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The use of Riemannian manifolds and their statistics has recently gained

popularity in a wide range of applications involving non-linear data mod-

eling. For instance, they have been used to model shape changes in the

brain [1] and human motion [3]. In this work we tackle the problem of ap-

proximating the Probability Density Function (PDF) of a potentially large

dataset that lies on a known Riemannian manifold. We address this by

creating a completely data-driven algorithm consistent with the manifold,

i.e., an algorithm that yields a PDF defined exclusively on the manifold.

In the proposed finite mixture model, we simultaneously consider

multiple tangent spaces, distributed along the whole manifold as seen in

Fig. 1. We draw inspiration on the unsupervised Expectation Maximiza-

tion (EM) algorithm from [2], which given data lying in an Euclidean

space, automatically computes the number of model components that

Minimize a Message Length (MML) cost. By representing each com-

ponent as a distribution on the tangent space at its corresponding mean on

the manifold, we are then able to generalize the algorithm to Riemannian

manifolds and at the same time mitigate the accuracy loss produced when

using a single tangent space.

Given an input dataset, [2] starts by randomly initializing a large num-

ber of components. During the Maximization (M) step, the MML crite-

rion is used to annihilate those components not well supported by the data.

In addition, upon EM convergence, the least probable mixture component

is also forcibly annihilated and the algorithm continues until a minimum

number of components is reached.

In order to extend [2] to Riemannian manifolds, we define each mix-

ture component as a normal distribution on its own tangent space Tµk
M,

with a mean µk and a concentration matrix Γk = Σ−1
k

:

p(x|θk)≈Nµk

(

0, Σ−1
k

)

where θk = (µk,Σk). The mean µk is defined on the manifold M, while

the concentration matrix Γk is defined on the tangent space Tµk
M with

the mean at the origin. Specifically, our algorithm proceeds as follows:

Let us assume we have K components after iteration t − 1. Then, in

the E-step we compute the responsibility that each component k takes for

every sample xi:

w
(i)
k

=
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∑
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,

for k = 1, . . . ,K and i = 1, . . . ,N, and where αk(t − 1) are the relative

weights of each component k.

In the M-step we update the weight αk, the mean µk and covariance

Σk for each of the components according to:
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where d(·, ·) is the geodesic distance between two points and logµ (·) is

an operator that maps a point from the manifold M to the tangent space

TpM at point µ .

After each M-step, we eliminate the components whose accumulated

responsibility wk is below a threshold. A score for the remaining compo-

nents based on MML is then computed. This EM process is repeated until

convergence of the score or until reaching a minimum number of compo-

nents Kmin. If this number is not reached, the component with the least

responsibility is eliminated and the EM process is repeated. Finally, the

Figure 1: Illustration of the proposed mixture model approach. Each mix-

ture component has its own tangent space, ensuring the consistency of the

model while minimizing accuracy loss.
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Figure 2: Quadratic Surface Example. (a) Section of the manifold with

the input data. (b) Evolution of the cost function where vertical lines

represent iterations in which a cluster is annihilated. The optimal mixture

is marked with a green dot. (c) Evolution of the number of clusters. Some

of the clusters from the solution are shown in (d) to (g).

configuration with minimum score is retained, yielding a resulting distri-

bution with the form

p(x|θ) =
K

∑
k=1

αk p(x|θk) .

We validate our method by providing extensive results on both syn-

thetic and real examples. In particular, we show results on synthetic ex-

amples of a sphere and a quadric surface (see Fig. 2), and on a large and

complex dataset of human poses, where the proposed model is used as a

regression tool for hypothesizing the geometry of occluded parts of the

body. We show that our approach outperforms the traditionally used Eu-

clidean Gaussian Mixture Model, von Mises distributions and approaches

using a single tangent space.
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