CEUR-WS.org/Vol-2085/gomariyahLBP-ILP2017.pdf

Learning from Ordinal Data with Inductive Logic
Programming in Description Logic

Nunung Nurul Qomariyah Dimitar Kazakov
AT Group, Computer Science AT Group, Computer Science
University of York, UK University of York, UK
ngb16@york.ac.uk dimitar.kazakov@york.ac.uk
Abstract

Here we describe a Description Logic (DL) based Inductive Logic Pro-
gramming (ILP) algorithm for learning relations of order. We test
our algorithm on the task of learning user preferences from pairwise
comparisons. The results have implications for the development of
customised recommender systems for e-commerce, and more broadly,
wherever DL-based representations of knowledge, such as OWL on-
tologies, are used. The use of DL makes for easy integration with such
data, and produces hypotheses that are easy to interpret by novice
users. The proposed algorithm outperforms SVM, Decision Trees and
Aleph on data from two domains.

1 Introduction

ILP is now a well-established research area where machine learning meets logic programming [18], which has
shown the potential to address many real world problems [6]. Description Logics (DLs) are a family of languages
representing domain knowledge as descriptions of concepts, roles and individuals. DLs can be considered as
fragments of First Order Logic (FOL). Because of their well-defined semantics and powerful inference tools, DL
have been the representation of choice for ontologies, including applications, such as the Semantic Web. ILP
algorithms using DL representation have the potential to be applied to large volumes of linked open data and
to benefit from the tools available for such data, e.g. IDEs, such as Protégé, triplestores, providing efficient
storage and retrieval, and reasoners, which can test the data for consistency and infer additional knowledge.
DLs are subsets of FOL, and the representation they use has a variable-free syntax. This is claimed to make
the knowledge base statements easier to read than the corresponding FOL formulae [2]. Traditionally, ILP
algorithms use the Closed World Assumption (CWA), while DLs operate under the Open World Assumption
(OWA). Existing attempts to apply ILP to DL data have explored both possibilities, as shown in Section 3.1.

The chosen application area of Preference Learning (PL) aims to induce predictive preference models from
empirical data, e.g. by assigning an absolute rank to the choices available [8]. Online vendors already employ
methods, such as collaborative filtering, which allow to produce selective lists of the most popular products
among users with similar tastes [16].

The automation of PL has now become essential in many e-commerce applications following the current call
for customer personalisation. The method of pairwise comparisons, which we focus on, is relatively new in

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: Nicolas Lachiche, Christel Vrain (eds.): Late Breaking Papers of ILP 2017, Orléans, France, September 4-6, 2017, published at
http://ceur-ws.org

38

preference learning, although there are exceptions [3, 10, 20, 19, 14]. Balakrishnan and Chopra [3] published a
research study on pairwise preferences by using a Bayesian framework. Qian et al. [19] published a similar idea,
proposing an approach to learn user preferences by using pairwise comparisons to explore each attribute in turn
through “orthogonal queries” and then applying linear SVM to approximate the preferences. Similarly, Jensen
et al. [10] apply a Gaussian Process regression model for comparisons between music tracks. Another similar
work was performed by Rokach and Kisilevich [20] which uses lazy decision trees with pairwise comparisons at
each node.

Most studies on pairwise preference learning use statistical machine learning approaches while in this paper,
we propose a logic-based approach. There is one other attempt at using ILP for preference learning [14], which
proposes a framework for learning weak constraints in Answer Set Programming (ASP). We build on previous
work combining ILP and DL, namely, the DL-Learner [15], which aims to find a correct class description in a
specific ontology from a set of positive and negative examples of individuals. It builds a hypothesis in the form of
a class description, which can contain conjunction, disjunction and existential quantification. DL-Learner itself
develops previous work on systems, such as YINYANG [9] and DL-FOIL [5]. Kietz’s [12] and Konstantopoulos’
[13] work is also relevant in this context. While DL-Learner can only learn class definitions, we aim to learn
definitions of relations. Here we focus on the binary relation of order, and in particular, strict order, a relation
that is transitive, anti-reflexive and anti-symmetric. Our aim is to learn each user’s individual preferences using
a DL-based representation, and an algorithm inspired by the Progol/Aleph family of ILP tools. We evaluate
our algorithm on two datasets, one on car preferences [1], the second on sushi preferences [11]. Both datasets
provide pairwise preference choices of multiple users.

