for the case of a null
i=1

match). In practice the problem is slightly reduced since in order to allow perspective
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inversion we require that each clique contains at least 3 matches between object and
image features.

The evaluation of consistency (including pose inversion) constitutes the main
computational burden for 3D grouping, so the computational cost of a strategy can be
estimated by the number of VCC evaluations. In our experiments we assess performance
with respect to subjectively defined correct matches obtained by visual examination of
the image features. We define the rate of misses (rm) and rate of false-matches (rf) by
means of this ground truth: rm is the proportion of visible object features failing to be
matched by the clique; rf is the proportion of false matches in the resulting clique. The

erfect clique with rm=rf=0 is expensive to find. It also usually contains substantial
redundant information, since our purpose is to rule out cases of accidental conspiracy and
to obtain sufficient correct evidence to determine the object position. We call a clique of
low rm and 1f=0 a desirable cligue. While there is a unique perfect clique, there exist
multiple desirable cliques. We pursue any one of these desirable cliques by allowing a
few misses.

3 Previous methods for exploiting the VCC
3.1 Lowe’s incremental model matching [10]

Given a 3D grouping problem as defined above, Lowe’s incremental model matching
method works iteratively. At each iteration, a probability of conspiracy is given to each
candidate image feature according to its spatial relation to the estimated model feature.
For each subset D; containing more than one image feature, an ambiguity is calculated

according to the maximal and minimal probabilities in this subset. Candidates of low
conspiracy probability (using a threshold) and having low ambiguity (using a second
threshold) are accepted. Before the next iteration, the pose estimate is refined using the
newly added matches. The process finishes when no image feature passes those
thresholds.
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Figure 2. Incremental approach to 3D grouping fails to identify correct matches
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A major advantage of an incremental approach is that no backtracking is needed so
that it is computationally cheap. However applied to images of complex objects in
cluttered scenes it often fails to converge correctly (see Figure 2). The method was
applied to 4 similar images. The rate of false-matches range from 0.3 to 0.5, which
indicates very low reliability.

The failure is not coincidental. Firstly, there is little reason to believe that a data
feature 1s more likely to be correct than another simply because it is slightly closer to the
originally estimated position. Secondly, incrementally aggregating individual
interpretations of data features may reduce the global viewpoint consistency. Mismatches
from previous iterations cannot be corrected nor can further mismatches be prevented. In
Figure 2, the algorithm is fatally affected by the initial error in mismatching the ground
shadow with the sill.

3.2 Alternative model-based approaches

The failure of Lowe’s algorithm is typical of other systems matching 3D models to 2D
edges. ACRONYM [3] was a very ambitious attempt to accommodate a wide range of
objects and had a sophisticated constraint management system. However it has been
criticised for its inability to apply the viewpoint consistency constraint accurately which
limited its robustness[10].

Both Goad’s method and Bray’s re-implementation and extension use “shape-only”
local constraints specifying legitimate ranges (thresholds) of angle, direction and distance
between feature pairs. Their main advantage is that hypothesis-verification cycles are not
needed even for single frame. However, “shape-only” constraints cannot discriminate
against clutter and introduce errors by tessellation of the viewsphere. Bray tested his re-
implementation by adding random lines and shortening the data features to simulate noise
effects. This may appear distracting to humans but it bears little resemblance to structured
clutter which often introduces strong ambiguity. Furthermore no indication was given, in
either report about the impact of changing thresholds on robustness. To ensure global
consistency, Bray suggested a final stage of model testing using Lowe’s method.
Therefore it is natural to anticipate the same type of failure as Lowe’s.

4 The VCC used to prune an interpretation tree
4.1 3D Grouping as a constrained search of an interpretation tree

Following Grimson and Lozano-Perez’ 2D-2D [5] and 3D-3D [6] systems, the 3D
grouping problem can be represented as a constrained search of an Interpretation Tree
(IT), which can be searched in a depth-first manner.

The VCC provides an “acceptance” criterion to justify pruning of the tree.
Whenever inconsistency is detected a whole subtree is pruned and back-tracking occurs.

Any consistent group, at least as large as 3, is recorded. When the search finishes the
largest consistent cliques are assessed and the best is taken as the resultant interpretation.

4.2 Experimental findings

The IT 1s combinatorial, but the pruning operation removes subtrees and greatly reduces
the number of nodes encountered. However, the need for null matches and the fact that
the size of a clique must be at least 3 to invoke the VCC causes a substantial minimum
computational cost. For a typical problem, with n, = 10 and the average size of

D; = 3, the cliques of cardinality 3 number C3°3* = 3240.
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We have experimented with different acceptance criteria by changing the threshhold
1. It has proved difficult to select a threshold which works successfully for our test
images. In any case, with a null match allowed, pruning is largely ineffective [12], so the
IT approach is very costly.

5 The VCC as a best-first heuristic

5.1 State space formulation of 3D grouping

We may regard the search of different 3D cliques as a state space problem, and use the
scalar measurement of view consistency V as a heuristic to choose state transitions. For
a given problem, there are as many states as the number of possible cliques. We only
consider transitions between two states differing by a single match, either by changing a
match or by dropping a match (see Figure 3).
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Figure 3 State transitions by swapping or dropping the match to the i'" model feature

5.2 Initial state and a two stage best-first state transitions method

Within the state space representation, the 3D grouping process becomes a sequence of
state transitions, with performance determined by the initial state, the transition steps and
the termination condition. At each transition we improve the VCC monotonically - hence
the algorithm is called Viewpoint Consistency Ascent (VCA).