The rest of the paper is organized as follows: in Section 2 we explain the learning task in terms of both logic
programming and DL to make the problem clearer to readers from either background. We then propose an
algorithm based on ILP in Section 3 and provide the analysis of the evaluation in Section 4. Finally, we conclude
our work and provide our plan for further work in Section 5.

2 Problem Representation

DLs represent the world in terms of concepts, objects and roles. Concepts can be seen as a formal definition of
classes in the application domain, e.g. one can define a father as a man who has at least one child. Concepts have
two functions: (1) to describe a collection of objects and (2) to describe the properties that a class should hold.
Objects are the entities that belong to one concept or another. Roles represent binary relationships between
objects, e.g. John is Anna’s father. These can also be used to describe object properties, e.g. John’s age is 42.
In FOL terminology, objects correspond to unique constants (i.e. ground terms), concepts correspond to unary
predicates, and roles correspond to binary predicates. All this information is stored in the form of a knowledge
base which comprises of two components, an assertional part (ABoz) and a terminological part (TBoz).The
TBox is a finite set of General Concept Inclusions (GCI) and role inclusions. It corresponds to the notion of a
schema in a relational database. The assertional set in the knowledge base is called the ABox. It is used to state
properties of individuals. In a relational database, this is the actual data, while in the FOL it corresponds to
facts (aka ground terms).

The knowledge representation in DL can be expressed using the Resource Description Framework (RDF),
which is one of the most powerful general-purpose knowledge representation languages. The syntax of RDF is
based on triples in the form of subject-predicate-object expressions. An RDF triple is a statement expressing a
relation (“predicate”) between the object in its first argument, and the object or literal in its third argument
(e.g. “Anna-has father-John”). In this section, we use Turtle! syntax to describe RDF data?

The preference learning problem is defined as follows:

Given: a set of individuals, a class hierarchy, a mapping from individuals to classes, and a set of
preferences represented as pairs of individuals, where the first individual is preferred over (strictly
better than) the second,

Find: a disjunction of axioms defining the domain and range of the relation betterthan (where each
axiom is expressed as a conjunction of classes) that is complete and consistent with the given preferences.

This is a supervised learning problem as the user assigns one of two possible labels for each pair of items after

Thttps://www.w3.org/TR/turtle/
2Turtle stands for Terse RDF Triple Language.

39

considering their attributes. We then use these labels to search for a definition of the Domain and Range class
memberships that render the relation true.

We propose an approach to learn relations and apply the resulting system to learn strict order (i.e. better
than). The properties of strict order relation are anti-symmetric, which means that if item A is better than item
B, then in any case item B cannot be better than item A, unless A=B. That special case is then excluded by the
additional assumption of betterthan being anti-reflexive (i.e. X cannot be seen as better than itself). It is also
transitive, which means whenever item A is better than item B, and item B is better than item C, then item
A is better than item C. The ontology reasoner can always be used to extract all pairs of items satisfying the

MedlumCar

LargeCar
SmallCar

/ -
Car -- has subclass --> MediumCar — -
.

+ 1 S D=
- & car M carl -- betterthan --> car3
edan ~ [——
- -
= S
~

B S~
Manual
(b) The user annotation is translated into the object property
NonHybrld

“betterthan”.

owl:Thing]-D—[C

Hybnd
(a) A simple car class hierarchy
Figure 1: Problem representation

preference relation as a result of applying its transitivity property. We add these inferred examples to the set of
positive examples so that the complete closure is used by the learning algorithm. We also use the anti-symmetry
property to produce all negative examples as a ‘mirror image’ of the positive (after completing their transitive
closure), i.e., all pairs derived from a positive example through the swap of the first and second element in the
pair.

The representation of a sample preference learning problem in DL is shown in Figure 1. The class hierarchy is
given to the system as an input. We evaluate our algorithm using a simple class hierarchy as shown in Figure la
in order to make the solutions comparable to the Aleph representation.

2.1 Hypothesis Language

The aim of ILP is to find a theory that is complete (it covers all the given positive examples) and consistent (it
covers no negative examples). In our algorithm learning from RDF data, we build a hypothesis for an object
property we want to learn, as in the case of the property betterthan. The fact that betterthan is an object
property is described in Turtle as shown below:

myontology:betterthan rdf:type owl:0bjectProperty.

Each of the possible hypotheses about this relation is then described as a pair of class definitions, which specify
the membership of the domain D and the range R of the relation. The same hypothesis language can be described
in Aleph notation as the following mode declarations:

:— modeh(1,betterthan(+car,+car)).

:- modeb(1,hasbodytype (+car,#bodytype)) .

:- modeb(1,hasfuelcons(+car,#fuelconsumption)) .
:- modeb(1,hasbodytype (+car,#bodytype)) .

:— modeb(1,hastransmission(+car,#transmission)).
:- modeb(1,hasenginesize(+car,#enginesize)) .

40

2.2 Background Knowledge

Our algorithm represents background knowledge through classes and their membership, as shown in the example
below (which uses Turtle syntax):

myontology:Sedan rdf:type owl:Class ;
rdfs:subClass0f myontology:Car ;
owl:disjointWith myontology:Suv .

myontology:carl rdf:type owl:NamedIndividual ,
myontology:Car ,
myontology:Manual ,
myontology:NonHybrid ,
myontology:SmallCar ,
myontology:Suv .

The same background knowledge can be spelt out in Aleph as follows:

car(carl). htype predicate
bodytype(sedan). Ytype predicate
hasbodytype(carl,suv). %bk

hasfuelcons(carl,nonhybrid). ¥%bk
hastransmission(carl,manual). %bk
hasenginesize(carl, small). %bk

2.3 Examples

In our algorithm, the set of positive examples is defined by the user’s preferences, and the following pre-processing
step that computes the transitive closure of these preferences, which are then negated to produce all negative
examples. The following Turtle code expresses that carl is better than car3, car4, carb, and carl0:

myontology:carl myontology:betterthan myontology:car3 ,
myontology:car4 ,
myontology:carb ,
myontology:carl0 .

In traditional ILP syntax, the same examples are represented as ground facts of the predicate
betterthan/2, where the arguments are of type car. So, the positive examples in Aleph are written as:
betterthan(carl,car3), and the negative, obtained by their reversal, as :-betterthan(car3,carl).

3 Proposed Algorithm

We propose an algorithm called APARELL (Active® Pairwise Relation Learner) which learns the relation of
strict order in DL. We implement our algorithm in Java using the OWL API* [7] and RDF4J API 5 to handle
DL. The algorithm is shown in Algorithm 1. We follow the four basic steps used in the Progol/Aleph greedy
learning approach:

1. Select a positive example. Each instance of the relation can be seen as a pair of object IDs.

2. Build the bottom clause. The bottom clause is constructed from the conjunction of all non-disjoint
classes of which each individual in the pair is a member.

3. Search. This step is to find all generalisations of the bottom clause of the same, lowest possible, length
that are consistent with the data.

3The active learning algorithm feature has not been described or used in this work.
4http://owlapi.sourceforge.net/
Shttp://rdf4j.org/

41

4. Remove covered positive examples. Our algorithm is greedy in its treatment of positive training
examples. We remove all covered positive examples once all clauses found by the search step are added to
the current theory.

3.1 Search and Refinement Operator

We use a top-down approach similar to the one in Progol/Aleph starting from the shortest clause possible. Note
that for the specific class of problems, namely, learning strict order, the most general, unconstrained definition
stating that for any pair of objects, the first is better than the second, is true in exactly 50% of the cases for
every pair (z,y),z # y, as where this is true, the relation will not hold for the pair (y,x). It will also always
be false for pairs of type (z,x). This is why the algorithm proceeds by considering an increasing, and strictly
positive number of properties (literals) constraining either object in the relation. The bottom clause contains the
conjunction of n constraints (of type class membership) on the Domain side and the same number of constraints
again on the Range side of the relation. We evaluate all combinations of constraints, except the ones that
imply the same class membership of both arguments (i.e. X is better than Y because they both share the same
property/class membership) or those that have already been considered. An example of the refinement operator
steps starting from a positive example carl is better than car3 is illustrated in Figure 2 (please see Section 4.1
for a description of the dataset of car preferences).