We establish the initial clique by using the unique maximal clique containing on the
longest data feature from each subset D;. The initial clique may be formally represented

as:
Co = {(m, d“)|length(d“) 2iengrh(dkj)(‘v’j) k=1,..,n,1

This seems a good choice of starting state: in our experiments we have found that
60~75% of the matches in this initial clique are correct. All the potentially matched model

features are included, so the cardinality of this initial state is n,,.

The remaining features comprise a set of ““spares” D, in which there are n,, subsets,
D, = {d:'jl-f =1,...n,d;#d; } some of which may be empty. (The association
between each candidate and its model feature is thereby preserved).

State transitions are made in two stages, both using a local best-first heuristic.
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(1) Swapping stage

State transitions in this stage attempt to move towards a goal state by exchanging
single data features from D with their counterparts in the clique. The aim of this stage is
to minimise misses.
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Figure 4 Flow chart for the best-first swapping algorithm

The algorithm for the swapping stage is illustrated in Figure 4. At any state, we
examine all possible single swaps, compute all consequent new poses and their VCC
scores. We take the swap with the best consistency improvement as the state transition.
A series of transitions bring a monotonic improvement in consistency scores, which stops
when further consistency improvement cannot be obtained.

(2) Dropping stage

At the end of swapping stage, the system will generally have reached a state much
closer to a desirable clique containing fewer false matches than the initial clique C. The
second stage seeks to drop any remaining false matches.

The algorithm for the dropping stage is illustrated in Figure 5. It bears close
resemblance to the first stage in the sense of monotonic consistency improvement and
examination of all possible single drops before taking a transition. This stage iteratively
drops single matches from the current clique. It stops when no change brings about
improvement in consistency or the cardinality of the clique reduces to 3.

(3) Incorporation of hysteresis

The simple monotonic improvement test in Figure 4 and 5 (V>V’) leads to a slow
convergence. Therefore hysteresis is introduced by means of a threshold (V>V’-Thd) to
prevent unprofitable sequences of small improvements.



51

| \
| | swapping stage | |
|

e T— |

“mnput from the H'\I [ R ) |
1 [

SRR [ minvp >V’ ‘ |

!' ‘ register the corresponding k | ! |

I calculate V ‘ j | '

L 1>k 0
{ I 0o - y r}\) ‘
‘ ‘ ' ' \V >V .,/ ‘
b e
; drop the ¥ match fromC | X yes |
l | | L : |
! A : move to C’ by dropping | !
! ' | | the & match in C | ;
calculate pose | inc(k) . g
|

| | and assess V, | ! ‘

.‘.! C!!| |

) -1\ | =L ; 'f
‘;:...-/].‘ - sm(c)‘q:,_ﬂu | Vl -.:‘li . I
\/ : :

yes [ —_—

' /ouputC N
. Sto #

| \aﬁ__?_.—/

| Figure 5 Flow chart for the best-first dropping algorithm

5.I3 Performance

The worst case cost in the swapping stage (without replacement of the rejected d; in
Dg)is Yi(i=1,...n -n_) However the process is very unlikely to run into the worst
case because the majority of matches in the initial clique are likely to be correct. The

worst case cost for the dropping stage is nfn/ 2. Again this is very unlikely in practice
because only a small portion of incorrect matches left over from the previous stage are
incorrect and need to be dropped. The worst case cost for the VCA method, which is a

combination of two stages, 1s therefore nﬁ, —2n,4n, ., but the actual cost is likely to be
much lower.

The various stages of the algorithm are illustrated in Figure 6. We see that the initial
ground shadow error (which upset Lowe’s algorithm, Fig 2) is effectively overruled by
the other evidence. Illustrations of the results of the method in three other cases are shown
in Figure 7. Each column represents one case. Images and the initial pose are shown at
the top; the result of Lowe’s incremental algorithm is in the middle; the result of the VCA
method is at the bottom. [In casel, the problem in the middle figure is mainly due to a
mismatch of the side of the hatchback. In case 2 attention should be paid to the rear of the
car. In case 3, significant error is to be found at the rear and the sill.]

The main costs of different algorithms are shown in Table 1. The VCA provide
better performance than Lowe’s incremental method at a cost far below that of searching
an interpretation tree.
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Figure 6 3D grouping by best-first state transition
6 Conclusions

The significance of this study is two-fold. First we have presented a best-first state
transition approach to 3D grouping which has improved reliability, and a worst

casecomplexity of O(nz). Secondly, we believe that the study carries important
implications for 3D-2D model matching in general. When images are good and contain
little structured clutter, model matching can be made very efficient by using methods
such as Lowe’s which treat the VCC inexactly. But in domains such as that studied here,
the image is more complex and new methods have to be adopted to impose the VCC more
stringently.
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Table1  Comarison of the costs in VCC computation of different methods