We express the coverage of a clause through P and N, where P — the number of positive examples covered,
and N — the number of negative examples covered. In the case that the solution has the same score as another
alternative, Aleph will only return the first solution found. In our algorithm, we consider all new clauses that
cover at least two positive examples and none of the negatives. (This is done to ensure consistency, and that at
least a minimum level of generalisation takes place.) The search will not stop until all the possible combinations
at each level have been considered. The resulting theory is a disjunction of clauses. Therefore, any test example
covered by one of them is classified as positive.

’ (Thing) betterthan (Thing) ‘

’ (Car) betterthan (Car) ‘

’ (Manual) betterthan (Mediu.mCar)‘ ’ (Manual) betterthan (NonHybrid)

N

’ (Manual) betterthan (MediumCar 1 Manual)

’ (Manual M NonHybrid M SmallCar) betterthan (MediumCar M Manual I NonHybrid M Sedan)

L
(Manual M NonHybrid MM SmallCar M Suv) betterthan (MediumCar M Manual M NonHybrid I Sedan)

Figure 2: Refinement operator search graph

Our algorithm retains all consistent clauses generalised from a given positive example, rather than just one
of them, as Aleph would have done. (At the same time, both algorithms discard the positive example from the
training set after this generalisation step in a greedy learning manner.) This is the most important difference
between the two algorithms and a possible explanation for any observed difference in their performance.

If a consistent clause has not been found yet, the algorithm continues to refine the current candidate by
adding one literal to constrain either object in the relation. Similarly to Aleph, when APARELL cannot find a
consistent generalisation, it adds the bottom clause itself to the theory.

We implement our algorithm using the Closed World Assumption (CWA). For the problem of learning strict
order, it makes virtually no difference whether our system operates under the CWA or OWA. Under the OWA,
we learn two hypotheses: one as mentioned before, the other with the positive and negative examples swapped.

42

Algorithm 1 APARELL

1:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

Input : background knowledge B,

a set of positive examples E1T = {{e1,e2),..., (en,em)},

a set of negative examples E~ = {(ea,€1),..., (€m,€n)},

maximum number of literals (depth limit)

a relation name r = betterthan
Output : A theory T represented as a set of clauses, each defining a pair of concepts specifying the relation’s
domain and range

3: set T'= () /* initialization*/

4: set 1 = () /* the list of constraints on Domain */
5: set x5 = () /* the list of constraints on Range */
6:
7
8
9

set flag = false /* whether a consistent generalisation of the bottom clause has been found */

: while ET is not empty do

set clause_size = 2 /* initial value for |z1| + |z2| */
set o1 =0, xo = 0, flag=false /* reset in every loop*/
select et € ET to be generalised, and define (e, e2) = ™
/* build the bottom clause (z1, z2) for et as follows: */
set 1 = {C1,...,Cp} VYC; such that e; € C;
set ko = {D1,...,Dnp} VD, such that es € D;
while flag==false and clause_size <[do
/* search (top-down) through all generalisations of the bottom clause */
for all o] C z1,2h C a9, |2)| + |24 == clause_size do
if x| betterthan zy is consistent and more general than e™ then
add the clause to T’
set flag = true
end if
end for
if flag==false and clause_size < [then
set clause_size = clause_size + 1 /* increment clause size */

else if flag==false and clause_size == [then
add et to T and remove et from ET
end if
end while

if flag==true then
remove covered positive examples from ET
end if
end while
Return T

43

For the given domain (of learning strict order), the second hypothesis (i.e. the one that being swapped between
the negative and positive examples) is almost the exact negation of the first (modulo the choice of a training
sample). The resulting coverage is therefore almost identical to the one of the CWA hypothesis.

3.2 Search in a Complex Class Hierarchy

In the case of a more complex class hierarchy that consists of more than one level, we consider the hypothesis
search over all the inferred class memberships of each individual. For example, if the class hierarchy and its
membership in Figure 3 are given to the system, the algorithm progresses as follows:

1. Select a positive example. As an example, we choose car 1 is better than car 3 to be generalised. Please
see Table 1 for the properties of the cars.

2. Build the bottom clause. In this step, we use the reasoner to infer all the classes which include car 1 and
car 3 as their direct and indirect membership. The bottom class of the above example is shown as follows:

(Car and EconomyCar and FamilyCar and Manual and
NonHybrid and SmallCar and Suv) betterthan
(Car and Manual and MediumCar and NonHybrid and Sedan)

The above bottom clause is only used to guide the refinement search, as

SmallCar C EconomyCar C Car. We do not consider clauses referring to the membership of the intersection
between a class and its superclass, as this will be the same as the membership of the class itself. For
example, the membership of SmallCar M EconomyCar is {carl,car8}, which is the same as the membership
of SmallCar itself.

3. Search. The search begins from the shortest clause length considered (2 literals) as shown below:

Car betterthan Manual

Car betterthan MediumCar

Car betterthan NonHybrid

Car betterthan Sedan
EconomyCar betterthan Car
EconomyCar betterthan Manual

In the case that we have not found any consistent hypothesis of length 2, this parameter is increased to 3,
etc.:

EconomyCar and FamilyCar betterthan Car
EconomyCar and FamilyCar betterthan Manual

It should be noted that the algorithm skips the evaluation of the same value comparisons like:
Car betterthan Car to speed up the search.

4. Remove covered positive examples. We count the coverage for each hypothesis we build and remove
the covered positive examples from the training dataset.

3.3 Current State

Our algorithm can handle a multi-level class hierarchy, but, in order to limit the search, we only allow conjunctions
of literals in the clauses, effectively limiting the language to EL description logic. With this limitation, we can still
produce accurate models for our test cases, and a result in a form that is easy to interpret. The most expensive
process is checking the class membership (by using the ontology reasoner) for every possible hypothesis. This is

44

owl:Thing I-D—{ Car

NonHybrid

*® Mediumcar

//V/
l EconomyCar ‘4>—[Hybrid J

Figure 3: An example of more than one level of car class hierarchy

used for scoring the hypothesis coverage. The search in our algorithm follows breadth-first search with limited
depth (specified as the [parameter).

Another property of our proposed algorithm is that, unlike Aleph, we do not provide a single consistent clause
covering a given positive example, but add to the resulting theory all such clauses of the minimal possible length.
While this can produce a more accurate result, the learning process takes longer than in Aleph. For example,
given 45 training examples in which each item has 4 attributes, our algorithm takes 409 ms to finish while Aleph
performs faster in just 88 ms.

4 Evaluation
4.1 Datasets

We use two publicly available preference datasets [1, 11]. Both the sushi and the car datasets have 10 items to
rank which leads to 45 preference pairs per user. We take 60 users from each dataset and perform 10-fold cross

Table 1: Car Dataset - Item Descriptions

Car ID | Bodytype | Transmission | Fuel Engine size
1 suv manual non-hybrid | small

2 sedan automatic hybrid large

3 sedan manual non-hybrid | medium
4 sedan manual non-hybrid | large

5 suv manual non-hybrid | medium
6 suv automatic hybrid medium
7 sedan automatic hybrid medium
8 suv automatic hybrid small

9 sedan automatic non-hybrid | medium
10 suv automatic non-hybrid | medium

validation for each user’s individual preferences. The car dataset has 4 attributes: body type, transmission, fuel
consumption and engine size [1], as shown in Table 1. Despite the difference in the number of attributes in the
two datasets, we found that the maximum clause length of 4 (in Aleph and in our algorithm) is sufficient to
produce consistent hypotheses.

The second dataset used in the experiments is about sushi preferences® which has been published by
Kamishima [11]. The dataset contains user individual preferences about 10 different sushi types. The users

6http://www.kamishima.net/sushi/

45

were asked to sort the sushis according to their preferences in an ascending order. For the experiment, we gen-
erate the pairs order from each set of individual preferences. Similar to the previously mentioned car dataset, 45
pairs of sushi preferences are produced for 10 types of sushi (which represents all possible pairs). In this dataset,
there were 5000 users involved in the survey. The sushi preference dataset is quite large when compared to the
car preference dataset as it has 7 attributes describing each type of sushi. With a dataset of such size, we can
test the performance of our algorithm and evaluate how it grows.

4.2 Evaluation Method

The goal of this evaluation is to assess the accuracy of the predictive power of our algorithm to solve the preference
learning problem. To do this, we set up four experiments as below:

1. Assess the accuracy of our algorithm compared to the three baseline algorithms, SVM, Aleph and DT, on
60 users in car dataset and sushi dataset. Here, we also perform an ANOVA test and a post-hoc test to
assess which algorithms significantly differ.

2. Assess the accuracy and the performance of our algorithm on a larger dataset by conducting an experiment
on 5000 users of the sushi dataset.

3. Assess the potential of our algorithm to learn relations from a more complex class hierarchy by using the
car dataset.

4. Assess the accuracy of our algorithm on training examples of different size, and compare it to the three
baseline algorithms.

Accuracy on 60 users.

We compare our algorithm with three other machine learning algorithms: SVM, the Matlab CART Decision
Tree (DT) learner, and Aleph. SVM is a very common statistical classification algorithm, which is used in many
domains. Previous work of pairwise preference learning was performed by Qian et al. [19] showing that SVM
can also be used to learn in this domain. Both DT and Aleph are learners expressing their models in logic, where
the former uses propositional logic and the latter — (a subset of) First Order Logic (namely, Horn clauses).

We build a simple class hierarchy as explained in Section 2 for each dataset. We learn from each set of
individual preferences and evaluate the model by using 10-fold cross validation. We repeat the same test for
all users then calculate the average accuracy. The result is shown in Table 2. In this experiment, the search
stopped at a maximum length of 4 literals (this is the same as Aleph’s default clause length of 4). According to
the ANOVA test with a = 0.05, the result shows that there is a significant difference amongst the algorithms
with a p-value of 1.14 x 1072! for the car dataset and 2.97 x 103 for the sushi dataset. ANOVA is conceptually
similar to multiple two-sample t-tests, but is more conservative (results in less type I error). After performing the
ANOVA test, we find which algorithms are significantly different by using Fisher’s Least Significant Difference
(LSD). The result of this post-hoc test is shown in Table 3. Please note that the result of this 10-fold cross
validation may have introduced a bias in terms of absolute performance levels due to the fact that the use of
transitivity chains (closures) may have created an overlap between training and test data. However, the same
training and test data have been used to compare all algorithms, so the results for their comparison remain
unaffected (are not biased).

Table 2: Mean and standard deviation of 10-fold cross validation test
‘ SVM ‘ DT ‘ Aleph ‘ Our algorithm

car dataset 0.8264+£0.12 | 0.7470+0.10 | 0.7292£0.08 | 0.8456=+0.06
sushi dataset | 0.7604£0.09 | 0.7869+0.07 | 0.7789+0.06 | 0.8138=+0.07

Accuracy on 5000 users.

In this experiment, our algorithm is still showing the highest accuracy amongst the other three baseline algo-
rithms. The average accuracy on individual preferences from 5000 sushi dataset users is shown in Table 4. In
the first experiment, we have already evaluated the mean difference amongst the algorithms using ANOVA and
a post-hoc test. In here, the p-value of ANOVA (a=0.05) test is 0. This is a common case in large datasets.
Performing statistical test to analyze the mean differences in a large dataset can be problematical as p-value

46

Table 3: Post-Hoc Fisher’s Least Significant Difference (LSD)

. . Sushi dataset Car dataset
Algorithm 1 Algorithm 2 p —wvalue | means diff. | p — value | means diff.
Aleph DT 0.561 same 0.292 same
Aleph Our algorithm 0.011 different 0 different
Aleph SVM 0.177 same 0 different
Our algorithm | DT 0.049 different 0 different
Our algorithm | SVM 0 different 0.257 same
DT SVM 0.054 same 0 different

tends to drop quickly to zero. From the result shown in Table 4, the low standard deviation rate can be a good
indication that the accuracy of our algorithm is excellent in any case.

Table 4: Accuracy on 5000 users

SVM ‘ DT ‘ Aleph ‘ Our algorithm
mean | 0.7599 | 0.8004 | 0.7867 0.8150
stdev | 0.0912 | 0.0612 | 0.0697 0.0604

Accuracy on more complex class hierarchy.

As an additional experiment, we evaluate the car dataset with the complex class hierarchy (see Figure 3) using
literal depth limit=4. The accuracy of our algorithm is performed using 10-fold cross validation. The result
of the experiment with the complex class hierarchy is a mean of 0.8409 and standard deviation of 0.1405. The
accuracy result shows no difference between using a simple class hierarchy and a complex class hierarchy.

Accuracy on different training examples size.

We perform several experiments with the algorithms by varying the proportion of training examples and test it
on 10% of examples. For a more robust result, we validate each cycle with 10-fold cross validation. The result
of these experiments is shown in Figure 4. We show that our algorithm still works better even with the smallest
number of training examples.

Algorithm performance.

We run another test to see the algorithm performance by different clause length settings (see Table 5). The
evaluation is performed on both datasets by using a 90:10% training-test split. We also record the algorithm
execution times of 60 users x 90% of examples (2,382 total examples in car dataset and 2400 total examples in
sushi dataset, please note that some of the positive examples are removed during the search). The algorithm
was executed on Java 8 Eclipse IDE with 8 GB Memory 1867 MHz DDR3 and 2.9 GHz Processor Intel Core
i5 machine. The result shows there is no significant accuracy improvement after 4 literals. Surprisingly, the
algorithm runs very slow at 2 literals for the car dataset (where the achieved accuracy is the lowest for all tested
clause lengths). The reason is in Step 4 i.e. the removal of covered positive examples (see Section 3). If we
cannot find any consistent hypothesis when generalising a positive example, we add an exception and only remove
one example. But when the algorithm can find consistent hypotheses, it removes more than one example which
results in much fewer positive examples thus speeding up the search. This anomaly does not occur in the sushi
dataset due to the larger number of attributes so that the possibility to find a consistent hypothesis for clause
length 2 is higher.

Table 5: Performance on different clause length settings

Clause length Car dataset Sushi dataset
Accuracy Running time Accuracy Running time
2 literals 0.7433 £0.15 17,824 ms 0.8135%0.13 12,189 ms
3 literals 0.8533 £ 0.14 11,338 ms 0.811740.13 19,040 ms
4 literals 0.8434 £0.12 13,050 ms 0.8266+0.13 36,922 ms
5 literals 0.8217 £0.15 14,223 ms 0.81504 0.14 60,943 ms

a7

Accuracy vs different proportion of training examples
T T T T T T

1

09 N

. 4’:0
08 *— *E_:*
-* T — . —0— —'Rg
" _w K — = /
a— H,E/r /
0.7 - — / N
g
* .
* L3 ﬁ/."

0.6 e R — ekl ~ EE kA R 1
505+ . N
3 .

5] X
©

0.4 - b

0.3+ 1

0.2 T

—¥— Qur algorithm

01 - —D0O— Aleph |

: —O—-SVM
<= %--- Decision Tree
oL L 1 L 1 L | 1 L 1 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

proportion of training examples

Figure 4: Accuracy by varying number of training examples
Sample solutions found.

As mentioned in [2], by using DL representation, which is variable-free syntax, our algorithm can produce a
set of solutions which are more readable compared to the First Order Logic representation. An example of a
consistent hypothesis found by our algorithm is shown below:

(Manual) betterthan (Sedan)
(Automatic and Hybrid) betterthan (MediumCar and Suv)

The above rules simply say that: “Manual car is better than sedan car OR automatic hybrid car is better
than medium size SUV car.” In comparison, Aleph produces rules, such as:

betterthan(A,B) :- hasenginesize(B,large), hasenginesize(A,small).
betterthan(A,B) :- hasfuelcons(B,nonhybrid), hasbodytype(B,sedan).

The first Aleph’s rule states that: “car A is better than car B if car B has a large engine size and car A has a
small engine size.” In the second rule, it says: “car A is better than car B if car B is a non hybrid car and sedan.”
In other words, if the car has characteristics as a non-hybrid sedan car, it will not be better than any other car.

5 Conclusion and Further Work

In this paper, we have shown that the implementation of ILP in DL can be useful to learn a user’s preference
from pairwise comparisons. In fact, the proposed algorithm has proven statistically significantly better than all
tested alternatives in all but one case. The exception in question is when compared to SVM on the car dataset,
where our algorithm achieves a seemingly higher mean accuracy, but the result is not statistically significant (in
other words, it is a draw).

We are currently working to address some of the limitations of the algorithm. In terms of accuracy, we show
that our algorithm outperformed the other algorithms. However, to produce the final theory, our algorithm
takes much longer than each of the three baseline algorithms. Currently, the only way to restrict the search
complexity is by limiting its depth. We need to work on the improvement of this aspect without reducing the
accuracy performance. The possible alternatives include the use of heuristic functions to predict the cost of
expanding a node (i.e. informed search). We are also working on expanding the refinement operator by allowing
the use of different operators (e.g. union or negation) with the aim of improving the accuracy.

48

References

[1]

Abbasnejad, E., Sanner, S., Bonilla, E. V., and Poupart, P.: Learning Community-based Preferences via
Dirichlet Process Mixtures of Gaussian Processes. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI) (2013)

Baader, F., Horrocks, I. and Sattler, U.: Description Logics. In: Handbook of Knowledge Representation,
pp. 135-179. Springer, Heidelberg (2009)

Balakrishnan, S. and Chopra, S.: Two of a kind or the ratings game? Adaptive pairwise preferences and
latent factor models. In: Proceedings of IEEE 10th International Conference on Data Mining (ICDM),
pp. 725-730 (2010)

Bradley, R. A., Terry, M. E.: The rank analysis of incomplete block designs. I. The method of paired
comparisons. In: Biometrika, vol 39, no. 3-4, pp. 324-345 (1952)

Fanizzi, N., d’Amato, C., and Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Proceed-
ings of Inductive Logic Programming, ser. LNCS, vol. 5194, pp. 107-121. Springer, Heidelberg (2008)

Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U. and Zorn, B.: Inductive
Programming Meets the Real World. In: Communications of the ACM, vol. 58 no. 11, pp. 90-99. ACM,
New York (2015)

Horridge, M. and Bechhofer, S.: The OWL API: A Java API for OWL ontologies. In: Semantic Web, vol. 2
no. 1, pp. 11-21, (2011)

Hiillermeier, E., Flrnkranz, J., Cheng, W., and Brinker, K.:Label ranking by learning pairwise preferences.
In: Artificial Intelligence, vol. 172, no. 16, pp. 1897-1916 (2008)

Tannone, L., Palmisano, 1., Fanizzi, N.: An Algorithm Based on Counterfactuals for Concept Learning in
The Semantic Web. In: Applied Intelligence, vol. 26 no. 2, pp. 139-159. Springer, Heidelberg (2007)

Jensen, B., Saez Gallego, J. and Larsen, J.: A predictive model of music preference using pairwise com-
parisons. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1977-1980 (2012)

Kamishima, T.: Nantonac Collaborative Filtering: Recommendation Based on Order Responses. In: Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 583-588. ACM, New York (2003)

Kietz, J.: Learnability of Description Logic Programs. In: Proceedings of Inductive Logic Programming,
ser. LNCS, vol. 2583, pp. 117-132. Springer, Heidelberg (2002)

Konstantopoulos, S. and Charalambidis, A.: Formulating Description Logic Learning as An Inductive Logic
Programming Task. In: Proceedings of IEEE World Congress on Computational Intelligence, pp. 1-7 (2010)

Law, M., Russo, A. and Broda, K.: Learning weak constraints in answer set programming. In: Theory and
Practice of Logic Programming, vol. 15 no. 4-5, pp. 511-525 (2015)

Lehmann, J.: DL-Learner: Learning Concepts in Description Logics. In: The Journal of Machine Learning
Research, vol. 10, pp. 2639-2642. (2009)

Linden, G. D. , Jacobi, J. A.; and Benson, E. A.: Collaborative recommendations using item-to-item
similarity mappings. In: US Patent 6,266,649 (2001)

Muggleton, S.: Inverse Entailment and Progol. In: New Generation Computing, vol. 13 no. 3-4, pp. 245-286
(1995)

Muggleton, S., De Raedt, L., Poole, D., Bratko, 1., Flach, P., Inoue, K. and Srinivasan, A.: ILP Turns 20.
In: Machine Learning, vol. 86 no. 1, pp. 3-23. Springer, Heidelberg (2012)

49

[19] Qian, L., Gao, J. and Jagadish, H.: Learning user preferences by adaptive pairwise comparison. In: Pro-
ceedings of the VLDB Endowment, vol. 8 no. 11, pp. 1322-1333 (2015)

[20] Rokach, L. and Kisilevich, S.: Initial profile generation in recommender systems using pairwise comparison.
In: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 42 no. 6,
pp. 1854-1859 (2012)

[21] Srinivasan, A.: The Aleph Manual. In: Technical Report. Computing Laboratory, Oxford University (2000),
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

50

